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Abstract. A new method for designing two-channel causal stable IIR
PR filter banks and wavelet bases is proposed. It is based on the struc-
ture previously proposed by Phoong et al. (1995). Such a filter bank is
parameterized by two functions a(z) and b(z), which can be chosen as
an all-pass function to obtain IIR filterbanks with very high stopband
attenuation. One of the problems with this choice is that a bump of about
4 dB always exists near the transition band of the analysis and synthesis
filters. The stopband attenuation of the high-pass analysis filter is also 10
dB lower than that of the low-pass filter. By choosing b(z) and a(z) as
an all-pass function and a type-II linear-phase finite impulse response
(FIR) function, respectively, the bumping can be significantly sup-
pressed. In addition, the stopband attenuation of the high-pass filter can
be controlled easily. The design problem is formulated as a polynomial
approximation problem and is solved efficiently by the Remez exchange
algorithm. The extension of this method to the design of a class of IIR
wavelet bases is also considered. © 2000 Society of Photo-Optical Instrumenta-
tion Engineers. [S0091-3286(00)02909-3]
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1 Introduction

Perfect reconstruction~PR! multirate filter banks have im
portant applications in signal analysis, coding, and the
sign of wavelet bases. Figure 1~a! shows the block diagram
of a two-channel maximally decimated filter bank. The s
tem is called a PR system if the outputx̂(n) is identical to
the inputx(n) except for some constant scaling and tim
delay. The theory of PR filter banks has been extensiv
studied.1–4 In finite impulse response~FIR! filter banks, all
the analysis filters and the synthesis filters are FIR filt
and the PR condition is considerably simplified. More p
cisely, the filter bank is PR if the determinant of i
polyphase matrix is equal to some delay. In IIR filter ban
the entries of the polyphase matrix become rational fu
tions and the system is PR if the determinant of
polyphase matrix is a minimum phase function. In additi
to the more complicated PR condition of IIR filter banks,
is also very difficult to ensure that the IIR filters be cau
stable. Early attempts typically have noncausal stable fil
or causal unstable filters.8–10 In Refs. 5 and 6, causal stab
IIR PR filter banks are designed by using factorization
the polyphase matrix. However, satisfactory design res
are not obtained. Design of causal stable IIR PR filter ba
using optimization techniques has also been propose
Ref. 11 where the Lagrange multiplier and Lagrang
Newton methods are used to perform the optimizati
However, satisfactory results are not obtained and the
bility of the filters cannot be guaranteed. One of the m
successful designs of causal stable IIR PR filter banks is
one reported in Ref. 12, where a new structure for tw
2810 Opt. Eng. 39(10) 2810–2820 (October 2000) 0091-3286/2000/$
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channel IIR PR filter bank was proposed. Such structura
PR filter banks is parameterized by two functionsa(z) and
b(z), which can be chosen as an all-pass function to ob
IIR filter banks with very high stopband attenuation. T
design procedure is also very simple. One of the proble
with this choice ofa(z) andb(z) is that a bump of abou
4 dB always exists near the transition band of the analy
and synthesis filters. Moreover, the stopband attenuatio
the low-pass analysis filter is always 10 dB higher than t
of the high-pass filter. To overcome these problems,
improved algorithm using general rational functions f
a(z) and b(z), instead of the all-pass function, was r
cently reported in Ref. 14. The bumping problem in t
transition band is considerably suppressed. However,
to the use of the general rational functions, the advanta
of the all-pass functions such as low implementation co
plexity and low coefficient sensitivity are lost. Moreove
the design procedure is considerably more complica
than that in Ref. 12 and the stability of the IIR filters cann
be guaranteed, especially for filters with high order. A
other method based on the transformation of a FIR pro
type filter was proposed in Ref. 15. Due to the use of
transformation, this method will have considerable restr
tion on the selection of the analysis/synthesis filters and
system delay.

