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ABSTRACT

Airborne Wind Energy (AWE) is a new power technology that harvests wind energy at high altitudes
using tethered wings. Studying the power potential of the system at a given location requires evaluating
the local power production profile of the AWE system. As the optimal operational AWE system altitude
depends on complex trade-offs, a commonly used technique is to formulate the power production
computation as an Optimal Control Problem (OCP). In order to obtain an annual power production
profile, this OCP has to be solved sequentially for the wind data for each time point. This can be
computationally costly due to the highly nonlinear and complex AWE system model. This paper proposes
a method how to reduce the computational effort when using an OCP for power computations of large-
scale wind data. The method is based on homotopy-path-following strategies, which make use of the
similarities between successively solved OCPs. Additionally, different machine learning regression
models are evaluated to accurately predict the power production in the case of very large data sets. The
methods are illustrated by computing a three-month power profile for an AWE drag-mode system. A

significant reduction in computation time is observed, while maintaining good accuracy.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Airborne Wind Energy (AWE) is a new type of wind-harvesting
energy technology, attracting research interest in academia and
industry. The technology produces electricity using tethered wings
that fly in a cross-wind fashion. There are two main technologies
currently under development, pumping-mode and drag-mode
systems. In the pumping-mode technology, the tethered wing
generates power by reeling out a tether from a ground-based winch
connected to an electric generator. When reaching the maximum
tether length, the wing is reeled back by using a fraction of the
energy generated during the reel-out phase. Drag-mode systems
instead generate power via turbines mounted on the tethered
wings, transmitting the produced electricity via the tether to the
ground station.

In order to estimate the large-scale potential of AWE, previous
work has evaluated the available annual wind resource at high
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altitudes [1,2]. This theoretical potential is reduced when the
physical limitations of the AWE system are properly taken into
account along with the efficiency of the conversion from wind to
electric energy. This conversion efficiency is affected by the tether
drag [3] and the availability of the AWE during severe weather
conditions [4]. A realistic assessment of the large-scale AWE po-
tential must account for these effects. However, unlike traditional
wind turbines, AWE systems have no machine power curves that
describe the instantaneous power as a function of the current wind
speed [5]. Instead, the power output of an AWE system depends on
the flight trajectory and the specific wind speeds at the current
flight altitude.

Previous work has taken the energy conversion into account and
estimated the annual power production of an AWE pumping-mode
system [6,7]. In Ref. [6], Loyd’s analytical model [8] is used to es-
timate the power and generate a set of power curves. For the power
curves, the ratios of the tether forces during traction and retraction
are varied, along with the ratios of tether speeds, while other var-
iables are kept constant. In Ref. [7], a point-mass model is used for
the AWE system, describing the system dynamics in more detail
than in Ref. [6]. To avoid the complexity of controlling a dynamic
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point-mass model, the flight trajectory is prescribed and dis-
cretized. Assuming a quasi-steady state, the power is then opti-
mized for each time instant with respect to wing speed, tether
speed, tether force, and roll angle. The work of [7] offers a fast
estimation of the power production, but the assumption of a quasi-
steady state limits the accuracy of the estimation. Another limita-
tion of the model, as noted in Refs. [7], is the inability to ascertain
choices for different optimal operational altitudes that depend on
the location as well as on the different system designs. In order to
alleviate these limitations, the power can be estimated more
accurately by formulating the power maximization as a genuine
optimal control problem (OCP), fully accounting for the system
dynamics. The approach of using an OCP for computing the power
production is a commonly used technique among the community.
The concept is originally introduced in Ref. [9] and has been applied
in several work [10—15]. The underlying system models used for
the optimization range from simple and low-order to detailed and
highly complex. In this study, the OCP is solely used for trajectory
planning and the power computation, rather than investigating the
control strategy of the wing. The latter is not focus of this study and
needs to be analyzed separately.

For traditional wind turbines, the relevant wind field is limited
to around the height of the nacelle, i.e., about 100 m—180 m,
depending on the type of turbine. AWE systems aim for winds at
higher altitudes, typically up to 500 m, and tap into a larger vertical
wind field ranging from 50 m to 500 m during their operation. In
order to estimate the wind speeds at the height of a wind turbine,
the logarithmic law or the power law is often used [16]. However,
real wind profiles can differ significantly from these models, and
vary strongly in time [17]. Moreover, for high-altitude winds, the
assumption of a logarithmic wind profile is not valid [2]. Hence, for
detailed AWE analyses, such as an estimate of the annual power
generation, the logarithmic approximation might not be sufficient.

Both [6,7], used real wind-speed measurements at a specific
location. Such detailed measurements are not necessarily available
at a high spatial and temporal resolution in conjunction with a
large-scale assessment. This limitation is considered in Ref. [6],
which proposes the use of statistical wind-speed distributions as an
alternative to detailed data. However, analyses of large-scale sys-
tems, studying regional dynamics of power generation and de-
mand, require representative hourly power profiles for all involved
technologies, cf [18]. In Refs. [14], the detailed temporal evolution
of wind data is used to model and compare the power production
profiles of traditional wind turbines and drag-mode AWE systems.
Here, we present the method applied there.

Research is looking into computing the AWE power production
based on real wind profiles in order to investigate the performance
of this new renewable energy technology. At the same time, the
concept of using optimal control for computing the power pro-
duction of AWE is common, but presents a rather complex and
computational tedious approach. Hence, this paper aims to
combine these two targets and proposes a methodology for
computing the power production profiles of an AWE system via an
OCP. The methodology allows to implement large-scale wind data
into an OCP while keeping the computational complexity at a low
level. As a result, optimal control can be used as a tool to evaluate
the power production for wind data with a high spatial and tem-
poral resolution in order to assess the large-scale potential of the
technology.

In order to achieve this, first realistic wind profiles are acquired
from MERRA wind data (NASA), which are available at a high
temporal and spatial resolution [19]. Then, the wind profiles for
each time and location point are implemented individually into the
OCP for computing the instantaneous maximal power production.
The OCP is discretized into a Nonlinear Program (NLP) and solved

with a primal-dual interior-point solver. Solving this NLP is
computationally costly, due to the fairly high complexity of the
dynamics of the AWE system.

The OCP is discretized into a Nonlinear Program (NLP) and
solved with a primal-dual interior-point solver. Solving the NLP is
computationally costly, due to the fairly high complexity of the
dynamics of the AWE system. As the wind profiles are treated one
by one, the NLP must be solved for a large number of times and
evaluating the annual energy yield becomes a tedious and time-
consuming task. As also noted in Ref. [7], the complexity associ-
ated with solving an OCP is problematic. In order to overcome this
problem and reduce the computation time, this paper investigates
and proposes an approach based on continuation and homotopy
methods [20]. These techniques are commonly used in parametric
optimization studies and have been applied to a number of prob-
lems. The basic idea is to find a homotopy path among the optimal
solutions to facilitate the work of the solver. In Ref. [21], a
homotopy-based nonlinear interior-point method is used to solve
nonlinear model predictive control problems. In Ref. [9], a homo-
topy strategy is proposed to find an initial guess for a non-convex
highly nonlinear program of the optimization of an AWE system.
This strategy is applied in several studies addressing AWE optimi-
zation, cf. [15,22,23], and is adopted here for the first initialization
of the problem. This strategy is necessary to obtain the initial guess,
but the computation is costly. Ideally, solving a large family of NLPs
to obtain power production profiles would not require this initial-
ization for each individual problem. Therefore, this paper presents a
specific homotopy-following-path algorithm (HPbd) that allows for
solving a whole family of NLPs with a single initialization. To
illustrate the algorithm, a drag-mode AWE system is considered.

