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Abstract: We propose a new algorithm, based on a linear regression model, 

to statistically estimate the hemodynamic activations in fNIRS data sets. 

The main concern guiding the algorithm development was the minimization 

of assumptions and approximations made on the dataset for the application 

of statistical tests. Further, we propose a K-means method to cluster fNIRS 

data (i.e. channels) as activated or not activated. The methods were 

validated both on simulated and in vivo fNIRS data. A time domain (TD) 

fNIRS technique was preferred because of its high performances in 

discriminating cortical activation and superficial physiological changes. 

However, the proposed method is also applicable to continuous wave or 

frequency domain fNIRS datasets. 
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1. Introduction 

Functional near-infrared spectroscopy (fNIRS) is an optical technique able to noninvasively 

monitor the cerebral hemodynamic at cortical level [1,2]. Exploiting the relatively low 

absorption of biological tissues, light in the red and near-infrared wavelength range can 

penetrate the human head down to some centimeters and reach the cerebral cortex. Therefore, 

fNIRS can provide a measure of oxy- and deoxy-hemoglobin (O2Hb and HHb, respectively), 

the main chromophores contributing to light absorption at this wavelength range.  



Various techniques are proposed in literature to enhance and detect the fNIRS signal, 

irrespectively of the specific hardware implementation (e.g. continuous wave, frequency 

domain, or time domain regime) of the fNIRS technique. However, because of the relative 

novelty of the fNIRS technique, a common accepted framework for data analysis has not yet 

been agreed. The first public domain software package for fNIRS data analysis was Homer 

(acronym for Hemodynamic Evoked Response) [3]. The software provided a graphical user 

interface and Matlab scripts for both the preprocessing and the standard statistics on fNIRS 

data. Homer has been upgraded and the new release Homer2 more easily supports group 

analyses and re-configuration of the processing stream, and it integrates users algorithms into 

the processing stream. Another free software is Functional Optical Signal Analysis (fOSA) 

[4], which offers Matlab based functions for a basic analysis of fNIRS data, incorporating 

several filters for signal denoising and providing also the Statistical Parametric Mapping 

(SPM) methodology for statistical analysis based on the general linear model (GLM) 

approach. More focused on the development of SPM routines is the non-commercial software 

NIRS-SPM [5]. A novelty introduced by this program is represented by a voxel based 

alignment between interpolated maps instead of an inter-subjects realignment of optodes, in 

order to facilitate the group analysis. Further they proposed a new theory to deal with the 

multiple comparison problem for the p-value correction [6]. Another software is NIRS 

analysis package (NAP) [7], which allows noise removal and GLM analysis, as well as 

anatomical registration of the measurements. fNIRSOFT is a stand-alone software to process, 

analyse and visualize fNIRS signals through a graphical user interface and/or scripting 

distributed by BIOPAC Systems, Inc. [8]. Finally POTATo (Platform for Optical Topography 

Analysis Tools) is a software package for fNIRS signal processing and analysis, developed by 

Hitachi, Ltd. [9]. A comprehensive list of software can be found in the website of the fNIRS 

Society [10]. 

The above mentioned tools share some common procedures for preprocessing the fNIRS 

data and for extracting the features of interest. Given that the functional studies are usually 

performed by repeating a particular task during several temporal slots, a preliminary way to 

inspect the fNIRS results is to detrend the signal by subtracting a mean value registered in a 

rest period before each task repetition and then to visualize the time series of O2Hb and HHb 

signals averaged over all the trials. The expected hemodynamic response is identified where 

the O2Hb concentration increases and simultaneously the HHb decreases. However the 

functional activity could be not easily detected because of the simultaneous presence of 

confounding effects like hemodynamic changes in the superficial layer (either systemic or task 

related), and movement artefacts. Therefore a careful data analysis and statistical inference 

must be considered to properly detect the signals related to a neuronal activation [11].  

