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Abstract. Objective We address the problem of hemodynamic response
estimation when task-evoked extra-cerebral components are present in functional
near-infrared spectroscopy (fNIRS) signals. These components might bias the
hemodynamic response estimation, therefore careful and accurate denoising of
data is needed.

Approach We propose a dictionary-based algorithm to process each single
event-related segment of the acquired signal for both long separation and short
separation channels. Stimulus-evoked components and physiological noise are
modeled by means of two distinct waveform dictionaries.

For each segment, after removal of the physiological noise component in each
channel, a template is employed to estimate stimulus-evoked responses in both
channels. Then, the estimate from the short-separation channel is employed to
correct for the evoked superficial response and refine the hemodynamic response
estimate from the long-separation channel.

Main results Analysis of simulated, semi-simulated and real data shows that,
by averaging single-segment estimates over multiple trials in an experiment,
reliable results and improved accuracy compared to other methods can be
obtained. While still far from the possibility of single-trial hemodynamic response
estimation, a significant reduction in the number of averaged trials can also be
obtained.

Significance This work proves that dedicated dictionaries can be successfully
employed to model all different components of fNIRS signals. It demonstrates
the effectiveness of a specifically designed algorithm structure in dealing
with a complex denoising problem, enhancing the possibilities of fNIRS-based
hemodynamic response analysis.
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1. Introduction

Functional near-infrared spectroscopy (fNIRS) is a
non-invasive, low cost neuroimaging technique, widely
used to monitor cerebral activity and study healthy or
pathological brain activation in response to a variety of
cognitive tasks [1]. Neuroscience applications include
the study of infant brain and cognitive development
and of functional connectivity in the human brain
[2, 3]. In clinical practice, fNIRS helps to investigate
processes associated with neurological and psychiatric
disorders, like Alzheimer disease, Parkinson disease,
epilepsy, schizophrenia, and anxiety disorders [4].
More recently, fNIRS has also been considered in brain-
computer interface [5, 6].

Because of neurovascular coupling, local changes
in the concentrations of oxy- and deoxy-hemoglobin
(respectively, HbO and HbR) occur in response to a
particular stimulus or cognitive task. fNIRS monitors
these changes by measuring absorbance variations,
using a beam of near-infrared light that propagates
through the brain between pairs of suitably positioned
sources and detectors on the scalp. The estimated
hemodynamic response (HR) can be interpreted as
an indirect measurement of neural activity in the
investigated brain area.

Since the light path includes the scalp, skull and
cerebospinal fluid, the received signal is unavoidably
contaminated by extra-cerebral and systemic compo-
nents. Whereas HR amplitude is typically in the order
of hundreds of nM, a much higher signal is recorded by
the detector, where disturbance components are indeed
the predominant part of the signal [7]. Physiological
contributions due to extra-cerebral components associ-
ated to respiration, cardiac activity and Mayer waves
[8] partially overlap the HR frequency band, but do not
depend on neuronal activity, therefore they are present
even without external stimuli. Extra-cerebral physio-
logical contaminants can be also test-dependently, with
increases in heart-rate, respiration and/or blood pres-
sure time located to the stimulus [9].

In a typical fNIRS measurement set-up the ”stan-
dard”, or long-separation (LS) channel is supplemented
by a shorter ”reference”, or short-separation (SS) chan-
nel, that relies on a second detector placed closer to the
same light source. As photon penetration depth is re-
lated to source-detector distance, it is assumed that
the SS channel can be referred almost exclusively to
the extra-cerebral part while the LS channel probes

deeper, providing information about both brain and
extra-cerebral part [10]. The reference measurement
provided by the SS channel can then be exploited to es-
timate disturbance contributions and correct for them,
allowing significant improvements in accuracy.

Several approaches have been proposed in the lit-
erature [11]. For instance, the reference measurement
can be used to regress superficial components from the
standard channel, obtaining a scaling factor and, by
subtraction of the component correlated with the SS
channel, a “corrected” signal [12]. This and similar
methods rely on the assumption that the superficial
response measured by the SS channel represents only
systemic noise with no task-related response, indepen-
dent of the cerebral hemodynamic response. However,
the assumption may not be always acceptable [13].

Experimental tasks in some fNIRS studies involve
complex emotional and cognitive processing that,
besides evoking a neural response within the brain, also
induce changes in cutaneous vein blood volume due to
an increase in heart rate and blood pressure [14]. This
stimulus-evoked response is superficial, therefore both
the LS and SS channels are affected. Furthermore,
a superficial response may have similar features to
HR, which consequently may be either enhanced
or attenuated in the measured LS signal. These
confounding effects can be considered, respectively, a
false positive (FP) or a false negative (FN) as far
as HR detection is concerned [9], [15]. As it can
no longer be assumed that the reference channel is
nearly uncorrelated with stimulus-evoked responses,
the presence of a HR-correlated component has to be
taken into account also in the denoising process, to
prevent similar undesired modifications.

