956 research outputs found

    Iterative greedy algorithm for solving the FIR paraunitary approximation problem

    Get PDF
    In this paper, a method for approximating a multi-input multi-output (MIMO) transfer function by a causal finite-impulse response (FIR) paraunitary (PU) system in a weighted least-squares sense is presented. Using a complete parameterization of FIR PU systems in terms of Householder-like building blocks, an iterative algorithm is proposed that is greedy in the sense that the observed mean-squared error at each iteration is guaranteed to not increase. For certain design problems in which there is a phase-type ambiguity in the desired response, which is formally defined in the paper, a phase feedback modification is proposed in which the phase of the FIR approximant is fed back to the desired response. With this modification in effect, it is shown that the resulting iterative algorithm not only still remains greedy, but also offers a better magnitude-type fit to the desired response. Simulation results show the usefulness and versatility of the proposed algorithm with respect to the design of principal component filter bank (PCFB)-like filter banks and the FIR PU interpolation problem. Concerning the PCFB design problem, it is shown that as the McMillan degree of the FIR PU approximant increases, the resulting filter bank behaves more and more like the infinite-order PCFB, consistent with intuition. In particular, this PCFB-like behavior is shown in terms of filter response shape, multiresolution, coding gain, noise reduction with zeroth-order Wiener filtering in the subbands, and power minimization for discrete multitone (DMT)-type transmultiplexers

    On the eigenfilter design method and its applications: a tutorial

    Get PDF
    The eigenfilter method for digital filter design involves the computation of filter coefficients as the eigenvector of an appropriate Hermitian matrix. Because of its low complexity as compared to other methods as well as its ability to incorporate various time and frequency-domain constraints easily, the eigenfilter method has been found to be very useful. In this paper, we present a review of the eigenfilter design method for a wide variety of filters, including linear-phase finite impulse response (FIR) filters, nonlinear-phase FIR filters, all-pass infinite impulse response (IIR) filters, arbitrary response IIR filters, and multidimensional filters. Also, we focus on applications of the eigenfilter method in multistage filter design, spectral/spacial beamforming, and in the design of channel-shortening equalizers for communications applications

    Eigenfilter design of real and complex coefficient prototypes for uniform and nonuniform filter banks

    Get PDF

    Theory and design of arbitrary-length biorthogonal cosine-modulated filter banks

    Get PDF
    IEEE International Symposium on Circuits and Systems, Hong Kong, China, 9-12 June 1997The design and generalization of Perfect-reconstruction (PR) cosine-modulated filter banks (CMFB) have been studied extensively due to its low design and implementation complexity. In this paper, the theory and design of arbitrary-length biorthogonal CMFB is considered. This is a generalization of the method used in [5] for designing arbitrary length orthogonal CMFB and has the advantage of simple design procedure. We also propose a systematic design method so that biorthogonal CMFB with longer length can be obtained.published_or_final_versio

    Optimum Design of Linear Phase Paraunitary Filter Bank & its Applications in Signal Processing

    Get PDF
    Filter Banks plays crucial role in signal processing and image processing as subband processing gives dominant results in time critical applications. In formal years, various Para unitary Linear Phase Filter Banks are proposed by following conventional and computational complex factorization and lattice approaches consisting of complex nonlinear optimization problems. One of the recent methods to design Filter Bank having properties of Linear Phase and Paraunitary is via Singular value decomposition technique which leads to optimum results compared to existing methods as most of the time it deals with matrix operations. In this paper, design benchmark is evaluated as two dominant optimization queries and reasonable key of each optimization query is solved by performing Singular Value Decomposition. Proposed Paper discusses linear phase condition of filter banks satisfying mirror image symmetry at analysis side and perfect reconstruction property at synthesis side. Singular Value Decomposition approach leads to fast and efficient simulation results compared to existing filter banks designs. Proposed method of filter bank design deals with any arbitrary channels and every length of the filters

