
Tennessee State University Tennessee State University 

Digital Scholarship @ Tennessee State University Digital Scholarship @ Tennessee State University 

Electrical and Computer Engineering Faculty 
Research 

Department of Electrical and Computer 
Engineering 

5-1-2020 

AHEAD: Automatic Holistic Energy-Aware Design Methodology for AHEAD: Automatic Holistic Energy-Aware Design Methodology for 

MLP Neural Network Hardware Generation in Proactive BMI Edge MLP Neural Network Hardware Generation in Proactive BMI Edge 

Devices Devices 

Nan-Sheng Huang 
University of Southern Denmark 

Yi-Chung Chen 
Tennessee State University 

Jørgen Christian Larsen 
University of Southern Denmark 

Poramate Manoonpong 
University of Southern Denmark 

Follow this and additional works at: https://digitalscholarship.tnstate.edu/ece-faculty 

 Part of the Computer Engineering Commons 

Recommended Citation Recommended Citation 
Huang, N.-S.; Chen, Y.-C.; Larsen, J.C.; Manoonpong, P. AHEAD: Automatic Holistic Energy-Aware Design 
Methodology for MLP Neural Network Hardware Generation in Proactive BMI Edge Devices. Energies 
2020, 13, 2180. https://doi.org/10.3390/en13092180 

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering 
at Digital Scholarship @ Tennessee State University. It has been accepted for inclusion in Electrical and Computer 
Engineering Faculty Research by an authorized administrator of Digital Scholarship @ Tennessee State University. 
For more information, please contact XGE@Tnstate.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Scholarship @ Tennessee State University

https://core.ac.uk/display/429662078?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalscholarship.tnstate.edu/
https://digitalscholarship.tnstate.edu/ece-faculty
https://digitalscholarship.tnstate.edu/ece-faculty
https://digitalscholarship.tnstate.edu/ece
https://digitalscholarship.tnstate.edu/ece
https://digitalscholarship.tnstate.edu/ece-faculty?utm_source=digitalscholarship.tnstate.edu%2Fece-faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalscholarship.tnstate.edu%2Fece-faculty%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:XGE@Tnstate.edu


energies

Article

AHEAD: Automatic Holistic Energy-Aware Design
Methodology for MLP Neural Network Hardware
Generation in Proactive BMI Edge Devices

Nan-Sheng Huang 1,* , Yi-Chung Chen 2 , Jørgen Christian Larsen 1

and Poramate Manoonpong 1

1 Embodied AI and Neurorobotics Laboratory, SDU Biorobotics, Mærsk Mc-Kinney Møller Institute,
University of Southern Denmark, 5230 Odense, Denmark; jcla@mmmi.sdu.dk (J.C.L.);
poma@mmmi.sdu.dk (P.M.)

2 Department of Electrical and Computer Engineering, Tennessee State University, Nashville, TN 37209, USA;
ychen@tnstate.edu

* Correspondence: nan@mmmi.sdu.dk

Received: 23 March 2020; Accepted: 22 April 2020; Published: 1 May 2020
����������
�������

Abstract: The prediction of a high-level cognitive function based on a proactive brain–machine
interface (BMI) control edge device is an emerging technology for improving the quality of life for
disabled people. However, maintaining the stability of multiunit neural recordings is made difficult
by the nonstationary nature of neurons and can affect the overall performance of proactive BMI
control. Thus, it requires regular recalibration to retrain a neural network decoder for proactive
control. However, retraining may lead to changes in the network parameters, such as the network
topology. In terms of the hardware implementation of the neural decoder for real-time and low-power
processing, it takes time to modify or redesign the hardware accelerator. Consequently, handling
the engineering change of the low-power hardware design requires substantial human resources
and time. To address this design challenge, this work proposes AHEAD: an automatic holistic
energy-aware design methodology for multilayer perceptron (MLP) neural network hardware
generation in proactive BMI edge devices. By taking a holistic analysis of the proactive BMI
design flow, the approach makes judicious use of the intelligent bit-width identification (BWID)
and configurable hardware generation, which autonomously integrate to generate the low-power
hardware decoder. The proposed AHEAD methodology begins with the trained MLP parameters
and golden datasets and produces an efficient hardware design in terms of performance, power, and
area (PPA) with the least loss of accuracy. The results show that the proposed methodology is up to
a 4X faster in performance, 3X lower in terms of power consumption, and achieves a 5X reduction
in area resources, with exact accuracy, compared to floating-point and half-floating-point design
on a field-programmable gate array (FPGA), which makes it a promising design methodology for
proactive BMI edge devices.

Keywords: neural network; edge device; field-programmable gate array; hardware acceleration;
high-level synthesis; energy-aware design; brain–machine interface

1. Introduction

A brain–machine interface (BMI) is a direct and unconventional communication link between
the brain and a physical device [1,2]. It enables the study of neuronal activity, representing cognitive
processes of planning and mental simulation of action sequences. BMI is classified into reactive and
proactive (cognitive) types. The reactive mode denotes actions generated by flexibly responding to the
environmental stimuli from sensory inputs in unpredictable situations. The proactive mode, on the
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other hand, denotes actions that are generated to accomplish intended goals based on active intentions
in predictable situations. In the field of cognitive neuroscience, BMI introduces a new opportunity for
smart environmental control by human–environment interaction.

