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Abstract

In the last decade, policy gradient methods have significantly grown in popularity
in the reinforcement–learning field. In particular, they have been largely employed
in motor control and robotic applications, thanks to their ability to cope with con-
tinuous state and action domains and partial observable problems. Policy gradient
researches have been mainly focused on the identification of effective gradient
directions and the proposal of efficient estimation algorithms. Nonetheless, the
performance of policy gradient methods is determined not only by the gradient di-
rection, since convergence properties are strongly influenced by the choice of the
step size: small values imply slow convergence rate, while large values may lead
to oscillations or even divergence of the policy parameters. Step–size value is usu-
ally chosen by hand tuning and still little attention has been paid to its automatic
selection. In this paper, we propose to determine the learning rate by maximizing
a lower bound to the expected performance gain. Focusing on Gaussian policies,
we derive a lower bound that is second–order polynomial of the step size, and
we show how a simplified version of such lower bound can be maximized when
the gradient is estimated from trajectory samples. The properties of the proposed
approach are empirically evaluated in a linear–quadratic regulator problem.

1 Introduction

Policy gradient methods have established as the most effective reinforcement–learning techniques
in robotic applications. Such methods perform a policy search to maximize the expected return of a
policy in a parameterized policy class. The reasons for their success are many. Compared to several
traditional reinforcement–learning approaches, policy gradients scale well to high–dimensional con-
tinuous state and action problems, and no changes to the algorithms are needed to face uncertainty
in the state due to limited and noisy sensors. Furthermore, policy representation can be properly de-
signed for the given task, thus allowing to incorporate domain knowledge into the algorithm useful
to speed up the learning process and to prevent the unexpected execution of dangerous policies that
may harm the system. Finally, they are guaranteed to converge to locally optimal policies.

Thanks to these advantages, from the 1990s policy gradient methods have been widely used to learn
complex control tasks [1]. The research in these years has focused on obtaining good model–free
estimators of the policy gradient using data generated during the task execution. The oldest policy
gradient approaches are finite–difference methods [2], that estimate gradient direction by resolving
a regression problem based on the performance evaluation of policies associated to different small
perturbations of the current parameterization. Finite–difference methods have some advantages:
they are easy to implement, do not need assumptions on the differentiability of the policy w.r.t. the
policy parameters, and are efficient in deterministic settings. On the other hand, when used on real
systems, the choice of parameter perturbations may be difficult and critical for system safeness.
Furthermore, the presence of uncertainties may significantly slow down the convergence rate. Such
drawbacks have been overcome by likelihood ratio methods [3, 4, 5], since they do not need to gen-
erate policy parameters variations and quickly converge even in highly stochastic systems. Several
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studies have addressed the problem to find minimum variance estimators by the computation of op-
timal baselines [6]. To further improve the efficiency of policy gradient methods, natural gradient
approaches (where the steepest ascent is computed w.r.t. the Fisher information metric) have been
considered [7, 8]. Natural gradients still converge to locally optimal policies, are independent from
the policy parameterization, need less data to attain good gradient estimate, and are less affected by
plateaus.

Once an accurate estimate of the gradient direction is obtained, policy parameters are updated by:
θt+1 = θt+αt∇θJ θ=θt , where αt ∈ R+ is the step size in the direction of the gradient. Although,
given an unbiased gradient estimate, convergence to a local optimum can be guaranteed under mild
conditions over the learning–rate values [9], their choice may significantly affect the convergence
speed or the behavior during the transient. Updating the policy with large step sizes may lead to
policy oscillations or even divergence [10], while trying to avoid such phenomena by using small
learning rates determines a growth in the number of iterations that is unbearable in most real–world
applications. In general unconstrained programming, the optimal step size for gradient ascent meth-
ods is determined through line–search algorithms [11], that require to try different values for the
learning rate and evaluate the function value in the corresponding updated points. Such an approach
is unfeasible for policy gradient methods, since it would require to perform a large number of policy
evaluations. Despite these difficulties, up to now, little attention has been paid to the study of step–
size computation for policy gradient algorithms. Nonetheless, some policy search methods based
on expectation–maximization have been recently proposed; such methods have properties similar to
the ones of policy gradients, but the policy update does not require to tune the step size [12, 13].

