

A Quality of Service Framework for Adaptive and

Dependable Large Scale System-of-Systems

Peter Bull

Department of Computer

Science

Loughborough University

Loughborough, UK
p.bull@lboro.ac.uk

Alan Grigg

BAE Systems,

SEIC

Loughborough, UK
a.grigg@lboro.ac.uk

Lin Guan

Department of Computer

Science

Loughborough University

Loughborough, UK
l.guan@lboro.ac.uk

Iain Phillips

Department of Computer

Science

Loughborough University

Loughborough, UK
i.w.phillips@lboro.ac.uk

 Abstract - There is growing recognition within

industry that for system growth to be sustainable, the way

in which existing assets are used must be improved. Future

systems are being developed with a desire for dynamic

behaviour and a requirement for dependability at mission

critical and safety critical levels. These levels of criticality

require predictable performance and as such have

traditionally not been associated with adaptive systems.

 The software architecture proposed for such systems

is based around a publish/subscribe model, an approach

that, while adaptive, does not typically support critical

levels of performance. There is, however, the scope for

dependability within such architectures through the use of

Quality of Service (QoS) methods. QoS is used in systems

where the distribution of resources cannot be decided at

design time. A QoS based framework is proposed for

providing adaptive and dependable behaviour for future

large-scale system-of-systems. Initial simulation results are

presented to demonstrate the benefits of QoS.

Keywords: Adaptive Systems, Network Reliability,

Publish/Subscribe, Quality of Service.

1 Introduction

 There is currently much UK government and industry

thinking towards the integration of complex computer-

based systems, including those in the military domain.

Such systems include applications of high safety criticality

and must, therefore, be capable of providing the necessary

predetermined levels of performance. Current systems

requiring such assurances of performance are mostly based

on parameters and system states decided during design

time, thus allowing a predictable estimate of performance.

The ability to dynamically reconfigure systems at run-time

would, however, lead to increased flexibility and

adaptability. These properties would allow for the better

use of existing assets and more sustainable expansion of

system functionality.

 In section 2 of this paper the software architectural

needs of future large-scale systems are examined. Sections

3 and 4 investigate how through the choice of software

architecture and use of Quality of Service methods a

framework can be developed that supports the objectives of

both adaptability and dependability. Section 5 concludes

by detailing initial simulation results from this QoS

negotiation framework.

2 Future large-scale systems

 The following two system-of-systems are examples of

projects that illustrate the objectives driving this work and

show how they apply to both the higher level integration of

platforms and lower level component integration.

2.1 Network Enabled Capability

 Network Enabled Capability (NEC) [1], illustrated in

Figure 1, is a UK Ministry of Defence (MoD) project aimed

at the integration and collaboration of assets through the

exploitation of modern networking technologies. At a basic

level this refers to the networking of every vehicle, database

or sensor, etc. forming a system-of-systems that can then be

exploited to achieve new or enhanced functionality, only

possible as the product of such collaboration.

Figure 1. Illustration of an NEC system [2].

 Research conducted into NEC, such as that produced

by the NECTISE (Network Enabled Capability Through

Innovative Systems Engineering) project [3], places its

focus on Service Oriented Architectures (SOA) as a

potential solution to the software architecture needs of

NEC, while Wang et al. [4] suggest the use of the Data-

Centric Publish/Subscribe architecture, the Data

Distribution Service (DDS).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BCU Open Access

https://core.ac.uk/display/141207166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2.2 Integrated Modular Avionics

 The Integrated Modular Avionics (IMA) architecture,

[5] is a safety critical, reconfigurable, modular approach to

avionics systems used in both civil and military domains.

 The IMA software architecture [6] is comprised of

“Application”, “Operating System” and “Hardware” layers,

forming a three layer model. The separation of the

architecture into these layers allows for abstraction and

transparency between components, be it hardware or

software based. The abstraction found within this

architecture aids the assurance of safety critical operation

through the spatial and temporal partitioning of elements.

 Where the military IMA architecture concept [7]

differs to the civil is in the addition of blueprints to the

model. Blueprint documents are used to configure the

system state (e.g. communication channels and which

applications are running) and switch it between operational

modes (e.g. standard flight and enemy engagement). These

documents are currently created during design time due to

the extensive verification and validation required to ensure

their correctness. This means that in practice only a small

number of blueprints exist for each aircraft and as such the

system is only capable of switching between these few

predefined configurations.

