6 research outputs found

    Linear regression models and k-means clustering for statistical analysis of fNIRS data

    Get PDF
    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets

    Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals

    Get PDF
    Objective. We address the problem of hemodynamic response (HR) estimation when task-evoked extra-cerebral components are present in functional near-infrared spectroscopy (fNIRS) signals. These components might bias the HR estimation; therefore, careful and accurate denoising of data is needed. Approach. We propose a dictionary-based algorithm to process each single event-related segment of the acquired signal for both long separation (LS) and short separation (SS) channels. Stimulus-evoked components and physiological noise are modeled by means of two distinct waveform dictionaries. For each segment, after removal of the physiological noise component in each channel, a template is employed to estimate stimulus-evoked responses in both channels. Then, the estimate from the SS channel is employed to correct the evoked superficial response and refine the HR estimate from the LS channel. Main results. Analysis of simulated, semi-simulated and real data shows that, by averaging single-segment estimates over multiple trials in an experiment, reliable results and improved accuracy compared to other methods can be obtained. The average estimation error of the proposed method for the semi-simulated data set is 34% for oxy-hemoglobin (HbO) and 78% for deoxy-hemoglobin (HbR), considering 40 trials. The proposed method outperforms the results of the methods proposed in the literature. While still far from the possibility of single-trial HR estimation, a significant reduction in the number of averaged trials can also be obtained. Significance. This work proves that dedicated dictionaries can be successfully employed to model all different components of fNIRS signals. We demonstrate the effectiveness of a specifically designed algorithm structure in dealing with a complex denoising problem, enhancing the possibilities of fNIRS-based HR analysis

    What we can and cannot (yet) do with functional near infrared spectroscopy

    Get PDF
    Functional near infrared spectroscopy (NIRS) is a relatively new technique complimentary to EEG for the development of brain-computer interfaces (BCIs). NIRS-based systems for detecting various cognitive and affective states such as mental and emotional stress have already been demonstrated in a range of adaptive human–computer interaction (HCI) applications. However, before NIRS-BCIs can be used reliably in realistic HCI settings, substantial challenges oncerning signal processing and modeling must be addressed. Although many of those challenges have been identified previously, the solutions to overcome them remain scant. In this paper, we first review what can be currently done with NIRS, specifically, NIRS-based approaches to measuring cognitive and affective user states as well as demonstrations of passive NIRS-BCIs. We then discuss some of the primary challenges these systems would face if deployed in more realistic settings, including detection latencies and motion artifacts. Lastly, we investigate the effects of some of these challenges on signal reliability via a quantitative comparison of three NIRS models. The hope is that this paper will actively engage researchers to acilitate the advancement of NIRS as a more robust and useful tool to the BCI community

    A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements

    No full text
    Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to measure cortical concentration changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR) held to be correlated with cognitive activity. Providing a parametric depiction of such changes in the classic form of stimulus-evoked hemodynamic responses (HRs) can be attained with this technique only by solving two problems. One problem concerns the separation of informative optical signal from structurally analogous noise generated by a variety of spurious sources, such as heart beat, respiration, and vasomotor waves. Another problem pertains to the inherent variability of HRs, which is notoriously contingent on the type of experiment, brain region monitored, and human phenotype. A novel method was devised in the present context to solve both problems based on a two-step algorithm combining the treatment of noise-only data extrapolated from a reference-channel and a Bayesian filter applied on a per-trial basis. The present method was compared to two current methods based on conventional averaging, namely, a typical averaging method and an averaging method implementing the use of a reference-channel. The result of the comparison, carried out both on artificial and real data, revealed a sensitive accuracy improvement in HR estimation using the present method relative to each of the other methods

    Approccio basato sul filtro di kalman per la stima della risposta emodinamica da dati di spettroscopia funzionale nel vicino infrarosso (FNIRS)

    Get PDF
    La spettroscopia funzionale nel vicino infrarosso (fNIRS) è una tecnica di neuroimaging che misura l'attivazione delle aree cerebrali sfruttando la diffusione della luce nel vicino infraresso per rilevare la variazione di concentrazione di ossiemoglobina e deossiemoglobina associata con l'attività cerebrale.Vengono misurate anche delle componenti fisiologiche di rumore.Tramite un filtraggio alla Kalman è stato possibile rimuoverle e stimare la risposta emodinamic
    corecore