If the annual power production for a very large region with a
high spatio-temporal resolution is needed, the number of NLPs to
be solved will still be extremely high. In order to circumvent this,
we propose machine-learning techniques for training a regression
model on the solutions of the optimizations, so that the power
production of an AWE system can be predicted based on the wind
conditions. Regression models of various types have been used in
previous work to predict the power generated by traditional wind
turbines [24—26]. However, this method has not yet been applied to
predict the power generated by AWE systems. Here, we evaluate
several regression models in order to find the one that is best suited
to predict the optimal power production.

The paper is organized as follows. Section 2.1 presents the
power-optimizing OCP and the underlying AWE model. Section 2.2
details the wind-data processing and implementation in the NLP.
Section 2.3 briefly describes primal-dual interior-point methods.
The continuation method and homotopy-path-following method
are presented in Section 2.4. Section 2.5 describes the imple-
mentation of the proposed method in the current case. Section 2.6
estimates the optimal power production using a regression model.
Section 3 presents the results and discusses accuracy and compu-
tation time measurements, and Section 4 concludes.

2. Background

This section first briefly presents the mathematical model rep-
resenting the AWE system along with the OCP. Here, a drag-mode
system is considered, but the proposed method also applies to
pumping-mode systems. Next, the raw wind data are processed to
yield NLP parameter inputs. This is followed by a short background
on solving a Nonlinear Program (NLP) with the primal-dual inte-
rior-point method. In section 2.4, we discuss the application of the
homotopy-path-following method in NLPs and describe the actual
implementation. Finally, we propose a strategy based on machine
learning using regression models to treat extremely large wind
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data.

2.1. Description of the optimal control problem (OCP)

In order to compute the average power production of an AWE
system, we formulate a mathematical model describing the dy-
namics of a wing flying in a cross-wind trajectory. This paper
considers a drag-mode system following a circular flight path. The
dynamics of the wing is described as a body with six degrees of
freedom using high-index Differential Algebraic Equations (DAEs).
The tether is modeled as a rigid rod with mass and drag, neglecting
the tether dynamics. The motion of the wing is driven by the
aerodynamic forces and moments, which depend on the instanta-
neous wing position and relative wind speed.

The mathematical model is detailed in Ref. [27], which considers
a pumping-mode AWE system. However most of the formulations
are similar for the drag-mode model. The main differences are the
tether model and power production model, along with some of the
wing parameters. Here, we choose a rigid 666 kW wing with a
wingspan of 28 m. Other parameters can be found in our work [14],
which uses the same system model. The model proposed in
Ref. [27] assumes a straight tether, where the length is controlled

via the tether acceleration I. In the drag-mode system, the tether
length is fixed to I = 500 m with the tether acceleration set to zero.
The power is generated via on-board turbines, modeled as

P:Fprop"appva&ﬂv (1)
|IVapp||
where Fprop is a scalar control input describing the braking force of
the propellers, vapp is the instantaneous relative wind velocity and
7 the efficiency of the on-board propellers, assumed constant here.
The braking force Fprop is an additional drag force added to the
aerodynamic wing and tether drag. The aerodynamic model is
defined as in Ref. [27].

The average power generation can then be computed by solving
an optimal control problem to maximize the average value of (1)
over a periodic trajectory of the system, with boundary condi-
tions and a free duration T > 0. The OCP is defined as

T

min  — %JP(X, P.T) + Qpeg(W) dt (2a)
o 0
st. F(x,x,z,u,p,T)=0, (2b)
c(x(0),x(T)) =0, (2¢)
l‘l(x,Z,u,p, T) < 07 (Zd)

where function F gathers the equations of the dynamic AWE system
model in the form of implicit DAEs. The decision variables xeR23,
zeR gather the differential and (scalar) algebraic states, respec-
tively, ueR?* gathers the control inputs acting on the system,
namely the change of the surface deflections and the change in the
drag force Fprop. Vector peR?*10 gathers the wind profile param-
eters, detailed below in Section 2.2. The optimization variable Te R
denotes the orbit time for one power cycle. Constraint (2c) enforces
the periodicity of the trajectories, and (2d) gathers the actuator and
operational limitations of the AWE system. The cost functional (2a)
provides the average power generation by computing the electrical
energy P(x,p, T) produced by one flight trajectory, and dividing it
by the trajectory time T. A small quadratic regularization term

Qreg(u) is applied on the control inputs u in order penalize them
and regularize the problem [9].

2.2. Wind data extraction and processing

Computing the power generated over a certain timespan, e.g.,
over the course of a year, requires accurate wind data. In this paper,
the data are taken from the Modern-Era Retrospective analysis for
Research and Applications version 2 (MERRA-2) [19], an atmo-
spheric reanalysis provided by NASA. The reanalysis is four-
dimensional, covering space and time coordinates (lat, lon, z, t),
where lat, lon correspond to latitude and longitude and z pressure.
Two-dimensional wind-speed vectors are available for each grid
point lat,lon,z,t. The wind-speed vectors are given in the common
meteorological wind directions u and v, i.e., as east/west and north/
south. In this study only horizontal wind-speeds are considered.

For this paper, two different MERRA subsets of wind data are
combined in order to cover both low and high altitudes. For both
datasets, the spatial resolution of the grid is 0.625° x 0.5°
longitude-by-latitude. The low altitude winds are given by the
hourly data set from Ref. [28], including the wind vectors u and v at
the vertical altitudes 2, 10, and 50 m, respectively. The high-altitude
winds are taken from the averaged three-hourly data set from
Ref. [29], sampled vertically at 72 pressure levels, from surface
pressure down to 0.0100 hPa, corresponding to an altitude of about
70 km. In this study, the maximal system operation height is set to
500 m, which means that only the ten bottom altitude levels up to
835 hPa are relevant. The low- and high-altitude datasets are
combined at each grid and time point to form the wind vectors with
a three-hourly resolution.

In order for the wind data to be implemented into the NLP, the
points have to be represented as a sufficiently smooth function.
Thus, the wind speed u,v components are converted into the Car-
tesian reference frame for each time instance, with the main wind
direction always aligned to the x-axis and interpolated to get the
wind conditions as a function of the altitude. The alignment can be
done under the assumption that the AWE system can operate in any
direction and the transition energy needed between different di-
rections is negligible. Further, it is assumed that the three-hourly-
averaged winds are constantly available during the 3 h and the
corresponding average power is produced during the whole time
interval. In the end, for each of the nj,, =10 altitude levels
considered, the wind is represented by two parameters: i) the main
wind velocity, which is the norm of the u, » wind speed vectors, and
ii) the wind direction as a deviation from the main direction (x-
axis).