In this paper, we propose a new approach to compute the step size in policy gradient methods that
guarantees an improvement at each step, thus avoiding oscillation and divergence issues. Starting
from a lower bound to the difference of performance between two policies, in Section 3 we derive a
lower bound in the case where the new policy is obtained from the old one by changing its parame-
ters along the gradient direction. Such a new bound is a (polynomial) function of the step size, that,
for positive values of the step size, presents a single, positive maximum ( i.e., it guarantees improve-
ment) which can be computed in closed form. In Section 4, we show how the bound simplifies to a
quadratic function of the step size when Gaussian policies are considered, and Section 5 studies how
the bound needs to be changed in approximated settings (e.g., model–free case) where the policy
gradient needs to be estimated directly from experience.

2 Preliminaries

A discrete–time continuous Markov decision process (MDP) is defined as a 6-tuple
〈S,A,P,R, γ,D〉, where S is the continuous state space, A is the continuous action space, P
is a Markovian transition model where P(s′|s, a) defines the transition density between state s and
s′ under action a, R : S × A → [0, R] is the reward function, such that R(s, a) is the expected
immediate reward for the state-action pair (s, a) and R is the maximum reward value, γ ∈ [0, 1) is
the discount factor for future rewards, and D is the initial state distribution. The policy of an agent
is characterized by a density distribution π(·|s) that specifies for each state s the density distribution
over the action space A. To measure the distance between two policies we will use this norm:

‖π′ − π‖∞ = sup
s∈S

∫
A
|π′(a|s)− π(a|s)|da,

that is the superior value over the state space of the total variation between the distributions over the
action space of policy π′ and π.

We consider infinite horizon problems where the future rewards are exponentially discounted with
γ. For each state s, we define the utility of following a stationary policy π as:

V π(s) = E at ∼ π
st ∼ P

[ ∞∑
t=0

γtR(st, at)|s0 = s

]
.

It is known that V π solves the following recursive (Bellman) equation:

V π(s) =

∫
A
π(a|s)R(s, a) + γ

∫
S
P (s′|s, a)V π(s′)ds′da.
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Policies can be ranked by their expected discounted reward starting from the state distribution D:

JπD =

∫
S
D(s)V π(s)ds) =

∫
S
dπD(s)

∫
A
π(a|s)R(s, a)dads,

where dπD(s) = (1− γ)
∑∞
t=0 γ

tPr(st = s|π,D) is the γ–discounted future state distribution
for a starting state distribution D [5]. Solving an MDP means to find a policy π∗ that maximizes
the expected long-term reward: π∗ ∈ argmaxπ∈Π J

π
D. For any MDP there exists at least one

deterministic optimal policy that simultaneously maximizes V π(s), ∀s ∈ S. For control purposes, it
is better to consider action values Qπ(s, a), i.e., the value of taking action a in state s and following
a policy π thereafter:

Qπ(s, a) = R(s, a) + γ

∫
S
P(s′|s, a)

∫
A
π(a′|s′)Qπ(s′, a′)da′ds′.

Furthermore, we define the advantage function:

Aπ(s, a) = Qπ(s, a)− V π(s),

that quantifies the advantage (or disadvantage) of taking action a in state s instead of following
policy π. In particular, for each state s, we define the advantage of a policy π′ over policy π as
Aπ
′

π (s) =
∫
A π
′(a|s)Aπ(s, a)da and, following [14], we define its expected value w.r.t. an initial

state distribution µ as Aπ′π,µ =
∫
S d

π
µ(s)Aπ

′

π (s)ds.

We consider the problem of finding a policy that maximizes the expected discounted reward over
a class of parameterized policies Πθ = {πθ : θ ∈ Rm}, where πθ is a compact representation of
π(a|s,θ). The exact gradient of the expected discounted reward w.r.t. the policy parameters [5] is:

∇θJµ(θ) =
1

1− γ

∫
S
dπθ
µ (s)

∫
A
∇θπ(a|s,θ)Qπθ (s, a)dads.