Multifunctional Brain–Computer Interface (BCI) [3] and electroencephalogram (EEG) technology
have been adopted as the BMI for applications of environmental control [3], accelerated information
seeking [4], and neuro-controlled upper limb prosthesis [5]. However, the biomedical signals of these
applications do not provide cognitive properties for proactive control. The SI-CODE [6] introduced
a bidirectional BMI for decoding multiunit neural activity and transmitting information back to
the brain by electrical stimulation. Although the multiunit activities do provide rich cognitive
properties of the brain, the project does not take advantage of the cognitive properties. In the
industry, big tech companies such as Microsoft, Facebook, and Neuralink are also researching
next-generation BMI products [7–9]. However, these research projects are reactive, such that reflexive
and cumbersome behaviors dominate the outcomes, instead of primary cognitive (proactive) human
traits—e.g., planning and mental simulation of actions—where a large amount of interest lies. Plan4Act
(In Plan4Act, the main goal is to exploit the neuronal signatures of upcoming, planned actions of an
agent to proactively support it during the execution of these forthcoming activities. P.M. is the PI
of the work package 3 in Plan4Act. J.C.L and N.S.H are responsible for the research development
of the energy-efficient neural decoder hardware accelerator in Plan4Act.) [10] is a unique project for
studying proactive predictions of future planned actions with online decoding. Its uniqueness lies in
the fact that it has a proactive BMI composed of wireless data acquisition for receiving neural brain
activity [11] and a neural network decoder for processing the recorded sequence-predicting neural
activity and inferring predicted action sequences for proactive control in real time.

The development of a neural network decoder for proactive BMI control has two major challenges:
adaptivity and power consumption. As the implanted floating microwire arrays (FMAs) move relative
to the recorded cells and the information represented by a specific neuron’s activity may change due
to neuroplasticity, the decoder from day one cannot be leveraged to work in different experimental
sessions on the day n later [12,13]. As a result, the neural network decoder needs to adapt to the
above situations on day n with a modification of the topology and a retrain procedure for recalibration.
The modification related to neural network implementation is a time-consuming process leading
to a potential delay for the whole project. On the other hand, the neural decoder of the BMI is a
battery-powered real-time embedded system, which requires a highly energy-efficient computing
unit [14] for irregular parallelism and custom data types [15]. To address the above challenges,
it is believed that the neural network decoder on a field-programmable gate array (FPGA) with a
concurrent optimization of performance, power, and area (PPA) [14] is a promising solution. In [16],
two high-performance hardware coprocessors for the probabilistic neural network and neural ensemble
decoding based on Kalman filter were implemented on FPGA for real-time BMI applications. Apart
from that, it is well known that fixed-point implementation consumes fewer resources and less power
than floating-point implementations in FPGA literature [15,17].

To address the aforementioned challenges, an automatic holistic energy-aware design (AHEAD)
methodology is introduced for the design automation of an energy-efficient neural network decoder
for the proactive BMI. The core processing component of the neural network decoder is a multilayer
perceptron [18] (MLP) inference that has features of uniformity, innate parallelism, scalability,
dynamically adaptivity, and fault tolerance [19–21]. The MLP will be trained by the golden datasets
for the initial weights. AHEAD extracts the network feature from MLP and creates the corresponding
hardware model and test bench. AHEAD adopts fixed-point number representation for the hardware
implementation of the MLP because of the comparable accuracy in finite-precision performance [22],
shorter latency, reduction of logic, memory area, and power consumption on an FPGA [17,23]
compared to its floating-point implementation. Since the floating-point to fixed-point conversion is
a nonconvex NP-hard optimization problem [24] and requires language-specific programs [25–28],
AHEAD develops a bit-width identification (BWID) loop method for the tedious conversion because



Energies 2020, 13, 2180 3 of 20

of the close synergy between fixed-point parameter estimation and configurable hardware generation.
The BWID automatically estimates the required fixed-point bit-width parameters with the least loss of
accuracy and bit-width through the reconstruction of the given MLP neural network from the MLP
parameters and golden datasets without the user’s program code. To simplify and accelerate the
system implementation on an FPGA, AHEAD encompasses a high-level synthesis (HLS) [29] design
flow that automatically generates a register-transfer level (RTL) for the PPA-optimized system with
fixed-point bit-width MLP, pipelines, and parallel low-power microarchitectures.

The AHEAD methodology can implement an energy-efficient MLP hardware accelerator,
including integration with the embedded processor as a full system, within an hour. Not only is
the development effort minimized, but also the development time is significantly reduced from several
days to an hour. Furthermore, the generated design, without a loss of accuracy, is about 4X faster in
execution time, 5.97X better in energy efficiency, 3X lower in slice look-up tables (LUTs), 8X lower
in slice registers, 243X lower in DSP48Es, and 5X lower in block rams (BRAMs) compared to the
floating-point implementation in the experiment. Thus, the AHEAD methodology can deliver a rapid,
low-power design and implementation of the MLP neural decoder to meet the power requirements [30]
for the FPGA implementation for BMI applications.

The contributions of this paper to the problem of the design of the low-power MLP hardware
accelerator for proactive BMI control edge devices are as follows:

1. A novel holistic design methodology, for the first time, bridges the gap between the BMI
developers and the hardware developers for automatic energy-aware MLP hardware generation
with trained MLP parameters and golden datasets.

2. An energy-aware MLP hardware generation for proactive BMI control with automatic nonuniform
fixed-point bit-width identification capabilities.

3. Fully automatic methodology frees the resources of domain experts across the developers to do the
iterative, tedious, labor-intensive, error-prone floating-to-fixed point conversion and low-power
hardware design task.

4. The design methodology is independent of machine learning tools and programming languages.

The rest of this paper is organized as follows. Section 2 describes the background of the system
architecture of the proactive BMI control and the MLP neural network decoder. Section 3 presents
the new holistic design methodology for the low-power MLP hardware design in the proactive BMI
control, which includes a description of the solution methodology and lists the main architecture of
the framework. Section 4 elaborates on the implementation of the methodology, which comprises the
automatic energy-aware MLP hardware generation. Section 5 presents the results of the benchmarking
cases with comparisons in terms of accuracy, power, performance, and area. Section 6 provides
discussions regarding future work.

2. Background of Proactive BMI Control

This section presents an overview of the proactive BMI system architecture, system requirements,
the hardware design challenge, the role of the neural decoder, and the MLP neural network.

