
SSC19-WKVIII-09

Fault Tolerant Nanosatellite Computing on a Budget

Christian M. Fuchs, Nadia M. Murillo
Leiden University & Leiden Observatory

Niels Bohrweg 1&2, 2333CA Leiden, Netherlands
christian.fuchs@dependable.space

Pai Chou, Jing-Jia Liou, Yu-Min Cheng
National Tsing Hua University

No.101, KuangFu Rd., Hsinchu 30013, Taiwan
{phchou@cs, jjliou@ee, s107062541@m107}.nthu.edu.tw

Xiaoqing Wen, Stefan Holst
Kyushu Institute of Technology

Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan
{wen, holst}@cse.kyutech.ac.jp

Antonios Tavoularis, Gianluca Furano, Giorgio Magistrati, Kostas Marinis
European Space Agency, ESTEC, Noordwijk, Netherlands

{antonios.tavoularis, gianluca.furano, giorgio.magistrati, kostas.marinis}@esa.int

Shyue-Kung Lu
National Taiwan University of Science and Technology

No.43, Keelung Rd., Sec.4, Da’an Dist., Taipei City 10607, Taiwan
sklu@ee.ntust.edu.tw

Aske Plaat
Leiden Institute for Advanced Computer Science
Niels Bohrweg 1, 2333CA Leiden, Netherlands

a.plaat@liacs.leidenuniv.nl

ABSTRACT

In this contribution, we present a CubeSat-compatible on-board computer (OBC) architecture that offers strong
fault tolerance to enable the use of such spacecraft in critical and long-term missions. We describe in detail the
design of our OBC’s breadboard setup, and document its composition from the component-level, all the way
down to the software level. Fault tolerance in this OBC is achieved without resorting to radiation hardening,
just intelligent through software. The OBC ages graceful, and makes use of FPGA-reconfiguration and mixed
criticality. It can dynamically adapt to changing performance requirements throughout a space mission.

We developed a proof-of-concept with several Xilinx Ultrascale and Ultrascale+ FPGAs. With the smallest
Kintex Ultrascale+ KU3P device, we achieve 1.94W total power consumption at 300Mhz, well within the power
budget range of current 2U CubeSats. To our knowledge, this is the first scalable and COTS-based, widely
reproducible OBC solution which can offer strong fault coverage even for small CubeSats. To reproduce this OBC
architecture, no custom-written, proprietary, or protected IP is needed, and the needed design tools are available
free-of-charge to academics. All COTS components required to construct this architecture can be purchased on the
open market, and are affordable even for academic and scientific CubeSat developers.

Fuchs 1 33rd Annual AIAA/USU
Conference on Small Satellites

INTRODUCTION

Cheap, embedded and mobile-market electronics are
the foundation of modern nanosatellite design. They of-
fer an excellent combination of low energy-consumption,
minimal cost, and broad availability. However, such
components are not designed for reliability, and include
only rudimentary fault tolerance capabilities. Due to the
elevated risk of loosing a satellite due to failure of these
components, CubeSat missions today are kept brief or
up-scaled to larger, more expensive satellite form factors.

Low-complexity, low-performance satellite on-board
computer (OBC) designs have allowed a variety of
successful CubeSat missions, with a few missions even
operating successfully for as long as 10 years. This
demonstrates that there is no fundamental, hard tech-
nological barrier that could prevent the use of mod-
ern semiconductors in space missions. However, these
designs are sufficient only for missions with very low
performance requirements, e.g., for educational missions
and brief technology demonstration experiments.

Many sophisticated scientific and commercial appli-
cations can today also be fit into a CubeSat form
factor, which make a much longer mission duration
desirable. To fly these payloads, a CubeSat has to
process and store drastically more data, and at all levels
requires increased performance. Therefore, all advanced
CubeSats today utilize industrial embedded and mobile-
market derived systems-on-chip (SoC), which offer an
abundance of performance. However, these SoCs in turn
are manufactured in modern technology nodes with a
fine feature size. They are drastically more susceptible
to the effects of the space environment than simple, but
robust low-performance microcontrollers. Hence, proper
fault tolerance capabilities are needed to ensure success
for advanced long-term CubeSat missions, as gambling
against time and radiation can be risky.

Radiation hardening for big-space applications can not
be adopted, as this approach is only effective for very old
or very proprietary and costly manufacturing processes.
Budget, energy, and size constraints prevent the use of
traditional space-grade components used aboard large
satellites, while component-level fault tolerance signif-
icantly inflate CubeSat system complexity and failure
potential. Today, no fault tolerant computer architectures
exist that could be used aboard nanosatellites powered by
embedded and mobile-market semiconductors, without
breaking the fundamental concept of a cheap, simple,
energy-efficient, and light satellite that can be manu-
factured en-mass and launched at low cost. Hence, we
developed a scalable, yet simple OBC architecture that
allows high-performance MPSoCs to be used in space,
and is suitable for even small 2U CubeSats.

Our proof-of-concept OBC utilizes Microblaze pro-
cessors on a low-power FPGA, exploits partial recon-

figuration and software-implemented fault tolerance to
handle system failure. It is assembled only from COTS
components available on the open market, standard ven-
dor library IP, and runs standard operating system and
software. To protect our system, we utilize a combination
of runtime reconfigurable FPGA logic and software-
implemented fault tolerance mechanics, in addition to
well understood and widely available EDAC measures.
We facilitate fault tolerance in software, which enables
our system to guarantee strong fault-coverage without
introducing the hard design limitations of traditional
hardware-TMR based solutions.

Our OBC architectures can efficiently and effectively
handle permanent faults in the FPGA fabric by uti-
lizing alternative FPGA configuration variants. It ages
gracefully over time by adapting to an increasing level
semiconductor degradation, instead of just failing spon-
taneously. The performance of the OBC itself is ad-
justable, allowing spacecraft operator to modify sys-
tem parameters during the mission. An operator can
trade processing-capacity and functionality to achieve
increased fault-coverage or reduced energy consumption,
without interrupting satellite operations. Thereby, we can
maintain strong fault-coverage for missions with a long
duration, while adjusting the OBC to best meet the
requirements of complex multi-phased space missions.

To our understanding, this is the first scalable and
COTS-based, widely reproducible OBC solution which
can offer strong fault coverage even for 2U CubeSats.
We provide a summary of our proof-of-concept, which
requires only 1.94W total power consumption, which is
well within the power budget range achievable aboard
2U CubeSats. In the next section, we provide a brief
overview over the status-quo in fault tolerant computer
system design for large spacecraft, CubeSats, and ground
use. Subsequently in the third section, we describe our
OBC’s component-level architecture, the MPSoC used,
as well as the interplay between the different compo-
nents of the OBC. In the fourth section, we describe
the software-implemented fault tolerance measures used.
Before providing conclusions, we present our imple-
mentation results and details about the validation of
this OBC architecture. All components required to re-
implement this OBC design are available at low cost to
scientists and engineers in an academic environment. The
necessary IP and standard design are available free of
charge from the relevant vendors, e.g., through Xilinx’s
university program for academics and scientific users.

BACKGROUND AND RELATED WORK

In contrast to the initial generation of educational
CubeSats, today fewer satellites fail due to practical
design problems caused by inexperience [1]. Instead,
Langer et al. in [2] showed that the a majority of these

Fuchs 2 33rd Annual AIAA/USU
Conference on Small Satellites

failures can be attributed to electronics heavy subsys-
tems. Even experienced, traditional space industry actors
with years of experience in large satellite design, who
develop CubeSats satellites “by the traditional book”
with quasi-infinite budgets today struggle to reach just
30% mission success [3].

The main source of failure there are environmental
effects encountered in the space environment: radiation,
thermal stress, and corruption of critical software com-
ponents that can not be recovered from the ground,
and failures caused by power electronics. Considering
again Langer et al., [2], with increasing age mission
duration, a broad majority of documented failures aboard
CubeSats originate from OBCs, transceivers, and the
electrical power subsystem. While functionally disjunct,
these subsystems all have in common that they are heav-
ily computerized and architecturally rather similar, built
around one or multiple microcontrollers and memories.

Fault-Profile and Radiation
A satellite’s OBC must cope with challenging design

constraints, and a fault-profile otherwise only found in ir-
radiated environments. The main source for faults within
electronics in the space environment are highly charged
particles. These arrive as Cosmic Rays from beyond our
solar system, and are ejected by the Sun constantly,
and at an increasing rate during solar particle events
[4]. Particles interact with a spacecraft’s electronics, and
can induce different effects in a semiconductor depend-
ing on the type of particle and its charge. Radiation
can corrupt logical operations or induce bit-flips within
semiconductor logic and memory (single event effects -
SEE), and may cause displacement damage (DD) at the
molecular level, or induce a latch-up. The cumulative
effect of charge trapping in the oxide of electronic
devices (total ionizing dose – TID) further impacts the
lifetime of an OBC. Radiation events can also cause
functional interrupt in circuits, interfaces, or even entire
chips (single event functional interrupts – SEFIs).