The policy parameters can be updated by following the direction of the gradient of the expected
discounted reward: θ′ = θ + α∇θJµ(θ). In the following, we will denote with ‖∇θJµ(θ)‖1 and
‖∇θJµ(θ)‖2 the L1– and L2–norm of the policy gradient vector, respectively.

3 Policy Gradient Formulation

In this section we provide a lower bound to the improvement obtained by updating the policy pa-
rameters along the gradient direction as a function of the step size. The idea is to start from the
general lower bound on the performance difference between any pair of policies introduced in [15]
and specialize it to the policy gradient framework.
Lemma 3.1 (Continuous MDP version of Corollary 3.6 in [15]). For any pair of stationary poli-
cies corresponding to parameters θ and θ′ and for any starting state distribution µ, the difference
between the performance of policy πθ′ and policy πθ can be bounded as follows

Jµ(θ′)− Jµ(θ) ≥ 1

1− γ

∫
S
dπθ
µ (s)Aπθ′

πθ
(s)ds− γ

2(1− γ)2
‖πθ′ − πθ‖2∞ ‖Q

πθ‖∞ , (1)

where ‖Qπθ‖∞ is the supremum norm of the Q–function: ‖Qπθ‖∞ = sup
s∈S,a∈A

Qπθ (s, a)

As we can notice from the above bound, to maximize the performance improvement, we need to
find a new policy πθ′ that is associated to large average advantage Aπθ′

πθ,µ, but, at the same time, is
not too different from the current policy πθ. Policy gradient approaches provide search directions
characterized by increasing advantage values and, through the step size value, allow to control the
difference between the new policy and the target one. Exploiting a lower bound to the first order
Taylor’s expansion, we can bound the difference between the current policy and the new policy,
whose parameters are adjusted along the gradient direction, as a function of the step size α.
Lemma 3.2. Let the update of the policy parameters be θ′ = θ + α∇θJµ(θ). Then

π(a|s,θ′)− π(a|s,θ) ≥α∇θπ(a|s,θ)T∇θJµ(θ) + α2 inf
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)
,

where ∆θ = α∇θJµ(θ).
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By combining the two previous lemmas, it is possible to derive the policy performance improvement
obtained following the gradient direction.

Theorem 3.3. Let the update of the parameters be θ′ = θ + α∇θJµ(θ). Then for any stationary
policy π(a|s,θ) and any starting state distribution µ, the difference in performance between πθ and
πθ′ is lower bounded by:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

+
α2

1− γ

∫
S
dπθ
µ (s)

∫
A

inf
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)
Qπθ (s, a)dads

−
γ ‖Qπθ‖∞
2(1− γ)2

(
α sup
s∈S

∫
A

∣∣∇θπ(a|s,θ)T∇θJµ(θ)
∣∣ da

+α2 sup
s∈S

∫
A

∣∣∣∣∣ sup
c∈(0,1)

(
m∑

i,j=1

∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣
θ+c∆θ

∆θi ∆θj
1 + I(i = j)

)∣∣∣∣∣ da
)2

.

The above bound is a forth–order polynomial of the step size, whose stationary points, being the
roots of a third–order polynomial ax3 +bx2 +cx+d, can be expressed in closed form. It is worth to
notice that, for positive values of α, the bound presents a single stationary point that corresponds to
a local maximum. In fact, since a, b ≤ 0 and d ≥ 0, the Descartes’ rule of signs gives the existence
and uniqueness of the real positive root.

In the following section, we will show, in the case of Gaussian policies, how the bound in Theo-
rem 3.3 can be reduced to a second–order polynomial in α, thus obtaining a simpler closed-form
solution for optimal (w.r.t. the bound) step size.

4 The Gaussian Policy Model

In this section we consider the Gaussian policy model with fixed standard deviation σ and the mean
is a linear combination of the state feature vector φ(·) using a parameter vector θ of size m:

π(a|s,θ) =
1√

2πσ2
exp

(
−1

2

(
a− θTφ(s)

σ

)2
)
.

