4 research outputs found

    Random Access in Uplink Massive MIMO Systems: How to exploit asynchronicity and excess antennas

    Get PDF
    Massive MIMO systems, where the base stations are equipped with hundreds of antennas, are an attractive way to handle the rapid growth of data traffic. As the number of users increases, the initial access and handover in contemporary networks will be flooded by user collisions. In this work, we propose a random access procedure that resolves collisions and also performs timing, channel, and power estimation by simply utilizing the large number of antennas envisioned in massive MIMO systems and the inherent timing misalignments of uplink signals during network access and handover. Numerical results are used to validate the performance of the proposed solution under different settings. It turns out that the proposed solution can detect all collisions with a probability higher than 90%, at the same time providing reliable timing and channel estimates. Moreover, numerical results demonstrate that it is robust to overloaded situations.Comment: submitted to IEEE Globecom 2016, Washington, DC US

    Random Access in Massive MIMO by Exploiting Timing Offsets and Excess Antennas

    Get PDF
    Massive MIMO systems, where base stations are equipped with hundreds of antennas, are an attractive way to handle the rapid growth of data traffic. As the number of user equipments (UEs) increases, the initial access and handover in contemporary networks will be flooded by user collisions. In this paper, a random access protocol is proposed that resolves collisions and performs timing estimation by simply utilizing the large number of antennas envisioned in Massive MIMO networks. UEs entering the network perform spreading in both time and frequency domains, and their timing offsets are estimated at the base station in closed-form using a subspace decomposition approach. This information is used to compute channel estimates that are subsequently employed by the base station to communicate with the detected UEs. The favorable propagation conditions of Massive MIMO suppress interference among UEs whereas the inherent timing misalignments improve the detection capabilities of the protocol. Numerical results are used to validate the performance of the proposed procedure in cellular networks under uncorrelated and correlated fading channels. With 2.5×1032.5\times10^3 UEs that may simultaneously become active with probability 1\% and a total of 1616 frequency-time codes (in a given random access block), it turns out that, with 100100 antennas, the proposed procedure successfully detects a given UE with probability 75\% while providing reliable timing estimates.Comment: 30 pages, 6 figures, 1 table, submitted to Transactions on Communication

    Performance analysis of contending customer equipment in wireless networks

    Get PDF
    NoInitial ranging is the primary and important process in wireless networks for the customer premise equipments (CPEs) to access the network and establish their connections with the base station. Contention may occur during the initial ranging process. To avoid contention, the mandatory solution defined in the standards is based on a truncated binary exponential random backoff (TBERB) algorithm with a fixed initial contention window size. However, the TBERB algorithm does not take into account the possibility that the number of contended CPEs may change dynamically over time, leading to a dynamically changing collision probability. To the best of our knowledge, this is the first attempt to address this issue. There are three major contributions presented in this paper. First, a comprehensive analysis of initial ranging mechanisms in wireless networks is provided and initial ranging request success probability is derived based on number of contending CPEs and the initial contention window size. Second, the average ranging success delay is derived for the maximum backoff stages. It is found that the collision probability is highly dependent on the size of the initial contention window and the number of contending CPEs. To achieve the higher success probability or to reduce the collision probability among CPEs, the BS needs to adjust the initial contention window size. To keep the collision probability at a specific value for the particular number of contending CPEs, it is necessary for the BS to schedule the required size of the initial contention window to facilitate the maximum number of CPEs to establish their connections with reasonable delay. In our third contribution, the initial window size is optimized to provide the least upper bound that meets the collision probability constraint for a particular number of contending CPEs. The numerical results validate our analysis
    corecore