For statistical inference, the GLM approach has been adopted in most of the fNIRS 

software tools. GLM is a regression model assuming that a functional of a given signal can be 

modeled as a linear combination of known regressors, usually consisting of task-related 

boxcar functions. GLM was originally adopted for fMRI data analysis [12], and later used in 

fNIRS, taking advantage of the similarity between fMRI and fNIRS experiments in terms of 

designs and hypotheses [4,13]. Anyway, because of the substantial differences between fMRI 

and fNIRS techniques, above all the lower spatial resolution of fNIRS due to the sparse 

optodes distribution over the head, there are a number of limitations, assumptions and specific 

issues that have to be considered when applying GLM on optical data [14].  

In this paper we propose a new statistical method for the analysis of fNIRS data to 

statistically discriminate the hemodynamic activations registered by fNIRS. The proposed 

method is based on a linear regression model, and the main concern guiding the algorithm 

development was the minimization of assumptions and approximations made on the datasets 

for the application of statistical tests, such as the assumptions of independence, 

homoscedasticity and Gaussianity of residuals in order to guarantee the Gaussianity of the 

coefficients estimators. Furthermore, we propose a clustering algorithm aiming at better 



localizing the activated vs. not activated measured channels. The method is tested on 

simulated data mimicking real fNIRS measurements, and then applied on in-vivo 

measurements. In particular, we focused on time domain (TD) fNIRS data to have the best 

discrimination between cortical activation and superficial physiological changes. However, 

the proposed method is also suitable for continuous wave or frequency-domain fNIRS 

datasets.  

2. Materials and methods 

2.1 Synthetic fNIRS data 

A synthetic fNIRS dataset has been created to mimic real multichannel TD fNIRS 

measurements on a healthy adult during a motor task (handgrip experiment). A forward 

procedure and an inverse procedure were the main steps to obtain the synthetic dataset.  

The forward procedure consisted in: 1) defining the geometry of the head; 2) assigning 

values for the hemodynamic parameters so as to calculate the hemodynamic response 

functions during a protocol; 3) converting hemodynamic parameters into absorption 

coefficients; 4) adding the information on the reduced scattering coefficients; 5) using a 

photon diffusion model to generate distributions of photon time-of-flight; 6) adding 

measurement noise to mimic a real TD fNIRS measurement.  

The head has been modeled as a bilayered medium, where the upper layer is 1 cm thick, 

and the lower layer is ideally a semi-infinite medium. To a first approximation in fact this 

geometry can be used to simulate fNIRS measurements on the head of an adult, where an 

extra-cerebral layer (composed by scalp, skull and cerebrospinal fluid) overlays the intra-

cerebral one (gray and white matter). 

Hemoglobin concentrations were simulated by considering reference values of 12 μM for 

the O2Hb and 7 μM for the HHb in the superficial layer, and reference values of 30 μM for the 

O2Hb and 20 μM for the HHb in the lower layer [15]. A dataset for 30 independent channels 

was generated, considering an optodes distribution over both central hemispheres (see Fig. 1).  

  
Fig. 1. Position of sources (red circles) and detectors (green circles) according to the 

10/20 International System. The position of the 30 simulated measurement channels 
(purple diamonds) is also highlighted. 

Two different experiments were simulated.  

The first experiment (EXP1) considers an ideal situation where a neuronal activation is 

generated in the cortical layer by a motor task, and no physiological oscillations occur in the 

superficial layer. This experiment consists of 10 repetitions (also called trials) of 10 s of 

baseline, 20 s of right handgrip movement and 10 s of recovery, for an overall duration of 400 

s. The O2Hb and HHb concentrations in the upper layer were simulated to be constant at 

reference values during the whole experiment, while the concentrations in the lower layer 

were perturbed in some channels so as to mimic a hemodynamic response in correspondence 

to the task periods. This superimposed response profile was calculated as a convolution of a 

boxcar function, representing the task and rest alternation, with the Hemodynamic Response 

Function (HRF) evoked by a single stimulus. By following the method proposed by Scarpa et 
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al. [16], the HRF was modeled as a linear combination of two different gamma-variant time-

dependent functions Γn: 
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where α regulates the amplitude, τ1 and τ2 regulate the HRF shape, ρ1 and ρ2 tune its scale, 

while β determinates the undershoot. p coefficient was set to 5 as suggested by Glover et al. 