All these effects in practice can result in spontaneous
or drastically accelerated aging compared to ground ap-
plications, which must be handled efficiently throughout
an entire space mission. To do so, traditional space-
grade hardware makes heavy use of over-provisioning
and tries to include idle spare resources (processor cores,
components, memory, ...) where necessary. Naturally,
this is done at the cost of performance and storage
capacity, increases system complexity, and power con-
sumption. The energy threshold above a which particles
can induce transient faults in chips manufactured in
finer technology nodes decreases, which overall can be
seen as beneficial from a CubeSat perspective. However,
recent generation semiconductor manufactured in certain
modern technology nodes (e.g. FinFET and FD-SoI),
show better performance under radiation than predicted

by models [5]. However, the ratio of multi-bit upsets or
permanent faults is also increased, causing experienced
faults to in general be more severe IF a fault occurs.

Fault tolerance concepts targeting generic commercial
ground-based computing applications usually cover only
a small subset of our fault model: transient faults,
material aging, and occasionally gradual wear. Such
assumptions are valid for critical applications for ground
applications, but not for space applications. Often, the
introduction of permanent faults breaks fault tolerance
concepts for ground applications, weaken their protective
capabilities strongly, or limit their protection to only
a brief period of time. Most ground-based and atmo-
spheric aerospace fault tolerance concepts also aim to
guarantee reliable operation from the point in time a
fault occurs until maintenance can be performed. This is
a problematic assumption for CubeSat use, as servicing
missions have only been performed on rare occasions
for spacecraft of outstanding scientific, national, and
international significance such as the International Space
Station or the Hubble Space Telescope. But certainly not
for low-cost CubeSats.

Such limitations, however, can often be overcome in
combination with additional fault tolerance measures.
Fault tolerance concepts for ground and atmospheric
aerospace applications can therefor serve as building
blocks to design a fault tolerant architecture for space
applications.

Fault-Tolerance for Large Spacecraft
Traditional OBCs for large satellites realize fault tol-

erance using circuit-, RTL- [6], IP-block- [7], [8], and
OBC-level TMR [9] through costly, space-proprietary
IP. Circuit-, RTL-, and core-level measures are effective
for small microcontroller-SoCs [10], [11], if they are
manufactured in large feature-size technology nodes.
More and more error correction and voting circuitry
is needed to compensate for the increased severity of
radiation effects with modern technology nodes [10].
This in turn again inflates the fault-potential, requiring
even more protective circuitry, making this approach
ineffective for modern semiconductors.

Processor lockstep implemented in hardware lacks
flexibility, limits scalability, and is feasible only for very
small MSoCs with few cores [12], [11]. Timing and
logic placement becomes increasingly difficult for more
sophisticated processor designs, and becomes infeasible
for SoCs running at higher clock frequencies. Practical
applications run at very low clock frequencies [13] with
two or three very simple processor cores, even for ASIC
implementations [11], [7]. Common to all these solutions
is that they are proprietary to a single vendor, imply-
ing a hefty price tag and tight functional constraints.
Especially the space-proprietary single-vendor solutions
available are often difficult to develop for, have in many

Fuchs 3 33rd Annual AIAA/USU
Conference on Small Satellites

cases no publicly available developer documentation,
have no open-source software communities which could
provide support in development, and usually imply ven-
dor lock-in into a walled garden ecosystem.

To design nanosatellites, we instead utilize the energy
efficient, cheap modern electronics [14], for which tradi-
tional radiation-hardening concepts become ineffective.
Specifically, CubeSats utilize COTS microcontrollers
and application processor SoCs, FPGAs, and combi-
nations thereof [15], [14]. Some of these were shown
to performing well in space, and others poorly. On-
orbit flight experiences varying drastically even between
different controller models of the same family and brand
[1]. Specifically, components that were discovered to
perform well are very simple microcontrollers with a
minimal logic footprint and low complexity. These are
manufactured in coarse feature-size technology nodes,
and were by coincidence designed to be rather tolerant to
radiation (radiation-hard by serendipity) [16]. Examples
of such parts are the PIC controller family, which are
logically extremely simple, and controllers that include
inherently radiation-tolerant functionality such as the
Ferroelectric RAM (FeRAM) [17] based MSP430FR
family [18]. Unfortunately, these “well behaved” compo-
nents also offer very limited performance, which is suf-
ficient only for simple educational missions, technology
demonstration, and short low-data rate science missions.

Computer designs for nanosatellites utilized about 10
years ago began to heavily utilize redundancy at the
component level to achieve fail-over, to provide at least
some protection from failure. However, practical flight
results show that such designs are complex and fragile, as
compared to entirely unprotected ones [1], [14]. Entirely
unprotected OBC designs, in turn, may fail at any given
point in time. However, today satellite designers are
usually forced to simply accept this risk, leaving the
hope that a satellite will by chance not experience critical
faults before its mission is concluded. Risk acceptance is
viable only for educational, and uncritical, low-priority
missions with a very brief duration.

Fault-Tolerance Concepts for COTS Technology

FPGAs have become popular for miniaturized satellite
applications as they allow a reduction of custom logic
and component complexity. FPGA-based SoCs can offer
increased FDIR potential in space over ASICs manufac-
tured in the same technology nodes [15] due to the pos-
sibility to recover from faults through reconfiguration.
Transients in configuration memory (CRAM) can usually
be recovered right away through reconfiguration [19],
while permanent faults may be mitigated using alterna-
tive configuration variants. However, fine-grained, non-
invasive fault detection in FPGA fabric is challenging
[10], and is a subject of ongoing research [20], [21].

Applications thus rely on error scrubbing, which has
scalability limitations and covers only parts of the fabric.

Software implemented fault tolerance concepts for
multi-core systems were identified as promising already
in the early days of microcomputers [22], but was
technically unfeasible and inefficient until few years
ago. Modern semiconductor technology allows us to
overcome these limitations and recent research [23],
[24] shows that modern MultiCore-MPSoC architectures
can theoretically be exploited to achieve fault tolerance.
However, these are incapable of general-purpose com-
puting, and instead cover deeply embedded applications
with a very specific software structure [25], [26]. They
require custom processor designs [23], or programming
models which are suitable for accelerator applications
[24]. The fundamental concept of software-implemented
coarse-grain lockstep, however, is flexible and can be
applied, e.g., to MPSoCs for safety-critical applications
[27], [23], networked, distributed, and virtualized sys-
tems [28].

A RELIABLE CUBESAT ON-BOARD COMPUTER

A system designed for robustness must avoid single-
points of failure and assist in fault-detection. It should
also support non-stop operation. Ideally, it should be
capable of tolerating the failure of entire block and
individual attached component. The OBC presented in
this contribution consists of an FPGA and a microcon-
troller in tandem, which is used for test and diagnostic
purposes. Within the FPGA, we implement an MPSoC
architecture, which is then made fault tolerant using
software measures, while its robustness is increased
using memory EDAC and FPGA reconfiguration.

However, conventional MPSoCs follow a centralist
architecture with processor cores sharing functionality
where possible to minimize footprint, optimize access
delays, improve routing. There, processor cores share
memory in full, and have full access to all controllers
operating within this address space, to maximize sys-
tem functionality and code portability. In consequence,
conventional high-performance computer designs offer
only weak isolation for application running on different
processor cores for the sake of performance. Faults in
one core may therefore compromise the functionality of
other cores and the MPSoC as a whole. This increases
the overall failure-potential sharply as compared to very
small microcontroller SoCs, as an MPSoC’s logic does
not have only a larger footprint, but also more compo-
nents that can independently cause such a system to fail.

From a fault tolerance perspective this is undesirable,
and in our OBC we follow a different approach. De-
signers of fault tolerant processors for traditional space
applications handle this issue by utilizing custom fault
tolerant processor cores, to assure that faults occurring
within a core are mitigated and covered before they

Fuchs 4 33rd Annual AIAA/USU
Conference on Small Satellites

could propagate. For miniaturized satellite use, this is not
feasible, and instead we must achieve fault-isolation and
non-propagation through system-, software-, and design-
level measures. In the remainder of this section, we
show how this can be done with only commodity COTS
components and tools that are available to academic
CubeSat designers.

System- and Component-Level Architecture

We designed out architecture as in-place replacement
for a conventional MPSoC-driven OBC design and uti-
lize a commodity FPGA. The component-level topology
of our OBC design is depicted in Figure 1.

