1,569 research outputs found

    A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots

    Get PDF
    Octopus skin is an amazing source of inspiration for bioinspired sensors, actuators and control solutions in soft robotics. Soft organic materials, biomacromolecules and protein ingredients in octopus skin combined with a distributed intelligence, result in adaptive displays that can control emerging optical behavior, and 3D surface textures with rough geometries, with a remarkably high control speed (≈ms). To be able to replicate deformable and compliant materials capable of translating mechanical perturbations in molecular and structural chromogenic outputs, could be a glorious achievement in materials science and in the technological field. Soft robots are suitable platforms for soft multi-responsive materials, which can provide them with improved mechanical proprioception and related smarter behaviors. Indeed, a system provided with a “learning and recognition” functions, and a constitutive “mechanical” and “material intelligence” can result in an improved morphological adaptation in multi-variate environments responding to external and internal stimuli. This review aims to explore challenges and opportunities related to smart and chromogenic responsive materials for adaptive displays, reconfigurable and programmable soft skin, proprioceptive sensing system, and synthetic nervous control units for data processing, toward autonomous soft robots able to communicate and interact with users in open-world scenarios

    NASA Space Human Factors Program

    Get PDF
    This booklet briefly and succinctly treats 23 topics of particular interest to the NASA Space Human Factors Program. Most articles are by different authors who are mainly NASA Johnson or NASA Ames personnel. Representative topics covered include mental workload and performance in space, light effects on Circadian rhythms, human sleep, human reasoning, microgravity effects and automation and crew performance

    Concepts and Paradigms for Neuromorphic Programming

    Full text link
    The value of neuromorphic computers depends crucially on our ability to program them for relevant tasks. Currently, neuromorphic computers are mostly limited to machine learning methods adapted from deep learning. However, neuromorphic computers have potential far beyond deep learning if we can only make use of their computational properties to harness their full power. Neuromorphic programming will necessarily be different from conventional programming, requiring a paradigm shift in how we think about programming in general. The contributions of this paper are 1) a conceptual analysis of what "programming" means in the context of neuromorphic computers and 2) an exploration of existing programming paradigms that are promising yet overlooked in neuromorphic computing. The goal is to expand the horizon of neuromorphic programming methods, thereby allowing researchers to move beyond the shackles of current methods and explore novel directions

    AHEAD: Automatic Holistic Energy-Aware Design Methodology for MLP Neural Network Hardware Generation in Proactive BMI Edge Devices

    Get PDF
    The prediction of a high-level cognitive function based on a proactive brain–machine interface (BMI) control edge device is an emerging technology for improving the quality of life for disabled people. However, maintaining the stability of multiunit neural recordings is made difficult by the nonstationary nature of neurons and can affect the overall performance of proactive BMI control. Thus, it requires regular recalibration to retrain a neural network decoder for proactive control. However, retraining may lead to changes in the network parameters, such as the network topology. In terms of the hardware implementation of the neural decoder for real-time and low-power processing, it takes time to modify or redesign the hardware accelerator. Consequently, handling the engineering change of the low-power hardware design requires substantial human resources and time. To address this design challenge, this work proposes AHEAD: an automatic holistic energy-aware design methodology for multilayer perceptron (MLP) neural network hardware generation in proactive BMI edge devices. By taking a holistic analysis of the proactive BMI design flow, the approach makes judicious use of the intelligent bit-width identification (BWID) and configurable hardware generation, which autonomously integrate to generate the low-power hardware decoder. The proposed AHEAD methodology begins with the trained MLP parameters and golden datasets and produces an efficient hardware design in terms of performance, power, and area (PPA) with the least loss of accuracy. The results show that the proposed methodology is up to a 4X faster in performance, 3X lower in terms of power consumption, and achieves a 5X reduction in area resources, with exact accuracy, compared to floating-point and half-floating-point design on a field-programmable gate array (FPGA), which makes it a promising design methodology for proactive BMI edge devices

    GPU Computing for Cognitive Robotics

    Get PDF
    This thesis presents the first investigation of the impact of GPU computing on cognitive robotics by providing a series of novel experiments in the area of action and language acquisition in humanoid robots and computer vision. Cognitive robotics is concerned with endowing robots with high-level cognitive capabilities to enable the achievement of complex goals in complex environments. Reaching the ultimate goal of developing cognitive robots will require tremendous amounts of computational power, which was until recently provided mostly by standard CPU processors. CPU cores are optimised for serial code execution at the expense of parallel execution, which renders them relatively inefficient when it comes to high-performance computing applications. The ever-increasing market demand for high-performance, real-time 3D graphics has evolved the GPU into a highly parallel, multithreaded, many-core processor extraordinary computational power and very high memory bandwidth. These vast computational resources of modern GPUs can now be used by the most of the cognitive robotics models as they tend to be inherently parallel. Various interesting and insightful cognitive models were developed and addressed important scientific questions concerning action-language acquisition and computer vision. While they have provided us with important scientific insights, their complexity and application has not improved much over the last years. The experimental tasks as well as the scale of these models are often minimised to avoid excessive training times that grow exponentially with the number of neurons and the training data. This impedes further progress and development of complex neurocontrollers that would be able to take the cognitive robotics research a step closer to reaching the ultimate goal of creating intelligent machines. This thesis presents several cases where the application of the GPU computing on cognitive robotics algorithms resulted in the development of large-scale neurocontrollers of previously unseen complexity enabling the conducting of the novel experiments described herein.European Commission Seventh Framework Programm

    Integrated circuit design for implantable neural interfaces

    Get PDF
    Progress in microfabrication technology has opened the way for new possibilities in neuroscience and medicine. Chronic, biocompatible brain implants with recording and stimulation capabilities provided by embedded electronics have been successfully demonstrated. However, more ambitious applications call for improvements in every aspect of existing implementations. This thesis proposes two prototypes that advance the field in significant ways. The first prototype is a neural recording front-end with spectral selectivity capabilities that implements a design strategy that leads to the lowest reported power consumption as compared to the state of the art. The second one is a bidirectional front-end for closed-loop neuromodulation that accounts for self-interference and impedance mismatch thus enabling simultaneous recording and stimulation. The design process and experimental verification of both prototypes is presented herein
    corecore