[17]. Variability in amplitude of about 5% was considered among the different repetitions to 

account for possible differences in the execution of the task and/or in the functional response 

(e.g. habituation effects). The peak of the HRF for the O2Hb was chosen to be around 

1555±75 nM; the HRF for the HHb was inverted and with a maximum set at -1/3 with respect 

to the O2Hb response. The free parameters have been chosen so as to create a HRF similar to 

one expected for the motor task of interest (α =1282, β =0.17, τ1=1, τ2=1, ρ1=-0.5, ρ2=3.5). To 

simulate an actual neuronal activation localized around the central positions of the hemisphere 

contralateral to the movement, some channels were considered activated with different 

intensities: channel number 16 (25% HRF), 17 (100% HRF), 18 (50% HRF), 21 (50% HRF), 

28 (25% HRF), 29 (50% HRF); in the other channels no hemodynamic response was added. 

In a second experiment (EXP2) the reference values for both layers and for the 

hemodynamic changes happening in the lower layer were identical to EXP1. However a 

physiological noise was added in the superficial layer by following the procedure reported by 

Scarpa et al. [16]. An oscillation was built for O2Hb signal for one channel as a superposition 

of sinusoidal functions at different mean frequencies and amplitudes, as reported in Table 1: 
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Amplitudes 𝐴𝑖 and frequencies fi vary in the channel for every repetition in the range 

described in Table 1, while phases 
i  are equally distributed between 0 and 2π and are 

different for each trial.  

Table 1. Mean and standard deviation of frequency and amplitude of each physiological 

componenta 

 Frequency (Hz) Amplitude (nM) 

Very low freq. f1=0.002±0.0001 A1=700±100 

Low freq. f2=0.01±0.001 A2=700±100 

Vasomotor 

Respiratory 

f3=0.07±0.04 

f4=0.2±0.03 

A3=400±10 

A4=200±10 

Cardiac f5=1.1±0.1 A5=400±10 
aFrom Scarpa et al. Neuroimage 72, 106-119 (2013). 

The generated signal was then replicated for all the channels by modifying the oscillation 

amplitude of a random value between ±10%. The HHb variations have been generated by 

threefold reducing the magnitude of the physiological noise simulated for the O2Hb. 

The absorption coefficients at two wavelengths (690 and 820 nm) for both layers were 

computed from these hemoglobin concentration changes by exploiting the Lambert Beer law 

and the a priori knowledge of the specific absorption of O2Hb and HHb [18].  

The scattering coefficients at the same wavelengths were derived from a simple 

approximation of the Mie theory [19]: 
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by setting the amplitude scattering a and the power scattering b fixed respectively at 12 cm-1 

and 0.5 for the upper layer, and at 12 cm-1 and 1 for the lower layer, for a reference λ0 at 660 

nm [20]. A forward model for photon diffusion in a bilayered geometry [21] was used 

generate synthetic time-resolved reflectance (TRR) curves for each channel by using as input 

parameters the optical properties and the source detector distance (fixed at 3 cm). A count rate 

of 5·105 ph/s was considered, the integration time was set at 1 s, and Poisson noise was added 

to the simulated curves to mimic real measurements. 

The inverse procedure involved the following steps: 1) estimating the baseline optical 

properties and the absorption changes in the upper and lower layer; 2) calculating the 

hemodynamic parameters from the absorption coefficients. 

The absolute values of μa and μs’ have been recovered by TD fNIRS data by fitting the 

curves of the baseline period preceding each task period with a physical model for reflectance 

geometry in a homogeneous medium [21]. Then absorption changes have been computed by 

means of the method proposed by Zucchelli et al. [22]. The method allows the discrimination 

of superficial and deep absorption variations from TRR curves. It takes into account the effect 

of system set-up, as described by the Instrument Response Function (IRF) and the 

heterogeneous structure of the human head for the refined computation of the photon time-

dependent pathlength within each layer the tissue is composed of. It makes use of an approach 

based on time-gating of the photon distribution of time-of-flights. The fNIRS signal coming 

from the deep regions, more likely involved in the cerebral activity, can be cleaned from the 

superficial variations of the absorption properties, mainly due to systemic hemodynamics 

changes.  

