19,104 research outputs found

    A quality of service framework for adaptive and dependable large scale system-of-systems

    Get PDF
    There is growing recognition within industry that for system growth to be sustainable, the way in which existing assets are used must be improved. Future systems are being developed with a desire for dynamic behaviour and a requirement for dependability at mission critical and safety critical levels. These levels of criticality require predictable performance and as such have traditionally not been associated with adaptive systems. The software architecture proposed for such systems is based around a publish/subscribe model, an approach that, while adaptive, does not typically support critical levels of performance. There is, however, the scope for dependability within such architectures through the use of Quality of Service (QoS) methods. QoS is used in systems where the distribution of resources cannot be decided at design time. A QoS based framework is proposed for providing adaptive and dependable behaviour for future large-scale system-of-systems. Initial simulation results are presented to demonstrate the benefits of QoS

    A quality of service framework for adaptive and dependable large scale system-of-systems

    Get PDF
    There is growing recognition within industry that for system growth to be sustainable, the way in which existing assets are used must be improved. Future systems are being developed with a desire for dynamic behaviour and a requirement for dependability at mission critical and safety critical levels. These levels of criticality require predictable performance and as such have traditionally not been associated with adaptive systems. The software architecture proposed for such systems is based around a publish/subscribe model, an approach that, while adaptive, does not typically support critical levels of performance. There is, however, the scope for dependability within such architectures through the use of Quality of Service (QoS) methods. QoS is used in systems where the distribution of resources cannot be decided at design time. A QoS based framework is proposed for providing adaptive and dependable behaviour for future large-scale system-of-systems. Initial simulation results are presented to demonstrate the benefits of QoS

    Robustness-Driven Resilience Evaluation of Self-Adaptive Software Systems

    Get PDF
    An increasingly important requirement for certain classes of software-intensive systems is the ability to self-adapt their structure and behavior at run-time when reacting to changes that may occur to the system, its environment, or its goals. A major challenge related to self-adaptive software systems is the ability to provide assurances of their resilience when facing changes. Since in these systems, the components that act as controllers of a target system incorporate highly complex software, there is the need to analyze the impact that controller failures might have on the services delivered by the system. In this paper, we present a novel approach for evaluating the resilience of self-adaptive software systems by applying robustness testing techniques to the controller to uncover failures that can affect system resilience. The approach for evaluating resilience, which is based on probabilistic model checking, quantifies the probability of satisfaction of system properties when the target system is subject to controller failures. The feasibility of the proposed approach is evaluated in the context of an industrial middleware system used to monitor and manage highly populated networks of devices, which was implemented using the Rainbow framework for architecture-based self-adaptation

    Adaptive service discovery on service-oriented and spontaneous sensor systems

    Get PDF
    Service-oriented architecture, Spontaneous networks, Self-organisation, Self-configuration, Sensor systems, Social patternsNatural and man-made disasters can significantly impact both people and environments. Enhanced effect can be achieved through dynamic networking of people, systems and procedures and seamless integration of them to fulfil mission objectives with service-oriented sensor systems. However, the benefits of integration of services will not be realised unless we have a dependable method to discover all required services in dynamic environments. In this paper, we propose an Adaptive and Efficient Peer-to-peer Search (AEPS) approach for dependable service integration on service-oriented architecture based on a number of social behaviour patterns. In the AEPS network, the networked nodes can autonomously support and co-operate with each other in a peer-to-peer (P2P) manner to quickly discover and self-configure any services available on the disaster area and deliver a real-time capability by self-organising themselves in spontaneous groups to provide higher flexibility and adaptability for disaster monitoring and relief
    • …
    corecore