Fig. 1 shows the wind data processing for an illustrative wind
profile. The processing of the u,v wind vectors in the Euclidean
plane between 0 and 2w (= East) is shown on the left. The
parameter dis denotes the main wind direction at time ts, and dis
denotes the deviation from this main wind vector at each altitude
level. In the AWE model, these two parameters are transferred to
the Cartesian coordinate frame. The average wind direction dys is
defined to be along the x-axis, and the deviation dis enters as an
orthogonal wind vector on the y-axis. Thus, the wind data are
implemented as a multi-dimensional parameter p,, € R>*10 in the
NLP.

On the right, Fig. 1 illustrates the wind vectors in the Cartesian
coordinate frame as implemented in the model.

In the model (2b), the wind conditions have to be defined over
the whole altitude range, and the numerical tools used to solve (2b)
operate best if all functions in (2b) are at least twice continuously
differentiable. Hence, a smooth interpolation of the vertical wind
data is proposed. In the following, a Lagrange polynomial function
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main wind
direction

I
W \;

Wr

<

X, dis

Fig. 1. Illustration of wind-data processing. Wind data are given as u and v compo-
nents for a single time point for each of the ten altitude levels. The concepts main wind
direction and angular deviation are illustrated in the Euclidean plane, for each altitude
(left). In the model, the main wind direction ds (here, illustratively north-east) is
aligned with the x-axis of the earth frame. The wind speeds are then expressed as a py
wind component, and the deviations are represented as orthogonal vectors in the y-
axis py (right).

is chosen for the interpolation, which goes through each data point.
In order to prevent unrealistic interpolations due to over-fitting the
wind data, a regularization to the polynomial is added. For the x and
y wind parameters, Lagrange polynomials P x and P, are given
as:

zZ—2Zy
P (2)= ;- (3a)
pre kl;[l Zj — Zy
ki
.1 2 8°P(z,0) 2
0:argm‘91n §||P;/(Z7 0) — pwll© +k- |T| ; (3b)

where p,, = {p, Py} and 6 = {6, 0y} hold the parameters related
to x or y components. Eq. (3b) computes the parameters §;, such
that they are close to the actual wind speed data at height z, but at
the same time limit the second derivative of the polynomial of Eq.
(3a) with the weighting factor k. The weighting factor is chosen
such that the difference between the resulting polynomial pa-
rameters and the original data is minimal.

An example of interpolation of the x-wind component can be
seen in Fig. 2, in which four different wind profiles are plotted. The
illustration shows that the standard Lagrangian polynomial
(dashed line), that goes directly through the original wind data
points p, are heavily over-fitted. As a contrary, the regularized
Lagrangian polynomial shows a much more realistic wind shear
and it goes also directly through each wind data point. Since the
difference is barely visible we can state that 0x = py. Given that the
wind data are also modeled and based on assumption the authors
assume that this modification of the wind data is negligible.
Alternative techniques, e.g., cubic B-splines, can be used.

2.3. Background on solving an NLP with the primal-dual interior-
point method

In order to solve the formulated OCP (2), the problem is dis-
cretized with the direct collocation method into n = 40 time in-
tervals with d = 3 collocation points [30]. The resulting NLP

800 1

600 1

400 1

altitude[m]

200 1

T T T T T

0 2 4 6 8 10
wind speed[m/s]

Fig. 2. Wind speed profiles in their main wind direction as polynomial functions of the
altitude, illustrated for four different time instances. The black dots in a profile
represent the wind parameters py. The dashed lines illustrate the Lagrange interpo-
lation (k = 0) using those points as polynomial parameters. The respective solid lines
represent the smoothed Lagrange polynomial P, with respect to the second derivative
(k = 10%*). Despite the smoothing, the new Lagrangian parameters are fx =py.

min  &(w,p) (4a)
s.t. gw,p)=0 (4b)
h(w,p) <0, (4c)

is implemented in Python within the nonlinear optimization and
optimal control framework CasADi [31]. The cost function (4a) is
minimized with respect to the decision variables we R%193 and the
parameters pe R2710, Equations (4b) and (4c) present the equality
and the inequality constraints, respectively.

The solver used in this work is IPOPT, a primal-dual interior-
point (PDIP) algorithm tailored to large-scale NLPs [32]. The solver
algorithm seeks solutions to (4) via solving the relaxed KKT (Kar-
ush-Kuhn-Tucker) conditions [30]:

Vw®(W, p) + Vwg(w, p)A+ Vwh(w,p)u=0 (5a)
gw,p)=0 (5b)
h(w,p) +s=0 (5¢)
diag(s)p — 71 =0 (5d)

under the condition s, u> 0, where 7 is the relaxation or barrier
parameter, s the slack variable, and {A, u} the dual variables [32].
For 7 = 0, the classical KKT conditions associated with (4) are
recovered, such that the complementary slackness conditions (5d)
combined with (5c¢) become

diag(s)p= —pu"h(w,p)=0. (6)
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Mi
hj(w, p) active

hi(w, p) inactive

-4 -3 —I2 —ll 0 1
h,‘(W, p)

Fig. 3. Solution manifold of the original complementary slackness conditions
uih;(w, p) = 0 plotted in red, and the relaxed conditions u;h;(w, p) + 7 = 0 in blue and
purple for different values of t. The smaller the value of <, the more accurate the so-
lution. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)

For 7> 0, the solution of (5) approximates the primal-dual so-
lution of the original problem on the order of t. The non-smooth
complementary slackness conditions p"h(w, p) = 0 are
smoothed in (5d) via the relaxation parameter t. The manifold of
the complementary slackness conditions (5d) is visualized in Fig. 3.

In order to compute the solutions to the relaxed KKT conditions
(5) efficiently, a Newton iteration is typically used, starting from an
initial guess forw, A, u, s [20]. Solvers like IPOPT solve (5) for large
values of 7 first and then decrease t in a homotopy strategy towards
very small values of 7 [32].

In order for a solution point w* to be a local optimum, the KKT
conditions (5) have to be fulfilled and a regularity condition called
Linear Independence Constraint Qualification (LICQ) has to be
satisfied, as well as the Second-Order Sufficient Condition (SOSC) of
optimality. LICQ requires that, at w*, the gradients of the equality
constraints Vg* and the gradients of the active inequality con-
straints Vh* are linearly independent. The SOSC is fulfilled for a
minimum if
d'v2zd >0, for any feasible d=+0, (7)
i.e., the Hessian of the Lagrangian is positive in all feasible di-
rections d, defined by the joint null-spaces of the Jacobian of the
equality constraints and strictly active inequality constraints. If the
NLP (4) satisfies SOSC and LICQ, and if all constraints are strictly (in)
active, the accuracy of the solution for (5) and the one for (4) is on
the order of ||jw} —w*|| = #(r) [32], where w¥ denotes the
approximate solution.