 Investigative work, detailed by Ford et al. [8], is being

conducted into how IMA could be made more adaptive

while maintaining safety critical levels of performance.

This includes an assessment of open software architectural

approaches and particular focus is given to the Data

Distribution Service (DDS) with future work said to focus

on its use within highly dependable systems.

3 Publish/Subscribe architectural

approaches

 The example systems in section 2 both suggest the use

of a publish/subscribe software architecture model as a

means of supporting adaptive behaviours. The two

approaches suggested for these are Service Oriented

Architectures (SOA) and Data-Centric Publish/Subscribe

(DCPS). These approaches differ in that SOA places focus

on the invocation of functionality whereas DCPS is centred

on the sharing of data. This paper shall focus on DCPS due

to the availability of mature open standards. Particular

consideration must be given to the support of dependability

within such architectures.

3.1 Data Centric Publish Subscribe

 DCPS architectures follow the publish/subscribe

model closely. This model, as discussed by Gehlot et al.

[10], has the following stages:

1. A publisher announces itself to the middleware,

and its details are recorded.

2. A subscriber requests the fulfilment of a service

from the middleware.

3. Wherever possible the middleware matches this

request to the details of a publisher held within its

records and replies with the location and interface

details of this publisher.

4. The subscriber contacts the publisher to request

service fulfilment.

 The Data Distribution Service (DDS), as described by

Pardo-Castellote [9], is an Object Management Group

(OMG) standard for a real-time DCPS system architecture.

 A client application places a subscription to a topic of

information (for example temperature readings or GPS

coordinates), which is then matched to a publisher capable

of dispersing data relevant to that topic.

 Each node within the system maintains a record of the

available publishers and the subscriber information relevant

to them. Data is separated into domains in order to

minimise the amount of data held by each node and

increase scalability.

3.2 Publish/Subscribe and Quality of Service

 Within an adaptive system where system elements join

and leave in an ad-hoc manner it will not always be

possible to provision adequate resources for all situations

and therefore, periods of high load will occur causing

unpredictable and varying delays. This can create serious

problems for delay sensitive applications. It is therefore

necessary to find some form of compromise with regards to

resource utilisation. Quality of Service (QoS) is a blanket

term used to describe the specification and process of

ensuring an acceptable level of performance between two

parties.

 DDS makes use of QoS methods during the set up of

data provision. Data readers declare their interest in a topic

and the associated QoS properties that they require. The

data writer then checks for compatibility between this

request and the stored record of QoS characteristics

available to form a contract between the two entities. The

support for QoS characteristics greatly increases the

suitability of DDS for those dynamic systems requiring

predictable performance.

3.3 Framework design choice

 To start to develop a framework with which to support

dependability in adaptive systems it is necessary to choose

an underlying software architecture to focus on. For this

purpose DCPS, and specifically DDS, has been chosen.

This is due to the fact that it has been suggested for use in

the types of systems that this project is investigating and is

one of few such standards that have been developed with

dependability in mind.

 Following a specification such as DDS in the

development of supporting methods would provide a well

tested and evaluated means to base the design on. This

shall, however, only be used as a reference given that the

proposed framework will need to go beyond the

functionality that currently exists.

 To investigate further into the development of an

adaptive and dependable system framework a discussion is

necessary as to the Quality of Service methods that will be

employed and the issues that such systems might face.

4 Quality of Service

 For a system to make use of Quality of Service

methods there are three main elements that must be

addressed. These are: the definition of a QoS language

with which to communicate, the subsequent negotiation

process and system wide optimisation.

 In the search for an optimal set of services that will

maximise the possible value within a system, given a set of

resource constraints, it could be foreseeable that the

computational time required for such a calculation could

soon become prohibitively high as the scale of the system

increases. Considering the NEC example, the system could

potentially be reconfiguring on a frequent basis as new

nodes enter or leave and with only a small window of

opportunity for communication (for example if a vehicle is

passing briefly within range, relaying data). Both of these

factors mean that there is an additional objective of keeping

the QoS negotiation process as simple and stable as

possible. Given the changing scale of future-systems such

as those in section II the main resource constraint likely to

be experienced is that of the communication bandwidth.