Fig. 2 and Fig. 3 show the time courses (folding average) for changes in O2Hb and HHb 

for the EXP2 in the upper layer and in the lower layer, respectively. 

 
Fig. 2. Folding average of simulated O2Hb (red) and HHb (blue) for the upper layer ( EXP2). 
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Fig. 3. Folding average of simulated O2Hb (red) and HHb (blue) for the lower layer (EXP2).  

2.2 In vivo fNIRS data 

The proposed method has been applied on in vivo data, acquired by a multi-channel dual-

wavelength TD fNIRS medical device developed by the Physics Department of the 

Politecnico of Milan [23] to preliminary validate its performance in real life settings. 

One right-handed healthy subject (male, 44 years old) underwent the experiment, 

consisting in a motor task (i.e. squeezing a soft ball in the right hand) at a rate of 2 Hz guided 

by a metronome. The same protocol simulated for synthetic data was maintained for in vivo 

experiment (10 repetitions of 10 s baseline, 20 s task and 10 s recovery, total duration 400 s). 

Instructions about the movement and rest were given by presenting a picture on a screen, 

which always had a fixation cross in the center. A total of fifteen detection bundles and eight 

light sources were positioned over the sensorimotor areas centered on C3 and C4 positions of 

the 10/20 standard system, following the configuration represented in Fig. 1. Pairs of light 

sources were sequentially illuminated in the left and right hemisphere every 0.25 s allowing 

the acquisition of 30 measurement points (channels) with an overall acquisition time of 1 s. 

Hemodynamic parameters were estimated by following the same steps previously described as 

“inverse procedure”.  

 
Fig. 4. Folding average of O2Hb (red) and HHb (blue) for the upper layer from in vivo data. 
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Fig. 5. Folding average of O2Hb (red) and HHb (blue) for the lower layer from in vivo data. 

The experiment was part of another study [24] that was reviewed and approved by the 

local ethics committee and it was conducted in compliance with the Declaration of Helsinki; 

the subject provided written informed consent to their participation in the study. 

Folding average results for changes in O2Hb and HHb in the superficial and lower layer 

are shown in Fig. 4 and Fig. 5 respectively.  

 

2.3 Statistical analysis 

The proposed regression model consists in the following steps: 1) pre-processing; 2) estimate 

of the coefficients of the regressors for each trial; 3) inference test on the coefficients; 4) K-

means algorithm for cluster analysis of activated channels. The method has been implemented 

in R Core Team (2014) [25]. 

A pre-processing algorithm is initially applied to the fNIRS datasets. The sample mean on 

the first 10 s of each trial is subtracted to the related trial, in order to detrend data. Then a 

smoothing spline algorithm is applied to the whole signal. If ty  is hemoglobin concentration 

at time 1: 400t  s, the algorithm calculates the curve  ŷ t  that minimize (in the class of twice 

differentiable functions) the following quantity: 
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The first term represents the estimated Mean Squared Error (MSE) when using  ŷ t  to 

estimate ty . The second term penalizes the curvature of  ŷ t . The parameter λ controls the 

trade-off between the accuracy of  ŷ t  (for λ=0 it corresponds to the original data) and how it 

is smoothed. Thus data are estimated through the smoothing spline  ŷ t  that minimizes a 

weighted sum of MSE and the average curvature. 

Instead of using all the 400 s for a single linear regression model, we divide the time 

series of each channel in 10 sub-intervals (i.e. repetitions or trials) lasting 40 s (made of 10 s 

rest, 20 s task, and 10 s rest). We then individually apply a linear regression model to each 

repetition. 

Each trial is the elementary sequence revealing activation. It represents a realization of the 

same phenomenon. It can therefore be interesting to first analyse each trial independently, 

writing a regression model for each of them. Then we look for an appropriate quantity that 
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summarizes the information about activation in each sub-interval. We consequently have a 

sample of size 10 of these quantities for each channel, on which we can make inference. This 

approach aims at limiting the most critical problems that are found in analysing fNIRS data 

through a linear (or a generalized linear) regression model: correlation, heteroscedasticity and 

not Gaussianity of residuals, that question the Gaussianity of the coefficients estimates. 

