15 research outputs found

    Assessing Vehicular Density Estimation Using Vehicle-to-Infrastructure Communications

    Full text link
    ©2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Vehicle density is one of the main metrics used for assessing the road traffic conditions. In this paper, we present a solution to estimate the density of vehicles that has been specially designed for Vehicular Networks. Our proposal allows Intelligent Transportation Systems to continuously estimate the vehicular density by accounting for the number of beacons received per Road Side Unit, as well as the roadmap topology. Simulation results indicate that our approach accurately estimates the vehicular density, and therefore automatic traffic controlling systems may use it to predict traffic jams and introduce countermeasures. Index Terms—Vehicular Networks, vehicular density estimation, Road Side Unit, VANETs.This work was partially supported by the Ministerio de Ciencia e Innovación, Spain, under Grant TIN2011-27543-C03-01.Barrachina Villalba, J.; Fogue, M.; Garrido, P.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). Assessing Vehicular Density Estimation Using Vehicle-to-Infrastructure Communications. IEEE. https://doi.org/10.1109/WoWMoM.2013.6583416

    Design and Evaluation of a Traffic Safety System based on Vehicular Networks for the Next Generation of Intelligent Vehicles

    Get PDF
    La integración de las tecnologías de las telecomunicaciones en el sector del automóvil permitirá a los vehículos intercambiar información mediante Redes Vehiculares, ofreciendo numerosas posibilidades. Esta tesis se centra en la mejora de la seguridad vial y la reducción de la siniestralidad mediante Sistemas Inteligentes de Transporte (ITS). El primer paso consiste en obtener una difusión eficiente de los mensajes de advertencia sobre situaciones potencialmente peligrosas. Hemos desarrollado un marco para simular el intercambio de mensajes entre vehículos, utilizado para proponer esquemas eficientes de difusión. También demostramos que la disposición de las calles tiene gran influencia sobre la eficiencia del proceso. Nuestros algoritmos de difusión son parte de una arquitectura más amplia (e-NOTIFY) capaz de detectar accidentes de tráfico e informar a los servicios de emergencia. El desarrollo y evaluación de un prototipo demostró la viabilidad del sistema y cómo podría ayudar a reducir el número de víctimas en carretera

    Topology-based broadcast schemes for urban scenarios targeting adverse density conditions

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works[EN] Research works regarding vehicular communications usually obviate assessing the proposals in scenarios including adverse vehicle densities, despite such scenarios are quite common in real urban environments. In this paper, we study the effect of these hostile conditions on the performance of different schemes providing warning message dissemination. We then propose the Junction Store and Forward (JSF) and the Nearest Junction Located (NJL) schemes, which were specially designed to be used in very low and very high density scenarios, respectively. Simulation results using real maps demonstrate how our proposed schemes are able to outperform existing warning message dissemination schemes in urban environments under adverse vehicle density conditions.This work was partially supported by the Ministerio de Ciencia e Innovacion´ , Spain, under Grant TIN2011-27543- C03-01, as well as the Government of Arag ´on and the European Social Fund (T91 Research Group).Sanguesa, JA.; Fogue, M.; Garrido, P.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM. (2014). Topology-based broadcast schemes for urban scenarios targeting adverse density conditions. En 2014 IEEE Wireless Communications and Networking Conference (WCNC). IEEE. 2564-2569. doi:10.1109/WCNC.2014.6952786S2564256

    Road side unit deployment: a density-based approach

    Full text link
    © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Currently, the number of vehicles increases every year, raising the probability of having accidents. When an accident occurs, wireless technologies enable vehicles to share warning messages with other vehicles by using vehicle to vehicle (V2V) communications, and with the emergency services by using vehicle to infrastructure (V2I) communications. Regarding vehicle to infrastructure communications, Road Side Units (RSUs) act similarly to wireless LAN access points, and can provide communications with the infrastructure. Since RSUs are usually very expensive to install, authorities limit their number, especially in suburbs and areas of sparse population, making RSUs a precious resource in vehicular environments. In this paper, we propose a Density-based Road Side Unit deployment policy (D-RSU), specially designed to obtain an efficient system with the lowest possible cost to alert emergency services in case of an accident. Our approach is based on deploying RSUs using an inverse proportion to the expected density of vehicles. The obtained results show how D-RSU is able to reduce the required number of RSUs, as well as the accident notification time.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2011-27543-C03-01, as well as by the Fundacion Universitaria Antonio Gargallo (FUAG), and the Caja de Ahorros de la Inmaculada (CAI).Barrachina, J.; Garrido, P.; Fogue, M.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). Road side unit deployment: a density-based approach. IEEE Intelligent Transportation Systems Magazine. 5(3):30-39. https://doi.org/10.1109/MITS.2013.2253159S30395

    Coherent, automatic address resolution for vehicular ad hoc networks

    Get PDF
    Published in: Int. J. of Ad Hoc and Ubiquitous Computing, 2017 Vol.25, No.3, pp.163 - 179. DOI: 10.1504/IJAHUC.2017.10001935The interest in vehicular communications has increased notably. In this paper, the use of the address resolution (AR) procedures is studied for vehicular ad hoc networks (VANETs). We analyse the poor performance of AR transactions in such networks and we present a new proposal called coherent, automatic address resolution (CAAR). Our approach inhibits the use of AR transactions and instead increases the usefulness of routing signalling to automatically match the IP and MAC addresses. Through extensive simulations in realistic VANET scenarios using the Estinet simulator, we compare our proposal CAAR to classical AR and to another of our proposals that enhances AR for mobile wireless networks, called AR+. In addition, we present a performance evaluation of the behaviour of CAAR, AR and AR+ with unicast traffic of a reporting service for VANETs. Results show that CAAR outperforms the other two solutions in terms of packet losses and furthermore, it does not introduce additional overhead.Postprint (published version