This shall therefore be the focus of the QoS process.

 The following sections analyse the three main

elements of QoS methods from the perspective of an

adaptive and dynamic system, bearing in mind the

examples from Section 2.

4.1 QoS characteristic definition

 The first step necessary for a system to make use of

QoS methods is the definition of the required performance

characteristics. Applications may be developed across

boundaries (be it departmental, organisational,

governmental, etc.) and if they are to participate in the same

system they need a common language with which to

communicate.

 For the framework the following QoS characteristics

have been chosen. For the subscriber:

 Latency (L) – the deadline within which data

samples must be received

 Time Based Filtering (TBF) – the minimum time

between samples received in milliseconds

 Reliability (R) – 'best effort' (data is sent

unacknowledged) or 'reliable' where data is

acknowledged upon receipt and lost packets are

retransmitted (providing they are still within the latency

allowed)

 For the publisher:

 Time Based Filtering (TBF) – The amount of

time in milliseconds between data samples.

 Reliability (R) – as subscriber

 Sample Size (SS) – the size in bytes of each data

sample transmitted.

 With the exception of the publisher 'Sample Size'

characteristic these are a subset of the DDS set that have the

most impact on network resource usage.

 For any negotiation more complex than simply

accepting requests if performance criteria match (otherwise

rejecting) to take place, applications need to be flexible in

their requirements. This means that, where possible, an

application should provide a range of performance criteria

with which it could function. Abdelzaher et al. [10] give an

example of using application developer specified QoS

levels. This allows the application a number of predefined

levels of operation.

 For a greater degree of flexibility over predefined QoS

levels, however, and to reduce the overhead of transmitting

what could be a high number of levels the framework shall

instead use minimum, maximum and interval values. The

interval value allows the developer to control the number of

levels possible and can be used to specify the sensitivity of

the application, decreasing unnecessary network load where

possible. For this purpose the TBF subscriber QoS

characteristic shall be specified with a minimum, maximum

and interval value.

 In addition to the definition of QoS characteristics,

there is a need for a common understanding or assurance

that each application will only request the resources that are

actually required. It could be foreseeable that a developer

may erroneously view their application at an inconsistent

level of importance in relation to others within the system.

 As the dynamic behaviour and scale of a system

increases the use of a human system for verifying QoS

properties becomes increasingly impractical. Solely using a

formulaic approach to calculating a services value may,

however, not truly reflect its importance as this is found

from the result as viewed by the end user, not the level of

resources it takes to complete it. Combining a calculated

value with a developer defined priority found from a set of

subjective guidelines, would provide a potential solution.

 A discussion of methods available for calculating the

value of a service is given by Burns et al. [11]. This

approach known as value based scheduling is designed for

scheduling processes within an onboard real-time system

but the approach would seem to hold true for inter-platform

communication. Where this approach differs to the

approach necessary for this work is that it focuses on the

selection of service fulfilment from a known set of

alternatives (e.g. the service could require a collision

avoidance mechanism and the choice could be between an

infra-red beam deflection and RADAR). It is assumed for

the framework that a subscriber will have one possible data

type required from a publisher. Publishers of this data type

may vary in their TBF value or reliability but the data

received (and sample size SS) will always be of the

expected format.

 When deciding on a value function for the framework

it is necessary to make assumptions about the properties

that a service of high priority would have. A service could

be said to be more important if it requires a low latency,

high rate of data samples value and reliable transmission.

While the sample size will affect the resources required for

transmission it is not necessarily a sign of importance in the

system. A video stream for example will require more

network resources but would not necessarily be more

important than a signal from a temperature sensor. A

function is required that weights these attributes

accordingly. The exact weighting will vary between

systems and a very general case has been assumed here.

 Given that the TBF value specifies in milliseconds the

amount of time between data samples the sample rate (U) is

found in (1).

 𝑈 =
1000

𝑇𝐵𝐹
 (1)

 Placing exact values on the preference between

reliable and best effort service in a real system requires

extensive evaluation of the applications that will run within.