If i indicates the sub-interval and k indicates the channel, we build for each channel 1:30k   

the 10 following linear regression models: 

 , ,        ,        1  , 2,  1  0,i k k i ky X i       (6) 

where ,  i ky  is the vector of data, X is the design matrix, k the vector of coefficients and ,i k  

a term of error. They are defined as follows: 
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Under the hypothesis that O2Hb increases during the task period, the regressors for O2Hb, 

rest and task, are obtained through a convolution between the HRF and a step-function equal 

to 0 in the first and last 10 s and 1 elsewhere for task (the opposite for rest) (see Fig. 6 left). 

On the contrary, given that HHb is expected to decrease during the task, the regressor for HHb 

is built as a convolution between the HRF and a step-function equal to 0 in the first and last 10 

s, -1 elsewhere for task, the opposite for rest (see Fig. 6 right). 

 
Fig. 6.Regressors for O2Hb (left) and HHb (right) concentrations. 

For each channel k and sub-interval i, we then calculate the Ordinary Least Squares 

estimators for k , as: 
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Following this procedure we obtain fitted values ,ˆ .i ky  more similar to , .i ky  than the ones 

found through a single linear regression model. An example is reported in Fig. 7, where fitted 

values and real data are plotted for regression models on trials (Fig. 7 left) and for a unique 

regression model (Fig. 7 right). In the first situation the Squared Error (SE) is lower than in 

the second one (34.1 and 42.4 μM2 respectively), in which the obtained coefficients are the 

same for all trials, preventing any variability. For this reason the approach with regression 

models on trials well suits also experiments where the intensity of the HRF varies in time. 

Moreover, through this approach, we have a population of k

rest   and k

task  for each 

channel k on which we can make inference test. The Gaussianity of ,ˆ i k

rest  and ,ˆ i k

task  is first 

investigated, as well as the Gaussianity of the linear combination , ,ˆ ˆi k i k

task rest   , through running, 

on each channel k, three Shapiro-Wilk tests (one on the ten-observations sample

 1, 2, 10,  ,  , , ˆ ˆ ˆk k k

rest rest rest    , one on  1, 2, 10,  ,  , , ˆ ˆ ˆk k k

task task task    , one on their linear combination). P-values are 



almost always higher than 0.05 in every dataset, both simulated and in vivo, with O2Hb and 

HHb measures. An example is reported in Fig. 8. We can therefore assume that, for each fixed 

channel k, ,ˆ i k

rest  belongs to a normal distribution, as well as ,ˆ i k

task  and , ,ˆ ˆi k i k

task rest  . In order to 

discriminate between activated/not-activated channels we focus on the contrast of the 

coefficients, , ,ˆ ˆi k i k

task rest   , coherently with the current literature [12]. 

 
Fig. 7. Comparison between O2Hb fitted values and real data (channel 18, EXP1) from 

regression models on sub-intervals (left) and from a unique regression model on all the 400 
measurements (right).  

 
Fig. 8. P-values of Gaussianity for 

,ˆ i k

rest   (a), 
,ˆ i k

task  (b) and
, ,ˆ ˆi k i k

task rest    (c) for the deeper 

layer of EXP1, O2Hb. 

We use the 10 found linear combinations , ,ˆ ˆi k i k

task rest    and their Gaussianity to implement 

an inference test. We then build a map that shows the degree of activation of each channel. 

We conduct a hypothesis test for each channel k on the expected value of , ,ˆ ˆi k i k

task rest   and we 

use the P-values to draw the map. 

In particular, for fixed channel k, the test will be: 
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where ˆ ˆk k k

task restE    
 

 is the expected value of the linear combination of the coefficients. 

A one-tailed test is chosen due to the shape of the regressors and the HRF. 

Theoretically the decision of the test would be acceptance of the null hypothesis for the 

not-activated channels, and the rejection for the activated ones. In fact if a channel is activated 

we expect that the linear combination of the regressors is significant, and the coefficients 

related to it have expected value higher than 0. Due to the Gaussianity of , ,ˆ ˆi k i k

task rest   we can 

calculate for every test the following test statistic: 
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  (8) 

Under the null hypothesis it is distributed as a t-student with 1n  degrees of freedom. 