In this paper, we show that whenb(z) is chosen as an
all-pass function, it is still possible to suppress the bump
problem whena(z) is chosen as a linear-phase FIR fun
tion. This has also been observed previously in the pape
Kim and Ansari,16 but no detailed design procedure
15.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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Mao, Chan, and Ho: New method for designing . . .
given. There are several advantages of this structure.
of all, the advantages of using the all-pass function, suc
high stopband attenuation, low implementation complex
and low coefficient sensitivity, are preserved. Second,
use of a linear-phase FIR function not only helps to red
the bumping problem, but also provides considerable fr
dom in choosing the stopband attenuation and the dela
the highpass filter. Moreover, due to the simple structure
the FIR function, the design problem of the high-pass fil
can be formulated as a polynomial approximation proble
In particular, it is shown that the least-squares and minim
designs of the high-pass filter can be formulated as
familiar least-squares and the Chebyshev approxima
problems, respectively. Both of them can be solved eff
tively using existing techniques. As a result, causal sta
IIR filter banks with approximately linear-phase frequen
response and flexible stopband attenuation can be desi
easily using the proposed method. Compared with
methods proposed in Refs. 12 and 14, the stopband att
ation of both the low-pass and high-pass filters can be
ily controlled without any stability problem. Also, due t
the use of the Remez exchange algorithm, the design c
plexity is extremely low. The generalization of the prese
approach to the design of a class of IIR wavelet base

Fig. 1 Two-channel multirate filter bank: (a) maximally decimated
filter bank and two-channel PR filter bank proposed in Ref. 12, (b)
analysis filter bank, and (c) synthesis filter bank.
t
s

f

d

-
-

-

also studied. By factoring the type II linear-phase FIR fun
tion, it is possible to impose the regularity condition on t
analysis filters to construct the IIR wavelet bases. Sev
design examples are given to demonstrate the usefulne
the proposed method. Comparison with other conventio
approaches is also given.

The outline of this paper is organized as follows. In S
2, a brief summary of the two-channel structural PR fil
bank proposed in Ref. 12 is given. The proposed met
and several design examples are given in Sec. 3. Secti
is devoted to the design of dyadic wavelet bases deri
from these two-channel IIR filter banks. Finally, the co
clusions are drawn in Sec. 5.

2 Two-Channel Structural PR Filter Banks

Figure 1~a! shows the structure of a two-channel maxima
decimated multirate filter bank. It can be shown that1,2 the
reconstructed signalY(z) is given by

Y~z!5T~z!X~z!1A~z!X~2z!, ~1!

where

T~z!5 1
2 @H0~z!G0~z!1H1~z!G1~z!#, ~2!

and

A~z!5 1
2 @H0~2z!G0~z!1H1~2z!G1~2z!#. ~3!

The aliasing termA(z) can be canceled if the analysis an
synthesis filters are chosen as follows:

G0~z!52H1~2z!, G1~z!5H0~2z!. ~4!

The PR filter bank will be perfect reconstruction if th
transfer functionT(z) is equal to some delay

T~z!5cz2n0. ~5!

Combining Eqs.~2! and~3! one gets the following PR con
dition in H0(z) andH1(z):

T~z!5 1
2 @H0~2z!H1~z!2H0~z!H1~2z!#5cz2n0, ~6!

wheren0 is an integer andc is a nonzero constant. For IIR
filter banks,H0(z) andH1(z) are rational functions. In Ref
12, a class of structurally PR two-channel FIR and IIR filt
banks, as shown in Figs. 1~b! and 1~c!, was proposed. The
polyphase matrix of the filter bank is factored as

E~z!5S 0.5 0

20.5a~z! 1D S z2N b~z!

0 z2M D
5S 0.5z2N 0.5b~z!

20.5z2Na~z! 20.5a~z!b~z!1z2M D . ~7!

The corresponding expressions for the analysis filters a
2811Optical Engineering, Vol. 39 No. 10, October 2000
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Mao, Chan, and Ho: New method for designing . . .
H0~z!5
z22N1z21b~z2!

2
, ~8!

H1~z!52a~z2!H0~z!1z22M21. ~9!

An advantage of such structural system is that it is PR e
if the coefficients ofa(z) andb(z) are quantized. In Ref
12, a(z) andb(z) are chosen to be identical and the del
M is chosen to be 2N21. It can be seen from Eqs.~8! and
~9! that H0(z) can be made an ideal low-pass filter ifb(z)
has the following magnitude and phase responses

ub~ej 2v!u51 ;v, ~10a!

/b~ej 2v!5H ~22N11!v for vP@0,p/2#

~22N11!v6p for vP~p/2,p#.
~10b!