For this example and for further work it is assumed that a

service requiring reliable communication will be twice as

valuable to the system as one that requires best effort

communication only. A value of 0.5 is therefore assumed

for best effort service and 1 for reliable. It is assumed that

the value of the latency is linear and will affect each of the

data samples. Given these assumptions the value (V) of a

service shall be calculated using (2).

 𝑉 = 𝑅.
𝑈

𝐿
 (2)

 To ensure that a sufficient range of integer values exist

to reflect the number of services within a system the

resulting value V shall be multiplied by a constant k.

 Burns et al. [11] also suggest calculating value both

offline and online. Online analysis amends this reward

value based on the actual performance of the service. A

service may have a high priority but if the actual

performance falls short of the ideal then its value will be

decreased. Observed values for a service instance Si are

recorded for the number of data packets transmitted which

did not meet the latency allowed (li), the number of timely

and accurate transmissions (gi) and the number of timely

but inaccurate transmissions (pi). Note that li and pi are

negative.

 These values combined help to give an indication of

the actual reward possible given real network conditions.

Given that Pn,i is the probability of li occurring, Pc,i is the

probability of gi occurring and Pe,i is the probability of pi

occurring, (3) is used as the online value function.

 𝑉𝑖 = 𝑙𝑖𝑃𝑛 ,𝑖 .𝑔𝑖𝑃𝑐 ,𝑖 . 𝑝𝑖𝑃𝑒 ,𝑖 (3)

 A similar method of calculating the value of a service

is proposed by Liang et al. [12]. This method referred to as

robust service selection is used to account for the actual

probability of a service being fulfilled given the current

system constraints (system size, network performance, etc.).

 It is assumed that the value of a service is independent

to that of others. This means that the value of two services

running is the sum of the individual value of each service.

A calculation of the values assigned based on all the

different permutations possible would be too complex to

calculate within the amount of time available.

 Note that it is expected that there will be two classes

of applications within the system. A higher, safety critical

class, and a lower class requiring varying but non-safety

critical levels of service. It is assumed that publisher

pairings and resource requirements for the higher class shall

be defined offline. Including these services in the QoS

negotiation process would likely prove detrimental to their

performance.

4.2 The QoS negotiation process

 To ensure that resources within a dynamic system are

being best utilised in any given state and to provide

assurance of performance beyond that of any best-effort

method QoS negotiation must take place.

 Negotiation can be used at several points within the

system, each contributing to the level of dynamic

behaviour. Negotiation could occur solely at system start-

up, taking into account any changes to the system from its

design-time state. This alone would introduce an adaptive

aspect not currently seen within most dependable systems.

To fully take advantage of an adaptive environment such as

that described in the NEC system example, however, this

negotiation must also take place at run-time.

 The following are examples of negotiation techniques.

4.2.1 Priority based negotiation
 The simplest method of differentiating between the

criticality of services is through a priority based system.

This involves assigning a priority from a finite set of

possible values to a service. This assignment can then be

used to create an ordered list of services. If the system

were to reach a point where the resources available were

not sufficient then the lowest priority service would be

degraded where possible (and discarded otherwise) in

favour of higher priority services. This approach is typical

for most resource reservation techniques including the

network based IntServ and DiffServ models [13].

 The main problem with this approach is with the

assignment of priorities. As previously discussed, within

future systems there is a need for a method of accurately

expressing a services value both subjectively and

objectively. They do, however, offer an advantage in that

they can be statically analysed to predict behaviour or prove

certain performance properties.

4.2.2 Reward/Penalty based negotiation
 An alternative to priority based negotiation is the

reward and penalty method described by Abdelzaher et al.

[10]. This method uses reward and penalty values assigned

to each task as a way of ensuring that the maximum utility

is provided by the system.

 Taking the example of a new service entering the

system while it is running. The negotiation process will

first add the new service to the list of running services to

determine if there are adequate resources available to meet

the resource requirements of the new list. If there are, then

the list is used to allocate resources and the process ends. If

there are not adequate resources, however, then the system

searches for the service that is running that when degraded

to its next lowest level of QoS would result in the least drop

in total system reward (calculated as the sum of the reward

values associated with each service running). It then checks

to see if this degradation will allow the new process to run.

If it will not, then the search continues in the same way

until there are adequate free resources to run the new task.

