-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

New method for designing two-channel causal stable IIR perfect

Title reconstruction filter banks and wavelet bases

Author(s) Mao, JS; Chan, SC; Ho, KL

Citation Optical Engineering, 2000, v. 39 n. 10, p. 2810-2820

Issued Date | 2000

URL http://hdl.handle.net/10722/42828

Rights Creative Commons: Attribution 3.0 Hong Kong License



https://core.ac.uk/display/37882139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

New method for designing two-channel causal
stable IIR perfect reconstruction filter
banks and wavelet bases

J. S. Mao Abstract. A new method for designing two-channel causal stable IIR
S. C. Chan PR filter banks and wavelet bases is proposed. It is based on the struc-
K. L. Ho ture previously proposed by Phoong et al. (1995). Such a filter bank is
The University of Hong Kong parameterized by two functions a(z) and B(z), which can be chosen as
Department of Electrical and Electronic an all-pass function to obtain IR filterbanks with very high stopband
Engineering attenuation. One of the problems with this choice is that a bump of about
Pokfulam Road 4 dB always exists near the transition band of the analysis and synthesis
Hong Kong filters. The stopband attenuation of the high-pass analysis filter is also 10
E-mail: jmao@engr.uvic.ca dB lower than that of the low-pass filter. By choosing 8(z) and «(z) as
klho@eee.hku.hk an all-pass function and a type-Il linear-phase finite impulse response
scchan@eee.hku.hk (FIR) function, respectively, the bumping can be significantly sup-

pressed. In addition, the stopband attenuation of the high-pass filter can
be controlled easily. The design problem is formulated as a polynomial
approximation problem and is solved efficiently by the Remez exchange
algorithm. The extension of this method to the design of a class of IIR
wavelet bases is also considered. © 2000 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(00)02909-3]
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1 Introduction channel IIR PR filter bank was proposed. Such structurally

Perfect reconstructiofPR) multirate filter banks have im- PR filter banks is parameterized by two functieng) and
portant applications in signal analysis, coding, and the de- 8(2), which can be chosen as an all-pass function to obtain
sign of wavelet bases. Figuréal shows the block diagram IR filter banks with very high stopband attenuation. The
of a two-channel maximally decimated filter bank. The sys- design procedure is also very simple. One of the problems
tem is called a PR system if the outpun) is identical to ~ With this choice ofa(z) and 3(2) is that a bump of about
the inputx(n) except for some constant scaling and time 4 dB always exists near the transition band of the analysis
delay. The theory of PR filter banks has been extensively @nd synthesis filters. Moreover, the stopband attenuation of
studied™ ™ In finite impulse respons@IR) filter banks, all the low-pass analysis filter is always 10 dB higher than that
the analysis filters and the synthesis filters are FIR filters Of the high-pass filter. To overcome these problems, an
and the PR condition is considerably simplified. More pre- improved algorithm using general rational functions for
cisely, the filter bank is PR if the determinant of its «(2) and j(2), instead of the all-pass function, was re-
polyphase matrix is equal to some delay. In IIR filter banks, cently reported in Ref. 14. The bumping problem in the
the entries of the polyphase matrix become rational func- transition band is considerably suppressed. However, due
tions and the system is PR if the determinant of its t0 the use of the general rational functions, the advantages
polyphase matrix is a minimum phase function. In addition ©f the all-pass functions such as low implementation com-
to the more complicated PR condition of IIR filter banks, it Plexity and low coefficient sensitivity are lost. Moreover,
is also very difficult to ensure that the IIR filters be causal the design procedure is considerably more complicated
stable. Early attempts typically have noncausal stable filtersthan that in Ref. 12 and the stability of the IIR filters cannot
or causal unstable filtef51°In Refs. 5 and 6, causal stable be guaranteed, especially for filters with high order. An-
IIR PR filter banks are designed by using factorization of other method based on the transformation of a FIR proto-
the polyphase matrix. However, satisfactory design results type filter was proposed in Ref. 15. Due to the use of the
are not obtained. Design of causal stable IIR PR filter bank transformation, this method will have considerable restric-
using optimization techniques has also been proposed intion on the selection of the analysis/synthesis filters and the
Ref. 11 where the Lagrange multiplier and Lagrange- System delay.