Another advantage of this structure is thatb(z) can be
chosen as a polynomial or a rational function to obt
structurally PR FIR or IIR filter banks, respectively. In th
latter case, the PR filter bank will be causal stable ifb(z) is
causal stable. In Ref. 12,b(z) is chosen to be a causa
stable all-pass function so that Eq.~10a! is met exactly
while Eq. ~10b! is approximately satisfied. In the FIR cas
b(z) is chosen to be a type II linear-phase function w
magnitude response as close to unity as possible. Bot
these techniques yield filter banks with very high stopba
attenuation. As mentioned earlier, such IIR filter banks
ing the all-pass function has a bump of about 4 dB atv
5p/2, no matter howb(z) is designed. The stopband a
tenuation of the high-pass filterH1(z) is also about 10 dB
lower than that of the lowpass filterH0(z). Instead of using
general rational functions fora(z) andb(z) as in Ref. 14,
b(z) is chosen as an all-pass function, whilea(z) is chosen
as a type II linear-phase FIR filter. The motivation is bas
on the observation that the bumping problem for this ty
of structural PR filter bank is much less serious in the F
case. In fact, by applying model reduction7 to the function
a(z) in an existing FIR filterbank, causal stable IIR P
filter bank with no bumping can readily be designed17

However, the implementation complexity of the resulti
IIR filter bank is only slightly lower than that of its linear
phase FIR counterpart. The reason is that the IIR filt
after model reduction is in general a stable rational funct
without any structure, unlike the all-pass function. In th
paper, we show that whenb(z) is chosen as an all-pas
function, the bumping problem can be significantly reduc
when a(z) is chosen as a linear-phase FIR function. T
all-pass function produces filter with very high stopba
attenuation. In addition, onlyN multiplications are required
to implement a filter of orderN. The all-pass function is
also well known for its low sensitivities to coefficient qua
tization. The linear-phase FIR functiona(z) not only helps
to reduce the bumping problem but also provides m
freedom in choosing the stopband attenuation and the d
of H1(z). The design ofH1(z) is therefore considerably
simplified without any stability problem. In fact, it is show
in the following section that the design ofH1(z) using the
2812 Optical Engineering, Vol. 39 No. 10, October 2000
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L2 andL` norm can be formulated as the least-squares
the Chebyshev approximation problems, respectively.

3 Proposed Methods

3.1 Problem Formulation

As mentioned earlier, all-pass-based filter design posse
many attractive properties such as better frequency cha
teristic, low implementation complexity, and low sensitiv
ties to coefficient quantization. By choosingb(z) to be an
allpass function as follows:

b~z!5
(k50

N aN,N2kz
2k

(k50
N aN,kz

2k , ~11!

it is possible to realizeH0(z) with the aforementioned
properties. The design of all-pass-based low-pass filter
previously been addressed in Ref. 13, where the proble
formulated as an eigenvalue problem.13

Having assumed thatH0(z) is a reasonably good low
pass filter, we now proceed to formulate the problem
designingH1(z) with a(z) a type II linear-phase function
It can be seen from Eqs.~8! and ~9! that the frequency
response ofH1(z) depends on both the lowpass filterH0(z)
and the functiona(z).

Let vp0
andvs0

be, respectively, the passband and sto

band cutoff frequencies ofH0(z). Similarly, let vp1
and

vs1
be the passband and stopband cutoff frequencies

H1(z), respectively. Ifvp0
5vs1

5vp andvs0
5vp1

5vs ,

then the ideal frequency response ofH1(ej v) is

Hd~ej v!5H 0 0<v<vp

exp@2 j v~2M11!# vs<v<p
. ~12!

The error functionE(v) of the high-pass filterH1(z) is
defined as

E~v!5exp@2 j v~2M11!#2a~e2 j v!H0~ej v!2Hd~ej v!.
~13!

The weighted distortion measure using theLp norm of
E(v) in the passbandI p5@vs ,p# and stopbandI s

5@0,vs# is given by

Dp~a!5E
I p

øI sW~v!uE~v!up dv, ~14!

whereW(v) is a positive weighting function. For simplic
ity, the 1/p’th power ofDp has been dropped. Usuallyp is
chosen to be two or̀ , which corresponds to theL2 and the
L` norms, respectively. The optimalap(z), with respect to
Dp , is therefore given by,

ap~z!5arg min
a

Dp~a!. ~15!