If the introduction of the new service and its associated

reward now result in a greater or equal new total system

reward than was previously seen then the new list is

accepted. If it does not, then the system checks to see if the

penalty for not including it is greater than the difference of

rewards between system configurations. If it is then the

service is scheduled.

4.2.3 Framework design choice
 The reward/penalty method of negotiation is chosen

for the framework given its ability to support both the

subjective and objective assignments of value. The reward

shall thus be calculated using objective data and the penalty

shall be assigned by the developer. Some adaptations will

still be necessary to make it suitable for the future systems

in question. The framework negotiation algorithm will

work as follows.

 A subscriber sends a request for data to the

publish/subscribe middleware instance on its local node.

The middleware checks for a local compatible publisher. If

one or more are found then the publisher that best matches

the QoS requirements of the subscriber is chosen for use. If

no compatible publisher is found then the middleware

checks nodes connected by network link. A list is compiled

of compatible publishers returned. Preference is given to

wired links given that they are less prone to interference

and any connected nodes are likely to be less mobile.

Preference is also given to those publishers on nodes that

have the most free resources. Given these two criteria the

list is ordered and publishers are checked in sequence to see

if the node in which they are based can accommodate them.

To check this the middleware manager containing the

publisher in question compiles a list containing the new

subscriber and all current subscribers being serviced. If it is

judged that adequate resources are not available to service

this new list then each entry is checked to see which can be

degraded to result in the smallest decrease in reward. This

is repeated until adequate resources are available. Once this

has completed the difference in reward between old and

new lists is compared. If the amount of reward has

increased then the new list is accepted. If it has decreased

less than the penalty value then it is accepted otherwise it is

rejected and the next available publisher is checked.

 Note that this QoS management will also involve

some policing to ensure that QoS is being met. If QoS is

not being met then the resources available should be

recalculated and the list of running services renegotiated.

4.2.4 System wide optimisation
 One of the main advantages of large scale distributed

systems is the redundancy provided by having multiple

instances of the same services available from multiple

locations. For a distributed system to be said to be truly

making the best use of resources a level of system wide

optimisation is necessary. As described by Abdelzaher et

al. [10], this typically involves poling nodes with repeating

publishers to see if the total level of reward provided by the

system can be increased by changing the node in which a

client is receiving its service from. The main problems

with this approach are that they introduce yet further

renegotiations and therefore disruptions to system operation

and in systems where nodes are frequently transient, the

swapping of services between nodes can lead to an

improvement in performance in the short term but

ultimately prove detrimental.

 To first address the problem of transient nodes

assumptions should be made based on observed behaviour.

If a node has been recognised as being present within the

system for a predetermined length of time (perhaps purely

as a consumer of services) it would be reasonable to assume

that its presence will continue for a sufficiently long period

for it to be deemed a useful source of services.

Determining this type of information requires the sharing of

observations amongst nodes.

5 Simulation results

 A simulation has been developed using MATLAB to

experiment with the framework proposed within this paper.

The simulation is based around an NEC type scenario of

nodes physically distributed within an environment and

with differing resource and functional capabilities. A

random network topology is set up based on a seed input

and each node is populated with publishers and subscribers.

Each publisher and subscriber has a set of QoS

characteristics matching that described within the

framework.

 Network links are either wired or wireless. Wireless

links have a signal strength which (along with a small error

to account for signal noise) affects which nodes are within

communicable distance. An assumption made is that

communication between nodes is made directly. This

could be adapted in the future as a node relaying data could

treat this as a request for service for which a reward would

be associated. The level of reward associated would need

to decrease as the number of nodes through which the data

is passing increases. This is due to the increased

consumption in resources in comparison to the reward

being gained.

 For the purpose of this simulation it is assumed that

requests within the system are received consecutively with

only one node dealing with a request at any one time.

Future versions of the simulation will adapt this, however,

as the order in which requests are received affects the load

on a network link and may therefore alter which publisher’s

receive preference in the negotiation process.

 Initial tests have compared the framework described

within this paper to one that did not use QoS negotiation

and instead matched compatible publishers and subscribers

based on their highest possible QoS characteristics. This

means that if adequate resources are not available at the

time of inquiry then a service is rejected. The result of this

is shown in Figure 2.

Figure 2. A comparison of reward values gained using

reward/penalty negotiation or simple compatibility testing.