Newton methods are used to perform the optimization.  In this paper, we show that whe#(z) is chosen as an
However, satisfactory results are not obtained and the sta-all-pass function, it is still possible to suppress the bumping
bility of the filters cannot be guaranteed. One of the most problem whena(z) is chosen as a linear-phase FIR func-
successful designs of causal stable IR PR filter banks is thetion. This has also been observed previously in the paper by
one reported in Ref. 12, where a new structure for two- Kim and Ansarit® but no detailed design procedure is
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21 12 also studied. By factoring the type Il linear-phase FIR func-
LY T N tion, it is possible to impose the regularity condition on the
) @) \;L/ ""’QJ_’ () _l X analysis filters to construct the IIR wavelet bases. Several
N ) design examples are given to demonstrate the usefulness of
21 12 (i the proposed method. Comparison with other conventional
e Ky approaches is also given.
e “\i}""{l}ﬁ G The outline of this paper is organized as follows. In Sec.

2, a brief summary of the two-channel structural PR filter

bank proposed in Ref. 12 is given. The proposed method
and several design examples are given in Sec. 3. Section 4
is devoted to the design of dyadic wavelet bases derived

@

*) o . R from these two-channel IIR filter banks. Finally, the con-
@2/ z ) 1 i clusions are drawn in Sec. 5.
05 v
27! B -a(z) 2 Two-Channel Structural PR Filter Banks
Figure Xa) shows the structure of a two-channel maximally

decimated multirate filter bank. It can be shown tBahe

—ﬂ@ R > reconstructed signaf(z) is given by
. £Q) .
) " i Y(2)=T(2)X(2) +A(D)X(~2), (@)
N i =@_’ where
‘ T(z)= 3[Ho(2)Go(2) + H1(2)G1(2)], 2
oz) -8 -
! z and
05 A
r o ot A(2)= 3[Ho(~2)Go(2) + Hi(~2)G1(~2)]. 3
o R() - (n)

The aliasing termA(z) can be canceled if the analysis and
synthesis filters are chosen as follows:

Fig. 1 Two-channel multirate filter bank: (a) maximally decimated

filter bank and two-channel PR filter bank proposed in Ref. 12, (b) _ _ _ _

analysis filter bank, and (c) synthesis filter bank. Go(2) Hi(=2), Gu(2)=Ho(~2). )

The PR filter bank will be perfect reconstruction if the

given. There are several advantages of this structure. Firstiransfer functionf(z) is equal to some delay

of all, the advantages of using the all-pass function, such as

high stopband attenuation, low implementation complexity, T(z)=cz "o. (5)
and low coefficient sensitivity, are preserved. Second, the

use of a linear-phase FIR function not only helps to reduce Combining Eqgs(2) and(3) one gets the following PR con-
the bumping problem, but also provides considerable free- dition in Hy(z) andH;(2):

dom in choosing the stopband attenuation and the delay of
the highpass filter. Moreover, due to the simple structure of
the FIR function, the design problem of the high-pass filter
can be formulated as a polynomial approximation problem.
In particular, it is shown that the least-squares and minimax whereng is an integer and is a nonzero constant. For IIR
designs of the high-pass filter can be formulated as thefilter banksHy(z) andH;(z) are rational functions. In Ref.
familiar least-squares and the Chebyshev approximation12, a class of structurally PR two-channel FIR and IIR filter
problems, respectively. Both of them can be solved effec- banks, as shown in Figs(ld) and Xc), was proposed. The
tively using existing techniques. As a result, causal stable polyphase matrix of the filter bank is factored as

IIR filter banks with approximately linear-phase frequency
response and flexible stopband attenuation can be designed 05 0\(zN Bz
easily using the proposed method. Compared with the E(z)=( )( M)
methods proposed in Refs. 12 and 14, the stopband attenu- —05(2) 1/1 0 z

ation of both the low-pass and high-pass filters can be eas- ( 052N 0.58(2)

T(2)= 3[Ho(—2)H1(2) ~Ho(2)Hi(—2)]=cz ™, ()

ily controlled without any stability problem. Also, due to =
the use of the Remez exchange algorithm, the design com-
plexity is extremely low. The generalization of the present
approach to the design of a class of IIR wavelet bases isThe corresponding expressions for the analysis filters are

)

—-0.52 Na(z) —05a(2)B(z)+z M|"
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2z N+ z2718(2%) L, andL.. norm can be formulated as the least-squares and
Ho2)=———, ® the Chebyshev approximation problems, respectively.