2.4. Homotopy-path-following methods

The NLP resulting from the highly nonlinear periodic OCP (2) of
an AWE system is rather complex to solve. Successful convergence
to an optimal solution requires special solution approaches. One
issue is that periodic OCPs that involve high-index DAE formula-
tions and non-singular representations of the SO(3) Lie groups, as
in (2), can cause severe difficulties for Newton-based solvers [33].
Indeed, the resulting NLP may fail the LICQ and SOSC conditions.
This typically yields a poorly conditioned linear algebra in the
neighborhood of the solution and jeopardizes the convergence of

the Newton iterations. In order to ensure that LICQ and SOSC hold
at the optimal solution, the formulation of the problem has to be
modified in simple but counterintuitive ways. This problem and its
solution are further detailed in Ref. [33].

The other issue relates to the high nonlinearity of the DAEs
describing the dynamics of the AWE system. Solving the NLP re-
quires an appropriate initial guess. In order to generate this initial
guess, a homotopy-path-following method is introduced, which al-
lows the gradual transformation of the OCP from a fairly simple
problem into the original highly nonlinear one. A simpler OCP is
solved first, and its solution serves as the initial guess for the next
slightly modified problem until the originally complex problem is
recovered. This procedure is detailed in Ref. [23] and in the
following referred to as Homotopy-Path-initialization (HPinit).

In this paper, the complex OCP delivering the optimal trajec-
tories of the AWE system is solved for a very large set of wind pa-
rameters p< .. The two issues detailed previously are tackled by
implementing the solutions proposed in Refs. [23,33]. However,
deploying the above-mentioned HPinit for every individual
parameter in the set . would be very computationally inefficient.
As an alternative, in order to process a sequence of parametric NLPs,
an overlying homotopy path among the family of problems can be
of help. This homotopy-path-following method for performing
parameter studies might also be known as the continuation method,
which is detailed in, e.g., Ref. [20]. Below, we cover the mathe-
matical background of the homotopy-path-following method,
tailored to reduce the computational burden of using an OCP
formulation to compute the annual power production curve of an
AWE system.

For the NLP (4), satisfying SOSC and LICQ for all p=.#, the
parametric primal-dual solutions provided by (5), labeled as

S-(p) = {w*(p), A7 (p), u¥(p). s¥(p)} (8)

and implicitly defined by the relaxed KKT conditions (5), are
smooth for all 7 > 0, and converge to piecewise-smooth functions as
7—0 [34]. If LICQ and SOSC hold for all p in .#, then the homotopy
path for S;(p) is unique, and for 7 > O, the first order approximation

S:(p -+ adp) =S (p) + a - Pl ap 1 (o?) (©)

holds in a neighborhood of p (@ = 0). The size of the neighborhood

where (9) holds decreases with the value of 7. The sensitivities asél(’m

can be obtained inexpensively as a by-product of the Newton it-
erations using the implicit function theorem on the KKT conditions
(5), i.e.,

0S-(p) _ _ OR(S:(p).P) 'OR(S-(P). D) (10)
op 0z op ’

where R(z,p) collects the KKT conditions (5) and z = {w, A, u,s}
collects the primal-dual and slack variables involved in (5).

The method of computing the consecutive solution S;(p,) by
means of the first order predictor (9) is called the tangent contin-
uation method. The value of « then serves as a scaling parameter for
the distance Ap between p and the consecutive parameter p_, i.e.,
o = [0, 1]. An algorithm can be constructed to evaluate S;(p, ) if the
solution S;(p) is available:
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Algorithm: PDIP homotopy-path-following

Input: p,, p, S-(p), Aa >0
Set « =0, and Ap=p, — p
while o < 1 do
Update oy < min {1, o + Aa}
Compute:

S0 = 5. (p) + (ay — )

Set p <~ p+ (ay —a)Ap, and « < oy
Use St as a initial guess for solving Sy (p)

return

= S5:(py) = S-(p)

05:(p)

op (11)

The PDIP homotopy-path-following algorithm is guaranteed to
converge for Aa small enough and if all intermediate problems
fulfill SOSC and LICQ. The admissible step size A« decreases if ©
decreases or if ||p, —p|| increases. A small A«, does not substan-
tially affect the performance of the algorithm. Clearly, the closer p..
is to p, the faster the algorithm returns S-(p.. ), as the step size A«
can be increased if the distance ||[p, —p|| decreases. Typically, for
sufficiently small ||p, — p||, the choice Aa =1 is possible. These
characteristics are true for the parameters in this study as the wind
data are fairly dense. In practice, it also can be preferable to simplify
the update (11) to SIM*=S.(p), which yields the simpler classical
continuation method. The solutions for the parameter set & are
computed in this study using the simpler classical continuation
method, i.e., with the initial guess SiMt — S, (p). However, if there
are gaps in the wind data, the general PDIP path-following algo-
rithm may be advantageous or the parameters may have to be
clustered to obtain a dense data set within each cluster. In order to
exploit a homotopy-path-following method in the context of
interior-point methods, the relaxation parameter of the PDIP solver
IPOPT should be kept fixed. Additionally, for accurate solutions to
the OCP (4), a small value of T ought to be chosen. However, a small
value of 7 also typically requires a small Aa<1, impeding the PDIP
path-following algorithm. There are two options for circumventing
this issue:

1. Run the PDIP homotopy-path-following algorithm using a
“large” 7 =19 and compute refined solutions S;, (p,) with 74
small at the end of the algorithm.

2. Use a fixed value of © that delivers an accuracy of the solutions S;
sufficient for practical purposes, while allowing the PDIP
homotopy-path-following algorithm to perform decently.

The first option presents a more refined solution to the OCPs and
is used in other work [21]. However, given that the data contain
uncertainties and that the AWE model includes assumptions and
simplifications, we here assume that a fixed value of 7 is sufficient
for the aim of the study.

In general, the optimal sorting strategy for the parameters
cannot be defined without first solving the NLPs. In the context of
the predictor-based method (11), a general way of assessing the
distance between the current solution S, (p) corresponding to some
given parameters p and another solution S;(p,, ) is via assessing the
residual of the KKT conditions evaluated at the guess provided by
(11). More specifically, one can use as a distance between p and p_,

95+ (p)
op

R(s:0)+ 5P .~ pp, ) (12)

which requires evaluating the KKT conditions (5) for (at least) the

data points of neighboring p. Neighboring p can, e.g., correspond to
a small Euclidean distance between the parameters |[p — p, ||
When no tangential predictor is used, i.e., when SNt = S (p), a
cheaper measurement of the distance between the latest wind
profile p and another wind profile p, can be constructed using:

oR

IR(S7(P), P-+)Il = P P+ —P)

5:(p).p

+ (s —pIP). (13)

Evaluating the left-hand side of (13) requires a possibly expen-
sive evaluation of the KKT conditions (5) at a new parameter p,,
while evaluating the first term in the right-hand side of (13) simply
requires a matrix multiplication, which is arguably adequate for
deployment within a large-scale ordering algorithm.

