77 research outputs found

    A reconfigurable real-time SDRAM controller for mixed time-criticality systems

    Get PDF
    Verifying real-time requirements of applications is increasingly complex on modern Systems-on-Chips (SoCs). More applications are integrated into one system due to power, area and cost constraints. Resource sharing makes their timing behavior interdependent, and as a result the verification complexity increases exponentially with the number of applications. Predictable and composable virtual platforms solve this problem by enabling verification in isolation, but designing SoC resources suitable to host such platforms is challenging. This paper focuses on a reconfigurable SDRAM controller for predictable and composable virtual platforms. The main contributions are: 1) A run-time reconfigurable SDRAM controller architecture, which allows trade-offs between guaranteed bandwidth, response time and power. 2) A methodology for offering composable service to memory clients, by means of composable memory patterns. 3) A reconfigurable Time-Division Multiplexing (TDM) arbiter and an associated reconfiguration protocol. The TDM slot allocations can be changed at run time, while the predictable and composable performance guarantees offered to active memory clients are unaffected by the reconfiguration. The SDRAM controller has been implemented as a TLM-level SystemC model, and in synthesizable VHDL for use on an FPGA

    A reconfigurable mixed-time-criticality SDRAM controller

    Get PDF

    Mode-Controlled Data-Flow Modeling of Real-Time Memory Controllers

    Get PDF
    Accepted in 13th IEEE Symposium on Embedded Systems for Real-Time Multimedia (ESTIMedia 2015), Amsterdam, Netherlands.SDRAM is a shared resource in modern multi-core platforms executing multiple real-time (RT) streaming applications. It is crucial to analyze the minimum guaranteed SDRAM bandwidth to ensure that the requirements of the RT streaming applications are always satisfied. However, deriving the worst-case bandwidth (WCBW) is challenging because of the diverse memory traffic with variable transaction sizes. In fact, existing RT memory controllers either do not efficiently support variable transaction sizes or do not provide an analysis to tightly bound WCBW in their presence. We propose a new mode-controlled data-flow (MCDF) model to capture the command scheduling dependencies of memory transactions with variable sizes. The WCBW can be obtained by employing an existing tool to automatically analyze our MCDF model rather than using existing static analysis techniques, which in contrast to our model are hard to extend to cover different RT memory controllers. Moreover, the MCDF analysis can exploit static information about known transaction sequences provided by the applications or by the memory arbiter. Experimental results show that 77% improvement of WCBW can be achieved compared to the case without known transaction sequences. In addition, the results demonstrate that the proposed MCDF model outperforms state-of-the-art analysis approaches and improves the WCBW by 22% without known transaction sequences

    Run-time middleware to support real-time system scenarios

    Full text link
    Abstract—Systems on Chip (SOC) are powerful multipro-cessor systems capable of running multiple independent applica-tions, often with both real-time and non-real-time requirements. Scenarios exist at two levels: first, combinations of independent applications, and second, different states of a single application. Scenarios are dynamic since applications can be started and stopped independently, and a single application’s behaviour can depend on its inputs, on different stages in processing, and so on. In this paper we describe how the CompSOC platform offers system integrators and application writers the capability to implement multiple scenarios. I

    Architektur- und Leistungsanalyse eines Mehgenerationen-SDRAM-Controllers für gemischte Kritikalitätssysteme