In this paper we present a dictionary-based
denoising and waveform estimation technique that
explicitly models the presence of a HR-correlated
component in fNIRS signals. We propose the use of a
combination of two dictionaries, which enable to deal
with both physiological and task-evoked noise, leading
to a more accurate determination of the HR.

The main features of our approach are the
following:

• as a preliminary step, physiological background
noise is estimated and removed from the two
fNIRS channels independently. For this purpose
we employ the dictionary developed in [17] to
estimate parameters of a physiological noise model
based on a sum of quasi-sinusoidal waves;
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• we introduce a dedicated dictionary that allows
estimation of task-related components in both LS
and SS channels, where the latter contains infor-
mation only about the stimulus-evoked superficial
response;

• using information from resting state intervals, we
determine a scaling factor to account for the
different paths in the two channels, which allows
us to use the superficial response contribution
estimated in the SS channel to correct the denoised
LS signal;

• finally, unreliable individual estimates are dis-
carded before computing the averaged HR re-
sponse estimate.

2. Method

2.1. Outline

In an experiment, a subject is presented with a series
of stimuli referring to a given task, for a total of
NT trials. Continuously recorded variations in the
concentrations of HbO and HbR produce a sequence
of pulses hi(t), each representing the hemodynamic
response to a single stimulus within the experiment.
Indicating by Ti the onset of the i-th stimulus, the
signal of interest is:

v(t) =

NT∑
i=1

hi(t− Ti). (1)

For event-related analysis, fNIRS signals acquired
during an experiment are partitioned into segments.
Each single-trial response is time-locked to the onset
of the corresponding stimulus, accordingly the signal
of interest is assumed to be the single response h(t).

We define a segment as a vector y =

[y(n1Ts) . . . y(n2Ts)]
T containing a set of N = n2 −

n1+1 samples, with Ts as the sampling interval. Drop-
ping trial index i for simplicity, the signals acquired by
a dual-detector system can be described by the equa-
tions:

y
L

= h + sL + p
L

+ wL

y
S

= sS + p
S

+ wS

(2)

where subscripts ‘L’ and ‘S’ refer, respectively, to
the long- and short-separation channels. wL and
wS are random noise vectors with finite variances
that model acquisition noise introduced by the
measurement system. Stimulus-evoked systemic
variations are represented by sL and sS and the
dominant physiological noise terms are p

L
and p

S
.

It is essential to suppress them by accurate denoising
to enable the estimation of stimulus-evoked variations
and, finally, of the vector of HR samples h.
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Figure 1: Logical structure of the proposed denoising
and estimation algorithm.

An overcomplete dictionary D is a N ×K matrix
such that the linear relationship: y = Da holds, where
a is a sparse vector, which means only a small subset
of its elements are non-zero. The corresponding indices
form a subset of integers called the signal support
S. One may then define subvector aS = [am]m∈S ,
submatrix DS = [D[·,m]]m∈S and write:

y = DSaS (3)

showing that a signal vector y can be described by the
linear combination of a small number of columns of D.

Dictionaries provide the signal modelling support
enabling the separation of HR from physiological back-
ground noise and from evoked superficial components.
For this purpose, we combine two dictionaries, D1 and
D2. The former refers to physiological background
components, while dictionary D2 is employed to esti-
mate the cerebral HR and stimulus-evoked physiolog-
ical responses. Accordingly, acquired fNIRS segments
y
L

and y
S

are decomposed as:

y = D1S1a1S1 + D2S2a2S2 , (4)

where S1 and S2 are the supports for the two
dictionaries. Only the second term on the right-hand
side contains stimulus-evoked signal components.

As illustrated in Fig. 1, signals acquired from
the LS and SS channels are processed separately.
This allows to obtain an estimate of the task-evoked
superficial response ŝS , whereas in the LS channel the
hemodynamic response cannot be separated from the
superposed evoked component, the resulting estimate
being x̂ = h + sL.

The two components sL and sS can be referred
almost exactly to the same source, except for a scaling
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factor that is needed to account for the different
channel paths. Given the estimate ŝS , when this factor
λ is known one has ŝL = λŝS and a correction can then
be applied to the LS channel estimate to finally yield
the HR estimate:

ĥ = x̂− ŝL = x̂− λŝS . (5)

Single-trial estimation variability is still high as a
result of bias due to mismatch with actual HR shapes
and of possible denoising inaccuracies. The final stage
of the algorithm involves averaging over multiple trials
within an experiment, which is essential to produce an
accurate estimate of the hemodynamic response.

2.2. Sparse vector estimation

Dictionary-based signal analysis centers on finding a
sparse solution to a matrix-vector equation. The
problem can be formally expressed as:

â = arg min
a
||a||0 subject to: ||y −Da||2 < ε (6)

where ε is a threshold value associated to the energy
of the residual r = y − Dâ. To solve this non-
linear problem we employ a simple iterative “greedy”
algorithm, known as matching pursuit (MP) [16].