We utilize an FPGA to realize an MPSoC that of-
fers strong isolation between the individual processor
cores, and to enable recovery from permanent faults.
This FPGA serves as main processing platform for our
OBC, and capable of running a full general-purpose OS
such as Linux. We implemented a proof-of-concept of
our OBC architecture using Xilinx Kintex and Virtex
Ultrascale+ FPGAs, as well as the earlier generation
Kintex Ultrascale FPGAs. For CubeSat use, only Kintex
Ultrascale+ FPGAs are relevant at this point due to
drastically reduced power consumption as compared to
older generation and Virtex FPGAs. We provide further
details on this MPSoC in the second to next subsection.

To store the FPGA’s configuration memory is attached
to the FPGA via SPI. The FPGA by default acts as
SPI-master for this memory and automatically loads its

configuration from there. In our proof-of-concept imple-
mentation, we utilize conventional NOR-flash [29] for
this purpose, which also is included on most commercial
FPGA development platforms. However, NOR-flash is
inherently prone to radiation [29], and phase-change
memory (PCM [30]) is much better suited for this task
as its memory cells are inherently radiation-immune.
Thus, in future applications and in our prototype, we
will utilize a PCM IC instead of serial-NOR-flash.

Like most CubeSat OBCs, our OBC includes an
additional microcontroller which acts as watchdog, and
performs debug and diagnostic tasks. However, as we
are utilizing an FPGA as the main processing platform,
it only controls the FPGA and the MPSoC imple-
mented within it. Hence, it acts as a saving subsystem
(redwave/hard-command-unit), and can resolve failures
within the MPSoC its peripheral ICs for diagnostics
purposes in case the MPSoC became dysfunctional. To
reflect this role, we refer to it as “supervisor”.

As depicted in Figure 6, the supervisor is connected
to the FPGA through GPIO and SPI. The SPI interface
allows low level diagnostic access to different parts of
the MPSoC, as well as facilitate low-level test access to
FPGA-attached components. Through the GPIO inter-
face, the supervisor controls the FPGA’s JTAG interface
and can reset the FPGA as well as different parts of
the MPSoC. The FPGA also has access to the FPGA’s
configuration memory, and shares this SPI bus with the
FPGA in a multi-master, so that in case of failure, it can

Redundant Memory Set B

Redundant Memory Set A

On-Board
Network

(Satellite Bus)

ADCS

OCS

Payload

EPS

COM

Payload
Transceiver

QSPI ctlr

DDR ctlr
+ ECC

DDR ctlr
+ ECC

QSPI ctlr

OBC FPGA
(XCKU3P)

MRAM
(OS)

Flash/PCM
(Payload Data)

DDR4
Main Memory

DDR4
Main Memory

MRAM
(OS)

Flash/PCM
(Payload Data)

CFG Mem

JTAG

Diagnosis
and

Control
Supervisor

(MSP430FR)

FPGA
Configuration

Memory

CAN

Ethernet

etc...

Redwave

GPIO

SPI

QSPI

Figure 1. A component-level diagram of our OBC architecture. This architecture is intended as an in-place substitute for a conventional
ASIC-based System-on-Chip, and only adds a second set of memory ICs to counter component-level failure.

Fuchs 5 33rd Annual AIAA/USU
Conference on Small Satellites

independently reconfigure the FPGA.
The supervisor itself is not connected to other satellite

subsystems, and can not control other parts of the
satellite beyond the OBC itself. During regular oper-
ation, it takes no part in the normal data processing
operations of the OBC and only receives correctness
information from the MPSoC, which is further described
in the fourth section. However, for failure diagnostics the
supervisor can be used to reprogram the OBC FPGA
to access the rest of the satellite through its interfaces
for debug purposes. Therefore, the supervisor requires
very little processing power, and we utilize a robust
low-performance MSP430FR5969 microcontroller. The
MSP430FR controller family is manufactured with in-
herently radiation-tolerant FeRAM instead of flash, and
has become popular in low-performance COTS CubeSat
products due to its good performance under radiation
and in space [18]. A space-grade substitute is available
in the form of the MSP430FR5969-SP.

Memory Components
Besides the FPGA, configuration memory, the su-

pervisor, and the usual power electronics, our OBC
architecture includes two redundant sets of memory ICs
for use by the MPSoC implemented on the FPGA. Each
memory set includes DDR memory used as main work-
ing memory by the MPSOC, magnetoresistive-RAM [31]
(MRAM) used to store the operating system and flight
software, as well as PCM for holding payload data.
In our development-board based proof-of-concept, we
are constrained to substituting MRAM and PCM with
NAND-flash due to hardware constraints.

DDR-SDRAM is prone to radiation-induced faults,
though with modern high-density components manu-
factured in fine technology nodes, the likelihood to
experience bit-upsets is low [32], [33]. Hence, for most
nanosatellite missions simple error correction coding
(ECC) is sufficient to protect the integrity of data stored
as long as error scrubbing is implemented [34]. In LEO,
scrubbing intervals can be kept very low, e.g. once per
orbit, as the particle flux and likelihood to receive bit-
flips with modern DDR memory is minimal. This can be
realized using software-measures as we showed in prior
research [35] ECC can be implemented using standard
Xilinx Library IP [36], as well as free open-source
cores from OpenCores, and the GPL version of GRLIB.
Specifically, standard Xilinx design software out-of-the-
box includes the necessary library IP for Hsiao and
Hamming coding.

For CubeSats venturing to areas in the solar system
with more intensive radiation bombardment, continuous
memory scrubbing can be implemented in logic within
the MPSoC. Then, stronger EDAC with longer code-
words and larger code-symbols should be used instead
instead of the weaker coding that can be assembled

using Xilinx library IP. Symbol-based ECC can com-
pensate better for the effects of radiation in modern
DDR-SDRAM: despite occurring less frequently overall,
highly charged particles have an increased likelihood to
cause multi-bit upsets instead of changing the state of
just a single DRAM cell. EDAC using Reed-Solomon
ECC as well as interconnect error scrubber IP cores
are available commercially, e.g., via Xilinx or from the
commercial GRLIB library. Alternatively, they can be
assembled from open-source IP, available from Open-
Cores, and a broad variety of other open-source code
repositories. However, the quality of such cores is often
uncertain, and even a good part of the IP available
through the curated OpenCores catalog is known to be
defunct. Memory scrubbing can be assembled on the
FPGA from standard library IP, while ready-made scrub-
bers are available commercially (e.g., the “memscrub” IP
core from commercial GRLIB).

To store the OBC’s OS and its data, COTS MRAM ICs
are available at low cost on the open market today and
flight experience with the parts inside earlier CubeSats
has been overwhelmingly positive. However, only the
memory cells of these memories are radiation immune.
Without further measures, they are still susceptible to
misdirected read- or write access, and SEFIs. We showed
in [37] that these issues can be mitigated in software,
through ECC, and redundancy. We also showed that this
can be achieved with minimal overhead through the use
of a bootable file-system with Reed-Solomon erasure
coding. FeRAM would be more power efficient than
MRAM, and is also inherently radiation tolerant, but its
low storage density makes it insufficient for our use-case.

For storing applications and payload data, memory
technologies with a much higher storage density than
MRAM are necessary. In practice, this limits us to
use NAND-flash and PCM, of which only the latter
is radiation-immune. The storage cells of both have
a limited lifetime, and therefore are subject to wear.
However, high-density PCM has not become widely
available on the open market, and so we currently
have to resort to using NAND-flash. Fault tolerance
for these memories can again be realized in software.
As both these memories suffer from use-induced wear,
the necessary functionality to handle wear is needed
to efficiently safeguard their long-term use. Therefore
in prior work, we presented MTD-mirror [38], which
combines LDPC and Reed-Solomon erasure coding into
a composite erasure coding system.

One of the main causes for failures in commercial
memory ICs of all memory technologies are faults in
control logic and other infrastructure elements, causing
SEFIs [33]. These may cause temporary or permanent
failure of memory ICs, regardless of the memory tech-
nology used, which can not efficiently be mitigated

Fuchs 6 33rd Annual AIAA/USU
Conference on Small Satellites

through erasure coding. Instead, redundancy for these
devices is needed, which we can realize by placing two
memory sets. However, we do not implement fail-over
in hardware, but merely connect the two memory sets to
the FPGA. All fail-over functionality is realized through
the topology of our MPSoC and in software.

The OBC Multiprocessor System-on-Chip

To realize fault tolerance for our OBC architecture,
we isolate software run within our OBC as much as
possible and without constraining software design. To
do so, we co-designed an MPSoC as platform for the
software functionality described in the fourth section of
this paper. Its logic placement is depicted in Figure 2,
and we will describe its composition here.

We place each processor core within a separate com-
partment. Applications and the environment in which
they are executed are strongly isolated through the topol-
ogy of the MPSoC. The MPSoC version described in
this paper has 4 Xilinx Microblaze processor cores, and
therefore 4 compartments, which are depicted in brown,
green, blue and purple. Compartments have access to two
independent memory controller sets through an FPGA-

internal high-speed interconnect. The two memory con-
troller sets are depicted in the Figure in red and yellow.