Here the sample size, n , is equal to 10, k

nX  is the sample mean of , ,ˆ ˆi k i k

task rest  , and 2

kS  is the 



sample variance. A P-value for each channel can be calculated as ( )kP X T , where X  is a 

random variable from a t-student distribution with 1n  degrees of freedom. We finally plot a 

map (named activation map, see Fig. 9 and following) in which the color of each channel is 

proportional to its P-value. Colors vary from white (activation) to black (no activation). In the 

following section we refer to this map as activation map. 

2.4 K-means clustering algorithm 

The localization of an activated area through a statistical analysis can be confirmed through 

K-means clustering algorithm. If k indicates the channel and i the trial, the following vector is 

considered for each channel: 
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A K-means algorithm is applied to the 30 vectors in 10 . This clustering algorithm 

separates the 30 vectors in m  groups, finding clusters that minimize the Euclidean distance 

within clusters and maximizes the one between clusters. We set m  equal to 2, because we 

expect to observe two clusters: one with activated channels, one with not-activated ones. 

The algorithm consists of 3 steps:  

1. Initialization, in which the initial centers are randomly fixed.  

2. The Euclidean distances from m centers are calculated for each vector, then vectors 

are assigned to the cluster with the nearest center.  

3. Updating of centers: the center of each cluster is calculated as the mean between the 

vectors belonging to the cluster.  

Steps 2) and 3) are repeated until convergence. 

The choice of    2m  is confirmed also by the average silhouette width, a quality index 

allowing to select the number of clusters [26]. For each fixed m , the index varies from –1 to 1, 

increasing if the algorithm well classifies the vectors, decreasing if they are badly classified. 

An index is calculated for K-means with different number of clusters. Then K-means with the 

highest average silhouette width is chosen. If    2m the index is equal to 0.85 for O2Hb, while 

for 2    7m   we obtain indices lower than 0.40. Similar results are obtained for EXP2. This 

confirms our choice. 

3. Results 

3.1 Synthetic fNIRS data 

Activation maps for O2Hb and HHb are reported in Fig. 9 for EXP1 and in Fig. 10 for EXP2.  

For dataset EXP1, obtained simulating ideal hemodynamic evolution without 

confounding oscillations, it is clear how the proposed method can discriminate the activated 

channels in the deeper region. P-values related to activated channels are in fact close to 0 

(equal to 0 rounding to the third decimal place), creating a sharp division in the map between 

white and colored channels. At first sight, channel 30 might seem activated. Its P-value (P = 

0.004) is however bigger (by more than a factor 10) than the highest activated-channel P-

value (P = 0.0003 for channel 28). 

If we consider as activated a channel with P-value lower than 0.001, we note that the map 

can discriminate exactly the activated channels. More specifically, the lowest P-value (less 

than 10-7) is the one referred to channel 17, the most activated one (100% HRF), while 

channels with the lowest activation intensity (ch. 16 and 28, 25% HRF) have the highest P-

values among the activated ones (less than 0.0005). 



In the upper layer we don’t find any activation, as expected, and P-values are all higher 

than 0.01. 

Also in the activation map for the deeper layer of dataset EXP2 activated channels are 

instantly detectable. In the superficial layer P-values are very high (higher than 0.5) and very 

uniform, confirming that the simulated O2Hb is noise. 

We can notice in the HHb activation maps the same trends found for O2Hb. Revealing 

activation in this situation is more difficult, because activation amplitude is lower than in 

O2Hb measures. Nevertheless, this method performs a good channels classification on these 

measures too: the only channel with a slightly high P-value is 28 (25% HRF). 

 
Fig. 9. Statistical detection of channels’ activation for O2Hb (left column) and HHb (right column) in 

the upper layer (top row) and lower layer (bottom row) for EXP1. The numbers inside the circles are 
the channel numbers while the numbers outside the circles are the P-values. Channels simulated as 

active are circled in green. 

 

Fig. 10. Statistical detection of channels’ activation for O2Hb (left column) and HHb (right column) in 

the upper layer (top row) and lower layer (bottom row) for EXP2. The numbers inside the circles are 
the channel numbers while the numbers outside the circles are the P-values. Channels simulated as 

active are circled in green. 