In the case of Gaussian policies, each second–order derivative of policy πθ can be easily bounded.
Lemma 4.1. For any Gaussian policy π(a|s,θ) ∼ N (θTφ(s), σ2), the second order derivative of
the policy can be bounded as follows:∣∣∣∣∂2π(a|s,θ)

∂θi∂θj

∣∣∣∣ ≤ |φi(s)φj(s)|√
2πσ3

, ∀θ ∈ Rm,∀a ∈ A.

This result allows to restate Lemma 3.2 in the case of Gaussian policies:

π(a|s,θ′)− π(a|s,θ) ≥ α∇θπ(a|s,θ)
T∇θJµ(θ)− α2

√
2πσ3

(
|∇θJµ(θ)|T|φ(s)|

)2
.

In the following we will assume that features φ are uniformly bounded:
Assumption 4.1. All the basis functions are uniformly bounded by Mφ: |φi(s)|< Mφ, ∀s ∈
S,∀i = 1, . . . ,m.

Exploiting Pinsker’s inequality [16] (which upper bounds the total variation between two distribu-
tions with their Kullback–Liebler divergence), it is possible to provide the following upper bound to
the supremum norm between two Gaussian policies.
Lemma 4.2. For any pair of stationary policies πθ and πθ′ , so that θ′ = θ+α∇θJµ(θ), supremum
norm of their difference can be upper bounded as follows:

‖πθ′ − πθ‖∞ ≤
αMφ

σ
‖∇θJµ(θ)‖1 .
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By plugging the results of Lemmas 4.1 and 4.2 into Equation (1) we can obtain a lower bound to
the performance difference between a Gaussian policy πθ and another policy along the gradient
direction that is quadratic in the step size α.
Theorem 4.3. For any starting state distribution µ, and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′

T
φ(s), σ2), so that θ′ = θ +α∇θJµ(θ) and under Assump-

tion 4.1, the difference between the performance of πθ′ and the one of πθ can be lower bounded as
follows:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22

− α2

(
1

(1− γ)
√

2πσ3

∫
S
dπθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
A
Qπθ (s, a)dads

+
γM2

φ

2(1− γ)2σ2
‖∇θJµ(θ)‖21 ‖Q

πθ‖∞

)
.

Since the linear coefficient is positive and the quadratic one is negative, the bound in Theorem 4.3
has a single maximum attained for some positive value of α.
Corollary 4.4. The performance lower bound provided in Theorem 4.3 is maximized by choosing
the following step size:

α∗ =
(1− γ)2

√
2πσ3 ‖∇θJµ(θ)‖22

γ
√

2πσM2
φ ‖∇θJµ(θ)‖21 ‖Qπθ‖∞ + 2(1− γ)

∫
S d

πθ
µ (s)

(
|∇θJµ(θ)|T |φ(s)|

)2 ∫
AQ

πθ (s, a)dads
,

that guarantees the following policy performance improvement

Jµ(θ′)− Jµ(θ) ≥ 1

2
α∗ ‖∇θJµ(θ)‖22 .

5 Approximate Framework

The solution for the tuning of the step size presented in the previous section depends on some
constants (e.g., discount factor and the variance of the Gaussian policy) and requires to be able to
compute some quantities (e.g., the policy gradient and the supremum value of the Q–function). In
many real–world applications such quantities cannot be computed (e.g., when the state–transition
model is unknown or too large for exact methods) and need to be estimated from experience samples.
In this section, we study how the step size can be chosen when the gradient is estimated through
sample trajectories to guarantee a performance improvement in high probability.

For sake of easiness, we consider a simplified version of the bound in Theorem 4.3, in order to obtain
a bound where the only element that needs to be estimated is the policy gradient∇θJµ(θ).
Corollary 5.1. For any starting state distribution µ, and any pair of stationary Gaussian policies
πθ ∼ N (θTφ(s), σ2) and πθ′ ∼ N (θ′

T
φ(s), σ2), so that θ′ = θ +α∇θJµ(θ) and under Assump-

tion 4.1, the difference between the performance of πθ′ and πθ is lower bounded by:

Jµ(θ′)− Jµ(θ) ≥ α ‖∇θJµ(θ)‖22 − α
2
RM2

φ ‖∇θJµ(θ)‖21
(1− γ)

2
σ2

(
|A|√
2πσ

+
γ

2(1− γ)

)
,

that is maximized by the following step size value:

α̃∗ =
(1− γ)3

√
2πσ3 ‖∇θJµ(θ)‖22(

γ
√

2πσ + 2(1− γ)|A|
)
RM2

φ ‖∇θJµ(θ)‖21
.

