38 research outputs found

    A random map implementation of implicit filters

    Full text link
    Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto-Sivashinski equation with observations that are sparse in both space and time

    Path integral formulation of stochastic optimal control with generalized costs

    Full text link
    Path integral control solves a class of stochastic optimal control problems with a Monte Carlo (MC) method for an associated Hamilton-Jacobi-Bellman (HJB) equation. The MC approach avoids the need for a global grid of the domain of the HJB equation and, therefore, path integral control is in principle applicable to control problems of moderate to large dimension. The class of problems path integral control can solve, however, is defined by requirements on the cost function, the noise covariance matrix and the control input matrix. We relax the requirements on the cost function by introducing a new state that represents an augmented running cost. In our new formulation the cost function can contain stochastic integral terms and linear control costs, which are important in applications in engineering, economics and finance. We find an efficient numerical implementation of our grid-free MC approach and demonstrate its performance and usefulness in examples from hierarchical electric load management. The dimension of one of our examples is large enough to make classical grid-based HJB solvers impractical

    Limitations of polynomial chaos expansions in the Bayesian solution of inverse problems

    Full text link
    Polynomial chaos expansions are used to reduce the computational cost in the Bayesian solutions of inverse problems by creating a surrogate posterior that can be evaluated inexpensively. We show, by analysis and example, that when the data contain significant information beyond what is assumed in the prior, the surrogate posterior can be very different from the posterior, and the resulting estimates become inaccurate. One can improve the accuracy by adaptively increasing the order of the polynomial chaos, but the cost may increase too fast for this to be cost effective compared to Monte Carlo sampling without a surrogate posterior

    Parameter estimation by implicit sampling

    Full text link
    Implicit sampling is a weighted sampling method that is used in data assimilation, where one sequentially updates estimates of the state of a stochastic model based on a stream of noisy or incomplete data. Here we describe how to use implicit sampling in parameter estimation problems, where the goal is to find parameters of a numerical model, e.g.~a partial differential equation (PDE), such that the output of the numerical model is compatible with (noisy) data. We use the Bayesian approach to parameter estimation, in which a posterior probability density describes the probability of the parameter conditioned on data and compute an empirical estimate of this posterior with implicit sampling. Our approach generates independent samples, so that some of the practical difficulties one encounters with Markov Chain Monte Carlo methods, e.g.~burn-in time or correlations among dependent samples, are avoided. We describe a new implementation of implicit sampling for parameter estimation problems that makes use of multiple grids (coarse to fine) and BFGS optimization coupled to adjoint equations for the required gradient calculations. The implementation is "dimension independent", in the sense that a well-defined finite dimensional subspace is sampled as the mesh used for discretization of the PDE is refined. We illustrate the algorithm with an example where we estimate a diffusion coefficient in an elliptic equation from sparse and noisy pressure measurements. In the example, dimension\slash mesh-independence is achieved via Karhunen-Lo\`{e}ve expansions

    Small-noise analysis and symmetrization of implicit Monte Carlo samplers

    Full text link
    Implicit samplers are algorithms for producing independent, weighted samples from multi-variate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algo- rithms that leads to improved (implicit) sampling schemes at a rel- atively small additional cost. Computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems

    Performance bounds for particle filters using the optimal proposal

    Get PDF
    Particle filters may suffer from degeneracy of the particle weights. For the simplest "bootstrap" filter, it is known that avoiding degeneracy in large systems requires that the ensemble size must increase exponentially with the variance of the observation log-likelihood. The present article shows first that a similar result applies to particle filters using sequential importance sampling and the optimal proposal distribution and, second, that the optimal proposal yields minimal degeneracy when compared to any other proposal distribution that depends only on the previous state and the most recent observations. Thus, the optimal proposal provides performance bounds for filters using sequential importance sampling and any such proposal. An example with independent and identically distributed degrees of freedom illustrates both the need for exponentially large ensemble size with the optimal proposal as the system dimension increases and the potentially dramatic advantages of the optimal proposal relative to simpler proposals. Those advantages depend crucially on the magnitude of the system noise

    Small-Noise Analysis and Symmetrization of Implicit Monte Carlo Samplers

    Get PDF
    Implicit samplers are algorithms for producing independent, weighted samples from multivariate probability distributions. These are often applied in Bayesian data assimilation algorithms. We use Laplace asymptotic expansions to analyze two implicit samplers in the small noise regime. Our analysis suggests a symmetrization of the algorithms that leads to improved implicit sampling schemes at a relatively small additional cost. Computational experiments confirm the theory and show that symmetrization is effective for small noise sampling problems.© 2016 Wiley Periodicals, Inc

    Symmetrized importance samplers for stochastic differential equations

    Get PDF
    We study a class of importance sampling methods for stochastic differential equations (SDEs). A small-noise analysis is performed, and the results suggest that a simple symmetrization procedure can significantly improve the performance of our importance sampling schemes when the noise is not too large. We demonstrate that this is indeed the case for a number of linear and nonlinear examples. Potential applications, e.g., data assimilation, are discussed.Comment: Added brief discussion of Hamilton-Jacobi equation. Also made various minor corrections. To appear in Communciations in Applied Mathematics and Computational Scienc
    corecore