2.5. Implementation of method

In this study, three months of wind data at a three-hourly
averaged resolution from September 1, 2017, to November 30,
2017, from the Gothenburg archipelago in Sweden, is used as an
illustrative parameter set .2, yielding nys = 728 parametric NLPs to
be solved. The individual NLPs describe the power optimization of a
drag-mode AWE system for one vertical wind profile, which is
defined via the wind coefficients collected in the parameter p<.2.
The parameter p, which holds the coefficients representing the
wind profile for a single time instance, is multidimensional,
including the wind speed and the deviation from the main direc-
tion for each of the ny, =10 altitude Ilevels, i.e,
Pw = {px7py}eR2X”'ev (see Section 2.2). In the model, the param-
eters form a polynomial wind profile for each time instance. Drag-
mode systems have a constant tether length and thus a rather
consistent and limited variation in average operational altitude. As
a result, the wind speed at the average operational altitude corre-
lates relatively well to the resulting power output and is hence a
determining factor of the optimal solution. Consequently, the wind
speed at the average operational height of the drag-mode AWE
system is used as an intuitive sorting parameter for the wind
parameter set .2, in order to obtain a small distance between S;(p)
and S;(p,, ). The average operational altitude for the studied system
is ~ 300 m, which is extracted from previous results of the OCPs.
Note that in the case treated in this paper, a reasonable ordering of
the parameters could be defined without applying the technique
described at the end of Section 2.4. However, the techniques
described are generally applicable and may be helpful for more
complex AWE problems, e.g., where the flight altitude is more
variable.

The three-hourly-averaged wind data typically do not change
drastically from one time instance p; to the next p,q, so a chro-
nological ordering may already be a natural sorting of the data for a
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Fig. 4. Wind speed profiles as functions of the altitude for the Gothenburg archipelago. Top: Wind speeds in the individual profile’s main wind direction, corresponding to the
model’s x-axis. Bottom: Orthogonal parts of the wind speed profiles, collecting the wind speeds that deviate from the individual profile’s main wind direction. Wind profiles in top
figure are sorted by wind speed at the average operational height of 300 m, which is the wind speed labeled on the x-axis. The polynomial profile curves result from the Lagrange
interpolation (Eq. (3)) described in Section 2.2, with each curve based on ny., = 10 data points at different altitudes. The colors are for a clearer illustration and to show that the high
wind speed profiles (red) are linked to the wide ranging y-wind component values, i.e. great changes in wind direction over the altitude range. (For interpretation of the references

to color in this figure legend, the reader is referred to the Web version of this article.)

path-following method. However, wind profiles reoccur and pat-
terns repeat during the course of a year, hence a reordering can be
beneficial.

Fig. 4 shows the wind profiles sorted by the absolute wind speed
at 300 m (average operational altitude). Note the dense wind data
and the gradual transition from low to high main wind speeds in
the top plot, and the corresponding orthogonal wind speeds in the
bottom plot. The figure also shows that, for altitudes above 100 m,
the logarithmic approximation of the profile is not always valid,
with wind maxima occurring at various altitudes.

After sorting, the wind data may not yield a dense data set. If
random wind data samples or data from locations with particular
weather phenomena are used, the wind data set can appear less
smooth. As a result, larger gaps can be found in the data, and the
sorting technique might not be sufficient for obtaining an overall
dense data set. If this is the case, and the difference ||p, —p|| grows
too large, the more genuine method of tangent continuation has to
be applied, i.e., steps with the scaling parameter « have to be added
between the individual parameters p and p,. Otherwise, if the
classical continuation strategy is to be used, another strategy is to
first cluster the wind data into characteristic profile shapes before
sorting by average wind speed. This assigns the parameters to
different clusters and the homotopy-path-following method is then
applied and initialized individually in each cluster. For demon-
stration purposes, the clustering method is tested with the

parameter set . used in this study. The data set is divided into
seven clusters according to two criteria: i) the mean wind speed
and ii) the span of total variation in wind direction over the ten
altitude levels, max(dss) — min(dss), at a single time instance. The k-
means clustering method is used to create the different clusters. For
each cluster, the optimal solution of the NLP (4) for a simple loga-
rithmic wind profile with similar winds as the wind data in the
cluster yields the first initial guess SiT‘}(i)t. Due to the characteristics of

the specific data set used here, the clustering results in a repre-
sentation with almost the same order of parameters as when sorted
by the wind speed at average operational height. Therefore, in what
follows, the analysis is performed with the simple parameter
sorting. As mentioned above, the circumstances can be different in
other locations.

So far, we have covered the background on solving the NLP (4)
and on the homotopy-path-following method for parametric ana-
lyses in Sections 2.1, 2.3, and 2.4. We have also presented the study-
specific wind parameters and how they are handled in the NLPs.
Below, we present the entire algorithm that applies the homotopy-
path-following method to solve the family of NLPs, with the wind-
parameter set .. The classical continuation method is applied. The
relaxation parameter 7 is fixed to 7(, a value between 103 and
10-8, and the parameters are sorted by the wind speeds at 300 m
altitude. For brevity, we call the algorithm the Homotopy Path for
big data (HPbd):

Algorithm: Homotopy Path for big data (HPbd)

Input: P, Sy
Set 7 =19

Set St = g
for t in T do

Use S™Mit as a initial guess for solving S (p,)

L Update S™t < S_(p,)
ST(p)

return
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The solution Sy is the initial guess at the solution of the NLP, and
.7 is the set of ordered time steps referring to the wind speeds from
high to low, as shown in Fig. 4 from right to left. The first initial
guess Sy holds the optimal solution for a high wind-speed profile. It
is generated in advance using HPinit to ensure the convergence to
the solution of the highly nonlinear program. Fig. 5 shows a sche-
matic of the entire procedure including the initialization with
HPinit and the parameter computation with HPbd.

The case shown has multiple clusters. Each cluster requires a
good initial guess Sy for the respective wind cluster before HPbd is
applied. After finalizing all parameters in one cluster, the next
cluster gets initialized. If the parameter set .2 is not clustered, ¢,
only exists for k = 1.

It is important to note that for low wind speeds, the convergence
tends to be problematic as power production is physically impos-
sible below a certain wind speed, which implies that the solver
generates solutions with meaningless trajectories. A persistent
failure in finding a meaningful solution is classified as a situation
where the AWE system should idle, i.e., the wing should be landed,
and the power output is zero. HPbd is applied to solve the OCP for
the wind parameter set .2 with 728 time steps. As mentioned
above, the original chronologically ordered data might already
serve as a well-sorted parameter set, but a re-ordering can further
reduce the number of overall iterations in the solver and ensure a
successful homotopy-path-following implementation.

In order to obtain an estimation of the computation times, the
time for solving the NLP with HPinit is compared to the time
needed when applying HPbd. Additionally, using HPbd, the original
chronological ordering of the parameters is compared to the sorting
strategy, where the ordering is based on the average wind speed at
the operational altitude of 300 m. A first comparison is performed
at a fixed 7 = 1074, The resulting difference in computational
performance is reported. In a second comparison, HPbd is applied
to solve the sequential OCPs using different fixed values for 7. The

' HPinit ! | Cluster ‘_<SL"“>
} Initialize ! and sort
} cluster ¢ G, = ckﬂi
S S J
,,,,,,,,,,,,,,,,,, = - 1
HPbd §x s ginit o le—,
0o~ (D)
— |
Solve NLP for

parameter p;

l

Si@) = S™E (pig1)

¢; final
cluster ?