After initializing the signal support to the empty
set, S = ∅ and the signal estimate to ŷ = 0,
the algorithm can be summarized as the iterative
application of the following steps:

(i) compute r = y−ŷ, then find the dictionary index:

m∗ = arg max
m
|dTmr|2 where: dm = D[·,m].

(7)

(ii) accordingly update the signal support: S = S∪m∗
and the dictionary submatrix DS ;

(iii) compute a new amplitude estimate:

âS =
(
DT
SDS

)−1
DT
Sy ; (8)

(iv) calculate the new signal estimate: ŷ = DS âS .

Search iterations can be stopped when the current
approximation error satisfies condition ||r||2 < ε in (6),
otherwise an a priori constraint on the cardinality of
support S may be defined.

2.3. Overcomplete dictionaries

We describe the physiological noise components p
L

and p
S

as p(t), by samples of a Taylor-Fourier multi-
frequency model [20]:

p(t) =

J∑
j=1

<
[
Xj(t) · e2πfjt

]
(9)
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Figure 2: HR templates for HbO and HbR (black line)
obtained by averaging multiple individual responses
(coloured lines).

where Xj(t) is a second-order polynomial with
complex-valued coefficients. Although more complex
than the commonly employed sum-of-sinewaves, this
model is more accurate and allows to track possible
modulation effects induced by physiological variations,
that may occur in a typical segment length. Its
effectiveness in denoising was proven in [17], where
construction of the relevant dictionary, indicated in
this work as D1, is also discussed.

A hemodynamic response h can be described by
samples from a linear combination of gamma functions,
in particular a double-gamma model is frequently
employed:

h(t) = κ1 · Γk1(t, τ1, ρ1)− κ2 · Γk2(t, τ2, ρ2) (10)

with:

Γk(t, τ, ρ) =
1

k!τ

(
t− ρ
τ

)k
e−( t−ρτ ) · u(t− ρ) (11)

where u(t) is the unit-step function [18, 19]. Param-
eters τ and ρ refer, respectively, to the width of each
gamma term and to the distance of its starting point
from the stimulus onset. The factor k determines re-
sponsiveness in terms of peak latency and slope of
edges.

Stimulus-evoked variations are known to be highly
correlated with the hemodynamic response, therefore
we model them by a similar expression, with possibly
different parameter values. We assume that x̂ is still
well described by the same model, which enables the
use of a common dictionary for the SS channel and the
LS channel.

The double-gamma expression (10) provides a six-
parameter model, where a non-linear relationship ex-
ists between parameters τ1, τ2, ρ1, ρ2 and the corre-
sponding waveform. The columns of dictionary matrix
D2 represent possible changes in the basic waveform
shape determined by variations of these non-linearly
related parameters, for which a finite grid of values is
considered. On the other hand parameters κ1 and κ2,
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Table 1: Template parameters for double-gamma
model (12).

τ1 τ2 k1 k2 β T1 ∆T

HbO 1 s 1 s 5 5 0.5 0.5 s 3 s

HbR 1 s 1 s 5 5 0.5 1.5 s 4 s

having a linear relationship, may be associated with
vector a.

In general, a dictionary might have to account
for a large number of combinations in the ranges of
interest, making its column size considerably large.
We simplified the construction of D2 by referring to
an average shape template, relying on the assumption
that HR shape does not vary much among subjects
[21]. Figure 2 shows several HRs obtained from curve
emulating those of real subjects and characterized
by different combinations of parameter values, with
average shapes for HbO and HbR shown by black lines.
By referring to average shape as a template, width
parameters τ1 and τ2 in (10) assume pre-determined
values. Likewise, the time difference ∆ρ = ρ2− ρ1 and
the amplitude ratio β = (κ2/κ1) are fixed.

HR can thus be described by an equation that only
depends linearly on amplitude α and non-linearly on
time delay ρ1:

h(t) = α · [Γk1(t, τ1, ρ1)−β ·Γk2(t, τ2, ρ1+ ∆ρ)]

= α · d(t, ρ1)
(12)

Each column of D2 represents the basic shape defined
by d(nTs, ·), time-shifted to a different position.
Since template shapes may differ for HbO and HbR,
two versions of the dictionary have been created,
respectively D2,O and D2,R. Relevant parameters are
reported in Table 1. The resulting dictionary structure
is shown for HbO in figure 3, where the time step
between elements is equal to one sampling interval Ts.
Only a limited set of time shifts needs to be considered
and a maximum variation of ±3 s from the expected
HR peak position has been considered.