 The reward/penalty negotiation technique and the use

of flexible levels of QoS shows a clear advantage over

simple compatibility testing. The reward accrued from both

techniques is the same until the system starts to reach high

load. After this the ability of the negotiation technique to

adapt to the restricted resources starts to show benefit. The

drop in reward in the negotiation data series after around

1000 subscribers is due to the network links reaching high

load and services with high penalties displacing existing

subscribers, thus resulting in a perceived drop in reward but

an actual increase given the preference expressed by the

developer. The slight variations seen in both data series is

due to the introduction of subscribers with high sample

rates.

6 Conclusion and future work

 This paper has described the issues surrounding

dependable large scale adaptive system-of-systems. A QoS

negotiation framework has been proposed that combines

existing methods of providing a flexible software

architecture, adapting these where necessary to suit future

system-of-systems and increase dependability. This

includes: increasing the flexibility of the system through

the introduction of varying levels of QoS, offline and

online system reward calculation , and adapting negotiation

techniques for future large scale systems.

 Initial simulation results have been shown that

demonstrate the benefit of a negotiation process in the

allocation of resources.

 Future work shall focus on the further implementation

of the simulation, extending it over time to show the

performance of the framework in a changing environment.

Beyond this simulation results shall be verified through

implementation on a test bed.

Acknowledgment

 This work was supported by the Engineering and

Physical Sciences Research Council, BAE Systems and the

Royal Society, UK.

References

[1] Ministry of Defence. Network Enabled Capability,

JSP 777. Network Enabled Capability:

http://www.mod.uk/DefenceInternet/AboutDefence/Corpor

atePublications/ScienceandTechnologyPublications/NEC/J

sp777NetworkEnabledCapability.htm, 2005.

[2] Ministry of Defence. OV-1a High-Level Operational

Concept Graphic. Retrieved April 17, 2008, from MODAF:

http://www.modaf.org.uk/images/109.gif, 2007, April 4.

[3] Russell, D. J., & Xu, J. Service Oriented Architectures

in the Provision of Military Capability. University of Leeds,

2007.

[4] Wang, N., Schmidt, D. C., Hag, H. & Corsaro, A.

Toward an Adaptive Data Distribution Service for Dynamic

Large-Scale Network-Centric Operation and Warfare

(NCOW) Systems. Proceedings of the Military

Communications Conference 2008, pp. 1-7, 2008.

[5] Prisaznuk, P. J. Integrated Modular Avionics.

Proceedings of the IEEE 1992 National Aerospace and

Electronics Conference, pp. 39-45, 1992.

[6] Airlines Electronic Engineering Committee. ARINC

Specification 653: Avionics Application Software Standard

Interface, 1996.

[7] Ministry of Defence. ASAAC Standards Part 1. ASSC

- Standards & Guidance Support for the UK Military:

http://www.dstan.mod.uk/data/00/074/01000200.pdf, 2005.

[8] Ford, B., Bull, P., Grigg, A., Guan, L. & Phillips, I.

Adaptive Architectures for Future Highly Dependable, Real

Time Systems. 7th Annual Conference on Systems

Engineering Research, 2009.

[9] Pardo-Castellote, G. OMG Data Distribution Service:

Architectural Overview. 23rd International Conference on

Distributed Computing Systems Workshops Proceedings,

pp. 200-206, 2003.

[10] Abdelzaher, T., Arkins, E., Shin, K. QoS Negotiation

in Real-Time systems and its Application to Automated

Flight Control. 1997.

[11] Burns, A., Prasad, D., Bondavalli, A., Di

Giandomenico, F. , Ramamritham, K., Stankovic, J.,

Strigini, L. The meaning and role of value in scheduling

flexible real-time systems, Journal of Systems Architecture

, pp. 305-325, 2000.

[12] Liang, Q., Wu, X., & Lau, W. C. Optimizing Service

Systems Based on Application-Level QoS. IEEE

Transactions on Services Computing, pp. 108-121, 2009.

[13] Xiao, X., & Ni, L. Internet QoS: A Big Picture. IEEE

Network , 13 (2), pp.8-18, 1999.

400000

450000

500000

550000

600000

650000

0 500 1000 1500

R
e
w

a
r
d

No. of Subscribers

With

Negotiation

No

Negotiation