3.2 In vivo data 

The method proposed for activated channels detection was tested also on in vivo data. In vivo 

dataset was treated in the same way as synthetic ones: after a baseline subtraction and 



smoothing spline algorithm application, each trial was used for a linear regression model. 

Coefficients estimates were then tested in order to evaluate the dependence between data and 

regressors. Activation maps were calculated in the same way. This procedure produced good 

results on in vivo data, and it proved to be suitable in revealing activated channels. Activation 

maps for in vivo subject are reported in Fig. 11. In the superficial layer the subject shows high 

P-values in most of channels, while active areas can be clearly identified in the left 

hemisphere of deep layer. This proves the efficacy of the proposed procedure for activation 

detection, that can be successfully applied also on in vivo data. 

 
Fig. 11. Statistical detection of channels’ activation for O2Hb (left column) and HHb (right column) in 

the superficial layer (top row) and lower layer (bottom row) for in vivo data. The numbers inside the 

circles are the channel numbers while the numbers outside the circles are the P-values. 

3.3 K-means 

K-means activation maps for synthetic data are reported in Fig. 12 for EXP1 and EXP2. In 

these images channels from different clusters are represented in different colors. Channels 

simulated as active (in deep layer) are circled by green. 

The K-means algorithm is able to identify most of the activated channels for both O2Hb 

and HHb in the deep layer. The channels that present a higher activation intensity (channels 

17, 18, 21, 29) are precisely clustered, for both EXP1 and EXP2, O2Hb and HHb measures. 

Conversely, channels 16 and 28, that present a low intensity of activation (25% HRF), are 

assigned to the cluster of not-activated ones. If there is no activation, as happens in the upper 

layer, the algorithm is not suitable. In fact it is forced to separate channels in two groups, even 

if vectors shouldn’t be divided in two clusters. Thus results are unpredictable. 

 
 

Fig. 12. K-means maps for O2Hb (left column) and HHb (right column) in the superficial layer 

(top row) and lower layer (bottom row) for EXP1 (a) and EXP2 (b). Channels simulated as 

(a) (b)



active are circled in green. The numbers inside the circles are the channel numbers while colors 
identify the two clusters. 

Fig. 13 shows K-means maps for in vivo subject. The algorithm performs a classification 

coherent with the activation maps, always assigning the activated channels to the same cluster. 

In some situations, if there are one or more highly noisy channels, the algorithm separates 

them from the others. Thus highly noisy channels must be excluded from the K-means 

analysis, not to have clusters composed only by one or two anomalous channels. Excluded 

channels are reported in pink (their irregularity can be verified looking at folded averages in 

Fig. 4 and 5). 

 
Fig. 13. K-means maps for O2Hb (left column) and HHb (right column) in the superficial layer 
(top row) and lower layer (bottom row) for in vivo subject. Channels simulated as active are 

circled in green. The numbers inside the circles are the channel numbers while colors identify 
the two clusters. Channels that have to be excluded are in pink. 

4. Discussion 

In this paper a new method for analysis of fNIRS data has been introduced. It is based on 

linear regression models using, as regressors, convolutions between scale functions and HRF, 

as in current literature.  

The main novelty is the splitting of data in trial or sub-intervals, each one representing a 

realization of the same event (the elementary activation sequence), and the application of a 

linear regression model on each of them. This way, an investigable sample of coefficients is 

obtained for each channel. In agreement with the literature we specifically focused on a linear 

combination of the coefficients. We verified the Gaussianity of the linear combinations 

through Shapiro-Wilks tests. Thus, rather than a unique linear combination for each channel, 

that is difficult to analyse because of heteroscedasticity, not-normality and correlation of 

residuals, we have a normal population of linear combinations for each channel, which can be 

easily investigated through an inference test. A one-tailed hypothesis test on the expected 

values of the linear combinations is built for each channel, expecting a rejection (acceptance) 

of the null hypothesis for activated (not-activated) channels. The related P-values are used to 

draw the activation maps. This procedure was succesfully applied on simulated data.  