3 Proposed Methods

_ 2 -2M-1
Hi1(2)= —a(z°)Ho(2) +2 : ©) 3.1 Problem Formulation

As mentioned earlier, all-pass-based filter design possesses

?nhadvan;?g.e of Squh strucgural system is that:jt 'T PE ef:ven many attractive properties such as better frequency charac-
if the coefficients ofa(z) and3(2) are quantized. In Ref. e igic  Jow implementation complexity, and low sensitivi-

12, a(z) and B(z) are chosen to be identical and the delay fjeq 1o coefficient quantization. By choosiffz) to be an
M is chosen to beld—1. It can be seen from Eq&) and allpass function as follows:

(9) thatHy(z) can be made an ideal low-pass filteigifz)

has the following magnitude and phase responses zﬁ;oaN’kaz*k

B(z)= SN ok (11)
j20\[ — k=0aN,kZ

|B(e°)[=1 Vo, (109

it is possible to realizeHy(z) with the aforementioned
_ (—2N+1)w for we[0,m/2] properties. The design of all-pass-based low-pass filter has
£ B(el20)= (10b previously been addressed in Ref. 13, where the problem is
(=2N+Do*7 for we(w/2m]. formulated as an eigenvalue problém.

Having assumed thatiy(z) is a reasonably good low-
Another advantage of this structure is th@fz) can be pass filter, we now proceed to formulate the problem of
chosen as a polynomial or a rational function to obtain designingH,(z) with «(z) a type Il linear-phase function.
structurally PR FIR or IR filter banks, respectively. In the It can be seen from Eq€$8) and (9) that the frequency

latter case, the PR filter bank will be causal stablé(i) is response oH,(z) depends on both the lowpass filtég(z)
causal stable. In Ref. 123(z) is chosen to be a causal and the functionx(z).
stable all-pass function so that E(LOg is met exactly Let w,, andwg, be, respectively, the passband and stop-

while Eq.(10b) is approximately satisfied. In the FIR case,
B(2) is chosen to be a type Il linear-phase function with _
magnitude response as close to unity as possible. Both ofs, P& the passband and stopband cutoff frequencies of

band cutoff frequencies dfly(z). Similarly, let wp, and

these techniques yield filter banks with very high stopband H(z), respectively. Iproz ws, = wp and W, = wp, = s,
attenuation. As mentioned earlier, such IIR filter banks Us- inen the ideal frequency responsetbf(ei®) is

ing the all-pass function has a bump of about 4 dBwat

= /2, no matter how3(z) is designed. The stopband at- _ 0 O<w=<w,

tenuation of the high-pass filtét,(z) is also about 10 dB ~ Hq(€'“)= (12

— = =
lower than that of the lowpass filtéty(z). Instead of using i -jo2MH+D)] wsosm
general rational functions fax(z) and3(z) as in Ref. 14, The error functionE(w) of the high-pass filteH(z) is
B(2) is chosen as an all-pass function, whil€z) is chosen defined as
as a type Il linear-phase FIR filter. The motivation is based _ . _
on the observation that the bumping problem for this type E(w)=exd —jw(2M+1)]— a(e?®)Hq(e/*)—H4(el®).
of structural PR filter bank is much less serious in the FIR (13
case. In fact, by applying model reductiaio the function . . _ _

a(z) in an existing FIR filterbank, causal stable IR PR The weighted distortion measure using thg norm of
filter bank with no bumping can readily be desigtéd. E(w) in the passbandl,=[ws,7] and stopbandl
However, the implementation complexity of the resulting =[0,w¢] is given by

IIR filter bank is only slightly lower than that of its linear-
phase FIR counterpart. The reason is that the IR filters
after model reduction is in general a stable rational function
without any structure, unlike the all-pass function. In this

paper, we show that whefi(z) is chosen as an all-pass whereW(w) is a positive weighting function. For simplic-
function, the bumping problem can be significantly reduced ity the 1/’th power of D, has been dropped. Usualyis

when «(z) is chosen as a linear-phase FIR function. The :hosen to be two op, which corresponds to tHe, and the

aII-pass_function p_r_oduces filter \_Ni'gh very high stopband L.. norms, respectively. The optimal,(z), with respect to
attenuation. In addition, onl)d multiplications are required D,, is therefore given by,

to implement a filter of ordeN. The all-pass function is
also well known for its low sensitivities to coefficient quan-
tization. The linear-phase FIR functier(z) not only helps

to reduce the bumping problem but also provides more
freedom in choosing the stopband attenuation and the delaySince the minimization in Eq(15) involves a(e?®),

of H(z). The design ofH,(z) is therefore considerably  which is periodic with periodm, it is different from the
simplified without any stability problem. In fact, it is shown conventional Chebyshev approximation. In fact, for a given
in the following section that the design bif;(z) using the value of we[0,7/2], a(e?®) will affect the values of