2.4. Single-trial denoising and reconstruction

Figure 1 shows that in our method two MP algorithms
run in parallel, one using dictionary D1, the
other employing D2. The two MP parts are run
independently and their outcomes are compared at the
end of each iteration. We distinguish the residuals of
the two parts, that are the j-th MP iteration outputs,
indicating them by r1j and r2j , respectively. As
evidenced in figure 1, the input to the next iteration
will then be common for both parts and selected
according to:

rj+1 = arg min
[
||r1j ||2, ||r2j ||2

]
(13)

150 200 250 300 350
samples

-0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3: Structure of the HbO dictionary. Fixed
template parameters are: τ1 = τ2 = 1 s; ∆ρ = 3 s;
β = 0.5. Elements are normalized to have unit area,
with time shifts covering a range of 6 s.

Comparison of residuals may yield the following cases:

• ||r1j ||2 < ||r2j ||2 – part of the physiological noise
is effectively modeled by D1, therefore rj+1 = r1j
and the algorithm moves on to the next iteration.
D2 is usually ineffective as long as physiological
noise remains the dominant component in rj ,
therefore support S1 has cardinality j, whereas it
is still S2 = ∅;

• ||r2j ||2 ≤ ||r1j ||2 – it can be assumed that in
the first j − 1 iterations y was denoised from
the physiological component, to the point that
rj has been better modeled by a column of D2.
Both supports S1 and S2 are now non-empty sets
and the latter has column index m∗2 as its single
element.
The algorithm stops, yielding the stimulus-related
component estimate:

d2(m∗2) · α̂, with: d2(m∗2) = D2[·,m∗2]

and: α̂ =
1

d2(m∗2)Td2(m∗2)
· d2(m∗2)Ty.

(14)
For an SS channel, (14) represents the evoked
superficial response estimate ŝS . For a LS
channel it yields x̂, the estimated superposition
of the desired hemodynamic response and evoked
superficial response;

• if condition ||r2j ||2 ≤ ||r1j ||2 never occurs,
the algorithm stops, still with S2 = ∅, when
constraint ||rj ||2 < ε is satisfied. It is then
assumed that a stimulus-related response is not
present within the segment.

This implementation has been preferred to a
classic hybrid dictionary approach for the main reason
that waveform template (12), being based on gamma
functions, is general enough to be applicable also
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to physiological noise modelling. With a single
hybrid dictionary D = [D1 D2] there would be a
non-negligible probability that, based on the single
criterion (7), a column from D2 is occasionally selected
as more effective than the Taylor-Fourier model for
physiological noise. Of course, this would prevent
reliable denoising and HR estimation. In this algorithm
the actual choice between the two candidate MP
iteration outcomes is based instead on (13). This
significantly reduces the chance of crosstalk between
the two dictionaries.

Tuning of parameter ε is very important for the
success of the algorithm. If too high, algorithm
iterations may terminate before a double-gamma can
be found, even when an evoked response is actually
present. This causes a false negative (FN) error,
whereas if ε is too low a false positive (FP) may occur,
for instance, if D2 happens to model the residual
physiological noise better than D1. Analysis for tuning
parameters showed that the threshold value that yields
the best trade off between FP and FN errors is ε =
0.45 corresponding to a peak double-gamma value of
0.5 nM, that is very low compared to typical HR
magnitudes but suitable for evoked response detection,
in particular of the smaller component sS .

2.5. Evoked-noise removal

The single-trial HR estimate ĥ is obtained from esti-
mates of stimulus-evoked responses in both channels,
according to (5). As noted in 2.1, this requires the
determination of a scale factor λ. For this purpose
we consider the part of the signal acquired during a
subject resting state, that is when no stimulus-related
responses are present in the data and determine λ by
linear regression of yL(t) on yS(t).

Although the computation is the same as in [12],
our choice of a specific portion of the acquired signals
ensures that good correlation exists between the LS
and SS channel, improving the estimation of λ. The
effect of correction (5) is demonstrated by figure 4, that
shows HbO and HbR single-trial estimates obtained
from one of the simulations described in Section 3.
Results are representative of typical behaviour and
the improvement is particularly significant in the HbO
case, where relative peak amplitude deviation from the
reference shape improves from 33% to 4%. Poorer
accuracy is shown for the HbR response, that is
smaller, yet relative peak amplitude deviation is still
nearly halved, dropping from 57% to 28%.

2.6. Multi-trial averaging

A number of factors combine in producing a rather high
variability of single-trial estimates. In first place, since
even a single subject response may indeed vary slightly
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Figure 4: Effect of correction for evoked superficial
responses in single-trial estimates for HbO (left) and
HbR (right).
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Figure 5: Comparison between the nominal HbO
(black solid line) and the estimated one (red dashed
line). The other lines are the single-trial estimates.

during multiple trials, the use of a single representative
waveform shape in dictionary D2 implies some degrees
of bias in many estimates. Furthermore, physiological
noise may not be totally removed by the algorithm and
this may contribute to inaccuracies. Typical results
of a simulated experiment involving NT trials are
presented in figure 5, where single estimates are plotted
together with their average (red line), that is compared
to the reference waveform shape. This shows how
averaging of the NT single-trial estimates is essential
for the accurate determination of a hemodynamic
response.