2.1. Plan4Act System Architecture

Plan4Act [10] is a European project to proactively predict the future planned actions of an agent
by extracting this planning knowledge from the agent’s neuronal activities. The basis for this is recent
experimental results that show that complex planning and sequencing information is represented by
neural activity in the (monkey) brain [31,32]. These investigations are further extended and transferred
to a BMI setup in terms of a wearable or Medical Internet of Things (IoT) edge device for controlling
devices with more foresight than in currently existing systems. Therefore, through the development
of such a proactive BMI edge device, a future path for people with disabilities to interact with their
(smart) environment in a more robust way is opened up for the first time. Figure 1 shows a scenario
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considered in the Plan4Act: a motor-impaired patient initiates a thought to go to the toilet from the
bedroom; A denotes the action to open the door of the bedroom; B is the action to turn on the light
of the living room; C1 denotes the action to open the door and turn on the light in the toilet; and C2

represents the action to open the door and turn on the light on the terrace. Action sequences AB may
lead to the different following actions C1 or C2, since the common path is AB.

A
B C1

C2Bedroom

Terrace

ToiletLiving Room

House Floorplan

Figure 1. Proactive brain–machine interface (BMI) control scenario.

The Plan4Act project aims to develop the novel proactive BMI control to predict the desired action
sequences ABC1 while acquiring the neuronal data of either action A or actions AB, and to avoid
the false case ABC2. It is different from reactive control whereby the ABC1 actions are executed in
sequence; herein, the actions are translated into a complex proactive BMI control problem in sequence:
the BMI needs to acquire, analyze, and identify sequence-predicting neuronal activity in the brain
while executing the tasks; the mathematical models based on the interaction of neuronal activity and
plasticity mechanisms are developed to understand this sequence-predicting neural activity and to
provide the algorithmic basis of neural signal decoder design.

Figure 2 shows a block diagram of the complete system architecture. The Plan4Act system
architecture of the proactive BMI control features two principal subsystems, namely, a wireless
transmit-and-receive neural recording subsystem for data acquisition of neuronal activity in the brain,
and a neural decoding-and-control subsystem for feature extraction, classification of the recorded
sequence-predicting neural activity, and further proactive control of smart devices in the home
environment.

As illustrated at the top of Figure 2, the neuronal data are measured and collected through wireless
neural recordings during animal experiments [11]. The neuronal activities are from 192-channel FMAs
implanted in three different brain areas of the rhesus macaque: the parietal reach region (PRR),
the dorsal premotor cortex (PMd), and the primary motor cortex (M1). The processing flow of the
proactive BMI control is shown at the bottom of Figure 2. The neuronal data are transmitted wirelessly
to the processing unit of the proactive BMI. The data are first filtered by a front-end signal processing
unit for data acquisition and synchronization and then further decoded by a neural signal decoder for
predicting proactive behaviors.
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Figure 2. Proactive brain–machine interface (BMI) system architecture. FPGA—field-programmable
gate array.

Various architectures have been studied for the design of the neural signal decoder during the
phases of hardware development in the Plan4Act system. MLP neural network based architecture
is inspired by biological neurons [20] and has features of uniformity, innate parallelism, scalability,
dynamic adaptivity, and fault tolerance, which specifically fit the requirements of the proactive BMI
edge devices. The training of the MLP neural network is offline and in the form of supervised learning
with the dataset collected from experiments [11]. The trained model is used for the development
of the neural decoder, which is a real-time, low-power inference on an edge device. This neural
decoder is the main processing unit of the proactive BMI edge device and can robustly extract and
predict sequence-predicting neural activity for real-time proactive control. However, the decoder
requires regular recalibration through a retrain procedure since the implanted electrodes embedded
in the brain may move relative to the neurons. In addition, neurons exhibit the characteristic of
neuroplasticity, which changes the dimensionality of neuronal dynamics in the latent space [12,13].
Figure 3 shows the hardware design flow and challenges of the neural decoder design. The recalibration
and model retraining resulting from the abovementioned issues means the neural decoder must be
constantly redesigned and reimplemented, which is time-consuming and demands a lot of effort. In this
work, the proposed AHEAD methodology addresses the problem by introducing fully automatic
design automation.
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Proactive BMI
Experiments

MLP Training

Low Power 
Architecture

Design

Recalibration

Hardware 
Implementation

Low Power 
Architecture
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Hardware 
Remodification

Gain of time ahead

AHEAD Methodology

Energy-aware Hardware Generation

Time

Figure 3. Hardware design challenge in proactive BMI control.

2.2. MLP Network of the Neural Decoder

Figure 4 demonstrates a four-layer, fully connected MLP with 768 neurons in the input layer,
48 neurons in the 1st hidden layer, 20 neurons in the 2nd hidden layer, and seven neurons in the output
layer, denoted as 768-48-20-7. The linear, hyperbolic tangent, and sigmoid activation functions are
applied in hidden layer one, hidden layer two, and the output layer, respectively.

2
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B1 B2 B3

Linear function Sigmoid function

∑ ¿

Input Layer Hidden Layers Output Layer

x1

x2

x768
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y2
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y7

∑ ¿1 1

∑ ¿

∑ ¿

∑ ¿2

48

1

∑ ¿

∑ ¿20

2

1

∑ ¿2

∑ ¿6
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W1
1,1

W1
1,2
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1,48
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B1,1

W1
B1,2
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B1,48

W2
1,1

W2
1,2

W2
B2,2

W3
1,1
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1,20

W2
B2,1

W2
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W3
1,2

W3
1,6

W3
1,7
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1 1 1

Figure 4. Multilayer perceptron (MLP) structure.



Energies 2020, 13, 2180 7 of 20

By default, each layer equips itself with one bias neuron as default, receiving the input value ‘1’
except in the output layer. The input neurons use a linear activation function, which linearly transmits
the external inputs to the subsequent layer without any further operation. Furthermore, the essential
operation of each neuron is to multiply and accumulate all the weighted inputs with weight values
and then perform the activation function for further output. As an example of the input to the first
hidden layer, the input vector X has 769 elements with one bias neuron [x1x2x3 · · · x767x7681], which
are multiplied by W1 to form vector Y1, as shown in Equation (1):

Y1 = X ·W1, (1)

W1769,48 =


w11,1 w11,2 · · · w11,48

w12,1 w12,2 · · · w12,48
...

...
. . .