Since we are assuming that the policy gradient ∇θJµ(θ) is estimated through trajectory samples,
the lower bound in Corollary 5.1 must take into consideration the associated approximation error.
Given a set of trajectories obtained following policy πθ, we can produce an estimate ∇̂θJµ(θ) of
the policy gradient and we assume to be able to produce a vector ε = [ε1, . . . , εm]

T, so that the i–th
component of the approximation error is bounded at least with probability 1− δ:

P
(∣∣∣∇θiJµ(θ)− ∇̂θiJµ(θ)

∣∣∣ ≥ εi) ≤ δ.
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Given the approximation error vector ε, we can adjust the bound in Corollary 5.1 to produce a new
bound that holds at least with probability (1− δ)m. In particular, to preserve the inequality sign,
the estimated approximation error must be used to decrease the L2–norm of the policy gradient in
the first term (the one that provides the positive contribution to the performance improvement) and
to increase the L1–norm in the penalization term. To lower bound the L2–norm, we introduce the
vector ∇̂θJµ(θ) whose components are a lower bound to the absolute value of the policy gradient
built on the basis of the approximation error ε:

∇̂θJµ(θ) = max(|∇̂θJµ(θ)| − ε,0),

where 0 denotes the m–size vector with all zeros, and max denotes the component–wise maximum.
Similarly, to upper bound the L1–norm of the policy gradient, we introduce the vector ∇̂θJµ(θ):

∇̂θJµ(θ) = |∇̂θJµ(θ)|+ ε.

Theorem 5.2. Under the same assumptions of Corollary 5.1, and provided that it is available a
policy gradient estimate ∇̂θJµ(θ), so that P

(∣∣∣∇θiJµ(θ)− ∇̂θiJµ(θ)
∣∣∣ ≥ εi) ≤ δ, the difference

between the performance of πθ′ and πθ can be lower bounded at least with probability (1− δ)m:

Jµ(θ′)− Jµ(θ) ≥ α
∥∥∥∇̂θJµ(θ)

∥∥∥2

2
− α2

RM2
φ

∥∥∥∇̂θJµ(θ)
∥∥∥2

1

(1− γ)
2
σ2

(
|A|√
2πσ

+
γ

2(1− γ)

)
,

that is maximized by the following step size value:

α̂∗ =
(1− γ)3

√
2πσ3

∥∥∥∇̂θJµ(θ)
∥∥∥2

2(
γ
√

2πσ + 2(1− γ)|A|
)
RM2

φ

∥∥∥∇̂θJµ(θ)
∥∥∥2

1

.

In the following, we will discuss how the approximation error of the policy gradient can be bounded.
Among the several methods that have been proposed over the years, we focus on two well–
understood policy–gradient estimation approaches: REINFORCE [3] and G(PO)MDP [4]/policy
gradient theorem (PGT) [5].

5.1 Approximation with REINFORCE gradient estimator

The REINFORCE approach [3] is the main exponent of the likelihood–ratio family. The episodic
REINFORCE gradient estimator is given by:

∇̂θJ
RF
µ (θ) =

1

N

N∑
n=1

(
H∑
k=1

∇θ log π (ank ; snk ,θ)

(
H∑
l=1

γl−1rnl − b

))
,

where N is the number of H–step trajectories generated from a system by roll–outs and b ∈ R is
a baseline that can be chosen arbitrary, but usually with the goal of minimizing the variance of the
gradient estimator. The main drawback of REINFORCE is its variance, that is strongly affected by
the length of the trajectory horizon H .