It is important to remember that single estimates
might be occasionally unreliable and deviate signifi-
cantly from the actual signal shape. One such occur-
rence is presented in figure 6(a), where the reference
shape of a HbR response (black line) is compared with
a single-trial estimate (dashed grey line). The averaged
estimate is significantly improved by discarding the in-
accurate single-trial estimate, as figure 6(b) shows by
comparing the average over NT trials (blue line), for
which EHR = 125%, with the average over NT−1 trials
from which the inaccurate estimate has been deleted
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(a) Wrong single-trial HR
estimate (grey dashed line)
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(b) Averaged estimates
(dashed lines): including
all trials (blue), less the
discarded trial (red)

Figure 6: Effect of a wrong estimate on averaging:
a) single HbR hemodynamic response estimate; b)
averaged estimate. The reference response is the
continuous black line in both cases.

(red line), where EHR = 6%.
Averaging over multiple trials should therefore be

applied selectively, preliminarily discarding inaccurate
individual estimates. To decide when a single-trial
estimate can be considered acceptable, a criterion is
needed. We refer to the median of the maximum
absolute peak values of single-trial HR estimates, mh,
that is considered because, in the presence of occasional
large deviations, it may provide a more robust statistic.

Let ĥi be the estimate from the i-th trial. We
retain only the single-trial estimates for which:

max
n
|hi(nTs)| < γ ·mh i = 1, . . . , NT (15)

where coefficient γ determines the acceptance range.
We verified that, by setting γ = 2.5, acceptance ratio
is approximately 90% for HbO, independent of the
number of trials. The ratio drops to 80% for HbR,
where signal-to-noise ratio is poorer.

2.7. Simulated Data Set

Simulated data are introduced with the main purpose
of validating the algorithm by determining its robust-
ness to variations in the levels and composition of the
noise part of the signal. While a synthesized signal
must replicate as best as possible the physiological
characteristics of a real fNIRS signal, it should be re-
membered that it is created in accordance with the
signal model, thereby satisfying by default our assump-
tions about relationships among its components.

Nevertheless, testing on simulated data is essential
to understand possibilities and basic limitations,

Table 2: Mean±standard deviation of physiological
component frequencies and amplitudes.

Component Frequency [Hz] Amplitude [nM]

Very low frequency f1 = .002± .0001 A1 = 700± 100
Low frequency f2 = .01± .001 A2 = 700± 100
Vasomotor f3 = .07± .04 A3 = 400± 10
Respiratory f4 = .2± .03 A4 = 200± 10
Cardiac f5 = 1.1± .1 A5 = 400± 10

properly tune the algorithm and characterize its
performance. We took advantage of the fact that
synthetic signals allow to test the algorithm in a greater
variety of conditions, simulating in particular intra-
subject and inter-subject variability to an extent that
would be harder to observe in real situations. To ensure
statistical stability of our performance indications,
Monte Carlo simulations reproduced a total of 1000
experiments, emulating as many different subjects.

Real experiments in Section 2.8 refer to a finger-
tapping task where up to 40 trials can be averaged.
Accordingly, all simulated experiments also reproduce
a sequence of NT = 40 trials, where LS and SS signals
are generated for both HbO and HbR. Following the
guidelines in [21], the peak amplitude for HbO is in the
range 160-380 nM and latency varies between 4 s and
6 s. For HbR, simulated peak amplitude is between
80 nM and 140 nM, with latency in the range 5-7 s.

To create inter-subject variability, different pa-
rameters were employed in the double-gamma model
(10), while intra-subject variability was represented by
the introduction between trials of small variations in
peak amplitude, latency and shape. This allowed to
validate the applicability of the template approach in
HR estimation.

Evoked systemic noise, that is correlated with HR,
was modeled using the same shape template d(nTs, ·)
defined in (12). In simulations it is further assumed
that both sL and sS are time-aligned to HR.

Physiological noise was synthesized according to
(9), with the frequency, amplitude and phase of each
component varying between and within acquisitions.
To simulate the non-stationarity of disturbances,
random points in an acquisition are chosen to change
the parameter values. The transition is not abrupt but
gradual, to better replicate real behavior. Ranges for
model parameters, based on estimates from real data,
are reported in Table 2.

Finally, measurement noise was generated as white
Gaussian noise with mean value 400 nM and standard
deviation 180 nM. A different random sequence of
noise samples is employed for each experiment. Figure
7 shows an example of synthesized acquisition from
an LS channel, together with the “true” reference
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Figure 7: Comparison between yLS(t), in grey, true HR
v(t) in black.

HR trace, evidencing how physiological noise is
predominant and much larger than HRs.

It should be noted that signal preconditioning
is applied to eliminate components outside the
hemodynamic response frequency band, before the
algorithm starts. We employ a 100th-order bandpass
Butterworth digital filter with cut-off frequencies
0.01 Hz and 0.3 Hz, that also removes possible signal
offsets.