    Linear Unmixing of Hyperspectral Signals via Wavelet Feature Extraction

    Get PDF
    A pixel in remotely sensed hyperspectral imagery is typically a mixture of multiple electromagnetic radiances from various ground cover materials. Spectral unmixing is a quantitative analysis procedure used to recognize constituent ground cover materials (or endmembers) and obtain their mixing proportions (or abundances) from a mixed pixel. The abundances are typically estimated using the least squares estimation (LSE) method based on the linear mixture model (LMM). This dissertation provides a complete investigation on how the use of appropriate features can improve the LSE of endmember abundances using remotely sensed hyperspectral signals. The dissertation shows how features based on signal classification approaches, such as discrete wavelet transform (DWT), outperform features based on conventional signal representation methods for dimensionality reduction, such as principal component analysis (PCA), for the LSE of endmember abundances. Both experimental and theoretical analyses are reported in the dissertation. A DWT-based linear unmixing system is designed specially for the abundance estimation. The system utilizes the DWT as a pre-processing step for the feature extraction. Based on DWT-based features, the system utilizes the constrained LSE for the abundance estimation. Experimental results show that the use of DWT-based features reduces the abundance estimation deviation by 30-50% on average, as compared to the use of original hyperspectral signals or conventional PCA-based features. Based on the LMM and the LSE method, a series of theoretical analyses are derived to reveal the fundamental reasons why the use of the appropriate features, such as DWT-based features, can improve the LSE of endmember abundances. Under reasonable assumptions, the dissertation derives a generalized mathematical relationship between the abundance estimation error and the endmember separabilty. It is proven that the abundance estimation error can be reduced through increasing the endmember separability. The use of DWT-based features provides a potential to increase the endmember separability, and consequently improves the LSE of endmember abundances. The stability of the LSE of endmember abundances is also analyzed using the concept of the condition number. Analysis results show that the use of DWT-based features not only improves the LSE of endmember abundances, but also improves the LSE stability

    New method for designing two-channel causal stable IIR perfect reconstruction filter banks and wavelet bases

    Get PDF
    A new method for designing two-channel causal stable IIR PR filter banks and wavelet bases is proposed. It is based on the structure previously proposed by Phoong et al. (1995). Such a filter bank is parameterized by two functions α(z) and β(z), which can be chosen as an all-pass function to obtain IIR filterbanks with very high stopband attenuation. One of the problems with this choice is that a bump of about 4 dB always exists near the transition band of the analysis and synthesis filters. The stopband attenuation of the high-pass analysis filter is also 10 dB lower than that of the low-pass filter. By choosing β(z) and α(z) as an all-pass function and a type-II linear-phase finite impulse response (FIR) function, respectively, the bumping can be significantly suppressed. In addition, the stopband attenuation of the high-pass filter can be controlled easily. The design problem is formulated as a polynomial approximation problem and is solved efficiently by the Remez exchange algorithm. The extension of this method to the design of a class of IIR wavelet bases is also considered.published_or_final_versio

    Initial design and evaluation of automatic restructurable flight control system concepts

    Get PDF
    Results of efforts to develop automatic control design procedures for restructurable aircraft control systems is presented. The restructurable aircraft control problem involves designing a fault tolerance control system which can accommodate a wide variety of unanticipated aircraft failure. Under NASA sponsorship, many of the technologies which make such a system possible were developed and tested. Future work will focus on developing a methodology for integrating these technologies and demonstration of a complete system

    Parity-check matrix calculation for paraunitary oversampled DFT filter banks

    No full text
    International audienceOversampled filter banks, interpreted as error correction codes, were recently introduced in the literature. We here present an efficient calculation and implementation of the parity-check polynomial matrices for oversampled DFT filter banks. If desired, the calculation of the partity-check polynomials can be performed as part of the prototype filter design procedure. We compare our method to those previously presented in the literature
    corecore