...
w1768,1 w1768,2 · · · w1768,48

w1B1,1 w1B1,2 · · · w1B1,48

 . (2)

The output vector of the first hidden layer Z1 is the result of applying the activation function f on
Y1, as illustrated in Equation (3):

Z1 = f (Y1). (3)

The same procedures are also applied to all the other layers. Moreover, to reduce the number of
memory access operations for lower power, Equation (1) can be further split as follows:

Y1 = X ·W1 = X′ ·W1′ + WB1′, (4)

W1′768,48 =


w11,1 w11,2 · · · w11,48

w12,1 w12,2 · · · w12,48
...

...
. . .

...
w1768,1 w1768,2 · · · w1768,48

 , (5)

where X′ is [x1x2x3 · · · x767x768] and WB1′ is [w1B1,1w1B1,2 · · ·w1B1,48] due to the fact that the bias
neuron has a constant input value of 1.

In addition, the MLP parameters include the number of layers, the number of neurons per
layer, the type of activation function per layer, and trained weight matrix files. They are capable of
reconstructing the MLP neural network, which is like the eigenvalue and eigenvector of a matrix.

3. The AHEAD Methodology

This section depicts the detailed methodology of AHEAD in the Plan4Act architecture from the
system point of view. By employing the attribute of fault tolerance in the MLP neural decoder along
with the bit-width identification method, the low-power fixed-point parameters are automatically
estimated. Then, the energy-efficient hardware is generated from the configurable hardware generator.

3.1. AHEAD—System Overview

The proposed AHEAD methodology illustrated in Figure 5 takes holistic thinking from the
reconfigurable requirement of MLP hardware configuration that arises from the recalibration-based
BMI neural decoder development to the final automatic delivery of low-power MLP neural decoder.
The architecture is defined by the leverage of concurrent design reuse for the hardware generation and
energy-aware design automation framework for microarchitectures with cross-layer optimization.
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Figure 5. The automatic holistic energy-aware design (AHEAD) methodology.

As demonstrated at the top of Figure 5, userspace is the algorithm development environment for
neural decoding and control. The userspace contains activities of a series of recalibration experiments,
collections of datasets, and training of MLP models. A BMI developer has to perform these activities
for further hardware development. Since AHEAD only requires the parameters of the trained MLP
model and the golden datasets, users can opt for their favorite development platform and environment
without limitation.

A two-stage design flow is then performed for autotuned hardware implementation. Stages
are conducted in sequence as depicted in the middle and at the bottom of Figure 5. The first stage
performs the automatic bit-width identification (BWID) to estimate the low-power fixed-point bit-width
parameters of a given trained MLP model by exploiting the inherent error resilience of the neural
network. The resultant fixed-point bit-width parameters are nonuniform, which push to the bit-width
limit of error-resilience for each signal node in the network. In hardware implementation, a fixed-point
model is more energy-efficient than the floating-point one because fewer bit-widths implies less
logic-gate and wire connections. The second stage, as illustrated in Figure 5, is the implementation stage
of AHEAD, which automatically generates the core component of the proactive BMI, i.e., a configurable
MLP neural signal decoder. It facilitates microarchitecture synthesis based on the fixed-point MLP
model and implements the synthesized low-power MLP core on the FPGA.

3.2. Stage 1: Automatic Bit-Width Identification

The trained MLP model provided by users is firstly reconstructed by a fixed-point hardware
model, as illustrated in the middle of Figure 5, but the bit-width information is still not determined.
The BWID with the closed-loop feedback path is employed in the following step for the estimation



Energies 2020, 13, 2180 9 of 20

of the bit-width parameters with the least approximation error against the results of the trained
MLP model.

The reconstructed system is composed of N signal nodes, which are defined by N different
fixed-point data types in terms of the bit-width. The bit-width is an integer value, and a bit-width
vector denoted by B consists of a set of N bit-widths, namely, B = {b1, b2, ..., bN} ∈ IN . The objective
function f can be modeled by the summation of the individual bit-width hardware implementation
cost function c as follows:

f (B) =
N

∑
k=1

ck(bk). (6)

The quantized performance loss function E is expressed and constrained as follows:

E(B) = Y− Ŷ(B) ≤ AxEmin, (7)

where Y is the target output, Ŷ is the estimated output by the reconstructed fixed-point model, and
AxEmin is the minimum approximate error.

The lower bound bit-width is denoted by lb and the upper bound bit-width is denoted by ub.
The constraints with lb and ub are also considered for each bit-width variable as follows:

bk_lb ≤ bk ≤ bk_ub, ∀k = 1, ..., n. (8)

Finally, the complete bit-width identification problem can then be stated as

min
B∈In

f (B)

s.t. E(k, B) ≤ AxEmin
Blb ≤ B ≤ Bub.

(9)

The fixed-point bit-width parameters estimated from Stage 1 are forwarded to Stage 2 while the
BWID achieves closure in terms of minimum approximation error.

3.3. Stage 2: Configurable High-Performance Low-Power MLP Microarchitecture

The generic microarchitecture of the AHEAD methodology for N-layer MLP is shown in Figure 6.
Each layer aims to perform the computation of Equations (3) and (4), which is composed of two main
coarse-grained processing elements (CG-PE). The first processing element is for the computation of
the vector-weight matrix multiplication X′ ·W1′, denoted as CG-PE-1. The buffer is cleared to zero
initially, then the vector-weight matrix multiplication is performed on the multiplier and accumulator
(ACC) blocks. The intermediate results are stored in buffer-1. The second processing element, denoted
as CG-PE-2, includes two computations. The first computation is to accumulate the results of CG-PE1
with biased weights B1 and save to buffer-2, which fulfills the final computation of Equation (4).
The second computation is to perform the associated activation function, as shown in Equation (3).
The final outputs are stored in buffer-3 and serve as the input vector to the next layer. The computation
of each layer in the MLP neural network employs the same microarchitecture as CG-PE1 and CG-PE2,
including the configurable activation function. Thus, the implementation of the whole MLP neural
network forms a modular and scalable structure in layers. Moreover, six signal nodes have been
defined in the datapath of each layer, as shown in Figure 6. Each signal node has a distinct definition of
fixed-point data type in terms of integer and fractional bit-width. For example, each weight matrix is
assigned a fixed-point data type. Thus, each weight in the same weight matrix has the same bit-width.
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Figure 6. MLP microarchitecture.