The final, pink-colorized logic segment contains in-
frastructure IP responsible for FPGA housekeeping, as
well as an on-chip configuration controller with access
to the FPGA’s internal configuration access port (ICAP).
As depicted in Figure 3, several MPSoC components
related to FPGA housekeeping are placed in static logic:

• the mentioned configuration controller makes up
only a minor part of the pink-indicated logic,

• the supervisor’s debug interface (further described
at the end of this section),

• as well as a library IP core facilitating CRAM-
frame ECC for the detection and correction errors
in the FPGA’s running configuration (Xilinx Soft
Error Mitigation IP – SEM [39]).

Researchers showed in related work [40], [41] that
faults within an FPGA can effectively be resolved
through reconfiguration, or mitigated using alternatively
routed and placed configuration variants. Usually, full
FPGA reconfiguration would interrupt the operation of
the MPSoC, and depending on the configuration memory
used, can require considerable time. By using partial

Figure 2. Logic placement of our proof-of-concept MPSoC on a Xilinx Kintex Ultrascale+ KU3P with 4 compartments (purple, blue, green,
and brown), two shared memory controller sets (red & yellow) and static logic (pink).

Fuchs 7 33rd Annual AIAA/USU
Conference on Small Satellites

Memory
Set B

Memory
Set A

Compartment 4

Compartment 1

Compartment 3

Compartment 2

Memory
Scrubber

Xa

MMU

MMU

DDR4 ctlr
+ ECC

MMU

MMU

Memory
Scrubber

DDR4 ctlr
+ ECC

QSPI ctlr

QSPI ctlr

DBG

DBG

DBG

DBG

Xb

IF

IF

IF

IF

B
R
A
M

Supervisor
Access

Port

I
C
A
P

Config.
Controller

SPI2AXI

SPI2AXI

Xilinx

SoftError

Mitigation

Figure 3. Block-level layout in our MPSoC. Partial reconfiguration
partitions are indicated with dashed lines. Compartment and memory
controller sets (Xa/b) can be reconfigured without interruption.

reconfiguration, we can instead split the MPSoC into
separate partitions, which can then be independently
reconfigured. The use of an on-chip reconfiguration con-
troller drastically improves the reconfiguration speed, but
also allows fine-grained fault analysis and configuration
error scrubbing. Multiple alternative partition designs
can be provided for each compartment and memory
controller set, which can then be reconfigured indepen-
dently. This not only allows non-stop operation, but also
increases the likelihood that a suitable combination of
partition variants can be found to mitigate permanent
faults present in the FPGA fabric [19].

Compartments and memory controller sets are placed
in dedicated partial reconfiguration partitions. Partial
reconfiguration allows us to test and repair individual
compartments, and to reprogram one memory controller
set transparently in the background, without affecting the
remaining system. We have implemented this concept in
prior research in [42] for the MOVE-II CubeSat.

Placement in static logic instead of a partition implies
that infrastructure logic is not part of any partial recon-
figuration partition, which is required both for SEM and
logic utilizing ICAP. In practice approximately 90% of
the fabric’s area is part of the reconfiguration partitions,

of which 75% is quadruple-redundant and part of a com-
partment supporting TMR operation through software.
The other 25% of the logic holds the shared memory
controllers, which offers simple redundancy and can
be recovered transparently using partial reconfiguration.
Only 10% of the fabric holds static logic, which can be
still be recovered through reconfiguration.

Compartments are comprised by the minimum set of
IP-blocks required for a conventional single-core SoC,
including interrupt controller, peripheral controllers, I/O,
and bring-up software. A compartment is conceptually
similar to a tile in a ManyCore architecture, which
are today widely used for compute acceleration and
payload data processing [43]. However, their function-
ality is different, as a ManyCore compute-tile usually
is constrained to run simple software, without support-
ing interrupts, inter-process communication, and I/O.
A compartment instead runs a full copy of a general-
purpose OS with rich software, has access to hardware
timers, interrupts, may preform inter-process communi-
cation freely, and can handle I/O autonomously. The
topology of a compartment is depicted in Figure 4.
Each compartment is outfitted with a diagnostic access
port, which enables low-level access to a compartment’s
internal logic through an SPI2AXI bridge. This facility
is further described in the final part of this section.

In general, for the sake of reliability, the use of SPI or
I2C based satellite bus architectures is in general discour-
aged. However, in [44], we showed how the interfaces of
multiple compartments can be concentrated to emit only
a correct result to the satellite bus. Indeally, a network-
based satellite-bus should be implemented, which has
been shown to be more robust to failures aboard Cube-
Sats of all sizes. If an on-board network is available, no
interface-concentration measures are needed, as the net-
work can take care of data de-duplication and can assure
that data from a faulty compartment is not propagated.
See also [45], for an excellent example of how this can
be done while providing real-time guarantees.

On-chip memory controllers used across our MPSoC
are implemented in BRAM, which in turn consists of
SRAM. Xilinx library IP offers ECC for caches and on-
chip memories to detect and correct faults. We utilize
Hsiao ECC to protect the data stored in these memories
due to its lower logic footprint and otherwise comparable
performance as compared to Hamming coding. Due to
the brief lifetime of data in caches and buffers, no scrub-
bing is necessary and the overhead induced through ECC
would be detrimental to the overall robustness of the
system. Instead, faults in these components are mitigated
in software, as described in the next section. To avoid
accumulating errors in a compartment’s bootloader, we
can attach an error scrubber to each compartment’s local
interconnect, which is managed by each compartment.

Fuchs 8 33rd Annual AIAA/USU
Conference on Small Satellites

Compartment

SPI2AXI
Bridge

MMUX CPU
Core

IRQ

Inter
faces

Supervisor

C
ac

h
e

Clock
Gen

DDR4
Main Memory

MRAM
(OS)

Flash/PCM
(Payload Data)QSPI ctlr

Xa

DDR ctlr
+ ECC

Reset
Gen

Bootloader
& Self-Test

Figure 4. The memory and logical topology of a compartment. The compartment local and the global memory controller interconnects are
logically isolated. A compartment’s processor core has access to the memory controller sets and to compartment-local controllers. Access to
compartment-local controllers bypasses the cache.

Beyond memory EDAC, the logic of a compartment
does not offer hardware-implemented fault tolerance
capabilities. Instead, we address this limitation at the
system level. Our coarse grain lockstep functionality
enables us to detect faults in the fabric with compart-
ment granularity [46]. In practice, this closes the fault-
detection gap.

Each memory controller set consists of a DDR4
memory controller, a QSPI controller, a set of clock and
reset generators, as well as an optional memory scrub-
ber core and the top-level AXI crossbar. The optional
memory scrubber cores can be controlled by the super-
visor to avoid potential interference by malfunctioning
compartments. Each compartment has full write access
to a segment DDR memory, while it can access the
DDR memory in its entirety read-only. We construct the
interconnect used by compartments to access a controller
set from an AXI crossbar and four AXI switches, one for
each compartment. The top-level crossbar is connected
to the area-optimized AXI interconnect attached to each
compartment, which makes up the second level of the
MPSoC’s interconnect. In each interconnect, we realize
memory protection for the address space of the relevant
compartment to avoid a single point of failure causing
misdirected write access. Thereby, we create a topology
that strongly isolates compartments from each other, and
assures non-interference between compartments.

In case one memory controller set fails, MPSoC com-
partments that were using this set will switch to fail-over
through a reboot. Compartments that are already utilizing
the secondary set can continue executing correctly and
provide non-stop operation. Hence, it is desirable to run
two of the MPSoC’s compartments off the A-controller
set, and the rest off the B-set. This allows the software-
implemented fault tolerance functionality to guarantee
non-stop operation even if an entire memory set would
fail. In our proof-of-concept, we realize this functionality

by outfitting compartments to be able to use two kernel
variants, of which one booting into with main memory in
the A set, and the second one into the B set. However,
there are more elegant ways to accomplish this, e.g.,
using position-independent firmware images [47].

The Supervisor-FPGA Interface

The supervisor can access the FPGA through the
FPGA’s JTAG interface. JTAG in principle is powerful
which can be used as a universal tool to interact with the
FPGA and its MPSoC, and manipulate it in a variety of
ways. However, JTAG TAPs can be very complex, and
the protocol does not assure the integrity of transferred
data, while binary data transfer via JTAG can be very
slow. Hence, we only use it to reconfigure the FPGA in
case the on-chip configuration controller fails.

The supervisor can trigger an interrupt or permanently
disable a compartment, and can induce a reset in com-
partments, memory controller sets, for the configuration
controller, and for the FPGA itself. This is realized
through a set of GPIO pins attached to the supervisor.
The supervisor can conduct low-level diagnostics and
has access to each compartment’s address space, without
having to rely upon a compartment’s processor core.