Dp(a):ﬁ Ul W(w)|E(w)|P do, (14
p

ap(z)=argminD (). (15

2812 Optical Engineering, Vol. 39 No. 10, October 2000
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H,(2) atw as well asw+ 7. Fortunately, due to the special Img

structure of Eq(9), further simplification is possible. First A 6= Re(A) _alAl

of all, it is noted that the magnitude af(e?“) should - IA’ B

approximately be equal to 1, except possibly around aA

= /2, where it may be even smaller, to obtain filter with A [E

good frequency characteristic. It then follows from E8). min

that the ripple oH,(e'®) in the passband is approximately :

equal to the stopband attenuationttf(e!“). This enables 6 > Re

us to minimize only the stopband attenuation tbf(w) Re(A) T -

usinga(e?®), instead of minimizing Eq(9) over both the

pass- and stopbands, and relies on the high stopband attenu- Fig. 2 Geometric interpretation of Eq. (20).

ation of Hy(e!®) to achieve small passband ripples. The . :

latter is usually satisfied becaubiy(el®) is derived from 's attained when

the all-pass function, which can be designed independently. RA(e?)]

By increasing the length a#(z), the stopband attenuation  Pg[cog2w)]= TA@) 2 cosw’ w# 2. (20

of H,(e'®) can be improved in exchange for a greater de-

lay. We now consider the design afz) using the follow-  This is best explained geometrically as shown in Fig. 2,

ing type Il linear-phase FIR filter, where @ and A stand, respectively, for casfP[cos(2v)]
. _ andA(el®). We can see thdE(w)| is minimum whenaA

a(el”) =exp(—jwMqd2) cos(w/2)P(cosw), (163 is the projection of 1 in the direction @&. The correspond-

ing value of« is determined to be RAJ/|A”?, which leads

where to Eq. (20).
Writing x=cos(2v), the design problem becomes a

L h . .
polynomial approximation problem,

P(cosw)= D, a,(cosw)X. (16b)

A opr—arg minf W(X)|P(x) = Pg(x)|P dx,
From Egs.(8), (9), and(16), it can be seen tha¥l ,4q and a Jlx
henceL should be chosen as BI(—N)+1 and Mggq B 5 (21)
—1)/2=M —N, respectively. Substituting E¢L6) into Eq. = (=1X]U[Xs,1], Xs<Xs=COK2wy).
(13), we have _ . . S
The interval (0Xs] is an optional disjoint interval to control

E(w)=exg —jw(2M+1)] the values ofP[cos(2v)] in the transition band ofi;(e/*)
andW(x) is a positive weighting function. Since(el®) is
a type Il linear-phase function, it is equal to zero aat
=1, i.e., (/™) =0. The actual value oK determines
how large the values oP[cos(2v)] are in the interval
For the all-pass-based low-pass filter, the passband is ap-(_l’XS] [i.e., in the transition band dfy(e')]. If p=c,

; ; : ; ; Eq. (21) reduces to the familiar Chebyshev approximation,
proximately linear phase with transfer function given by Wﬂiéh <):an be solved using the Remgz exchgrﬁ)ge algorithm

Ho(el®) = A(el)exp( — j20N), (18) Wlth @eal frequerlcy res.ponse given by E@®0) and
weighting functionW(x), given by
whereA(el®) is a complex function and is approximately -

_ H 2
equal to one if3(z) is of sufficiently high order. Therefore ~ Ww(X)=c0S[0.5 arccosx) ]| A{exid j0.5 arccosx) I}
Eq. (17) can be simplified to (22)

—exp(— j @M oq9) coS(w)P[cog2w)]Hy(e1?),

we[0,7/2]. (17

According to the alternation theorem, the optimum solution

E(o)=ex —jo(2ZM+1)]-exf —jo(Mogst 2N)] in Eq. (21) must have a minimum of + 2 alternations in

X A(el®)coq w)P[cog2w)] lx. Normally, the values &X; are very small, therefore, all
) the alternations appear in the band edges and the interval
=exd —jo(2M+1)] [Xs,1].
_ If p=2, Eq.(21) becomes a least-squares design prob-

X{1-cogw)P[cog2w)]-A(e'“)}, lem:

we[Om'/Z]. (19) ak,opt:arg mlnfl W(X)|P(X)_Pd(X)|2dX,
As P[cos(2w)] is a real-valued function, the minimum e 23)
value of l=(—1Xs]U[Xs,1], Xs<Xs=C0K2wp).
|1—coq w)P[cog2w)]-A(el®)] Let

Optical Engineering, Vol. 39 No. 10, October 2000 2813
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Table 1 Coefficients of a(z) in Example 1.

n a(n) n
0 —6.638650376811762x 10703 11
1 1.894646207761688x 1002 10
2 —4.256862627194630x 107002 9
3 8.811946716409751% 10~ 9?2 8
4 —1.861375907016634x 10701 7
5 6.277617720640423x 10701 6
()= [ WO0IPO P00l (24)
X