Parallel architecture is adopted for both CG-PE1 and CG-PE2 to increase the throughput.
Furthermore, the highly parallel architecture takes advantage of the higher throughput to trade-off a
reduction in the voltage and clock frequency for lower power at the cost of an extra amount of area [33].
To achieve the goal, the number of multiplier and accumulation units are parameterizable, which
gives run-time flexibility for configuration. In addition, the pipeline architecture is introduced to help
reduce computation latency among different operation units by boosting the hardware utilization rate.
The input data and weight matrix are placed at the input buffer and weight memory, respectively. They
are connected to the on-chip AXI bus and can be programmed by any master on the bus. All storage
elements, such as memory or buffer, are implemented by either registers or partitioned on-chip
memories with configurable parameters to increase the memory bandwidth.

Approximations of sigmoid and hyperbolic tangent functions have been presented in many
studies, as shown in [34–36]. In this work, the piecewise-linear (PWL) approximation method
is adopted to implement the hyperbolic tangent and sigmoid activation function because of
high approximation accuracy with the adjustable number of lines and simplicity of hardware
implementation. The primitive first-order function is line segment y = ax + b, and the whole
approximation is composed of a series of L-segments to represent the nonlinear activation function.
The a and b are PWL coefficients for each line segment. The output of the activation function is
generated by addressing the corresponding line segment for computation of the given input value
x. Thus, it simplifies the microarchitecture by utilizing primitive logic elements such as adder
and multiplier. The microarchitecture of the configurable PWL-approximated activation function
is demonstrated in Figure 7a. All the PWL coefficients of line segments are stored in the memory, and
the address generation unit (AGU) is designed to generate the associated address of PWL coefficients
for computation of the activation function in terms of basic multiply and add operations. Furthermore,
Figure 7b illustrates the PWL 16-segments sigmoid function, which is the approximation of the sigmoid.
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AGU
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Figure 7. Hardware implementation of PWL approximated function for hyperbolic tangent and
sigmoid. (a) Microarchitecture of the piecewise-linear (PWL) approximation function. AGU—address
generation unit. (b) Output comparison of the PWL 16-segments sigmoid and original sigmoid function.

As the neuronal signals are real numbers, the mainstream solution for implementation is the
use of floating-point arithmetic with a large dynamic range. However, half-precision and fixed-point
arithmetics are alternatives with a lower area and power consumption at the price of lower precision,
as compared to the floating-point format. Figure 8 shows the formats of IEEE-754 single-precision
floating-point (FP32), IEEE 754-2008 half-precision floating-point (FP16), and fixed-point Q-format.
Note that the fixed-point Q-format is a signed representation. The total bit-widths are composed of
integer bit-widths (IBW) and fractional bit-widths (FBW). However, the use of the fixed-point Q-format
requires the bit-width parameters for IBW and FBW to be determined, which are identified by the
BWID automatically in AHEAD.

Thanks to the inherent characteristics of biological neural networks in terms of error resilience,
the MLP can tolerate a fair degree of inaccuracy. Given this trade-off, the fixed-point Q-format is used
for the low-power architecture design and implementation to simplify the complicated arithmetic
operations for the improvement of the hardware performance metrics in terms of PPA.

Binary point

IEEE-754 32-bit Single-precision Floating Point Format

IEEE-754 16-bit Half-precision Floating Point Format

Fixed-point Q-Format

IBW FBW

Signed bit

Binary point

Exponent

Significand

1 8 bits 23 bits

1 5 bits 10 bits

Figure 8. Comparison of number systems. IBW—integer bit-widths; FBW—fractional bit-widths.
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4. Detailed Realization of the AHEAD Methodology

This section describes key implementation details of the AHEAD methodology, including three
major components: MLP hardware generation, automatic test bench generation (ATBG), and bit-width
identification (BWID). The complete implementation of the data and control flow with the building
blocks for the AHEAD methodology is detailed in Figure 9.

Figure 9 demonstrates the implementation of the AHEAD methodology shown earlier in Figure 5.
The userspace layer is the working environment of the proactive BMI developer for network model
training and performance validation after dataset collection from the BMI recalibration experiments.
For the generation of the energy-efficient MLP hardware accelerator, the metadata of the trained MLP
parameters were required, including weight files and golden datasets. For the three major components,
Stage 1 in the MLP hardware generation provides the reconstructed MLP hardware model for the
BWID loop, and Stage 2 generates the energy-efficient MLP hardware accelerator. The ATBG creates
the test bench with automatic bit-true simulation environments for BWID. The BWID controls the
whole bit-true simulation.

Stage 1

Stage 2

Auto Test Bench 
Generation(ATBG)

MLP DUT

BWS-IBW

BWS-FBW

BWO-FBW

BWID

Closure
No

Training Model

Weight Matrix 
Files

NN Parameters Golden Datasets

A
H

E
A

D
 M

et
h

o
d

o
lo

g
y

Userspace

Yes

MLP Hardware 
Generation

Energy-Efficient MLP 
Hardware Accelerator

Figure 9. Implementation of the AHEAD methodology.

4.1. MLP Hardware Generation

The MLP hardware generation plays a dual role in the AHEAD methodology. In Stage 1,
it generates the reconstructed fixed-point hardware model denoted as the MLP design under test
(DUT), but the values of the fixed-point bit-width parameters are undetermined. The generated output
is used for further identification of the fixed-point parameters from the given MLP model parameters.
Hence, the requirement to reconstruct the model is only the correctness of the MLP function. In Stage 2,
after the fixed-point parameters are identified, it is used by the microarchitecture synthesis to generate
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the final low-power hardware accelerator. Furthermore, it performs the fully parallel and pipelined
microarchitecture synthesis for all neural network layers, as illustrated in Figure 6. The final output is
the fixed-point hardware design in terms of either Verilog or VHDL code that users can integrate into
the top design of the proactive BMI control subsystem in the edge device.