We realize high-speed interconnect access through
SPI, as the CubeSat community is already familiar with
this type of interface. As we just required a direct point-
to-point between the FPGA and the supervisor without
chip select, this interface setup on the PCB-side is very
simple. We attach an SPI2AXI bridge to each com-
partment’s local interconnect, and additionally to each
memory controller set. This SPI-bridge can be assembled
entirely from well tested, free, open-source IP available
in the GPL version of GRLIB, using the SPI2AHB and
AHB2AXI IP cores. Alternatively, a variety of open-
source SPI2AXI cores are available, e.g., on gitlab, but

Fuchs 9 33rd Annual AIAA/USU
Conference on Small Satellites

XKCU3P

Reconf.
Controller

Partition
Select Reg

M
S

P
4

30
F

R
5

969

SPI-Slave

FPGA TAP

SPI
Master

FPGA
Configuration

Memory
ICAP

D
E
M
U
X

Memory Sets

Compartments

SPI2AXI

MMU

X
DDR ctlr
+ ECC

Memory
Scrubber

SPI2AXI

IF

Interrupt
Reset

Diagnosis
and

Control

GPIO[3]

JTAG

BSY/CL

SPI

SPI

GPIO[2]

Figure 5. The design of our supervisor-FPGA control and diagnostic
interface including the debug-facilities used by the supervisor to access
different compartments of the MPSoC.

the quality of these cores is uncertain. Xilinx and other
vendors offer a selection of commercial IP cores.

The supervisor also communicates with the FPGA-
internal configuration controller, which is outfitted with
a conventional SPI-slave interface. In contrast to the SPI-
diagnostics setup used for accessing the interconnect of
compartments and memory controller sets, the configura-
tion controller actively collaborates with the supervisor.
The configuration controller communicates with SEM
and can be deactivated by the supervisor in case of
failure. During normal operation, it will notify the super-
visor about faults in the FPGA fabric. It can then per-
form reconfiguration via ICAP. The satellite developer
can therefore deposit multiple differently placed designs
for each partition in configuration memory, which the
configuration controller can attempt to use to resolve
a fault. Finally, the configuration controller will report
outcome of the repair attempt to the supervisor.

Architecturally, the configuration controller resembles
a stripped-down compartment design, but is constrained
to a minimal logic footprint in the following way:

• It can run only baremetal code or an RTOS, not
a general-purpose OS, thereby reducing the con-
troller’s logic footprint.

• This software is stored directly in on-chip BRAM
which is part of the reconfigurable fabric.

• It has no access to the memory controller sets, to
prevent interdependence between static logic and
partial-reconfiguration partitions.

• Besides its SPI master connected to configuration
memory, the configuration controller has no other
external interfaces.

In case of failure, the supervisor can substitute the
full set of the configuration controller’s functionality
through JTAG, and can recover it through full-FPGA
reconfiguration.

As depicted in Figure 5, the supervisor can utilize
it’s SPI interface to access the different components of
the MPSoC in a controlled and performance-efficient
manner. It can disable individual compartments in case
of failure by using existing circuitry required for partial
reconfiguration, as indicated in Figure 4. However, in-
stantiating the combination of SPI, reset, and interrupt
lines for each compartment, memory set, and the recon-
figuration controller would require a large amount of IO-
pins. In practice, the supervisor will only communicate
one MPSoC component at any given time, and never
with multiple concurrently. Hence, we de-multiplex (DE-
MUX) this interface, thereby reducing the need for I/O
resources to just an SPI interface and 5 GPIO lines.

FAULT TOLERANCE THROUGH SOFTWARE

We enable fault tolerance for our MPSoC through soft-
ware functionality, while using just COTS components
and proven standard library logic at the hardware level.
To assure fault tolerance for the flight software run on
our OBC MPSoC, we utilize a multi-stage fault tolerance
mechanic. The high-level functionality of this approach
is depicted in Fig. 6, and consists of three interlinked
fault mitigation stages:

Stage 1 utilizes a coarse-grain lockstep at the operat-
ing system level to link together multiple compartments
of our MPSoC. A fault within one compartment in
practice causes a malfunction, which alters the state of
a satellite’s flight-software run on that compartment. We
then use the functionality of the lockstep to compare
this state, and generate a distributed majority decision
across compartments. This enables us to assure that
compartments operate correctly, enables us to localize
a fault with compartment granularity. To recover from
a fault, the lockstep enables us to copy the state of a
correct compartment to recover a faulty compartment to
a correct state, which in practice yields forward error
correction. This functionality is described further in the
next first part of this section.

Fuchs 10 33rd Annual AIAA/USU
Conference on Small Satellites

Stage 2 recovers failed compartments through FPGA
reconfiguration and CRAM error scrubbing to recover
functional compartments and restore access to memory
sets. Permanent faults are mitigated through reconfigura-
tion with differently placed alternative partition variants.
A compartment affected by multiple permanent defects
may eventually no longer be able to support the same
functionality as a completely intact one. However, re-
lated work showed that it is often still possible to utilize
a simpler partition configuration, running at lower clock
frequencies or with fewer system features implemented
in logic. Individual parts of a partition may therefore fail,
but this does not mean that it can not be used anymore at
all. In practice, this enables graceful aging and prevents
the system from failing spontaneously due to permanent
faults.

Stage 3 engages when too few functional compart-
ments are available due to accumulating permanent
defects in an aged FPGA. It re-allocates processing
time between the different applications run on the OBC,
to maintain stability for the most critical parts of the
flight software. This is done in an automated manner
by exploiting mixed criticality, which is inherent to a
satellite’s flight software. It can, for example, sacrifice
performance of payload processing tasks to maintain
robustness for critical applications, e.g., commandeering-
and power-management related tasks. This enables an
MPSoC to dynamically trade OBC performance to save
energy, increase fault tolerance for critical applications,
or assure that as much of functionality of the flight-
software can be run as possible.

Stage 1: Coarse-Grain Lockstep for Flight Software
The objective of Stage 1 is to detect and correct

faults within a compartment, and assure a consistent
flight software state through checkpoint-based FEC. It
is implemented by running flight software application in
coarse-grain lockstep on two or more compartments. A
functionality of this stage is depicted in white in Figure
6, and can be implemented within an operating system
kernel, an application, or in bare-metal software.

Each compartment will compare the state of the ap-
plication it runs with other compartments that run addi-
tional application copies. The supervisor reads out the
results of the decentralized voting decision, and main-
tains a fault-counter for each compartment. This counter
is used to determine if a fault in one compartment could
be correctly resolved by copying a correct state from
another one, or if a reboot is required. In the latter case,
the supervisor will replace the compartment to allow
non-stop operation, so that the rest of the OBC does not
have to wait for the reboot to finish. If a compartment
then still behaves incorrectly, the supervisor can perform
low-level diagnostics, reconfiguring it in Stage 2, with
the expectation of repairing defective logic.

MPSoC Supervisor & ConfigControler

Bootup

Checkpoint

Application
Execution

Read Majority
Decision

Check
Fault Counter

Update
Compartment

Stage 3
Mixed Criticality

Replace
Compartment

Stage 2
Reconfiguration

 < limit > limit

failure

recovered
functionality

Figure 6. Stage 1 (white) assures fault detection (bold) and fault
coverage. Stage 2 (blue) recovers defective compartments and repairs
memory controller sets. Stage 3 (yellow) adapts the OBC’s application
schedule to retain a stable system in a strongly degraded OBC with
many permanent faults in the FPGA fabric.

The OS will in regular intervals execute checkpoints,
during which the state of the different applications is
compared to facilitate the lockstep. Flight software ap-
plications can provide four callback routines to minimize
the computational cost of this comparison and fault
recovery. These routines are executed by the operating
system’s kernel: leftmargin=.35cm

• an optional initialization routine, to be executed on
all compartments at bootup to prepare the applica-
tion’s environment, regardless of if it is active there
or not;

• a checksum callback, which will generate a check-
sum from variables and data structures used in the
specific application which make up its state. This
checksum is subsequently used for state comparison
during checkpoints;

• a synchronization callback, which exposes all ap-
plication state relevant data;

• an update callback, which is executed by a com-
partment to retrieve or restore the correct state for
its applications.

These callbacks enable our lockstep implementation to
utilize application intrinsic information to assess the
health state of a compartment, without actually requiring
knowledge about the applications themselves. Besides
the addition of these callbacks, no alterations to an
application’s logic is necessary.