The goal is to determine the number of trajectories N in order to obtain the desired accuracy of
the gradient estimate. To achieve this, we exploit the upper bound to the variance of the episodic
REINFORCE gradient estimator introduced in [17] for Gaussian policies.
Lemma 5.3 (Adapted from Theorem 2 in [17]). Given a Gaussian policy π(a|s,θ) ∼
N
(
θTφ(s), σ2

)
, under the assumption of uniformly bounded rewards and basis functions (Assump-

tion 4.1), we have the following upper bound to the variance of the i–th component of the episodic
REINFORCE gradient estimate ∇̂θiJRFµ (θ):

V ar
(
∇̂θiJRFµ (θ)

)
≤
R2M2

φH
(
1− γH

)2
Nσ2 (1− γ)

2 .
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The result in the previous Lemma combined with the Chebyshev’s inequality allows to provide a
high–probability upper bound to the gradient approximation error using the episodic REINFORCE
gradient estimator.

Theorem 5.4. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of

uniformly bounded rewards and basis functions (Assumption 4.1), using the following number of
H–step trajectories:

N =
R2M2

φH
(
1− γH

)2
δε2iσ

2 (1− γ)
2 ,

the gradient estimate ∇̂θiJRFµ (θ) generated by REINFORCE is such that with probability 1− δ:∣∣∣∇̂θiJRFµ (θ)−∇θiJµ(θ)
∣∣∣ ≤ εi.

5.2 Approximation with G(PO)MDP/PGT gradient estimator

Although the REINFORCE method is guaranteed to converge at the true gradient at the fastest possi-
ble pace, its large variance can be problematic in practice. Advances in the likelihood ratio gradient
estimators have produced new approaches that significantly reduce the variance of the estimate. Fo-
cusing on the class of “vanilla” gradient estimator, two main approaches have been proposed: policy
gradient theorem (PGT) [5] and G(PO)MDP [4]. In [6], the authors show that, while the algorithms
look different, their gradient estimate are equal, i.e., ∇̂θJ

PGT
µ (θ) = ∇̂θJ

G(PO)MDP
µ (θ). For this

reason, we can limit our attention to the PGT formulation:

∇̂θJ
PGT
µ (θ) =

1

N

H∑
n=1

(
H∑
k=1

∇θ log π (ank ; snk ,θ)

(
H∑
l=k

γl−1rnl − bnl

))
,

where bnl ∈ R have the objective to reduce the variance of the gradient estimate. Following the
procedure used to bound the approximation error of REINFORCE, we need an upper bound to the
variance of the gradient estimate of PGT that is provided by the following lemma (whose proof is
similar to the one used in [17] for the REINFORCE case).

Lemma 5.5. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of uni-

formly bounded rewards and basis functions (Assumption 4.1), we have the following upper bound
to the variance of the i–th component of the PGT gradient estimate ∇̂θiJPGTµ (θ):

V ar
(
∇̂θiJPGTµ (θ)

)
≤

R2M2
φ

N (1− γ)
2
σ2

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH

1− γ

]
.

As expected, since the variance of the gradient estimate obtained with PGT is smaller than the one
with REINFORCE, also the upper bound of the PGT variance is smaller than REINFORCE one. In
particular, while the variance with REINFORCE grows linearly with the time horizon, using PGT
the dependence on the time horizon is significantly smaller. Finally, we can derive the upper bound
for the approximation error of the gradient estimated of PGT.

Theorem 5.6. Given a Gaussian policy π(a|s,θ) ∼ N
(
θTφ(s), σ2

)
, under the assumption of

uniformly bounded rewards and basis functions (Assumption 4.1), using the following number of
H–step trajectories:

N =
R2M2

φ

δε2iσ
2 (1− γ)

2

[
1− γ2H

1− γ2
+Hγ2H − 2γH

1− γH

1− γ

]
the gradient estimate ∇̂θiJPGTµ (θ) generated by PGT is such that with probability 1− δ:∣∣∣∇̂θiJPGTµ (θ)−∇θiJµ(θ)

∣∣∣ ≤ εi.
7



σ
0.50 0.75 1.00 1.25 1.50 1.75 2.00 5.00 7.50

αconst

1e− 07 itmax itmax itmax itmax itmax itmax itmax 21888 9740
1e− 06 itmax itmax itmax itmax 23651 17516 13480 2163 849
1e− 05 17138 8669 5120 3348 2342 1714 1287 ⊥ ⊥
1e− 04 1675 697 499 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1e− 03 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