2.8. Real and Semi-Simulated Data Set

Real data were acquired at the Department of Develop-
mental Psychology of the University of Padova using a
multichannel frequency domain NIR spectrometer (ISS
Imagent, Champaign, Illinois, USA) equipped with 40
laser diodes (20 emitting light at 690 nm and 20 at
830 nm) and 4 photo-multiplier tubes. The 4 detec-
tors and 16 sources are arranged in two patches, one
located in the frontal area and the other located in
the parietal area, both centered on the midline, which
means the disposition is symmetrical for the two hemi-
spheres. The measuring instrument provided a total
of 8 frontal and 8 parietal LS channels (length: 3 cm)
and 4 SS channels (one for each hemisphere and patch
– length: 0.7cm). Each channel measures the concen-
tration changes of HbO and HbR with a sampling fre-
quency of 7.8125 Hz. Further information about the
positioning of optical sensors and the experimental set
up are provided in [7].

The real data set consists of 10 acquisitions
referred to the same number of participants, that refer
to a finger-tapping task. This is probably one of
the most popular paradigms, generally employed in
studies aimed to validate signal processing algorithms
since it provides robust and localized HR. The task
is to perform a right (t1) or left (t2) finger tapping,
according to the visual stimulus presented on a monitor
in the form of an arrow pointing to the right or left.
Each participant performed a total of 40 trials for t1

and 40 for t2. Subjects were instructed to relax during
the first part of the acquisition, that corresponds
to a resting state interval and were then presented
with a random series of stimuli. An interstimulus
interval (ISI) ranging from 12 s to 15 s elapsed between
consecutive trials.

The semi-simulated data set was created by
combining synthesized hemodynamic and evoked
superficial responses with real physiological noise
data, obtained during the acquisition of resting state
intervals only.

It is important to notice that both hemodynamic
response and evoked superficial response need to be
simulated, since neither is supposedly present in the
long and short channels when a subject is in resting
state. As only this part of the signal is synthesized
according to our modelling assumptions, testing by a
semi-simulated data set allows to check that denoising
of the physiological component using the Taylor-
Fourier dictionary D1 is accurate enough to enable the
subsequent HR response estimation.

The synthesized part of the signals in the semi-
simulated data set was again generated by Monte
Carlo simulation, while noise components are randomly
selected segments of resting state recordings, also
referring to 10 different subjects, that only contain
physiological noise.

2.9. Metrics

Performance metrics referred to the synthesized
reference HR provide a quantitative assessment for
both simulated and semi-simulated data sets. For each
experiment we consider the averaged HR estimate ĥHR,
its peak amplitude Â and the latency L̂. Given the
reference HR shape hHR, with the corresponding peak
amplitude A and latency L, reconstruction accuracy
is assessed by means of the following quantitative
metrics:

EHR =
‖ĥHR − hHR‖2

‖hHR‖2
· 100 (16)

EA =
|Â−A|
|A|

· 100 (17)

EL = |L̂− L| (18)

The first index EHR gives the percent root-mean-square
deviation of the HR estimate from the reference and
is an indication of overall agreement between pulse
shapes. Indices EA and EL quantify the error in
estimating the two most important HR parameters.
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Figure 8: Dependence of mean EHR on the number of
trials in an experiment for HbO (red) and HbR (blue)
response estimates. Smaller dots refer to averaging
over NT trials, squares indicate selective averaging over
N∗T trials.

2.10. Comparison algorithms

We compare our method with two other well-
known approaches in the literature: Standard Block
Averaging (SBA) and the dual-detector least-squares
approach (DDLS) presented in [12].

With SBA the signal is pre-filtered by a bandpass
filter with cutoff frequencies of 0.01 and 0.5 Hz to
remove high frequency noise. The filtered signal is
segmented according to the occurrence of the stimuli,
in order to have only one HR in each segment, then
segments are averaged to reduce superposed noise.
Physiological noise is assumed to be independent and
uncorrelated in different segments.

DDLS aims at removing both physiological and
evoked noise by subtracting the SS channel signal from
the LS channel output, after scaling by a coefficient
obtained by least-squares regression between the two
channels.

3. Results

3.1. Performance analysis with simulated data

We compare results obtained by unrestricted averaging
(that is, considering all NT trials) with those obtained
by selective averaging, that is, considering only the
N∗T trials that passed (15), to investigate the effect
of the trials selection on accuracy. Furthermore, we
assess the dependence on the number of trials in an
experiment, starting from NT = 40 for comparison
with the real case and progressively lowering that
number to a minimum of 10. Below this number of
trials result variability becomes too large.

Plots in figure 8 show mean values of EHR for
HbO and HbR responses, with averages computed over

either NT or N∗T trials. To allow a fair comparison, the
abscissa always reports the total number of trials in an
experiment. Therefore, even when results are reported
for selective averaging this is always the value of NT .
It can be noticed that by discarding inaccurate single
estimates a very significant improvement is achieved.
In particular, mean EHR improves by about an order
of magnitude for HbR.