Substituting Eq.(16b) into Eq. (24), one gets, after some
manipulation, the following

E(w)=a"Qa—2a'r+c, (25)
where
a=[ag a; - a.], r=[ro rq == r. 17,

[Q]m:fl W(x)x 1 dx, ri:fl W(x)X'Py4(x) dx, and

CZJ W(x)P3(x) dx.
IX

The optimal least-squares solution is therefore given by

Bp=Q . (26)

To avoid calculating the integrals analytically, we can ap-
proximate the integral by a summation with sufficient large

number of terms. Note that the approach developed here is

also valid wherHy(w) is a linear-phase function, i.e., it is
also applicable to the design of linear-phase FIR PR filter
bank using the structure in Figs(hl and Xc).

The design procedure can be easily implemented by the

signal processing Toolbox of MATLAB. The function
REMEZ is used to perform the Remez exchange algorithm
(p==), while the function FIRLS is used for computing
the least-squares solutiop£2).

Magnitude response
o e
@ ®

°
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o
i

0.5 0.2 025 03 035 04 045 05
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Fig. 3 Magnitude response of «(z) in Example 1.
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Fig. 4 Frequency responses of Example 1: (a) magnitude re-
sponses of Hy(z) and H,(z); proposed in this paper (solid line) and
proposed in Ref. 12 (dashed line); (b) magnitude responses of
Go(z) and G,(z); proposed in this paper (solid line) and proposed
in Ref. 12 (dashed line); and (c) passband phase error of Hy(z) and
H.(2).

3.2 Design Examples

In this section, the proposed design method is evaluated
and compared with other conventional methods through
several design examples.

3.2.1 Example 1: low-order minimax design

In this design example, the order of the all-pass function
B(2) in the analysis low-pass filtdy(z) is chosen adN
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=3. To compare the performance of the proposed methodabout 40 dB, which is about the same as thatigfz). The
with that of Ref. 12, the low-pass filter in example 1 of Ref. bumping of H;(z) in the transition band is also signifi-
12 is used here. The order B{z) is 3 and its coefficients  cantly suppressed. The deviation from linear phase or the
areag,=0.473,a;3 ,= —0.094, anda; 3=0.025. A type I phase error in the passband is plotted in Fifc).4The
FIR linear-phase functiom(z) with M= 11 is designed ~ system delay of the proposed filter bank is slightly in-
using the minimax approach introduced in Sec. 3.1. The creased from 17 to 23 samples. The weighting function
order of the polynomiaP(x) is L=5 and the delay param- W(X) is set to 1 so that the stopbandtéf(z) is not equi-
eter M is equal to 8. The coefficients and the frequency ripple. It shows that the weighting function in E®?2) is
response ofx(z) are shown, respectively, in Table 1 and useful in achieving an equiripple response in the stopband,
Fig. 3. Figure 4a) shows the frequency responses of the as we shall see later in examples 2 and 4. This demonstrates
analysis filtersHo(z) andH,(z) designed by the proposed that the bumping problem is effectively suppressed by the
method, while Fig. &) shows the frequency responses of Proposed method, where a combination of all-pass and
the synthesis filter&,(z) and G,(z). Compared with the Imear-phase FIR fur_lct|0ns is gmployed. Also, the stopband
result in Ref. 12, both the passband and stopband cut-offattenuation of the high-pass filter can be controlled by us-
frequencies oH, () are the same, which are, =0.637 ing I|_near-phase function with different orders, in exchange
. 1 i for higher system delay.
and w51=0.3777, respectively. The stopband attenuation of The MATLAB source code of example 3.1 is given as

H,(z) designed by the proposed method is improved to follows.

N=3; % order of all-pass function B( z2)
% The allpass coefficients are given as: as; =0.473, az,=-0.094, az;=0.025 1
% compute B( e/®) from equation (11)
% compute the lowpass filter Ho( e/ @) from (8)
Wp=0.371; % w, passband cutoff frequency of Ho( € ®) (normalized by )
Lwp=round(512 *Wg2); % transform 2 w, to integer length (normalized by 512)
La=6; % half length of a( 2)
delta _w=pi/1024; % frequency spacing Aw in [0,
for i=1l:Lwp ,
H_delay(i)=HO(i)/exp(-j *delta _w*(i-1) *2*N); % compute A( e/®) from (18)
end
for i=1l:Lwp ,
HO_(i)=real(H  _delay(i))/((abs(HO0(i)))"2) i % compute Py[cos(2 w)](cos )
end
for i=1:Lwp/2,
wi(i)=1 ; % weight in passband of a( el
end
F=[(1:Lwp)/512, 0.99, 1] ; % desired frequency points
A=[HO _(1:Lwp)O, 0]; % desired amplitude response
Wi=[wi0.05] ; % weight in frequency axis
alpha=remez(2 *La-1,FAWi) ; % compute a( z) by Remez Exchange algorithm