αt =
α0
t

1e− 05 itmax itmax itmax itmax itmax itmax itmax ⊥ ⊥
1e− 04 itmax itmax itmax ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

α∗ 24106 7271 3279 1838 1172 813 598 1 58

Table 1: Convergence speed in exact LQG scenario with γ = 0.95. The table reports the number of
iterations required by the exact gradient approach, starting from θ = 0, to learn the optimal policy
parameter θ∗ = −0.6037 with an accuracy of 0.01, for different step–size values. Three different
set of experiments are shown: constant step size, decreasing step size, and the step size proposed in
Corollary 4.4. The table contains itmax when no convergence happens in 30, 000 iterations, and ⊥
when the algorithm diverges (θ < −1 or θ > 0). Best performances are reported in boldface.

Number of trajectories
10, 000 100, 000 500, 000

it θ it θ it θ
RF 822 −0.0030 51, 731 −0.3068 75, 345 −0.4088

PGT 29, 761 −0.2176 63, 985 −0.4013 83, 983 −0.4558

Table 2: Convergence speed in approximate LQG scenario with γ = 0.9. The table reports, starting
from θ = 0 and fixed σ = 1, the number of iterations performed before the proposed step size α̂
becomes 0 and the last value of the policy parameter. Results are shown for different number of
trajectories (of 20 steps each) used in the gradient estimation by REINFORCE and PGT.

6 Numerical Simulations and Discussion
In this section we show results related to some numerical simulations of policy gradient in the
linear–quadratic Gaussian regulation (LQG) problem as formulated in [6]. The LQG problem is
characterized by a transition model st+1 ∼ N

(
st + at, σ

2
)
, Gaussian policy at ∼ N

(
θ · s, σ2

)
and quadratic reward rt = −0.5(s2

t + a2
t ). The range of state and action spaces is bounded to

the interval [−2, 2] and the initial state is drawn uniformly at random. This scenario is particularly
instructive since it allows to exactly compute all terms involved in the bounds. We first present
results in the exact scenario and then we move toward the approximated one.

Table 1 shows how the number of iterations required to learn a near–optimal value of the policy
parameter changes according to the standard deviation of the Gaussian policy and the step–size
value. As expected, very small values of the step size allow to avoid divergence, but the learning
process needs many iterations to reach a good performance (this can be observed both when the step
size is kept constant and when it decreases). On the other hand, larger step–size values may lead to
divergence. In this example, the higher the policy variance, the lower is the step size value that allows
to avoid divergence, since, in LQG, higher policy variance implies larger policy gradient values.
Using the step size α∗ from Corollary 4.4 the policy gradient algorithm avoids divergence (since
it guarantees an improvement at each iteration), and the speed of convergence is strongly affected
by the variance of the Gaussian policy. In general, when the policy are nearly deterministic (small
variance in the Gaussian case), small changes in the parameters lead to large distances between
the policies, thus negatively affecting the lower bound in Equation 1. As we can notice from the
expression ofα∗ in Corollary 4.4, considering policies with high variance (that might be a problem in
real–world applications) allows to safely take larger step size, thus speeding up the learning process.
Nonetheless, increasing the variance over some threshold (making policies nearly random) produces
very bad policies, so that changing the policy parameter has a small impact on the performance,
and as a result slows down the learning process. How to identify an optimal variance value is
an interesting future research direction. Table 2 provides numerical results in the approximated
settings, showing the effect of varying the number of trajectories used to estimate the gradient by
REINFORCE and PGT. Increasing the number of trajectories reduces the uncertainty on the gradient
estimates, thus allowing to use larger step sizes and reaching better performances. Furthermore, the
smaller variance of PGT w.r.t. REINFORCE allows the former to achieve better performances.
However, even with a large number of trajectories, the approximated errors are still quite large
preventing to reach very high performance. For this reason, future studies will try to derive tighter
bounds. Further developments include extending these results to other policy models (e.g., Gibbs
policies) and to other policy gradient approaches (e.g., natural gradient).
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