    Get PDF
    Due to their high-density and low-cost, DDR SDRAM are the prevailing choice for implementing the main memory of a computer system. Nevertheless, the aforementioned benefits come at the cost of a complex two-stage access protocol, which ultimately means that the time required to serve a memory request depends on the history of previous requests. Otherly stated, DDR SDRAMs are a stateful resource. The main goal of this dissertation is to design a controller that leverages the state of DDR SDRAMs in a mixed criticality environment. More specifically, the controller should provide good average performance for best-effort requestors without compromising timing guarantees for critical requestors. With that regard, this dissertation firstly identifies two challenges of growing relevance for the design of memory controllers for the mixed criticality domain. The first challenge is the data bus turnaround time. The second challenge is the rank-to-rank switching time and only affects multi-rank modules. After pinpointing the two aforementioned challenges, this dissertation proposes a SDRAM controller to tackle them. The proposed controller bundles read and write operations in their corresponding ranks, thus minimizing the number of data bus turnarounds and rank switching events. As a consequence, the average performance of the controller is improved. However, the bundling is carefully designed so that real-time guarantees for critical requestors can be extracted. Moreover, as it will become clear, both the operation of the controller and the corresponding analysis of the temporal properties are described in terms of a generation-independent notation. This is a desirable feature because different SDRAM generations have different architectural features and possibly, timing constraints. Finally, an extensive comparison with the related work is performed. Furthermore, trends in worst-case latency over DDR SDRAM from different speed bins and generations are presented and thoroughly discussed.Aufgrund ihrer hohen Dichte und geringen Kosten sind DDR SDRAM die vorherrschende Wahl für die Implementierung des Hauptspeichers eines Computersystems. Die oben genannten Vorteile gehen jedoch zu Lasten eines komplexen zweistufigen Zugriffsprotokolls, was letztendlich bedeutet, dass die Zeit, die benötigt wird, um eine Speicheranforderung zu bedienen, von der Historie früherer Zugriffe abhängt. Anders ausgedrückt, DDR SDRAM sind eine zustandsabhängige Ressource, was die Umsetzung gemischter Kritikalitäten weiter erschwert, da unterschiedliche Ebenen der Kritikalität widersprüchliche Bedürfnisse haben. Das Hauptziel dieser Dissertation ist es, einen Controller zu entwickeln, der den Zustand der DDR-SDRAMs in einer gemischten Kritikalitätsumgebung nutzt. Genauer gesagt, der Controller soll eine gute durchschnittliche Leistung für best-effort Zugriffe ermöglichen, ohne die Garantien für kritische Zugriffe zu gefährden. In diesem Zusammenhang identifiziert diese Dissertation zunächst zwei Herausforderungen von wachsender Relevanz für das Design von Speichercontrollern für Systeme gemischter Kritikalität. Die erste Herausforderung ist die notwendige Zeit zur Richtungsänderung des Datenbusses. Die zweite Herausforderung ist die Rang-zu-Rang-Schaltzeit und betrifft nur Module mit mehreren Rängen. Nach dem Aufzeigen der beiden oben genannten Herausforderungen, schlägt diese Dissertation einen SDRAM Controller vor, um sie anzugehen. Der vorgeschlagene Controller bündelt Lese und Schreib Operationen in ihren entsprechenden Rängen, wodurch die Anzahl der Richtungsänderungen des Datenbusses und die Anzahl der Rangwechsel minimiert wird. Dadurch wird die durchschnittliche Leistung des Controllers verbessert. Die Bündelung ist so konzipiert, dass Echtzeit-Garantien für kritische Zugriffe abgeleitet werden können. Darüber hinaus werden, wie sich zeigen wird, sowohl das Verhalten des Controllers als auch die entsprechende Analyse der zeitlichen Eigenschaften in Form einer generationsunabhängigen Notation beschrieben. Dies ist ein wünschenswertes Merkmal, da verschiedene SDRAM Generationen unterschiedliche architektonische Merkmale und zeitliche Beschränkungen haben. Abschließend wird ein ausführlicher Vergleich mit inhaltlich verwandten Arbeiten durchgeführt. Außerdem werden Trends in der Worst-Case-Latenz von DDR SDRAM aus verschiedenen Geschwindigkeitsklassen und Generationen vorgestellt und ausführlich diskutiert

    How to Build a Mixed-Criticality System in Industry?