The concept of design reuse is taken into account at the beginning of the implementation stage to
maximize the benefit of the hardware implementation in minimizing the design effort with risk, while
also improving design productivity. Therefore, the realization of the MLP hardware generation opts to
exploit the high-level synthesis methodology over low-level HDLs, which facilitates the achievement
of design reuse. It decouples the design for functionality from the design for the hardware architecture
to some extent compared to traditional HDLs techniques. In HLS, the function behavior of the design
specification is captured by the HLS C/C++ design file; though the specific details about underlying
hardware architecture and implementation choices are described by separate compiler directives files.
For example, the parallel and nonparallel versions of a given design requirement require two different
RTL implementation codes. However, when it comes to HLS, the HLS C/C++ implementation code
is the same and only the design constraint files are different. Thus, the MLP microarchitecture is
implemented in HLS by configurable PPA options per network layer, which encapsulates the HLS
compiler directives into easy-to-use commands, including parallel, pipeline, and memory partition.

4.2. Automatic Test Bench Generation (ATBG)

The purpose of the ATBG is to generate a bit-true simulation platform to iteratively compute and
track the output with the golden reference value in the golden datasets, which is a vital infrastructure
in the realization of the BWID loop. The block receives the following inputs. First, the MLP model
parameters are utilized to configure the HLS C/C++ test bench template for the generation of the test
bench with new signal nodes. Second, the dynamic range measurement functions are added to profile
the dynamic range of each signal node in order to pave the road for the following IBW determination
in BWID. Third, the weight matrix files and golden datasets are configured to create the stimulus
generator of the reference and scoreboard-checking models, respectively. Each simulation result is
recorded and maintained via the scoreboard for automatic comparison. Then, a sequencer is generated
to serve as a coordinator between these verification components, as mentioned above. Finally, the MLP
DUT is instantiated in the generated HLS C/C++ test bench for bit-true simulation.

4.3. Bit-Width Identification (BWID)

BWID aims to estimate the optimal IBW and FBW values subject to the minimum constraints
of AxEmin and bit-width values. The implementation is to realize Equation (9) by initiating the
fixed-point bit-true Simulation-in-the-Loop (SIL) on top of the generated test bench. It is assumed
that the delivered solution is a nonuniform bit-width in some sense. A nonuniform bit-width is used
to employ different bit-width values for each variable in the MLP algorithm instead of the same
bit-width value. It can further reduce the area resources and power consumption of the hardware
implementation.

For each signal node in the design, IBW is determined by dynamic range analysis, and FBW
is explored by sensitivity-based precision analysis. The whole flow of the BWID is shown in the
right of Figure 9. It consists of three steps: bit-width selection (BWS)-IBW, BWS-FBW, and bit-width
optimization (BWO)-FBW, as elaborated in the following.

BWS-IBW: The bit-width selection (BWS) is carried out to determine the value of IBW for each
signal node in the reconstructed MLP. The dynamic range analysis is conducted directly by running
the reconstructed bit-true fixed-point simulation in which the environment has been constructed from
the ATBG. The profiled IBW values are forwarded to the next step once the BWID is finished.

BWS-FBW: Sensitivity analysis is adopted for the determination of the FBW candidates for each
FBW in the BWS-FBW step. It is an iterative and sweeping process. There is only one FBW variable
that can be replaced with the target value under exploration, and all other variables are initialized
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with the perfect IBW and FBW value in each simulation run. The perfect xBW results from allocating
as large a fixed-point bit-width as possible to reduce the finite bit-width effect while dynamic range
profiling, the default of which is 20 bits. The minimum FBW value with the best decoding performance
against the golden datasets is the output of BWS-FBW for this FBW variable. Then, it iterates to the
next candidate in the FBW variable list. For example, if an MLP has five layers and five signal nodes
for each layer, there are a total of 25 FBW variables under analysis. For the sweeping experiments of
all FBW variables, if it ranges from 2 bits to 20 bits with a step size of 1 bit, 25*19 = 475 simulation runs
are required to perform the whole sensitivity analysis. In the end, the searched values serve as the
FBW candidates of the MLP as an initial solution of fixed-point parameters. Instead, the work employs
the binary search algorithm to reduce the number of simulation runs dramatically for speed-up.

BWO-FBW: The FBW values determined in the previous section are done so under the assumption
that other noncontrol signal nodes are perfect FBW, which is too optimistic. Hence, the strategy of
in-place bit-width optimization (BWO) for FBW is executed for the final adjustment. It utilizes
these FBW values explored in the BWS-FBW step as a set of coarse-grained initial values for
further minimization optimization via a stochastic local search method. In this work, the stochastic
hill-climbing algorithm is used. An objective function is used to indicate the quality of the parameters
under minimization optimization. The objective function is leveraged from the study [37] and modified
as follows:

fobj(X) = α(1− P) + (1− α)
AvgFBW
Per fFBW

, (10)

where α is a hyperparameter, X is the list of FBW parameters, P is decoding performance, AvgFBW is
the average FBW, and Per fFBW is the perfect FBW. The term (1 − P) is defined as the loss of accuracy
as compared with the golden outputs in the datasets. The idea for Equation (10) is to be able to find the
appropriate FBW parameters that make a trade-off balance between the loss of accuracy and minimum
average FBW.

Finally, the BWID ends when it reaches the closure, and the list of final IBW and FBW values are
forwarded to the microarchitecture synthesis in Stage 2 as the best fixed-point bit-width parameters
for the ultimate energy-efficient MLP hardware generation.

5. Experimental Results

In this section, the effectiveness of the AHEAD methodology is validated with two cases
from proactive BMI recalibration experiments that demonstrate the full range of the methodology’s
capabilities. The two case studies of the trained MLP decoders were generated after the BMI
recalibration. Table 1 shows the MLP parameters of the two cases. These MLP parameters, along with
the associated golden datasets, were used by the AHEAD methodology to produce the associated
fixed-point hardware accelerator. In addition, to evaluate the quantitative effectiveness, corresponding
MLP hardware accelerators with FP32 and FP16, which are based on the same MLP microarchitecture,
were implemented as benchmarks, respectively.

