148 research outputs found

    Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

    Get PDF
    This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters

    Queueing Networks for Vertical Handover

    Get PDF
    PhDIt is widely expected that next-generation wireless communication systems will be heterogeneous, integrating a wide variety of wireless access networks. Of particular interest recently is a mix of cellular networks (GSM/GPRS and WCDMA) and wireless local area networks (WLANs) to provide complementary features in terms of coverage, capacity and mobility support. If cellular/ WLAN interworking is to be the basis for a heterogeneous network then the analysis of complex handover traffic rates in the system (especially vertical handover) is one of the most essential issues to be considered. This thesis describes the application of queueing-network theory to the modelling of this heterogeneous wireless overlay system. A network of queues (or queueing network) is a powerful mathematical tool in the performance evaluation of many large-scale engineering systems. It has been used in the modelling of hierarchically structured cellular wireless networks with much success, including queueing network modelling in the study of cellular/ WLAN interworking systems. In the process of queueing network modelling, obtaining the network topology of a system is usually the first step in the construction of a good model, but this topology analysis has never before been used in the handover traffic study in heterogeneous overlay wireless networks. In this thesis, a new topology scheme to facilitate the analysis of handover traffic is proposed. The structural similarity between hierarchical cellular structure and heterogeneous wireless overlay networks is also compared. By replacing the microcells with WLANs in a hierarchical structure, the interworking system is modelled as an open network of Erlang loss systems and with the new topology, the performance measures of blocking probabilities and dropping probabilities can be determined. Both homogeneous and non-homogeneous traffic have been considered, circuit switched and packet-switched. Example scenarios have been used to validate the models, the numerical results showing clear agreement with the known validation scenarios

    4. generációs mobil rendszerek kutatása = Research on 4-th Generation Mobile Systems

    Get PDF
    A 3G mobil rendszerek szabványosítása a végéhez közeledik, legalábbis a meghatározó képességek tekintetében. Ezért létfontosságú azon technikák, eljárások vizsgálata, melyek a következő, 4G rendszerekben meghatározó szerepet töltenek majd be. Több ilyen kutatási irányvonal is létezik, ezek közül projektünkben a fontosabbakra koncentráltunk. A következőben felsoroljuk a kutatott területeket, és röviden összegezzük az elért eredményeket. Szórt spektrumú rendszerek Kifejlesztettünk egy új, rádiós interfészen alkalmazható hívásengedélyezési eljárást. Szimulációs vizsgálatokkal támasztottuk alá a megoldás hatékonyságát. A projektben kutatóként résztvevő Jeney Gábor sikeresen megvédte Ph.D. disszertációját neurális hálózatokra épülő többfelhasználós detekciós technikák témában. Az elért eredmények Imre Sándor MTA doktori disszertációjába is beépültek. IP alkalmazása mobil rendszerekben Továbbfejlesztettük, teszteltük és általánosítottuk a projekt keretében megalkotott új, gyűrű alapú topológiára épülő, a jelenleginél nagyobb megbízhatóságú IP alapú hozzáférési koncepciót. A témakörben Szalay Máté Ph.D. disszertációja már a nyilvános védésig jutott. Kvantum-informatikai módszerek alkalmazása 3G/4G detekcióra Új, kvantum-informatikai elvekre épülő többfelhasználós detekciós eljárást dolgoztunk ki. Ehhez új kvantum alapú algoritmusokat is kifejlesztettünk. Az eredményeket nemzetközi folyóiratok mellett egy saját könyvben is publikáltuk. | The project consists of three main research directions. Spread spectrum systems: we developed a new call admission control method for 3G air interfaces. Project member Gabor Jeney obtained the Ph.D. degree and project leader Sandor Imre submitted his DSc theses from this area. Application of IP in mobile systems: A ring-based reliable IP mobility mobile access concept and corresponding protocols have been developed. Project member Máté Szalay submitted his Ph.D. theses from this field. Quantum computing based solutions in 3G/4G detection: Quantum computing based multiuser detection algorithm was developed. Based on the results on this field a book was published at Wiley entitled: 'Quantum Computing and Communications - an engineering approach'