Stage 1 can deliver real-time guarantees if required,
and the tightness of the RT guarantees depends upon
the time required to execute application callbacks. The
only requirement towards the protected applications is
the possibility to interrupt operation to run checkpoints

Fuchs 11 33rd Annual AIAA/USU
Conference on Small Satellites

periodically. These checkpoints are triggered by the
supervisor. In our RTEMS/POSIX-based implementation
applications can delay checkpoints slightly, to assure that
an application has reached a suitable point for checksum
comparison. We also implemented Stage 1 successfully
in simple baremetal software running on a RISC-V
MPSoC, where checkpoints are part of the application
software. To support implementation of our coarse-grain
lockstep, the OS only has to support interrupts, or be
time-deterministic. To the best of our knowledge, such
functionality is available in all widely used RT- and
general purpose OS implementations, as well as in most
scientific instrumentation processing systems.

The required development effort for implementing
these callbacks depends on the flight software to be
protected, but is in general very limited. For flight
software based on state machine driven event loops, the
relevant state data is usually limited to a few numeric
variables, several status-flag variables, as well as data
buffers, and 2D or 3D arrays storing partially received
data. To date, we adapted several sophisticated astronom-
ical instrumentation applications used aboard JWST and
Hubble to support our architecture, which required no
more than 3 weeks of development time in each case. For
these applications, the relevant callback routines could be
implemented with just 10-20 lines of C-code each, most
of which being memcopy and CRC32 library function
calls, as well as value assignments for variables and data
structures in heap and stack.

Flight software often includes also applications that
are not executed continuously, but instead run briefly for
few seconds. For these, we can forego providing lockstep
callback routines, as it can be much simpler to just allow
such an application to exit correctly and directly return
checksum to the OS. Often however, these applications
also have no persistent state, store their state directly,
e.g., in a file or database. Such information can then
be copied by the checkpoint routine directly, without
requiring cooperation by the application.

We prove a more in-depth description of the function-
ality of Stage 1 for a software-engineering audience in
[48]. In Figure 7 we provide a brief practical example
of fault detection and recovery process using this lock-
step with the OBC design presented in this paper. In
this example, a fault has occurred while executing the
third checkpoint (blue) on compartment C2. The failed
compartment is then replaced with the spare C3, and the
flight software formerly run on the defective compart-
ment are reassigned to C3. C3 will then copy the correct
flight software state from one of the other compartments,
in this case from C1. The replaced compartment, C2, can
subsequently be tested for defects, and may subsequently
be recovered through reconfiguration in Stage 2.

Repair

C

C

C

C

Run FSWcpy

0

1

2

3

Run Flight
Software

Run Flight
Software

Run Flight
Software

Fault

Bootup

Bootup

Bootup

Bootup

Bootup

Idle Idle

Figure 7. An example of fault detection and recovery mechanics
of Stage 1. Note that all these operations only happen in software,
requiring no hardware-implemented fault tolerance measures and no
custom-written logic.

Stage 2: MPSoC Repair & Recovery

The previous stage can detect and correct faults as
long as a sufficient number of functional compartments
are available. Two intact compartments are required to
realize fault detection, and three to achieve majority
voting. Stage 2’s task is to assure that sufficient intact
compartments are available at all times.

Our software-implemented fault tolerance measures
still require spare compartments to handle the perma-
nent failure of a compartment. Over-provisioning of
these spares naturally is inefficient and the OBC may
eventually run out of spare compartments. Stage 2 is
designed to test, repair, validate and recover defective

Try Alternative
Partition Variants
Try Alternative

Partition Variants

Lockstep & Software
Fault Detected

Compartment
Reconfiguration

Test & Boot
Partition

Try Alternative
Partition Variants

Successful
Recovery

Full FPGA
Reconfiguration

Stage 3
Mixed Criticality

Scrubbing &
Xilinx UltraSEM

Failure

Success

All tried

Failure

Figure 8. The objective of Stage 2 is to recover defective compartments
and other logic through partial and full FPGA reconfiguration via
ICAP. If this is unsuccessful and too few functional compartments
are available, Stage 3 is activated to find a more resource conserving
application schedule, to retain system stability.

Fuchs 12 33rd Annual AIAA/USU
Conference on Small Satellites

compartments, by using CRAM-frame error detection
and partial reconfiguration. However, this only protects
part of the FPGA fabric, and would be insufficient for
detecting faults in compartments. The coarse grain lock-
step functionality of Stage 1 enables us to detect faults
in the fabric with compartment granularity. In practice,
this closes the fault-detection gap left by scrubbing and
configuration erasure coding.

Transient faults can corrupt the running configuration
of the FPGA, thereby breaking the functionality of a
compartment or redundant memory set [49], [50]. Even
if parts of the FPGA fabric are damaged permanently,
the residual highly-redundant FPGA fabric will remain
intact and can be re-purposed [51]. Researchers in related
work [40], [41] showed that faults within an FPGA
can effectively be resolved through reconfiguration. Even
permanent faults can in most cases be covered using
alternatively routed and placed configuration variants
that do not place critical logic in damaged regions
of the FPGA fabric. We can provide multiple such
configuration variants for each partition, as well as for
static logic, allowing even a severely degraded FPGA to
be recovered.

As depicted in Figure 6, if a compartment has repeat-
edly experienced failures which were detected by the
lockstep, it will be replaced by a spare. The supervisor
will then attempt to test and recover the compartments
using partial reconfiguration, as depicted in Figure 8. The
supervisor validates the relevant partial reconfiguration
partition to detect permanent damage to the FPGA fabric.
If reprogramming was unsuccessful and the faults per-
sist, the supervisor will repeat this step with differently
placed partition variants. Finally, faults within shared
logic can be resolved using full reconfiguration, which
implies an OBC reboot. For further details on how this
functionality can be implemented, see [52].

All these steps are performed autonomously by the
supervisor and the configuration controller. However, if
a compartment can not be repaired through automated re-
configuration, Stage 2 can be used to generate additional
diagnostic information for further analysis. The satellite
operator can then conduct a detailed fault analysis on the
ground, and craft a suitable replacement configuration to
avoid utilizing defective areas of the FPGA.

Stage 3: Graceful Aging through Mixed Criticality

Stage 3 engages if both partial- and full reconfig-
uration are unsuccessful and insufficient intact com-
partments are available. Its primary objective is to au-
tonomously maintain system stability of an aged or
degraded OBC to bring it into a safe state. The operator
can then define a more resource conserving satellite
operation schedule, or sacrifice link capacity, and OBC
storage space.

The criticality of the different applications making
up a satellite flight software can be differentiated based
on its relevance: ranging from essential commandeered-
related parts of the flight software to uncritical payload
data processing tasks. Performance degradation, or even
a loss of less important parts of the flight software, is
usually preferable over an unstable system.

As part of the functionality of Stage 1, applications
can be migrated between different compartments of the
OBC, and the level of replication for each application
can be adjusted at runtime. Multiple such replicated
application groups can coexist. In case of failure, low
criticality applications can be discarded or assigned less
compute performance to take over functionality from
failed compartments that were running more important
applications.

To visualize how Stage 3 can maintain system stability
in a larger MPSoC, Figure 9 depicts an OBC with
six compartments that are running four applications
with different criticality. The third compartment in this
example has failed but no idle spare compartments are
available. Stage 3 allows us to resolve this failure in the
following ways:

Tile 1 Tile 2 Tile 3 (Failed)

Tile 6Tile 5

E H E H E H

Tile 4

M L L LM M

(a) Migration by low-criticality thread pruning.

Tile 1 Tile 2 Tile 3 (Failed)

Tile 6Tile 5Tile 4

LMHLM

HEHE E H

EM L

(b) Migration through clock-speed increase.

Tile 1 Tile 2 Tile 3 (Failed)

Tile 6Tile 5Tile 4

HEHE E H

M H MEM L LL Idle

(c) Migration through processing time reduction.

Figure 9. A 6-compartment MPSoC running 4 applications of mixed
criticality (Essential, High, Medium, and Low), where compartment 3
(yellow) has failed. To assure computational correctness for the higher
criticality threads, different recovery strategies are possible, which can
avoid keeping around idle spares.

Fuchs 13 33rd Annual AIAA/USU
Conference on Small Satellites

• The applications on the failed compartment can be
relocated to one running less critical applications,
and replace them as depicted in Figure 9a.

• Instead of entirely de-scheduling one copy of the
low and medium priority applications, the clock
frequency on two compartments could be increased,
allowing one of each high-criticality application
to be migrated. In Figure 9b, this is depicted by
moving the applications replicas to compartments
5 and 6 without de-scheduling instances of the less
critical applications. Most modern embedded and
mobile-market processor cores support frequency
scaling and multi-clocking.

• Finally, in contrast to increasing the clock frequen-
cies of individual compartments, the less important
applications could also just be assigned less pro-
cessing time as shown in Figure 9c.

The ideal recovery strategy, depends on the current
performance requirements towards the OBC. Additional
thoughts on this aspect are discussed, e.g., in [26], where
different replacement strategies are described at a more
mathematical level.