Table 1. Parameters of two MLP retrained models.

Model Parameters Case 1 Case 2

Number of Layer 3 4
Number of Neurons in Input Layer 800 768

Number of Neurons in Hidden Layer 1 20 (Sigmoid) 48 (Sigmoid)
Number of Neurons in Hidden Layer 2 - 20 (Sigmoid)
Number of Neurons in Output Layer 2 (Sigmoid) 2 (Sigmoid)

Total signal nodes for BWID 18 24

BWID—bit-width identification.
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For the BMI recalibration, the network training was conducted on a laptop with a simulation
environment created on mlpack [38], which is an open-source machine learning software library for
C++, built on top of the Armadillo C++ linear algebra library [39].

The proposed AHEAD methodology was implemented in Python and shell script on a laptop.
The laptop ran on Ubuntu 16.04 LTS OS, which was installed on an HP EliteBook 820 G3 machine
equipped with an Intel Core i5-6200U processor (two cores running at 2.3 GHz, 3 MB cache) and 8 GB
of RAM. The hardware generations were targeted at 100 MHz on Xilinx FPGAs (Xilinx Instrument, San
Jose, CA) using Xilinx Vivado HLS 2019.2 for high-level synthesis [40] and Vivado 2019.2 for synthesis
and physical implementation [41].

5.1. BMI Recalibration Case 1

For the parameters of Case 1, as shown in Table 1, the network structure consisted of three layers
with 800 neurons in the input layer, 20 neurons in the hidden layer, and two neurons in the output layer.
In addition, there are 6*3=18 signal nodes for BWID due to the the 3-layer MLP neural network, and
each layer has six signal nodes. The activation function of the hidden and output layer was the sigmoid
function. The target FPGA technology was xc7z020clg400-1 on the Xilinx PYNQ-Z1 development
board with a 100-MHz clock constraint. Table 2 illustrates the total execution time of Case 1. The total
generation time of the AHEAD methodology was less than 25 minutes, with the most time-consuming
steps being the BWS-FWL and BWO-FWL.

Table 2. Execution time of AHEAD methodology for Case 1.

Stage Steps Execution Time 1

BWS-IBW 00:15
BWID BWS-FBW 11:45

BWO-FBW 10:10

Microarchitecture synthesis energy-efficient hardware generation 1:20
1 Times are in mm:ss format. BWS—bit-width selection; BWO—bit-width optimization.

As shown in Table 3, the evaluation metrics include accuracy, performance, power, and area
(APPA). For the accuracy, the delivered design (results in nonuniform bit-widths with the average
bit-width of 7.47 bits) achieved a 0% loss of accuracy. The loss of accuracy is compared to the results of
the golden datasets provided by floating-point MLP model training.

Table 3. Accuracy, performance, power, and area (APPA) comparison of Case 1.

Metrics Type FP32 FP16 Fixed-Point

Accuracy Loss of Accuracy 0% 0% 0% 1

Max Frequency 103.7 MHz 105.6 MHz 106.2 MHz
Performance Max Throughput 30K 31K 125K

Max Latency 32.86 us 32.28 us 8.01 us

Power Dynamic Power 408 mW 246 mW 88 mW

Slice LUTs (Utilization %) 13,702 (25.76%) 6955 (13.07%) 2759 (5.19%)
Area Slice Registers (Utilization %) 15,543 (14.61%) 9059 (8.51%) 1610 (1.51%)

DSP48E1s (Utilization %) 103 (46.82%) 82 (37.27%) 21 (9.55%)
BRAMs (Utilization %) 42 (30%) 21.5 (15.36%) 8.5 (6.07%)

1 The resultant average bit-width is 7.47 bits. LUTs—look-up tables; BRAMs—block rams.

For performance benchmarking, the maximum frequency of the generated design was 106.2 MHz,
which is slightly higher than the FP32 and FP16 implementation. However, the latency archived 8.01 us
and delivered up to approximately 4X the speed in the inference engine execution in comparison with
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the FP32 and FP16 implementations. The throughput, which is defined as decoding times per second,
demonstrates the same trend. Furthermore, the power consumption was reduced by approximately
4.63X and 2.3X with respect to FP32 and FP16 implementations, respectively. The proposed work
achieves more significant results in performance and power than the other two benchmarks because of
the reduction of the bit-widths identified automatically by the BWID loop.

In the area usage comparison, the generated design also had the highest area efficiency among
these cases. The breakdown of the area consumption is as follows: 5.19% in slice LUTs, 1.51% in slice
registers, 9.55% in DSP48E1s, and 6.07% in on-chip block rams (BRAMs) in terms of utilization on
the target FPGA. Our design exhibits the following reduction in area utilization on FPGA: 9.29% in
BRAMs, 27.72% in DSP48E1s, 7% in slice registers, and 7.88% in slice LUTs, with the same loss of
accuracy compared to the FP16 implementation due to the lower bit representation. It is worth noting
that FP32 and FP16 implementations consume a significant number of DSP48E1s due to the use of
floating-point addition and multiplication arithmetic operations. Furthermore, the low hardware
resource utilization on FPGA implies that the proactive BMI edge device could accommodate a lot
more hardware functions, further raising its value.

5.2. BMI Recalibration Case 2

In order to evaluate the capability of scalability in terms of different network topologies and the
growth of neural networks sizes, the four-layer MLP network was used in Case 2, with 768 neurons in
the input layer, 48 neurons in hidden layer 1, 20 neurons in hidden layer 2, and 2 neurons in the output
layer, as indicated in Table 1. Apart from that, the MLP topology results in 6*4 = 24 signal nodes for
BWID. It targeted Xilinx xc7z030sbg485-1 FPGA on the PicoZed development board with the same
clock constraint since the FP32 implementation of Case 2 does not fit on the xc7z020clg400-1.