Fig. 5. Schematic of the entire procedure of applying the two homotopy-path-
following algorithms to initialize and solve the NLPs sequentially for the clustered
and sorted parameters. In this analysis no clustering is applied, so c, only exists for
k=1

solution accuracy and the computation times are compared. At low
wind speeds, the solver is likely to struggle. In order to obtain a fair
comparison between the different relaxation parameters 7, this
comparison is performed on the upper half of the sorted wind data,
corresponding to greater wind speeds.

2.6. Estimation based on machine learning using regression models

For the goal of assessing the potential of large-scale AWE
development, a large number of geographic locations has to be
analyzed. Applying the proposed homotopy-path-following
method as implemented in HPbd already provides a reasonably
short computation time. However, this OCP approach to computing
the potential grows tedious if the analyzed region is large, e.g.,
when comprising more than tens or hundreds of sites. One option,
then, is to estimate the optional power production with a function
approximation from statistics and machine learning.

In order to obtain the power production for a very large number
of sites, we thus propose a machine learning approach that uses
regression models. The idea is that if a number of power production
profiles are available—computed with the previously presented
optimization method—they can be used to learn a function that
mimics the optimization method with reasonable accuracy. Obvi-
ously, some accuracy is sacrificed, but a great deal of computational
speed could be gained in return. In order to find a regression model
that predicts the optimal average power production based on the
wind-feature parameters p,, well, different regression models are
cross-validated and compared. Cross-validation is used to analyze
the accuracy of the models by holding out parts of the data in the
training phase for testing how the model generalizes to previously
unseen data [35]. The different regression models are chosen with
an increasing and heterogeneous capability to fit nonlinear func-
tional relationships: starting with linear regression models, moving
on to a k-nearest neighbor (k-NN) method, a support vector
regression (SVR) model, and a decision-tree-method (random for-
est) model. In order to establish a baseline, the linear regression
models used are expected to perform less optimally due to the
nonlinearity of the optimization. By establishing a baseline, we can
evaluate if and how well different models (suitable for nonlinear
relationships) improve performance when predicting average po-
wer for new geographic locations.

The different linear regression models are implemented based
on the minimization of the general function

ly — XBII? + a1 18Il + 28112,

where X contains the input variables (here: wind features), § the
regression coefficients and y the response variable (here: power
output). The coefficients aq, ap are chosen dependent on the linear
regression method. The standard linear regression is in fact the
least squares method, since the coefficients a1, = 0, i.e., the two
norms L1 and L2 are not included. The ridge regression adds a
shrinkage of the coefficients by adding the L2 norm, i.e, ¢y = 0,
ay >0, in order to provide regularization. The lasso (least absolute
shrinkage and selection operator) regression includes the L1 norm
to eliminate unnecessary variables, i.e, a; >0, a; = 0, while the
elastic net regression combines the norms such that «q,a;, > 0. More
background information can be found in Refs. [36,37]. The k-near-
est neighbor model interpolates the data locally by weighting the
neighboring data point dependent on the (for instance) Euclidean
distance. Thus, the closest neighbors contribute the most to the
solution [38]. The support vector regression (SVR) tries to find a
hyperplane that represents all data with no error greater than a
parameter ¢ [38]. Finally, the random forest regression model in-
cludes multiple decision trees that independently evaluate sampled
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Table 1

Regression models that are evaluated on their performance predicting the average power output of the AWE system based on the wind speed data. The hyperparameters that

are optimized via a grid search for the individual models are listed.

regression model

optimized hyperparameters

linear regression

Linear lasso
regression ridge
models elastic-net

Instance-based Support vector regression

k-nearest neighbor (k-NN)

Decision trees random forest

aq
a2
aq, oy, Li-Ly-ratio

C-penalty, kernel function
Npeighbors» weights

Ntrees, Min. sample{leaf, split}, max. depth

parts of the data and then average the decisions to avoid over-
fitting or bias [39]. The tested regression models and the hyper-
parameters that are optimized during the evaluation are listed in
Table 1.

The models are trained and compared with a nested k-fold cross
validation to evaluate the performance of different models on out-
of-sample prediction for unseen sites. In the nested k-fold cross
validation, the data set is split into k subsets in order to obtain a
segmentation into k different train and test splits. Some locations
are left out of the training to leave them aside for testing. The
training data are then further partitioned into splits for hyper-
parameter optimization. Finally, a set of model hyperparameters
are chosen that generalize best on average. In this paper, model
generalization is performed using the R? metric. This validation has
an advantage over the single training and testing method, as it
reduces the bias in the evaluation and gives a more truthful picture
of the model performance to generalize to new data [40].

In this study, k = 10 folds are used on the data of 15 geographic
locations (43,800 data points). The hyperparameters listed in
Table 1 are optimized via a grid search for each model. The range of
the individual grids is set to common reasonable values. The
resulting best-fitting regression model is then trained on the data
of 15 different European locations and tested with the data of the
three-month wind data .# used previously for the homotopy-path-
following algorithm, HPbd. The predicted power production from
the regression model is then compared to the results of the opti-
mization, and the computation time is provided.

3. Results and discussion

In this section, the proposed homotopy-path-following method
for processing big data (HPbd) is applied to solve a family of
parametric NLPs (4) for the parameter set .2?€R728%20 presented in
Section 2.2. The computation yields the average power production
for Gothenburg in a three-hourly resolution over a three-month
period. Further, different regression models are 10-fold cross-
validated. The most suitable model is used to predict the power
production profile based on the wind data .22 The predicted power
profile is then compared with the solution of the OCP. The results
are followed by a discussion.

3.1. Results of the homotopy-path-following method

At the very start, in order to initialize the algorithm HPbd, a first
solution Sy, serving as initial guess, needs to be computed with the
help of the initializing algorithm, HPinit. With HPinit, computing
one parameter p takes approximately 21 s on a standard computer.
A computation of the whole family of NLPs by applying HPinit to
each parameter p<.2” would correspondingly result in a very long
computation time. In order to reduce this computation time for

Table 2

Computational time needed to solve the ni = 728 NLPs. Computation times using
the algorithm HPbd, with parameters either sorted by main wind speed at the
average operational altitude of 300 m or in their original chronological order; or
using the algorithm HPinit for all parameters. The relaxation parameter in the solver
is fixed at 7 = 10~4. HPbd is thirteen times faster per parameter than HPinit, and
sorting the data shortens the computation time even more.