A satellite operator can use this functionality to dy-
namically adjust the performance of an OBC imple-
menting this architecture during a space mission. This
is achieved by adjusting the distribution of applications
across the OBC, the level of replication of each ap-
plication, and the processing time allocated to each of
them. The objectives to achieve maximum performance,
power-saving capacity, and fault tolerance strength com-
pete with each other, and one can be prioritized over the
others. This is visualized in Figure 10. This functionality
is analogous to the powersaving capabilities present in
today’s mobile devices, and consumer mobile devices

Fault Tolerance

Power Saving
Functionality
and Speed

Area of
Suitable Thread

Mappings

Speed vs FT/Power

Figure 10. Our OBC allows the system properties of fault tolerance,
performance, and energy consumption to be adjusted at runtime. The
spacecraft operator can prioritize one of these objectives, e.g., to
achieve minimum energy consumption by sacrificing processing speed,
while maintaining a given level of fault tolerance.

and laptop computers. Further information on Stage 3
including dynamic application remapping, as well as
performance, energy and robustness prioritization at run-
time is available in [53].

PROOF-OF-CONCEPT IMPLEMENTATION RESULTS

We have tested our proof-of-concept OBC on Xilinx
VCU118 (with 2 DDR memory channels) and KCU116
boards (with 1 channel due to board constraints), and
constructed a breadboard setup in conjunction with an
MSP430FR development board. Further information on
these designs is available in [44], with an MPSoC
implementation paper currently undergoing peer review.
The actual platform for our research has been the ARM
Cortex-A53 application processor, which is today widely
used in a variety of mobile-market devices and certain
COTS CubeSat OBCs. The architecture we presented in
this paper is processor and platform independent, with
the MPSoC presented here implemented using Xilinx
Microblaze processor cores. It was implemented for a
Xilinx Kintex Ultrascale+ XKU3P FPGA, where we
achieve 1.94W total power consumption at 300Mhz.
Vivado’s power report is depicted in Figure 11. This
MPSoC design can be reproduced with the Xilinx Vivado
Design Suite version 2018.3, and we have created earlier
MPSoC versions with 2017.1 and later.

To test our implementation, we have conducted fault
injection through system emulation into an RTEMS
implementation of Stage 1. Early fault injection results
for this test campaign were published in [46] at the end
of 2018. A full fault-injection result report is pending
publication. We also constructed a multi-core model of
our MPSoC also in ArchC/SystemC to conduct further
fault-injection close-to-hardware. The results show that

Figure 11. Power consumption of the 4-core MPSoC powering our
OBC. Figure generated by Xilinx Vivado 2018.3.

Fuchs 14 33rd Annual AIAA/USU
Conference on Small Satellites

with near statistical certainty, a fault affecting a compart-
ment can be detected within 1–3 lockstep cycles, demon-
strating that Stage 1 is effective and works efficiently.

To achieve worst-case performance estimations, we
measured the worst-case performance cost of the coarse-
grain lockstep of Stage 1. The results of this test
campaign are indicated in Figure 12. These benchmark
results were generated based on code derived off a CCD
readout program used for astronomical instrumentation.
The application was executed with a varying amount
of data processing runs in a tile group at the indi-
cated checking frequencies, and without protection for
reference. Note that to achieve worst-case performance
overhead measurements, Stage 1 was run with very high
checkpoint frequencies (20hz, 2.5hz and 1.25hz) which
during normal operation will most likely never be used.
For most LEO applications, we expect that checkpoints
would be run only every 5 to 10 seconds, implying
negligible with very little performance overhead ranging
from 0.5% to 2% performance overhead. Note also that
these benchmarks were also run in user-space, where
thread-management is drastically more costly than in
kernel-space. As expected, the performance cost also
varies depending on workload, with data-heavy tasks
(a),(b), and (c) showing better performance due to the
increased cost of thread-management in user-space.

CONCLUSIONS & FUTURE WORK

In this contribution, we presented a CubeSat compat-
ible on-board computer (OBC) architecture that offers
strong fault tolerance to enable the use of such spacecraft
in critical and long-term missions. We described in detail
the design of our OBC’s breadboard implementation,
describing its composition from the component-level,
to the MPSoC design used, all the way down to the
software level. We implement fault tolerance not through
radiation hardening of the hardware, but realize it in
software and exploit partial FPGA-reconfiguration and
mixed criticality. To implement and reproduce this OBC
architecture, no custom-written, proprietary, or protected
IP is needed. All COTS components required to construct
this architecture can be purchased on the open market,
and are affordable even for academic and scientific
CubeSat developers. The needed designs are available
in in standard FPGA-vendor library logic (IP), which in
most cases is available to academic developers free of
charge through university donation programs.

Overall, our OBC architecture is non-proprietary, eas-
ily extendable, and scales well to larger satellites where
slightly more abundant power budget is available. We
developed a proof-of-concept of our architecture for the
smallest Kintex Ultrascale+ FPGA, KU3P, and achieve
1.94W total power consumption. This puts it well within
the power budget range available aboard current 2U
CubeSats, which currently offer no strong fault tolerance.

Reference 20 Hz 2.5 Hz 1.25 Hz
100000

110000

120000

130000

140000

150000

160000

170000

180000

T
im

e
 (

m
s)

1
6

%

1
4

%

9
%

(a) Data-Heavy

Reference 20 Hz 2.5 Hz 1.25 Hz

120000

140000

160000

180000

200000

1
8
%

1
6
%

1
3
%

(b) Very Data-Heavy

Reference 20 Hz 2.5 Hz 1.25 Hz
90000

100000

110000

120000

130000

140000

150000

T
im

e
 (

m
s)

2
1

%

1
7

%

1
4

%

(c) Balanced Compute-Heavy

Reference 20 Hz 2.5 Hz 1.25 Hz
90000

100000

110000

120000

130000

140000

150000

160000

2
0
%

1
8
%

1
4
%

(d) Balanced Data-Heavy

Reference 20 Hz 2.5 Hz 1.25 Hz
70000

80000

90000

100000

110000

120000

130000

T
im

e
 (

m
s)

2
6
%

2
1

%

1
6

%

(e) Very Compute-Heavy

Reference 20 Hz 2.5 Hz 1.25 Hz
80000

90000

100000

110000

120000

130000

140000

2
4
%

1
9
%

1
4
%

(f) Compute-Heavy

Figure 12. Performance measurements of 6000 runs for processing
100 2048x2048 CCD frames with different checkpoint frequencies and
workloads.

A comparison to existing traditional space-grade so-
lutions as well as those available to CubeSat devel-
opers seems unfair. Today, miniaturized satellite com-
puting can use only low-performance microcontrollers
and unreliable MPSoCs in ASIC or FPGA without
proper fault tolerance capabilities. Using the same type
of commercial technology, our OBC can assure long-
term fault coverage through a multi-stage fault toler-
ance architecture, without requiring fragile and complex
component-level replication. Considering the few more
robust, low-performance CubeSat compatible microcon-
trollers, our implementation can offer beyond a factor-
of-10 performance improvement even today. Considering
traditional space-grade fault tolerant OBC architectures
for larger spacecraft, our current breadboard proof-of-
concept implemented on FPGA exceeds the single-core
performance of the latest generation of space-grade SoC-
ASICS such as an GR740. However, it does so at a
fraction of the cost of such components, and without
the tight technological constraints of traditional or ITAR
protected space-grade solutions.

Traditional fault tolerant computer architectures in-
tended for space applications struggle against technol-
ogy, and are ineffective for embedded and mobile-market
components. Instead, we designed a software-based fault

Fuchs 15 33rd Annual AIAA/USU
Conference on Small Satellites

tolerance architecture and this MPSoC specifically to
enable the use of commercial modern semiconductors
in space applications. We do not require any space-
grade components, fault tolerant processor designs, other
custom, or proprietary logic. It can be replicated with
just standard design tools and library IP, which is
available free of charge to many designers in academic
and research organizations. Therefore, our architecture
scales with technology, instead of struggling against
it. It benefits from performance and energy efficiency
improvements that can be achieved with modern mobile-
market hardware, and can be scaled up to include more,
and more powerful processor cores.

Today, each component of our OBC architecture has
been implemented and validated experimentally to TRL3
in a 1-person PhD student project. From each individual
component, we have assembled a development-board
based breadboard setup. As next step in validating this
new OBC architecture, we will construct a prototype
for radiation testing. Since 2018, we have therefore
contributed to the Xilinx Radiation Testing Consortium
to develop a suitable Kintex Ultrascale-equipped device-
test board. This will bring our architecture to TRL4, and
is an intermediate step before developing a custom-PCB
based prototype for on-orbit demonstration. Once this
has been achieved, we intend to perform the final step
in validation of this technology aboard a CubeSat.

REFERENCES

[1] J. Bouwmeester, M. Langer, and E. Gill, “Survey on the imple-
mentation and reliability of CubeSat electrical bus interfaces,”
CEAS Space Journal, Springer, 2017.

