24 research outputs found

    Stable Infrastructure-based Routing for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITSs) have been instrumental in reshaping transportation towards safer roads, seamless logistics, and digital business-oriented services under the umbrella of smart city platforms. Undoubtedly, ITS applications will demand stable routing protocols that not only focus on Inter-Vehicle Communications but also on providing a fast, reliable and secure interface to the infrastructure. In this paper, we propose a novel stable infrastructure- based routing protocol for urban VANETs. It enables vehicles proactively to maintain fresh routes towards Road-Side Units (RSUs) while reactively discovering routes to nearby vehicles. It builds routes from highly stable connected intersections using a selection policy which uses a new intersection stability metric. Simulation experiments performed with accurate mobility and propagation models have confirmed the efficiency of the new protocol and its adaptability to continuously changing network status in the urban environment

    Routing protocol for V2X communications for Urban VANETs

    Get PDF
    Intelligent Transportation Systems (ITSs) have been attracting tremendous attention in both academia and industry due to emerging applications that pave the way towards safer enjoyable journeys and inclusive digital partnerships. Undoubtedly, these ITS applications will demand robust routing protocols that not only focus on Inter-Vehicle Communications but also on providing fast, reliable, and secure access to the infrastructure. This thesis aims mainly to introduce the challenges of data packets routing through urban environment using the help of infrastructure. Broadcasting transmission is an essential operational technique that serves a broad range of applications which demand different restrictive QoS provisioning levels. Although broadcast communication has been investigated widely in highway vehicular networks, it is undoubtedly still a challenge in the urban environment due to the obstacles, such as high buildings. In this thesis, the Road-Topology based Broadcast Protocol (RTBP) is proposed, a distance and contention-based forwarding scheme suitable for both urban and highway vehicular environments. RTBP aims at assigning the highest forwarding priority to a vehicle, called a mobile repeater, having the greatest capability to send the packet in multiple directions. In this way, RTBP effectively reduces the number of competing vehicles and minimises the number of hops required to retransmit the broadcast packets around the intersections to cover the targeted area. By investigating the RTBP under realistic urban scenarios against well-known broadcast protocols, eMDR and TAF, that are dedicated to retransmitting the packets around intersections, the results showed the superiority of the RTBP in delivering the most critical warning information for 90% of vehicles with significantly lower delay of 58% and 70% compared to eMDR and TAF. The validation of this performance was clear when the increase in the number of vehicles. Secondly, a Fast and Reliable Hybrid routing (FRHR) protocol is introduced for efficient infrastructure access which is capable of handling efficient vehicle to vehicle communications. Interface to infrastructure is provided by carefully placed RoadSide Units (RSUs) which broadcast beacons in a multi-hop fashion in constrained areas. This enables vehicles proactively to maintain fresh minimum-delay routes to other RSUs while reactively discovering routes to nearby vehicles. The proposed protocol utilizes RSUs connected to the wired backbone network to relay packets toward remote vehicles. A vehicle selects an RSU to register with according to the expected mean delay instead of the device’s remoteness. The FRHR performance is evaluated against established infrastructure routing protocols, Trafroute, IGSR and RBVT-R that are dedicated to for urban environment, the results showed an improvement of 20% to 33% in terms of packet delivery ratio and lower latency particularly in sparse networks due to its rapid response to changes in network connectivity. Thirdly, focusing on increasing FRHR’s capability to provide more stable and durable routes to support the QoS requirements of expected wide-range ITS applications on the urban environment, a new route selection mechanism is introduced, aiming at selecting highly connected crossroads. The new protocol is called, Stable Infrastructure Routing Protocol (SIRP). Intensive simulation results showed that SIRP offers low end-to-end delay and high delivery ratio with varying traffic density, while resolving the problem of frequent link failures

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Actas da 10ÂŞ ConferĂŞncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Exploring the challenges and opportunities of image processing and sensor fusion in autonomous vehicles: A comprehensive review

    Get PDF
    Autonomous vehicles are at the forefront of future transportation solutions, but their success hinges on reliable perception. This review paper surveys image processing and sensor fusion techniques vital for ensuring vehicle safety and efficiency. The paper focuses on object detection, recognition, tracking, and scene comprehension via computer vision and machine learning methodologies. In addition, the paper explores challenges within the field, such as robustness in adverse weather conditions, the demand for real-time processing, and the integration of complex sensor data. Furthermore, we examine localization techniques specific to autonomous vehicles. The results show that while substantial progress has been made in each subfield, there are persistent limitations. These include a shortage of comprehensive large-scale testing, the absence of diverse and robust datasets, and occasional inaccuracies in certain studies. These issues impede the seamless deployment of this technology in real-world scenarios. This comprehensive literature review contributes to a deeper understanding of the current state and future directions of image processing and sensor fusion in autonomous vehicles, aiding researchers and practitioners in advancing the development of reliable autonomous driving systems

    Securing the Internet of Things Communication Using Named Data Networking Approaches

    Get PDF
    The rapid advancement in sensors and their use in devices has led to the drastic increase of Internet-of-Things (IoT) device applications and usage. A fundamental requirement of an IoT-enabled ecosystem is the device’s ability to communicate with other devices, humans etc. IoT devices are usually highly resource constrained and come with varying capabilities and features. Hence, a host-based communication approach defined by the TCP/IP architecture relying on securing the communication channel between the hosts displays drawbacks especially when working in a highly chaotic environment (common with IoT applications). The discrepancies between requirements of the application and the network supporting the communication demands for a fundamental change in securing the communication in IoT applications. This research along with identifying the fundamental security problems in IoT device lifecycle in the context of secure communication also explores the use of a data-centric approach advocated by a modern architecture called Named Data Networking (NDN). The use of NDN modifies the basis of communication and security by defining data-centric security where the data chunks are secured directly and retrieved using specialized requests in a pull-based approach. This work also identifies the advantages of using semantically-rich names as the basis for IoT communication in the current client-driven environment and reinforces it with best-practices from the existing host-based approaches for such networks. We present in this thesis a number of solutions built to automate and securely onboard IoT devices; encryption, decryption and access control solutions based on semantically rich names and attribute-based schemes. We also provide the design details of solutions to sup- port trustworthy and conditionally private communication among highly resource constrained devices through specialized signing techniques and automated certificate generation and distribution with minimal use of the network resources. We also explore the design solutions for rapid trust establishment and vertically securing communication in applications including smart-grid operations and vehicular communication along with automated and lightweight certificate generation and management techniques. Through all these design details and exploration, we identify the applicability of the data-centric security techniques presented by NDN in securing IoT communication and address the shortcoming of the existing approaches in this area

    State of the Art and Future Perspectives in Smart and Sustainable Urban Development

    Get PDF
    This book contributes to the conceptual and practical knowledge pools in order to improve the research and practice on smart and sustainable urban development by presenting an informed understanding of the subject to scholars, policymakers, and practitioners. This book presents contributions—in the form of research articles, literature reviews, case reports, and short communications—offering insights into the smart and sustainable urban development by conducting in-depth conceptual debates, detailed case study descriptions, thorough empirical investigations, systematic literature reviews, or forecasting analyses. This way, the book forms a repository of relevant information, material, and knowledge to support research, policymaking, practice, and the transferability of experiences to address urbanization and other planetary challenges
    corecore