In the following we shall then refer to the averaged
HR estimate defined by:

ĥHR =
1

N∗T

N∗
T∑

i=1

ĥi (19)

where N∗T ≤ NT is the actual number of accepted
single-trial estimates. Acceptance rates are high
enough to make the variability of N∗T negligible when
the outcomes of all 1000 simulated experiments are
analyzed.

For selective averaging, plots of mean EHR are
repeated in figure 9, with vertical bars added to show
intervals of ±1 standard deviation. Particularly for
HbO it is interesting to note that curves tend to
level-off, in terms of both mean value and standard
deviation, with NT lower than 40. This suggests the
possibility to consider shorter experiments involving
fewer trials, which might be of interest when subject
fatigue can become an issue.

Similar plots are reported in figure 10 for EA
and EL. They also refer to results of Monte Carlo
simulation involving 1000 synthesized experiments,
therefore are considered to provide reliably stable
statistical information. With all metrics, performance
for HbO estimation is better than for HbR which is
expected, as already remarked, since for a given noise
level the response amplitude of HbR is lower, making
estimation more challenging. A levelling-off of curves
similar to that already noted in figure 9 is apparent
here.
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Figure 9: Mean EHR ± 1×std. dev. versus number of
trials in an experiment.
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Table 3: Performance metrics mean ±standard
deviation – Simulated data set

trials EHR [%] EA [%] EL [s]

HbO
20 8.2± 6.7 16.7± 12.2 0.2± 0.2
40 7.2± 5.5 17.5± 10.7 0.2± 0.1

HbR
20 15.0± 14.0 24.4± 17.8 0.3± 0.3
40 12.5± 10.0 25.2± 15.3 0.3± 0.2

Numerical values are summarized for convenience
in Table 3, where results are reported for experiments
comprising 40 trials, as in the experimental part
of this work, as well as for experiments involving
half that number. Simulated results evidence
no significant improvements in accuracy with the
longer experiments. This confirms that the single-
trial denoising and estimation algorithm effectively
enhances HR estimation.
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(a) mean EA ± 1×std. dev.
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Figure 10: Accuracy of HR amplitude and latency
estimates versus number of trials in an experiment.

3.2. Comparisons and discussion for semi-simulated
data

The analysis we presented so far allowed to optimize
and test our method under a wide variety of
realistically simulated test conditions. We now discuss
experimental results obtained with semi-simulated
data, for which metrics can still be used to summarize
results.

Comparison results obtained on the semi-
simulated data set are reported in Table 4: for each
experiment the HR is estimated from the standard
LS channel signal, both for HbO and HbR. SBA does
not employ information from the reference SS channel,
whereas both DDLS and our proposed method make
use of it.

As SBA employs only the LS channel, the
stimulus-evoked superficial response is not suppressed
from the estimates. This is the reason why reported
values for EHR and EA are particularly high. Since the
error is systematic, varying the number of trials has
little effect and the difference between 20 and 40 trials
is nearly irrelevant for EA.

With the DDLS approach HR amplitude estima-
tion is more precise, but still affected by part of the
evoked noise. Table 4 shows that the method perfoms
better than SBA, underlining the importance of the
SS channel for noise suppression. On the other hand,
DDLS assumes that correlation between the LS and SS
channel is high within the segment of interest and its
accuracy degrades if this assumption tends to fail.

With the proposed method the contribution
due to the stimulus-evoked superficial response is
effectively rejected, therefore results related to shape
and amplitude accuracy (respectively, EHR and
EA) outperform the other methods. A different
consideration lies to be made for latency error EL.
Evoked noise is correlated and time-aligned with the
hemodynamic response, since both have the same
source. For this reason it has minimal influence on
the latency estimate. In this case, the good results
achieved by the proposed method can be explained
mainly as a consequence of very effective denoising of
the physiological component.

It should be noticed that with our approach
performance metrics do not change considerably if the
number of trials is reduced from 40 to 20. This confirms
the possibility of reducing acquisition time, as already
mentioned.

3.3. Discussion for real data

Due to the absence of a reference hemodynamic re-
sponse, quantitative assessment of algorithm perfor-
mances is not feasible with real data. However, it is
still possible to compare estimates obtained by dif-
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Table 4: Performance metrics mean ±standard deviation – Semi-Simulated data set.

trials EHR [%] EA [%] EL [s]
HbO HbR HbO HbR HbO HbR

SBA
20 667± 895 490± 392 129± 31 135± 40 2.3± 6.6 0.1± 0.1
40 400± 292 330± 190 123± 39 140± 27 0.6± 3.4 0.1± 0.1

DDLS
20 339± 1004 121± 110 51± 31 59± 34 4.6± 6.3 1.2± 2.8
40 288± 909 105± 131 53± 31 54± 31 3.3± 5.4 0.9± 1.8

Proposed Method
20 59± 90 88± 77 41± 29 72± 45 0.6± 1.1 0.2± 0.2
40 34± 35 78± 75 37± 28 65± 48 0.5± 0.9 0.1± 0.2

ferent methods. Further considerations are possible,
based on the expected cerebral response behavior for
the assigned task. Specifically, a finger tapping task
should produce a higher response in the contralateral
brain hemisphere, and a lower or even absent response
on the ipsilateral hemisphere. Thus, an assessment
can be obtained by comparing results for couples of
fNIRS channels referred to either brain hemisphere of
the same subject.