[2] M. Langer and J. Bouwmeester, “Reliability of CubeSats –
statistical data, developers’ beliefs and the way forward,” in
AIAA/USU SmallSat, 2016.

[3] M. Swartwout, “You say “Picosat”, i say “CubeSat”: Developing
a better taxonomy for secondary spacecraft,” in 2018 IEEE
Aerospace Conference, 2018.

[4] J. Schwank et al., “Radiation Hardness Assurance Testing of
Microelectronic Devices and Integrated Circuits,” IEEE Trans-
actions on Nuclear Science, 2013.

[5] M. D. Berg, K. A. LaBel, and J. Pellish, “Single event effects in
FPGA devices 2014-2015,” in NASA NEPP/ETW, 2015.

[6] C. Carmichael, “Triple module redundancy design techniques for
Virtex FPGAs,” Xilinx Application Note XAPP197, 2001.

[7] K. Reick et al., “FT design of the IBM Power6 microprocessor,”
IEEE micro, 2008.

[8] M. Hijorth et al., “GR740: Rad-hard quad-core LEON4FT
system-on-chip,” in Eurospace DASIA, 2015.

[9] K. D. Safford et al., “Off-chip lockstep checking,” Jun. 26 2007,
uS Patent 7,237,144.

[10] A. Fedi et al., “High-energy neutrons characterization of a safety
critical computing system,” in IEEE DFT. IEEE, 2017.

[11] X. Iturbe et al., “A triple core lock-step ARM Cortex-R5 pro-
cessor for safety-critical and ultra-reliable applications,” in IEEE
DSN-W, 2016.

[12] Á. B. de Oliveira et al., “Applying lockstep in dual-core ARM
Cortex-A9 to mitigate radiation-induced soft errors,” in LASCAS.
IEEE, 2017.

[13] R. V. Kshirsagar and R. M. Patrikar, “Design of a novel fault-
tolerant voter circuit for tmr implementation to improve reliability
in digital circuits,” Microelectronics Reliability, Elsevier, 2009.

[14] M. Swartwout, “The first one hundred CubeSats: A statistical
look,” Journal of Small Satellites, 2014.

[15] R. Carlson, K. Hand, and E. Ozer, “On the use of system-on-
chip technology in next-generation instruments avionics for space
exploration,” in IEEE VLSI-SoC, revised paper. Springer, 2016.

[16] S. M. Guertin, M. Amrbar, and S. Vartanian, “Radiation test re-
sults for common cubesat microcontrollers and microprocessors,”
in Radiation Effects Data Workshop (REDW). IEEE, 2015.

[17] Z. Zhang et al., “Single event effects in COTS ferroelectric RAM
technologies,” in Radiation Effects Data Workshop (REDW).
IEEE, 2015.

[18] S. M. Guertin, “CubeSat and mobile processors,” in NASA
Electronics Technology Workshop, 2015, pp. 23–26.

[19] L. Bozzoli and L. Sterpone, “Self rerouting of dynamically
reconfigurable SRAM-based FPGAs,” in NASA/ESA AHS. IEEE,
2017.

[20] M. Ebrahimi et al., “Low-cost multiple bit upset correction in
SRAM-based FPGA configuration frames,” IEEE Transactions
on VLSI Systems, 2016.

[21] F. Rittner et al., “Automated test procedure to detect permanent
faults inside SRAM-based FPGAs,” in NASA/ESA AHS. IEEE,
2017.

[22] T. Slivinski et al., “Study of fault-tolerant software technology,”
1984.

[23] M. Liu and B. H. Meyer, “Bounding error detection latency in
safety critical systems with enhanced execution fingerprinting,”
in DFT. IEEE, 2016.

[24] E. Wachter et al., “A hierarchical and distributed fault tolerant
proposal for noc-based mpsocs,” IEEE Transactions on Emerging
Topics in Computing, 2016.

[25] W. Liu, W. Zhang, X. Wang, and J. Xu, “Distributed sen-
sor network-on-chip for performance optimization of soft-error-
tolerant multiprocessor system-on-chip,” IEEE Transactions on
VLSI Systems, 2016.

[26] U. Martinez-Corral and K. Basterretxea, “A fully configurable
and scalable neural coprocessor ip for soc implementations of
machine learning applications,” in NASA/ESA AHS. IEEE, 2017.

[27] S. S. Sahoo, B. Veeravalli, and A. Kumar, “Cross-layer fault-
tolerant design of real-time systems,” in DFT. IEEE, 2016.

[28] Y. Dong et al., “COLO: Coarse-grained lock-stepping virtual
machines for non-stop service,” in ACM Symposium on Cloud
Computing, 2013.

[29] S. Gerardin et al., “Radiation Effects in Flash Memories,” IEEE
Transactions on Nuclear Science, 2013.

[30] A. P. Ferreira et al., “Using pcm in next-generation embedded
space applications,” in RTAS. IEEE, 2010.

[31] G. Tsiligiannis et al., “Testing a commercial MRAM under neu-
tron and alpha radiation in dynamic mode,” IEEE Transactions
on Nuclear Science, 2013.

[32] E. Benton and E. Benton, “Space radiation dosimetry in low-earth
orbit and beyond,” Nuclear Instruments and Methods in Physics
Research, Elsevier, 2001.

[33] A. Samaras, F. Bezerra, E. Lorfevre, and R. Ecoffet, “Carmen-2:
In flight observation of non destructive single event phenomena
on memories,” in RADECS.

[34] V. Sridharan and D. Liberty, “A study of dram failures in the
field,” in Conference on High Performance Computing, Network-
ing, Storage and Analysis (SC). IEEE, 2012.

[35] C. M. Fuchs, “Enabling dependable data storage for miniaturized
satellites,” in AIAA/USU SmallSat, 2015.

[36] Z. K. Baker and H. M. Quinn, “Design and test of xilinx
embedded ecc for microblaze processors,” in Radiation Effects
Data Workshop (REDW). IEEE, 2016.

[37] C. M. Fuchs et al., “FTRFS: A fault-tolerant radiation-robust
filesystem for space use,” in Springer ARCS, 2015.

[38] ——, “A fault-tolerant radiation-robust mass storage concept for
highly scaled flash memory,” in Eurospace DASIA, 2015.

[39] P. Maillard et al., “Single-event upsets characterization & evalu-
ation of xilinx ultrascaleTM soft error mitigation (sem ip) tool,”
in Radiation Effects Data Workshop (REDW). IEEE, 2016.

Fuchs 16 33rd Annual AIAA/USU
Conference on Small Satellites

[40] C. Bolchini, A. Miele, and M. D. Santambrogio, “Tmr and partial
dynamic reconfiguration to mitigate seu faults in FPGAs,” in
DFT. IEEE, 2007.

[41] G. Durrieu et al., “DREAMS about reconfiguration and adapta-
tion in avionics,” European Congress on Embedded Real Time
Software and Systems (ERTS), 2016.

[42] C. M. Fuchs et al., “Enhancing nanosatellite dependability
through autonomous chip-level debug capabilities,” in Small
Satellites, System & Services Symposium 2015 (4S). ESA, 2016.

[43] P. Munk et al., “Toward a fault-tolerance framework for COTS
many-core systems,” in IEEE EDCC, 2015.

[44] C. M. Fuchs, N. M. Murillo, A. Plaat, E. van der Kouwe, and T. P.
Stefanov, “Fault-tolerant nanosatellite computing on a budget,” in
RADECS. IEEE, 2018.

[45] Aeronautical Radio, INC, ARINC Specification 664: Avionics
Full Duplex Switched Ethernet (AFDX), 2005.

[46] C. M. Fuchs et al., “Towards affordable fault-tolerant nanosatel-
lite computing with commodity hardware,” in IEEE ATS, 2018.

[47] M. Payer, “Too much PIE is bad for performance,” ETH Zurich
Technical Report, vol. 766, 2012.

[48] C. M. Fuchs et al., “Bringing fault-tolerant gigahertz-computing
to space,” in IEEE ATS, 2017.

[49] S. Azimi, B. Du, and L. Sterpone, “On the prediction of radiation-
induced SETs in flash-based FPGAs,” Elsevier Microelectronics
Reliability, 2016.

[50] H. Zhang et al., “Aging resilience and fault tolerance in runtime
reconfigurable architectures,” IEEE Transactions on Computers,
2016.

[51] F. Siegle et al., “Mitigation of radiation effects in SRAM-based
FPGAs for space applications,” ACM Computing Surveys, 2015.

[52] C. M. Fuchs et al., “Enhancing nanosatellite dependability
through autonomous chip-level debug capabilities,” in Springer
ARCS, 2016.

[53] ——, “Dynamic fault tolerance through resource pooling,” in
NASA/ESA AHS. IEEE, 2018.

Fuchs 17 33rd Annual AIAA/USU
Conference on Small Satellites