A further novelty is the use of a clustering algorithm (K-means) as a useful additional 

instrument in activation detection. K-means algorithm separates channels in two sharp groups: 

the information on the degree of activation of each channel is then lost. The output of the 

algorithm is a binary assignment of each channel, that is simply labelled as “active/not-

active”. Thus it can happen that low activated channels are assigned to the cluster of not-

activated ones. This happens for example for channels 16 and 28 in Fig. 12, that present a low 

intensity of activation (25% HRF). The channels that present a higher activation intensity 

(channels 17, 18, 21, 29) are precisely clustered, for both EXP1 and EXP2, O2Hb and HHb 

measures. The clustering algorithm can be an important instrument of control: its right 

clustering is a further confirmation of the accuracy of the previous analysis and of the 

calculated activation maps. In fact it follows a different procedure compared to the linear 

regression model. It aims to detect the same channels applying another kind of analysis, that 



doesn’t use statistical tests and is based on different hypothesis. The clustering algorithm 

works well if there are channels with “similar” vectors (thus with a similar evolution in time. 

This is expected to happen with activated channels). If there is no activation the algorithm is 

forced to separate channels in two groups, thus results are unpredictable and with no sense. 

Some problems can also arise if one (or more) channels are particularly noisy and product 

vectors much different from the others: in this situation the K-means algorithm can be 

inaccurate, separating noisy channels from the others. For this reason highly noisy channels 

should be excluded before an analysis with K-means clustering algorithm. 

A limitation of this study could be the accuracy of the simulated dataset. We should in 

fact observe that the creation of synthetic data well reproducing the superficial and deep O2Hb 

and HHb concentration changes happening during a succession of rest and task periods is not 

a trivial issue. As a matter of fact the actual behavior (particularly the exact magnitude and 

frequency components) of O2Hb and HHb physiological oscillations occurring concurrently 

within the superficial layers of the head and in the cerebral cortex, during rest or task periods, 

is never fully reported in literature with adequate precision, but often only for a range of 

frequencies, for partial regions of the head, or for physiological parameters different than 

hemoglobin species (blood flow, pressure or volume components) [27-29]. Moreover, the 

quantitative definition of the amplitude variation within the brain of both species of 

hemoglobin following a neuronal activation, i.e. the hemodynamic response, is still an open 

issue in the scientific community. In fact reported fNIRS data present inaccuracies related to 

different factors: for instance most of the retrieved concentration values are obtained with CW 

fNIRS instruments, and thus present an intrinsic measurement error due to the poor depth 

resolution of the technique: the obtained cerebral signal is inevitably affected by extracerebral 

concentration variations [30-32]. Further, the in vivo optical (absorption and scattering) 

properties of biological tissues are hardly measurable and data in literature present a high 

variability in the results [33]. Finally, the different anatomical characteristics within and 

between subjects produce unavoidable analysis errors. Despite all these limitations the 

simulated datasets presented in this paper can be effectively used to test the performances of 

data analysis procedures. 

5. Conclusion 

The present study proposes a new procedure for statistical analysis of activated channels in 

fNIRS data. The introduced method minimizes the hypothesis made on data for the 

application of statistical tests. Thus it can be employed on a wide class of datasets, without 

losing validity even if high correlation and heteroscedasticity of residuals are proved or their 

Gaussianity is not verified. All these assumptions are relaxed through a model that provides a 

sample of activation-related quantities for each channel. The unique required hypothesis is 

Gaussianity of the activation-related quantities, and this hypothesis was always confirmed by 

statistical tests. This procedure was validated on a synthetic dataset and then on in vivo data 

from TD fNIRS, and it produced good results in both situations, detecting activated channels 

with precision. A clustering algorithm (K-means) is also proposed in the present study as an 

useful additional tool for activated channels detection. This clustering algorithm doesn’t 

require any statistical hypothesis. It divides channels in two groups trough geometric 

considerations on activation-related quantities of each channel. Because of the different 

proceedings compared to the previous algorithm, K-means can be used as a reinforcing 

control instrument after the proposed method execution. To our knowledge the proposed 

method can complement the procedures contained in the most used software for fNIRS data 

analysis (e.g Homer2 and NIRS-SPM). However, a thorough comparison of the outcomes of 

different software tools is out of the scope of this paper.  