HPbd HPinit
parameter order — Case A — — Case B —

by wind speed chronological chronological
time/parameter [s/p] 1.03 1.58 21.01
total time [s] 750 1150 (~ 15300)

remaining parameters in a big wind data set .2, the family of
parametric NLPs can be computed with the algorithm HPbd
described in Section 2.5. Solving the n; NLPs with the parameters
in their original chronological order results in an average compu-
tation time of ~ 1.58 s/p. This delivers a significant reduction in
computation time. If the parameter set is additionally sorted by the
wind speeds at 300 m altitude before solving, the computation time
is further reduced to ~ 1.03 s/p . Hence, HPbd, in association with an
appropriate sorting technique, offers a reasonable computation
time. Table 2 summarizes the computation times using HPbd for
the two different sorting approaches compared to using HPinit to
solve for all parameters in the set. The shorter computational time
stems from an overall reduction in the number of iterations
required to solve the various NLPs.

Solving the family of parametric NLPs with HPbd yields a solu-
tion set S; €R™s, Each individual solution S; contains the average
power production P of the AWE system. The subscript T denotes the
solutions obtained with the fixed barrier parameter 7.

As described above, the reason for sorting the parameters is to
obtain a homotopy path along similar optimal solutions. In Case A,
the parameters are sorted by the wind speeds at the operational
altitude in order to result in similar optimal solutions for the
average power production P for the consecutive problems. In Case
B, the parameters are left unsorted, following the variability of the
wind availability. Fig. 6 shows the resulting power P in the same
order as the parameters have been solved by the algorithm. Fig. 6a
shows Case A, which has sorted parameters. The effect of the
sorting is obvious in the reduced distance between a solution P(p)
and consecutive solution P(p., ). For comparison, Fig. 6b shows Case
B. The varying wind pattern is clearly reflected in the consecutive
parameters and the resulting fluctuating power output. Fig. 6
shows why the homotopy-path-following algorithm reduces the
computation time as per Table 2.

Performing the computations at a barrier parameter t above
very small values yields a trade-off between the solution accuracy
and the computation time. Hence, the adequate value is not
obvious. For this reason, we next use different fixed values of T to
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Fig. 6. Power generation profile P of a drag-mode AWE system with a maximum capacity of 666 kW, computed by applying HPbd to the NLPs. On the left, the power is shown in the
order of the sorted parameters of Case A. On the right, the power is shown in the original chronological order of the parameters, Case B. The reduced distance between the solutions

S:(p) and S;(p, ) in Case A is obvious.

Table 3

Results of applying HPbd for different values of fixed 7 = [102,---,10~8]. Compu-
tation time [s] and the accuracy error of the computed average power of the AWE
system P; are shown. The error is measured with respect to the reference power
profile P_g computed for 7 = 10-8 as (14).

T computation time [s] accuracy error e; [—]
102 554 581074

103 571 5.5.107°

104 584 55.10°6

103 782 8.1-107

106 737 3.3.10°7

107 750 1.4-10~7

10-8 841 —

analyze the computation time and solution accuracy. For this
analysis, the parameters are implemented as in Case A, sorted by
wind speed at the operational altitude. When solving the OCP for
low wind speeds, the power optimization problem might not be
feasible, and the solver can run into conversion problems. As this
aspect is not relevant for the study on the accuracy of the barrier
parameter, wind parameters corresponding to very low wind
speeds are left out.

The NLPs are solved for 7 = {1072,10-3,10~4,10~>,10-6,10-7,

10-8}. The solutions for 7 = 10-8 serve as reference for computing
the average absolute error of the accuracy as

Ms

1
er=n- ; |Pi —P_gil;. (14)

where P_g; is the power production at ¢t =i solved for 7 = 1078,
and P, ; the power production at t = i solved for other values of 7.
The resulting computation times and errors are presented in
Table 3.

Computation time trends up as t decreases. This is due to the
increasing nonlinearity of the relaxed KKT conditions (5) as t de-
creases, which deteriorates the performance of the algorithm. With
a small barrier parameter t, managing changes in the comple-
mentary slackness condition is more difficult because the solution
manifold is less smooth, see Fig. 3. This becomes especially relevant
if there are many active inequality constraints in the NLP. In this
solved family of NLPs, the maximal power constraint P < Ppgx,
maximal tether force constraint Frer < Frer,max and minimal altitude
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Fig. 7. Coefficient of determination value R? of the tested regression models. Each
model is 10-fold cross validated and the hyper-parameters are optimized. The decision
tree method of the random forest model presents the highest R? value of 0.997 and
thus presents the best suitable method for this study case.

constraint h > h;,, for instance, are activated in a large number of
cases. The accuracy error becomes smaller as the value of t de-
creases. Considering modeling errors and data uncertainties, the
errors are all relatively small for the choice of 7 tested here. How-
ever, the error can become significant for 7 < 1072, In this study,
7=10"3 or 7 =10* offer a short computation time and small
error and seem to be the best choices. This observation may,
however, not apply to other types of AWE system models. A fast
approach to estimating the power yield has been presented in
Ref. [7]. However, the approach assumes a logarithmic wind profile
and limits the operational range to a prescribed trajectory. Here, we
instead take detailed wind speed profiles into account and optimize
the trajectory for the individual profile. The results of the NLPs
confirm that for maximal power production, the average flight
altitude and thus the trajectory are adjusted based on the current
wind profile. Thus, the computation via OCP offers insight on
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varying optimal operational altitudes at different locations.

3.2. Results of the regression model approach

In order to reduce the computation time of the AWE power
estimation further for larger wind data sets, we propose the use of a
regression model as function approximation. In total, seven
different regression models, listed in Table 1, are evaluated via a 10-
fold cross validation. The training data are obtained by applying
HPbd to 15 geographic locations in Europe using a fixed barrier
parameter, 7 = 10~4. For each fold, the individual hyperparameters
of the models are optimized via the grid search technique by a
nested folding based on the training data. The models are evaluated
in terms of the value of the coefficient of determination (R?), shown
in Fig. 7. A R2-value of 1 would present the ideal case of a perfectly
accurate model.

As the figure shows, the linear regression models seem to
perform the worst at predicting the optimal power production. The
more flexible models, SVR, random forest, and the k-nearest
neighbor regression model, perform well, though the random for-
est model stands out with the best R2-value. The following sets
were tested as hyperparameters for the random forest method:
Nirees = [10, 100, 200], minimum sample leaf = [1,3], and the
optimal minimum sample split = [2,4]. The optimal hyper-
parameters used for Fig. 7 are ngees = 200, minimum samples
required per leaf = 1, and minimum samples required for split = 2.

In the following, the performance of the random forest model is
tested by training it on 15 locations and then testing it on a new
unseen location, the previously used three-month wind data .# of
Gothenburg, shown in Fig. 6. Fig. 8 shows predicted power profile of
the test site in green and the corresponding power profile obtained
from the NLPs in blue.

As can be seen, the power production predicted by the model
matches the value computed by the NLPs fairly well. Computing the
mean absolute error as (14) with the data plotted in blue as a base
case results in ¢ = 4-10-3. With the regression model, the
computation time for the n, = 728 wind data points is in total
0.067s, so ~ 1-10~4 s/p. This is four orders of magnitude faster
than computing the power production with HPbd. Taken together,
this shows that with the random forest regression model it is
possible to increase the speed of the power computation drasti-
cally, while maintaining high accuracy.