Vectors H.delay andH,_ are used to store, respectively, L andM are 9 and 14, respectively. Nok&y(z) and B(z)
the samples oA(e®) in Eq. (18) and the desired magni- are designed by the algorithm proposed in Ref. 13. The

tude response oP[cos(2v)]cose) from [0,20,]. The weighting function of Eq(22) is used to achieve an equir-
stopband cutoff frequency of the desired magnitude re- ipple response. Figure 5 shows the frequency responses of

: ; ; the filtersHy(z) andH4(z). We can see that both the low-
Zﬁgnize” |Sstesde:ﬁc1t_21|23107egalpha 's the solution o#(z), pass and the high-pass filters have a stopband attenuation of
' about 50 dB. Compared with the result in Ref. 14, both
methods have comparable cutoff frequencies, but the pro-
posed method has higher stopband attenuation than that of
Ref. 14, and the system delay of the proposed design is 39,
. . o ) which is also lower than 43 reported in Ref. 14. Siage)

In this example, the design éf;(z) with higher order will s 3 |inear-phase FIR function, the design complexity of the
be illustrated. The order g8(z) is chosen adl=5 while proposed method is also much lower than using the general
that of the type-Il FIR function i ,qq= 19. The values of IR function reported in Ref. 14.

3.2.2 Example 2: high order minimax design

Optical Engineering, Vol. 39 No. 10, October 2000 2815
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Table 3 Coefficients of allpass filter 3(z) in Example 5.
‘° H,(z) H(z)
. n @,
. | 0 1.000000000000000e + 000
.. 1 4.876862098237123x 10 %1
g ] 2 —1.073454651794431x 107 %!
: ] 3 4.219586428862606x 10~ %2
f\ ﬁi 4 —1.786478722124378x 10902
( 5 8.391063541386605% 10~
-80

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized frequency

Fig- 5 Magnitude responses of Ho(2) and Hy(2) in Example 2. respectively, the cut-off frequencies of analysis filters
H,(2), i=0,1 Js, i=0,1 are their stopband attenuations,
3.2.3 Example 3: least-squares design and 7 is the system delay.

In this example, the highpass filtelr, (z) is designed using ;
the least-squares approach introduced in Sec. 3.1. The aII-4 Design of IIR Wavelet Bases

pass functionB(z) and the system delaf.e., 23 are the 4.1 Theory and Design Procedure

same as example 1. The order of the type Il funciiqa) The theory of wavelets is closely related to that of multirate
(see Table Pis Mogq=11, which is identical to that of  fijter hanks!®? It has been shown that discrete dyadic
example 1 for a fair comparison. Figure 6 shows the mag- ywayelets can be obtained from two-channel PR filter banks
nitude responses of the analysis filtet(z) andH,(z). with added regularity condition. For biorthogonal dyadic

3.2.4 Example 4: comparison with maximally flat wavelet bases, it ha~s been proved thitHo(2) andGo(_z)
FIR function should haveK, (or Kg) zeros atz=—1 (the K-regularity
condition. In addition,H(z) andG;(z) should also have

In this example, the proposed method is compared with the at least one zero at=1. This is equivalent to saying that

one proposed in Ref. 18. In Ref. 1By(z) and «(z) are
chosen as the half band and maximally flat FIR filters, re- d
spectively. Asa(z) is not optimized using any measure, its
performance is limited. Without loss of generali§(z) in 7=7
our system is chosen as an all-pass function, instead of a ~

half band FIR filter, with ordem=8. In the proposed k=0,,... Ko, 27
method, «(z) consists of a type Il FIR function with 14

taps and ié gesigned by the Iggmez exchange algorithm, Thd11(1) =G1(1)=0. (28)

magnitude response of the resulting filté(z) is shown Substitutin .
A i b ; : g Eqgs(8) and (9) into Egs.(27) and (28), one
as solid line in Fig. 7. The weighting function of B2) is ets a set of linear equations that must be satisfied. The

;’?‘93'0 qu'ed ;0 r;\]chlev?han eqw_rtlpgle response. ;”t‘ﬁ d]?l‘:’hegroblem is a constrained nonlinear optimization problem
Ine In Fig. 7 shows theé magnitude response ot the Mer \ i |inear constraints, which can be solved using the sub-

H1(2) whena(z) is chosen as a maximally flat FIR func-  qutine NCONF in the IMSL library. If all the freedom is
tion with the same order. We can see that the filters de- |,caq to maximize the number of zeroszat — 1. then Eq.

signed by the proposed method has a much sharper cutoi‘#J
than that based on the maximally flat FIR function.