    Get PDF
    In the last decade, the rapid evolution of diverse functionalities and execution platform led safety-critical systems towards integrating components/functions/applications with different ‘criticality’ in a shared hardware platform, i.e., Mixed-Criticality Systems (MCS)s. In academia, hundreds of publications has been proposed upon a commonly used model, i.e., Vestal’s model. Even so, because of the mismatched concepts between academia and industry, current academic models can not be exported to a real industrial system. This paper discusses the mismatched concepts from the system architecture perspective, with a potential solution being proposed

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Fault Tolerant Nanosatellite Computing on a Budget

    Get PDF
    In this contribution, we present a CubeSat-compatible on-board computer (OBC) architecture that offers strong fault tolerance to enable the use of such spacecraft in critical and long-term missions. We describe in detail the design of our OBC’s breadboard setup, and document its composition from the component-level, all the way down to the software level. Fault tolerance in this OBC is achieved without resorting to radiation hardening, just intelligent through software. The OBC ages graceful, and makes use of FPGA-reconfiguration and mixed criticality. It can dynamically adapt to changing performance requirements throughout a space mission. We developed a proof-of-concept with several Xilinx Ultrascale and Ultrascale+ FPGAs. With the smallest Kintex Ultrascale+ KU3P device, we achieve 1.94W total power consumption at 300Mhz, well within the power budget range of current 2U CubeSats. To our knowledge, this is the first scalable and COTS-based, widely reproducible OBC solution which can offer strong fault coverage even for small CubeSats. To reproduce this OBC architecture, no custom-written, proprietary, or protected IP is needed, and the needed design tools are available free-of-charge to academics. All COTS components required to construct this architecture can be purchased on the open market, and are affordable even for academic and scientific CubeSat developers

    메모리 액세스 패턴 기반 DRAM 컨트롤러 디자인

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 공과대학 컴퓨터공학부, 2017. 8. 이창건.Mixed-criticality systems integrate tasks with various levels of criticality onto a same hardware platform. Critical tasks require tight bounding of worst-case latency at any cost, yet for non-critical tasks it is important to provide high performance as much as possible. From this, a tough design concern ariseshow to achieve the conflicting demands of performance isolation for critical tasks and efficient sharing for non-critical tasks in terms of shared DRAM bandwidth and capacity? Recently, modern mixed-criticality systems are facing rapid change in workloads. One of the biggest challenges among this is the advent of memory-intensive workloads in line with migration to multicore. Memory intensive workloads significantly exacerbate contention and interference problems in shared memory resources of multicore architectures. This not only endangers tight bounding of worst-case latency of critical tasks, but also, if not properly addressed, can lead to significant performance penalty and unfairness among non-critical tasks. In this paper, we take workload-driven approach and propose a novel workload-aware memory controller design for mixed-criticality system that can successfully achieve both of the conflicting demands in the presence of memory-intensive workloads. Based on the key observation that memory access pattern of an application captures major memory requirements of the application, our memory controller manages shared DRAM as a set of memory access pattern-aware partitions - latency sensitive, locality sensitive, and bandwidth sensitive. Our design allocates bandwidth and capacity customized to each partitions needs. By using bank partitioning and request batching with prioritizing, we guarantee short worst-case latency for critical tasks and high performance and fairness to non-critical tasks.I. Introduction 1 II. Background on DRAM Basics 4 2.1 DRAM Architecture and Characteristics 4 2.2 DRAM Memory Controller 6 2.3 Bank Partitioning 8 2.4 Memory Access Patterns 8 III. Observation 10 IV. Memory Access Pattern-Centric Memory Controller Design 16 4.1 Memory Controller Architecture 16 4.1.1 Memory access pattern-aware bank partitioning 17 4.1.2 Partition-based prioritization and request batching 17 4.2 Worst-Case Interference Delay Analysis 18 V. Evaluation 21 5.1 Experiment Setup 21 5.2 Performance result of non-critical tasks 22 VI. Related Work 24 VII. Conclusion 26 References 27Maste
    corecore