3.3. Discussion

In order to obtain a reasonable computation time for solving the
NLPs that estimate the power production of an AWE system for a
large spatio-temporal data set, a homotopy-path-flowing method is
proposed. With the algorithm HPbd (Homotopy Path big data), an
AWE power production profile can be computed for a big data set
without initiating the complex NLP for every new parameter in the
data set. By applying the homotopy-path-following algorithm, the
average computation time per parameter is significantly reduced
from initially 21.01 s/p to 1.58 s/p for an unsorted chronological
ordering of the parameters. By additionally sorting the parameters
by the average wind speed at the operational height before
implementing HPbd, the computation time is reduced by another
30%. If a random forest regression model is trained on a few NLP
solutions and the power production profile of a site is predicted, the
computation time per parameter is sped up enormously to
~ 104 s/p. However, this computation time per parameter comes
with prior work, as the regression model is obviously no complete
workaround to the computation of the NLPs. Before being able to
use the random forest model to estimate the power, 10 to 20 sites
must first be solved with HPbd to obtain a training set for the
regression model. The greater the wind-data variance and the
greater the solution accuracy sought, the more data need to be used
for the training. As this regression model setup is indeed time
costly, for any planned case the usefulness of the regression-model
approach should be evaluated. Furthermore, the power production
computation with the regression model provides no information on
operational altitudes or other model variables.

The choice of what parameter sorting to use with HPbd depends
on the study case. In the current study, the drag-mode AWE system
has a relatively constant average flight altitude, which makes the
choice of simply sorting the parameters by the wind speed at that
altitude a very effective approach. For AWE systems with greater
variation in operational altitude, the notion of average wind speed
at the operating altitude may not apply. Thus, the basic wind data
sorting strategy applied here may not be effective when using HPbd
for other types of AWE systems. In those cases, more sophisticated
sorting algorithms based on the general ordering technique pre-
sented in Section 2.4 may be necessary. When there are larger gaps
in the wind data, a clustering of the wind profiles might be bene-
ficial. The clustering of wind profiles into multiple classes generates
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individual dense subsets of data, which can then be handled
separately by HPbd. In this study, the initial wind data present a
dense data set without significant gaps, see Fig. 4, and thus clus-
tering does not reduce the computation cost of the algorithm in this
case.

By lowering the barrier parameter 7, the computation time is
increased and the accuracy error decreased. This tendency could be
different for other AWE system models, in which a higher number
of inequality constraints are active at the solution. If more con-
straints are active, the effect of the nonlinearity complementary
slackness conditions becomes more severe for low 7, and the
computation time increases accordingly. Also, the actual compu-
tation time is highly dependent on the type of computer used.

In general, all the errors in accuracy for the different NLP solu-
tions are very small. If the regression model is used to estimate the
power production, accuracy is sacrificed for a shorter computation
time. The accuracy of the regression model ought to improve with
the size of the training set, which requires more NLPs to be solved
in the first place. However, even with large training sets, the
regression model might not be able to represent the solutions of the
OCP with exact accuracy. The average error of the regression model
with respect to the NLP solution is fairly good, with ¢ = 4. 10-3.
Fortunately, for a large-scale power production estimate, the
comparably very small mismatch might not be a problematic issue
as model approximations and the wind data reanalysis already
present a source of inaccuracy. Either way, the presented methods
are helpful to obtain a detailed estimate of the available AWE sys-
tem power production with low computational power.

The overall aim of this work is to propose a methodology that
simplifies the use of the common used optimal control strategy for
extensive power generation analyses. The use of a OCP for the po-
wer computation is indeed complex and computational tedious.
There exist simpler and faster methods to compute the power
production using real wind data, as presented in Refs. [6,7]. How-
ever, it has been shown that using OCP results into accurate power
approximations [10,27]. In order to get an accurate estimation of
the power generation for a performance evaluation of the tech-
nology, a detailed model is indispensable. By formulating an OCP to
solve for the maximal power production of a point-mass model,
fewer limitations are introduced, and it allows for the evaluation of
more accurate vertical wind profiles instead of assuming a loga-
rithmic wind shear. Additional information, such as the ideal
operational height for specific regions can be analyzed with the
results of the OCPs. Indeed, the accuracy gain might be decreased
when applying a regression model to analyze larger areas. If the
goal is to maximize the accuracy of the power production estima-
tion, future work should compare the approach presented here to
the approach presented in Ref. [7].

4. Conclusion

In order to estimate the large-scale potential of AWE systems,
large-scale spatial and temporal wind data need to be evaluated
without neglecting the transformation of available wind energy to
electrical energy. In order to compute the maximum average power
production of a drag-mode AWE system under a specific wind
condition, the use of optimal control is a commonly used method. It
provides an accurate approximation of the power production and
the possibility of modeling the dynamics of the AWE system in a
realistic way. However, a power computation in larger scale with
this method becomes tedious as the corresponding parametric NLP
is fairly complex to solve and needs appropriate initialization. This
paper proposes a method to lower the computational cost in order
to enable the use of optimal control for a large scale power inves-
tigation, where good approximations of the system dynamics are

required. The method can process big wind data by efficiently
computing a large family of NLPs using a homotopy-path-following
method. The path-following method is most efficient if the studied
parameters are sorted such that the distance of the sequential
optimal solutions S(p) and S(p, ) is minimal. In order to exploit the
method in the context of primal-dual interior-point problems, the
barrier parameter 7 ought to be kept fixed in the solver.

This paper demonstrates the HPbd algorithm by solving a family
of NLPs for a wind data set of nis = 728 wind profiles. Different
values of the fixed barrier parameter 7 are compared and a 7 in the
range of 10~4 — 103 is found to offer a high solution accuracy for a
short computation time. The computation time with HPbd is tested
against applying the pure initiating HPinit method. With a fixed
barrier parameter 7 = 10~* and the ordering of the parameters by
the wind speed at the average operational height of the drag-mode
AWE system (300 m) a significant reduction in computation time
(from 21.01 to 1.03 s per parameter) is observed.

For extremely large-scale temporal and spatial wind data, we
propose a machine learning approach using a regression model.
Different regression models are evaluated in order to find the
model that performs best in mimicking the OCP and predicting the
optimal power production based on the available wind data. With
an R2-value of 0.997, the random forest model seems to be most
accurate. Testing the model on the same nys = 728 wind profiles
used previously and comparing the predictions to the NLP solutions
results in an average absolute error of 4-10~3. The computation
time for the whole data only takes ~ 0.067s, i.e., this regression
method estimates power profiles four orders of magnitude faster
than the HPbd method.

Finally, the proposed methodology is a suitable tool for studies
on potential power production, which are set to scale up in both the
volume of data and the number of geographic locations. To the best
of the authors’ knowledge, this is the first study to consider realistic
wind shears other than the logarithmic profile assumption for
power profile estimations using optimal control. This study is
focused on drag-mode systems, but the method will be tested on
other AWE systems in future work.
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