_Th_e preceding comparison IS summarized in Table S. Table 4 Coefficients of @(n) in Example 5, @(n)=—a(18—n), n
This includes the results in Examples 1 to 4, and those -1g .. ., 18.
using allpass-based IIfRef. 19, general IIR(Ref. 14 and

Ho(2)
dz~

d“Gy(2)
=0, k=0,1,...K0; T =0,
z

=

maximally flat FIR filter bank® Note wy, , ws, i=0,1, are, n a(n)
0 —5.736208133518101x 1094
Table 2 Coefficient of a(z) in Example 3 1 2.091198148255894 % 10903
2 —4.164267800479602x 10~ %03
n a(n) n
3 8.238824717706938% 10~ 9%
0 —4.863215050153226x 10~ %03 11 4 —1.424520240298507 x 10~ %02
1 1.631066387267950% 1092 10 5 2.396096715256554 x 1022
2 —3.976458215633622x 10~ 02 9 6 —3.912511728316302x 10~ %02
3 8.499478611263678X 10902 8 7 6.677497653020614 % 1022
4 —1.841658804678631x 10~ 0% 7 8 —1.315964380619456x 10!
5 6.267940365478775x 10~ %2 6 9 0
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2 Table 5 Frequency performance comparison with other methods.
H| (2) 1

“py “s, “p, ©s, 550 551 i

@ Example 1 0.377 0.637 0.637 0377 42 42 23

E ’ Example 2 0.4m 0.67 0.67 0.4m 52 52 39

:g- Example 3 0.377 0.637w 0.637w 0377 42 42 23

: /\ ™ | Example 4 047 06w 06w 03w 71 75 45

| Example 047w 067w 067 04w 52 50 39

" ] \ Ref. 12 037 0.637 0.637 0377 42 32 17

- } y Ref. 14 047 0.6m 067 047w 46 49 43

[ 0.05 0.1 0.15 N:,;:a,ix:ffmqu::cy 035 04 045 05 Ref 18 0477_ 0677 0677 0217 71 71 45
Notes

Fig. 6 Magnitude responses of Hy(z) and H,(z) in example 3: pro-

posed in this paper (solid line); proposed in Ref. 12 (dashed line). @py: passband cutoff frequency of Ho(2)

wg)! stopband cutoff frequency of Hy(2)
wp, passband cutoff frequency of H,(z)

(27) becomes a system of linear equations, which can be @s,* stopband cutoff frequency of H,(2)
used to solve for the filter coefficients. Alternatively,pif ~ 9s,* Stopband attenuation of Ho(2) (dB)
=2 in Eq.(21), the objective function becomes quadratic s, Stopband attenuation of H,(z) (dB)
and the problem is recognized as a quadratic programming?™ SyStem delay (samples)

problem with equality constraints. Again, this can be solved
numerically with relatively ease. In this section, we limit
ourselves to a class of wavelet bases Wit+1 using the
methods introduced in Sec. 3. The advantage is that it is an
analytic solution and is very easy to apply. More precisely,
we only impose one zero at= —1 for Hy(z) andGy(2).

First, it is observed that,(z) always has a zero &
=—1if B(2) is an all-pass function. Thereford,(z) sat-
isfies the regularity condition witl,= 1. For the high-pass _ _ . L
filter H,(2), a zero az=1 impliesa(z)|,_,=1. Since this ~ ¥(€'*)=] eXp(—jwMeyed2) SinwP(cosw), (30
constraint cannot be incorporated directly into the Parks-

McClellan algorithm, it is imposed inta(z) by the follow-

+z Hz Y. Using a scale factor of 1/2, ER9) guarantees
that the required conditior(z)|,—,=1 is satisfied. Since
a(z) is a type lll linear-phase function, it can be written as

ing factorization: where
a(z)=(1-z HYa(2)+ 3(1+z Yz by, (29 ]
where &(z) is a type Ill linear-phase filter with order E’(COSU’)ZKZO a(cosw)*,  L=(Meyeri~2)/2.