    On the Study of Vehicle Density in Intelligent Transportation Systems

    Get PDF
    Vehicular ad hoc networks (VANETs) are wireless communication networks which support cooperative driving among vehicles on the road. The specific characteristics of VANETs favor the development of attractive and challenging services and applications which rely on message exchanging among vehicles. These communication capabilities depend directly on the existence of nearby vehicles able to exchange information. Therefore, higher vehicle densities favor the communication among vehicles. However, vehicular communications are also strongly affected by the topology of the map (i.e., wireless signal could be attenuated due to the distance between the sender and receiver, and obstacles usually block signal transmission). In this paper, we study the influence of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR) and the Total Distance (TD), as the topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be able to accurately characterize the different urban scenarios and better validate their proposals related to cooperative Intelligent Transportation Systems based on vehicular communications

    Improving Roadside Unit deployment in vehicular networks by exploiting genetic algorithms

    Get PDF
    Vehicular networks make use of the Roadside Units (RSUs) to enhance the communication capabilities of the vehicles in order to forward control messages and/or to provide Internet access to vehicles, drivers and passengers. Unfortunately, within vehicular networks, the wireless signal propagation is mostly affected by buildings and other obstacles (e.g., urban fixtures), in particular when considering the IEEE 802.11p standard. Therefore, a crowded RSU deployment may be required to ensure vehicular communications within urban environments. Furthermore, some applications, notably those applications related to safety, require a fast and reliable warning data transmission to the emergency services and traffic authorities. However, communication is not always possible in vehicular environments due to the lack of connectivity even employing multiple hops. To overcome the signal propagation problem and delayed warning notification time issues, an effective, smart, cost-effective and all-purpose RSU deployment policy should be put into place. In this paper, we propose the genetic algorithm for roadside unit deployment (GARSUD) system, which uses a genetic algorithm that is capable of automatically providing an RSU deployment suitable for any given road map layout. Our simulation results show that GARSUD is able to reduce the warning notification time (the time required to inform emergency authorities in traffic danger situations) and to improve vehicular communication capabilities within different density scenarios and complexity layouts

    An evaluation methodology for reliable simulation based studies of routing protocols in VANETs

    Get PDF
    Vehicular Ad hoc networks (VANETs) have attracted much attention in the last decade. Many routing protocols have been proposed for VANETs and their performance is usually evaluated and compared using simulation-based studies. However, conducting reliable simulation studies is not a trivial task since many simulation parameters must be configured correctly. The selected parameters configuration can considerably affect the simulation results. This paper presents a methodology for conducting reliable simulations of routing protocols in VANETs urban scenarios. The proposed methodology includes relevant simulation aspects such as measurement period, selection of source-destination pairs for the communication traffic flows, number of simulations, mobility models based on road city maps, performance metrics and different analyses to evaluate routing protocols under different conditions. The proposed methodology is validated by comparing the simulation results obtained for Ad Hoc On-Demand Distance Vector (AODV) routing protocol with and without using the proposed methodology. The obtained results confirm that by using the proposed methodology, we can achieve more reliable simulations of VANETs routing protocols.Universidad de Sevilla. V Plan Propio de InvestigaciónMinisterio de Economía y Competitividad DPI2013-44278-

    Securing Warning Message Dissemination in VANETs using Cooperative Neighbor Position Verification

    Get PDF
    Efficient schemes for warning message dissemination in vehicular ad hoc networks (VANETs) use context information collected by vehicles about their neighbor nodes to guide the dissemination process. Based on this information, vehicles autonomously decide whether they are the most appropriate forwarding nodes. These schemes maximize their performance when all the vehicles advertise correct information about their positions, but position errors may drastically reduce the performance of the dissemination process. We present a proactive cooperative neighbor position verification protocol that detects nodes advertising false locations and selects optimal forwarders to mitigate the impact of adversarial users. We combine our mechanism with two warning dissemination schemes for VANETs and demonstrate how the latter can benefit from the use of our security scheme in the presence of malicious nodes trying to exploit known system vulnerabilities

    An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments

    Get PDF
    In Vehicular Networks, communication success usually depends on the density of vehicles, since a higher density allows having shorter and more reliable wireless links. Thus, knowing the density of vehicles in a vehicular communications environment is important, as better opportunities for wireless communication can show up. However, vehicle density is highly variable in time and space. This paper deals with the importance of predicting the density of vehicles in vehicular environments to take decisions for enhancing the dissemination of warning messages between vehicles. We propose a novel mechanism to estimate the vehicular density in urban environments. Our mechanism uses as input parameters the number of beacons received per vehicle, and the topological characteristics of the environment where the vehicles are located. Simulation results indicate that, unlike previous proposals solely based on the number of beacons received, our approach is able to accurately estimate the vehicular density, and therefore it could support more efficient dissemination protocols for vehicular environments, as well as improve previously proposed schemes.This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03-01, as well as by the Fundacion Universitaria Antonio Gargallo (FUAG), and the Caja de Ahorros de la Inmaculada (CAI).Sanguesa, JA.; Fogue, M.; Garrido, P.; Martinez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments. Sensors. 13(2):2399-2418. doi:10.3390/s130202399S2399241813
    corecore