As discussed in 2.4, the algorithm has been
designed to minimize chances that a double-gamma
template could be erroneously associated to a
physiological noise component. Nevertheless this may
occur in particular, referring to (13), when ||r1j ||2 ∼=
||r2j ||2. This situation may present itself when there is
actually no stimulus-related component in the analyzed
signal segment. In this case the averaged estimate
might produce a false positive (FP).

To analyze the algorithm response under this
condition, another set of tests involving Monte Carlo
simulations was carried out with no HRs present
in synthesized fNIRS signals. The algorithm was
expected to produce at most very small estimates and
the analysis yielded the following indications (mean
±1×standard deviation) for the peak values of the
averaged estimates:

HbO: 24± 13 nM HbR: 17± 9 nM

Determining these values allowed to rationally set a
detection limit, below which it can be assumed that
brain activation did not occur and a hemodynamic
response is actually not present.

Results presented in figures 11 and 12 refer to two
of the subjects that took part in the finger-tapping
task experiments. They differ because selected fNIRS
channels for the two subjects employ different sensor
dispositions on the scalp. Similar results can be
obtained for all other subjects and are not reported
for conciseness.

Figure. 11 presents the averaged HR responses
obtained from the two measurement channels in
Subject 3. In this case optical sensors were placed
over different brain hemispheres but close to the central
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Figure 11: Real data set, Subject 3, two brain
hemispheres – fNIRS channels close to central septum.
Estimated HbO (red) and HbR (black) responses.

septum, so that significant activation is expected to be
seen in both channels. In fact, HbO and HbR response
estimates obtained by the proposed method exceed the
minimum thresholds denoting brain activation for both
hemispheres, with lower responses from the ipsilateral
one. For the contralateral hemisphere figure 11(a)
shows good agreement with the DDLS method for both
HbO (red) and HbR (black) estimates, whereas SBA
tends to overestimate HbO response amplitude. Such
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differences agree with the results obtained from the
Semi-Simulated data.

For the ipsilateral hemisphere only the proposed
method enables to estimate the HbR response in
agreement with expectations, that are based on the
position of sensors and on the corresponding HbO
response estimate (figure 11(b)).

In the fNIRS channels selected from Subject 9,
sensors were placed laterally on the head, at greater
distance from the septum so that each channel can be
considered uniquely associated to one hemisphere of
the brain. Well-differentiated responses are expected
here, specifically, brain activation should be observed
only in the contralateral channel. This is again
confirmed by the plots of figure 12(a). In particular,
whereas the proposed method correctly estimates a
HbO response of approximately 180 nM and a HbR
response of about 50 nM, the contralateral response
appears to be overestimate with both SBA and DDLS.

In the ipsilateral hemisphere only residual oscil-
lations are present, as shown in figure 12(b) and this
means the response is absent, as expected. In this case
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Figure 12: Real data set, Subject 9, two brain hemi-
spheres – well-separated fNIRS channels. Estimated
HbO (red) and HbR (black) responses.

the estimates obtained by the proposed method tend
to be the smallest and consistently remain below the
minimum thresholds for brain activation derived from
our analysis. Thus, the result can be interpreted more
reliably also in this case.

4. Conclusions

A tecnique to denoise fNIRS signals and accurately
estimate HR has been presented in this paper. Its
novelty derives from the introduction of a complete
model of the acquisition system that separately
accounts for each signal component in the standard LS
channel and in the reference SS channel. This led to
a dictionary-based estimation and denoising algorithm
where two dictionaries are employed, respectively, to
estimate and remove the physiological background
components and to estimate task-evoked components.

The proposed method has been characterized on
a synthetic data set and evaluated on both semi-
simulated and real data sets showing very good results,
that in many cases significantly outperform those
obtained with more traditional approaches. Particular
care has been taken to ensure reliability and prevent
the occurrence of FN and FP errors.

The work has shown that a dictionary-based ap-
proach can significantly enhance the accuracy of single-
trial estimates. This points to future developments in
our research, particularly the refinement of dictionar-
ies, either by the creation of an ad hoc dictionary for
each subject, or by the introduction of an extended
dictionary to accommodate further shape variations of
the basic template. This should overcome the problem
of bias due to the use of an average shape as the model
template, allowing to pursue the goal of achieving re-
liable single trial estimation.
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