M ever=Moga— 1, Lg=Meved2. Equation(29) is obtained

by observing thaty(z) is symmetric so that its coefficients

except the two around the center of symmetry can be writ- Substituting Eq(30) into Eq. (29), one obtains
ten as a product of a type lll linear-phase function and (1 '

—z~1). The remaining two coefficients are multiple of (1

a(el®)=2 sin(w/2) exp[j(7— »)/2]

20

-j exp(— j @M gyed?2)sin(w)P(cosw)

+cos(w/2) exp(—jwl2)exp — j oM gyed?2)

g Hy(2) =exp(—jwMy4d2) [ — 2sin(w/2) sin(w)P(cosw)
g +cos(w/2)]. (31)
a) /\qﬁ Using again the expression bfy(e/®) in Eq. (18),

L L " L . . L s :
o 005 01 045 02 025 03 035 04 045 05

Normalized frequency H O(eJ w) = A( eJ w)exq - J 2(1)N) y

Fig. 7 Magnitude responses of example 4: Hy(z) (solid line), opti-

mal H,(z) (solid line); Fll(z) based on maximally flat «(z) proposed . .
in Ref. 18 (dashed line). the error functionrE(w) can be written as
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20

HO(Z) Hl(z)

20}

Magnitude in dB

-80

Fig. 8 Magnitude responses of Hy(z) and H,(z) in Example 5. . ®
E(w)=exi{—jw(2M+1)] .
—a(el??)A(el)exp(— j2wN) h/
—exff — jw(2M+1)] M\ v
—exf —jw(Mggqt 2N)JA(el) o
X {cosw— 2 sinw sin(2w)P[(cos 2w)]}
=exf —jo(2M+1)]{[1—A(e!®) cosw] T e s W
+2 sinw sin(2w) P[cos(2w) JA(el*)} (b)
=exf —jo(2M+1)]{B(el*)
+P[cos(2w)]C(el®)}, O0<w</2, (32
where "
B(el®)=1—A(el®) cosw and C(el®) 0ss
=2 sinw sin(2w)A(el®)]. (33 °
As I~3[cos(2w)] is a real-valued function, the minimum T R e
value of Time
©
|E(w)|=|B(el®)+ 2 sinw sin(2w)P[cos(2w)]A(e}*)| 0as
is attained when 00:
P[cos(2w)]=P4[cos(2w)] ]
_ RgB*()A(E)] ]
~ 2sinwsin(2w)|A(e?)|?
O<w<ml/2. (34 “
The solution ofa(z), @q(2), is obtained by approximat- ) R
ing P4[cos(2v)] in Eq. (34) using different nornp. When @

p=c°, the solution can readily be obtained by the Remez Fig. 9 Scaling and wavelet functions of Example 5: (a) analysis

exchange algorithm, where efficient implementation in scaling function; (b) analysis wavelet function; (c) synthesis scaling
MATLAB is available. Writing x=cos(2v), the weighting function; (d) synthesis wavelet function.
function of Eq.(34) is

4.2 Example 5

In this design example, an IIR 2-channel wavelet basis is
x sin[arcco$x)]|A{exd jO.5 arccogx)]|2. (35 designed using the method proposed in Sec. 4.1. The orders

W..(X) =2 sin[ 0.5 arccosXx) ]
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of the allpass function3(z) and the type Ill FIR linear- 12

phase functior&x(z) areN=5 andM = 18, respectively.
The order of the polynomidb(z), L, andM in Eq. (9) are,
respectively, 8 and 14. The weighting function of E85)
is used to achieve an equiripple responsélefz). Figure
8 shows the frequency responses of the analysis low-pass
and high-pass filtersHq(z) and H;(z). Compared with 14.
that in Example 2, there is no obvious degradation in the
frequency response &f(z) after the incorporation of the
zero atz=1. The system delay is 39, which is also the same
as that in Example 2. Figuresd and 9b) show, respec-
tively, the analysis scaling and wavelet functions derived 16-
from this IR filter bank. Their dual synthesis scaling and
wavelet functions are shown in Fig(c® and 9d). We can

see that they are very smooth and fairly symmetric due to 17.
the passband linear phase property. Coefficient® (@)

and a(n) used in this design example are depicted in
Tables 3 and 4, and frequency performance compared with
other methods is depicted in Table 5.

13.

15.

18.

5 Conclusion 19

A very simple algorithm for the design of two-channel
causal stable IIR PR filter banks is presented. It is based on20-
the structure previously proposed by Phoong étay

using a combination of all-pass and linear-phase FIR func- 5;
tions, the bumping problem found in the all-pass-based IIR
PR filter bank? is significantly suppressed. In addition,
flexible stopband attenuation of the high-pass filter can 22:
readily be obtained in exchange for a greater delay. The
design problem is formulated as a polynomial approxima- 3.
tion problem and is solved effectively using the Remez
exchange algorithm. The extension of this method to the
design of a class of IIR wavelet bases is also studied. Fur-
thermore, as the proposed structure is robust to coefficient
quantization and its design is extremely simple, it will be
very useful in many applications, such as wavelet-based
signal analysis and systerfis>*
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