    Network capacity and quality of service management in F/TDMA cellular systems

    Get PDF
    As a consequence of rapidly increasing mobile communications, efficient utilization of the scarce radio resources becomes one of the most important issues in the system evolution. Increase of the system capacity has been investigated in two ways. The first way is to replace the fixed channel allocation (FCA), with the more efficient dynamic channel allocation (DCA). The second way is to utilize those traffic channels not being used by voice services to provide a packet data service, like general packet radio service (GPRS) and cellular digital packet data (CDPD). In this thesis, the author have proposed two DCA schemes and developed an analysis method to investigate the GPRS impact on the GSM voice services. In addition, the GPRS downlink performance is investigated and some guidelines or principles for GPRS network planning have been presented. In the proposed DCA algorithms, the effect of the channel allocation on existing calls is considered by the evaluation of the call outage rate or a cost function. In the first proposed algorithm, in order to evaluate the call outage caused by those candidate channels, a method of estimating the average signal to interference ratio (SIR) variation of on-going calls due to the assignment of a coming call has been developed. This algorithm improves the capacity or QoS performance compared with the first available and maximum SIR schemes. In the second proposed algorithm, a cost function has been introduced to estimate the cost of the assignment of a candidate channel. The performance evaluation shows that by using the cost-function for channel pre-selection the problem of high intracell handover rate for the first available based scheme can be decreased to an adequate level and the time of the call set-up can be shortened. An analysis method to calculate the outage probability of the GSM-GPRS network for both the non-frequency hopping and frequency hopping systems has been presented to investigate the GPRS impact on GSM voice services. It is found that: GPRS affects more on the QoS of voice services of the network with small reuse factor; GPRS will reduce the cell service area, but the reduction percentage of the cell service area for the system with small reuse factor is higher than that for the system with large reuse factor; those channels unused by voice services might not all be used for carrying GPRS traffic; the number of unused voice channels which can be allocated to GPRS depends on the difference between the outage level of the existing GSM network and the maximum acceptable level. From final part of this work, it is found that: GPRS capacity performance in downlink is quite different from that in uplink because of the difference in the transmission protocols; multiple-slot allocation does not show a gain of the mean throughput neither a decrease on the mean delay compared to single slot allocation. This result is different from the result of the uplink performance. In multi-rate services, the multi-slot services significantly increase the delay of the single-slot service, consequently, a control of the multi-slot services is needed.reviewe

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    Analytical modeling of HSUPA-enabled UMTS networks for capacity planning

    Get PDF
    In recent years, mobile communication networks have experienced significant evolution. The 3G mobile communication system, UMTS, employs WCDMA as the air interface standard, which leads to quite different mobile network planning and dimensioning processes compared with 2G systems. The UMTS system capacity is limited by the received interference at NodeBs due to the unique features of WCDMA, which is denoted as `soft capacity'. Consequently, the key challenge in UMTS radio network planning has been shifted from channel allocation in the channelized 2G systems to blocking and outage probabilities computation under the `cell breathing' effects which are due to the relationship between network coverage and capacity. The interference characterization, especially for the other-cell interference, is one of the most important components in 3G mobile networks planning. This monograph firstly investigates the system behavior in the operation of UMTS uplink, and develops the analytic techniques to model interference and system load as fully-characterized random variables, which can be directly applicable to the performance modeling of such networks. When the analysis progresses from single-cell scenario to multi-cell scenario, as the target SIR oriented power control mechanism is employed for maximum capacity, more sophisticated system operation, `feedback behavior', has emerged, as the interference levels at different cells depend on each other. Such behaviors are also captured into the constructed interference model by iterative and approximation approaches. The models are then extended to cater for the features of the newly introduced HSUPA, which provides enhanced dedicated channels for the packet switched data services such that much higher bandwidth can be achieved for best-effort elastic traffic, which allows network operators to cope with the coexistence of both circuit-switched and packet-switched traffic and guarantee the QoS requirements. During the derivation, we consider various propagation models, traffic models, resource allocation schemes for many possible scenarios, each of which may lead to different analytical models. All the suggested models are validated with either Monte-Carlo simulations or discrete event simulations, where excellent matches between results are always achieved. Furthermore, this monograph studies the optimization-based resource allocation strategies in the UMTS uplink with integrated QoS/best-effort traffic. Optimization techniques, both linear-programming based and non-linear-programming based, are used to determine how much resource should be assigned to each enhanced uplink user in the multi-cell environment where each NodeB possesses full knowledge of the whole network. The system performance under such resource allocation schemes are analyzed and compared via Monte-Carlo simulations, which verifies that the proposed framework may serve as a good estimation and optimal reference to study how systems perform for network operators

    A source-destination based dynamic pricing scheme to optimize resource utilization in heterogeneous wireless networks

