364 research outputs found

    Smoothing Policies and Safe Policy Gradients

    Full text link
    Policy gradient algorithms are among the best candidates for the much anticipated application of reinforcement learning to real-world control tasks, such as the ones arising in robotics. However, the trial-and-error nature of these methods introduces safety issues whenever the learning phase itself must be performed on a physical system. In this paper, we address a specific safety formulation, where danger is encoded in the reward signal and the learning agent is constrained to never worsen its performance. By studying actor-only policy gradient from a stochastic optimization perspective, we establish improvement guarantees for a wide class of parametric policies, generalizing existing results on Gaussian policies. This, together with novel upper bounds on the variance of policy gradient estimators, allows to identify those meta-parameter schedules that guarantee monotonic improvement with high probability. The two key meta-parameters are the step size of the parameter updates and the batch size of the gradient estimators. By a joint, adaptive selection of these meta-parameters, we obtain a safe policy gradient algorithm

    Sample-Efficient Model-Free Reinforcement Learning with Off-Policy Critics

    Full text link
    Value-based reinforcement-learning algorithms provide state-of-the-art results in model-free discrete-action settings, and tend to outperform actor-critic algorithms. We argue that actor-critic algorithms are limited by their need for an on-policy critic. We propose Bootstrapped Dual Policy Iteration (BDPI), a novel model-free reinforcement-learning algorithm for continuous states and discrete actions, with an actor and several off-policy critics. Off-policy critics are compatible with experience replay, ensuring high sample-efficiency, without the need for off-policy corrections. The actor, by slowly imitating the average greedy policy of the critics, leads to high-quality and state-specific exploration, which we compare to Thompson sampling. Because the actor and critics are fully decoupled, BDPI is remarkably stable, and unusually robust to its hyper-parameters. BDPI is significantly more sample-efficient than Bootstrapped DQN, PPO, and ACKTR, on discrete, continuous and pixel-based tasks. Source code: https://github.com/vub-ai-lab/bdpi.Comment: Accepted at the European Conference on Machine Learning 2019 (ECML

    Model-Free Trajectory-based Policy Optimization with Monotonic Improvement

    Get PDF
    Many of the recent trajectory optimization algorithms alternate between linear approximation of the system dynamics around the mean trajectory and conservative policy update. One way of constraining the policy change is by bounding the Kullback-Leibler (KL) divergence between successive policies. These approaches already demonstrated great experimental success in challenging problems such as end-to-end control of physical systems. However, these approaches lack any improvement guarantee as the linear approximation of the system dynamics can introduce a bias in the policy update and prevent convergence to the optimal policy. In this article, we propose a new model-free trajectory-based policy optimization algorithm with guaranteed monotonic improvement. The algorithm backpropagates a local, quadratic and time-dependent Q-Function learned from trajectory data instead of a model of the system dynamics. Our policy update ensures exact KL-constraint satisfaction without simplifying assumptions on the system dynamics. We experimentally demonstrate on highly non-linear control tasks the improvement in performance of our algorithm in comparison to approaches linearizing the system dynamics. In order to show the monotonic improvement of our algorithm, we additionally conduct a theoretical analysis of our policy update scheme to derive a lower bound of the change in policy return between successive iterations

    Model-Free Trajectory-based Policy Optimization with Monotonic Improvement

    Get PDF
    Many of the recent trajectory optimization algorithms alternate between linear approximation of the system dynamics around the mean trajectory and conservative policy update. One way of constraining the policy change is by bounding the Kullback-Leibler (KL) divergence between successive policies. These approaches already demonstrated great experimental success in challenging problems such as end-to-end control of physical systems. However, the linear approximation of the system dynamics can introduce a bias in the policy update and prevent convergence to the optimal policy. In this article, we propose a new model-free trajectory-based policy optimization algorithm with guaranteed monotonic improvement. The algorithm backpropagates a local, quadratic and time-dependent Q-Function learned from trajectory data instead of a model of the system dynamics. Our policy update ensures exact KL-constraint satisfaction without simplifying assumptions on the system dynamics. We experimentally demonstrate on highly non-linear control tasks the improvement in performance of our algorithm in comparison to approaches linearizing the system dynamics. In order to show the monotonic improvement of our algorithm, we additionally conduct a theoretical analysis of our policy update scheme to derive a lower bound of the change in policy return between successive iterations
    • …
    corecore