As can be seen in Table 4, the total hardware generation time took less than 35 minutes, with
the BWO-FWS occupying approximately 60% of the total execution time. The increase in execution
time is due to Case 2 having much more signal nodes for BWID, which increases the bit-width
exploration space.

Table 4. Execution time of AHEAD methodology for Case 2.

Stage Steps Execution Time 1

BWS-IBW 00:17
BWID BWS-FBW 09:57

BWO-FBW 20:40

Microarchitecture synthesis energy-efficient hardware generation 1:23
1 Times are in mm:ss format.

Table 5 presents the comparison of the APPA results of the generated implementation against the
FP32 and FP16 implementations under the same MLP microarchitecture. The resultant fixed-point
implementation had the average bit-width of 6.95 bits without loss of accuracy.

The latency and throughput of the resultant fixed-point implementation were about 4X faster than
the FP32 and FP16 implementations when compared with the performance. Besides, regarding the total
energy consumption, the resultant fixed-point design was approximately 5.97X more energy-efficient
than the FP32 implementation and used 2.73X less power than the FP16 implementation. This reveals
that the proactive BMI edge device can have a faster decoding time with lower power consumption,
which is crucial for portable proactive BMI edge devices.

Finally, the experimental results show that the resultant fixed-point implementation had
approximately a 9.86% reduction in slice LUTs, 10.68% less slice registers, a 48.25% reduction in
DSP48E1s, and 14.72% less BRAMs compared to the FP16 implementation. It is interesting to note that
the resultant fixed-point implementation used 15.33% in slice LUTs and 0.25% in DSP48E1s due to the
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resultant average bit-width being lower and causing the Xilinx synthesis engine to adjust the synthesis
strategy to use slice LUTs for logic function synthesis.

Table 5. APPA comparison of Case 2.

Metrics Type FP32 FP16 Fixed-Point

Accuracy Loss of Accuracy 0% 0% 0% 1

Max Frequency 104.5 MHz 108.8 MHz 114.6 MHz
Performance Max Throughput 29K 30K 124K

Max Latency 34.69 us 33.36 us 8.05 us

Power Dynamic Power 1,319 mW 604 mW 221 mW

Slice LUTs (Utilization %) 37,375 (47.55%) 19,801 (25.19%) 12,050 (15.33%)
Area Slice Registers (Utilization %) 41,118 (26.16%) 22,134 (14.08%) 5347 (3.4%)

DSP48E1s (Utilization %) 243 (60.75%) 194 (48.5%) 1 (0.25%)
BRAMs (Utilization %) 119 (44.91%) 60 (22.64%) 21 (7.92%)

1 The resultant average bit-width is 6.95 bits.

6. Discussion

The hurdles to the development of proactive BMI control edge devices on FPGA are achieving low
power consumption and meeting the reconfigurable requirement of the MLP hardware configuration
due to the need for portable edge devices and BMI recalibration, respectively. As indicated in the
literature [29], it takes much effort and resources from the hardware team to modify or even redesign
the low-power MLP hardware accelerator because of the induced specification change. Moreover, the
analysis of fixed-point bit-widths is a tedious and labor-intensive task [24,27] which must be executed
by either the software team or hardware team. Instead, the AHEAD methodology tackles the issue by
automating the complete fixed-point hardware analysis to digital design flow in order to reduce the
development efforts and time of redesign, reverification, and reimplementation. Thus, it can have a
rapid hardware update for the BMI edge devices on FPGA due to BMI recalibration.

This work aims to address the aforementioned design gap to create an autonomous design
methodology that analyzes the problems from a holistic view, including the recalibration needs
of proactive BMI experiments, the run change after network retraining, the low-power design,
and the hardware design flow concurrently. The experimental results in Section 5 indicate that
high-performance, low-power, fixed-point hardware accelerators can be generated automatically.
Moreover, the resultant fixed-point hardware consumes fewer area resources and less power while
retaining comparable results in terms of decoding performance, as compared with golden datasets.
This is achieved by taking advantage of the synergy between the BWID loop and design reuse in an
autonomous way. The design reuse is realized by configurable MLP hardware generation. In addition,
the configurable HLS template-based hardware accelerator serves as a platform for not only the BWID
loop but also low-power hardware generation. Thus, the significant advantages of the work include
boosting the design productivity and facilitating the generation process of the low-cost and low-power
hardware design for proactive BMI control edge devices on FPGA.

The energy-aware hardware generation was devised using the holistic cross-layer low-power
design methodology, which spans from the architecture to microarchitecture level. The use of the
fixed-point arithmetic also improves performance, as demonstrated. From the perspective of the
bit-width selection, the quantization of large-scale neural networks has been intensively studied [42–44].
However, previous works normally quantize all the layers uniformly. Moreover, prior methods require
domain knowledge of both machine learning and hardware architecture to explore where to retain
more bits to extract the low-level features in a specific layer. Compared with prior works, the proposed
AHEAD methodology employs the characteristic of a neural network in which different layers have
different redundancy to results in nonuniform bit-widths for different layers in terms of mixed
precision. Additionally, the BWID method, which is inspired by system identification, facilitates
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to automatically reconstruct the fixed-point hardware model to explore the appropriate bit-widths
configurations from given metadata in terms of MLP parameters instead of providing any C/C++
implementation code.

From the viewpoint of the software and FPGA hardware developers, our methodology acts as
an autonomous agent and frees up the resources in fixed-point precision analysis and low-power
hardware design. Furthermore, the proposed methodology does not pose any restriction in the choice
of neural network training software tools or programming language.

Future research will be dedicated to the inclusion of automatically efficient piecewise linear
approximation of an arbitrary nonlinear activation function, including the number of linear segments
and associated fixed-point coefficients in the AHEAD framework. Then, future work can extend
to the energy-efficient hardware generation of radial basis function (RBF) neural network and
echo state network (ESN) in AHEAD. In RBF, each neuron in the hidden layer employs different
Gaussian activation functions. RBF and ESN are vital methods in temporal nonlinear neural signal
processing, such as in biorobotics and biomedical engineering. Finally, to fully extend the AHEAD
methodology to other applications, the standard format of metadata could be designed to support
different neural networks.
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