    Get PDF
    Mobile wireless resources demand is rapidly growing due to the proliferation of bandwidth-hungry mobile devices and applications. This has resulted in congestion in mobile wireless networks (MWN) especially during the peak hours when user traffic can be as high as tenfold the average traffic. Mobile network operators (MNOs) have been trying to solve this problem in various ways. First, MNOs have tried to expand the network capacity but have still been unable to meet the peak hour demand. Focus has then shifted to economic and behavioral mechanisms. The widely used of these economic mechanisms is dynamic pricing which varies the MWN resources' price according to the congestion level in the MWN. This encourages users to shift their non-critical traffic from the busy hour, when the MWN is congested, to off-peak hours when the network is under-utilized. As a result, congestion of the MWN during the peak hours is reduced. At the same time, the MWN utilization during the off-peak hours is also increased. The current dynamic pricing schemes, however, only consider the congestion level in the call-originating cell and neglect the call-destination cell when computing the dynamic price. Due to this feature, we refer the current dynamic pricing schemes as source–based dynamic pricing (SDP) schemes in this work. The main problem with these schemes is that, when the majority of the users in a congested cell are callees, dynamic pricing is ineffective because callers and not callees pay for network services, and resources used by callers and callees are the same for symmetric services. For example, application of dynamic pricing does not deter a callee located in a congested cell from receiving a call, which originates from a caller located in an uncongested cell. Also, when the distribution of prospective callees is higher than that of callers in an underutilized cell, SDP schemes are ineffective as callees do not pay for a call and therefore low discounts do not entice them to increase utilization. In this distribution, dynamic pricing entices prospective callers to make calls but since their distribution is low, the MWN resource utilization does not increase by any significant margin. To address these problems, we have developed a source-destination based dynamic pricing (SDBDP) scheme, which considers congestion levels in both the call-originating and calldestination cells to compute the dynamic price to be paid by a caller. This SDBDP scheme is integrated with a load-based joint call admission control (JCAC) algorithm for admitting incoming service requests in to the least utilized radio access technology (RAT). The load-based JCAC algorithm achieves uniform traffic distribution in the heterogeneous wireless network (HWN). To test the SDBDP scheme, we have developed an analytical model based on M/M/m/m queuing model. New or handoff service requests, arriving when all the RATs in the HWN are fully utilized, lead to call blocking for new calls and call dropping for handoff calls. The call blocking probability, call dropping probability and percentage MWN utilization are used as the performance metrics in evaluating the SDBDP scheme. An exponential demand model is used to approximate the users' response to the presented dynamic price. The exponential demand model captures both the price elasticity of demand and the demand shift constant for different users. The matrix laboratory (MATLAB) tool has been used to carry out the numerical simulations. An evaluation scenario consisting of four groups of co-located cells each with three RATs is used. Both SDP and the developed SDBDP schemes have been subjected under the evaluation scenario. Simulation results show that the developed SDBDP scheme reduces both the new call blocking and handoff call dropping probabilities during the peak hours, for all callercallee distributions. On the other hand, the current SDP scheme only reduces new call blocking and handoff call dropping probabilities only under some caller –callee distributions (When the callers were the majority in the HWN). Also, the SDBDP scheme increases the percentage MWN utilization during the off-peak for all the caller-callee distributions in the HWN. On the other hand, the SDP scheme is found to increase the percentage MWN utilization only when the distribution of callers is higher than that of callees in the HWN. From analyzing the simulations results, we conclude that the SDBDP scheme achieves better congestion control and MWN resource utilization than the existing SDP schemes, under arbitrary caller-callee distribution

    Scheduling in CDMA-based wireless packet networks.

    Get PDF
    Thesis (M.Sc. Eng.)-University of Natal, Durban, 2003.Modern networks carry a wide range of different data types, each with its own individual requirements. The scheduler plays an important role in enabling a network to meet all these requirements. In wired networks a large amount of research has been performed on various schedulers, most of which belong to the family of General Processor Sharing (GPS) schedulers. In this dissertation we briefly discuss the work that has been done on a range of wired schedulers, which all attempt to differentiate between heterogeneous traffic. In the world of wireless communications the scheduler plays a very important role, since it can take channel conditions into account to further improve the performance of the network. The main focus of this dissertation is to introduce schedulers, which attempt to meet the Quality of Service requirements of various data types in a wireless environment. Examples of schedulers that take channel conditions into account are the Modified Largest Weighted Delay First (M-LWDF), as well as a new scheduler introduced in this dissertation, known as the Wireless Fair Largest Weighted Delay First (WF-LWDF) algorithm. The two schemes are studied in detail and a comparison of their throughput, delay, power, and packet dropping performance is made through a range of simulations. The results are compared to the performance offour other schedulers. The fairness ofM-LWDF and WFLWDF is determined through simulations. The throughput results are used to establish Chernoff bounds of the fairness of these two algorithms. Finally, a summary is given of the published delay bounds of various schedulers, and the tightness of the resultant bounds is discussed
    corecore