Since the minimization in Eq.~15! involves a(e2 j v),
which is periodic with periodp, it is different from the
conventional Chebyshev approximation. In fact, for a giv
value of vP@0,p/2#, a(e2 j v) will affect the values of
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Mao, Chan, and Ho: New method for designing . . .
H1(z) at v as well asv1p. Fortunately, due to the specia
structure of Eq.~9!, further simplification is possible. Firs
of all, it is noted that the magnitude ofa(e2 j v) should
approximately be equal to 1, except possibly aroundv
5p/2, where it may be even smaller, to obtain filter wi
good frequency characteristic. It then follows from Eq.~9!
that the ripple ofH1(ej v) in the passband is approximate
equal to the stopband attenuation ofH0(ej v). This enables
us to minimize only the stopband attenuation ofH1(v)
usinga(e2 j v), instead of minimizing Eq.~9! over both the
pass- and stopbands, and relies on the high stopband at
ation of H0(ej v) to achieve small passband ripples. T
latter is usually satisfied becauseH0(ej v) is derived from
the all-pass function, which can be designed independe
By increasing the length ofa(z), the stopband attenuatio
of H1(ej v) can be improved in exchange for a greater d
lay. We now consider the design ofa(z) using the follow-
ing type II linear-phase FIR filter,

a~ej v!5exp~2 j vModd/2! cos~v/2!P~cosv!, ~16a!

where

P~cosv!5 (
k50

L

ak~cosv!k. ~16b!

From Eqs.~8!, ~9!, and ~16!, it can be seen thatModd and
hence L should be chosen as 2(M2N)11 and (Modd

21)/25M2N, respectively. Substituting Eq.~16! into Eq.
~13!, we have

E~v!5exp@2 j v~2M11!#

2exp~2 j vModd! cos~v!P@cos~2v!#H0~ej v!,

vP@0,p/2#. ~17!

For the all-pass-based low-pass filter, the passband is
proximately linear phase with transfer function given by

H0~ej v!5A~ej v!exp~2 j 2vN!, ~18!

whereA(ej v) is a complex function and is approximate
equal to one ifb(z) is of sufficiently high order. Therefore
Eq. ~17! can be simplified to

E~v!5exp@2 j v~2M11!#2exp@2 j v~Modd12N!#

3A~ej v!cos~v!P@cos~2v!#

5exp@2 j v~2M11!#

3$12cos~v!P@cos~2v!#•A~ej v!%,

vP@0,p/2#. ~19!

As P@cos(2v)# is a real-valued function, the minimum
value of

u12cos~v!P@cos~2v!#•A~ej v!u
u-

.

-

is attained when

Pd@cos~2v!#5
Re@A~ej v!#

uA~ej v!u2 cosv
, vÞp/2. ~20!

This is best explained geometrically as shown in Fig.
where a and A stand, respectively, for cos(v)P@cos(2v)#
andA(ej v). We can see thatuE(v)u is minimum whenaA
is the projection of 1 in the direction ofA. The correspond-
ing value ofa is determined to be Re(A)/uAu2, which leads
to Eq. ~20!.

Writing x5cos(2v), the design problem becomes
polynomial approximation problem,

ak,opt5arg min
ak

E
I x

W̃~x!uP~x!2Pd~x!up dx,

~21!
I x5~21,x̃s#ø@xs,1#, x̃s,xs5cos~2vp!.

The interval (0,x̃s# is an optional disjoint interval to contro
the values ofP@cos(2v)# in the transition band ofH1(ej v)

andW̃(x) is a positive weighting function. Sincea(ej v) is
a type II linear-phase function, it is equal to zero atv
5p, i.e., a(ej p)50. The actual value ofx̃s determines
how large the values ofP@cos(2v)# are in the interval
(21,x̃s# @i.e., in the transition band ofH1(ej v)#. If p5`,
Eq. ~21! reduces to the familiar Chebyshev approximatio
which can be solved using the Remez exchange algori
with ideal frequency response given by Eq.~20! and
weighting functionW̃(x), given by

W̃`~x!5cos@0.5• arccos~x!#uA$exp@ j0.5 arccos~x!#%u2.
~22!

According to the alternation theorem, the optimum soluti
in Eq. ~21! must have a minimum ofL12 alternations in
I x . Normally, the values ofx̃s are very small, therefore, al
the alternations appear in the band edges and the inte
@xs,1#.

If p52, Eq. ~21! becomes a least-squares design pr
lem:

ak,opt5arg min
ak

E
I x

W̃~x!uP~x!2Pd~x!u2 dx,

~23!
I x5~21,x̃s#ø@xs ,1#, x̃s,xs5cos~2vp!.

Let

Fig. 2 Geometric interpretation of Eq. (20).
2813Optical Engineering, Vol. 39 No. 10, October 2000
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E~v!5E
I x

W̃~x!uP~x!2Pd~x!u2 dx. ~24!

Substituting Eq.~16b! into Eq. ~24!, one gets, after som
manipulation, the following

E~v!5aTQa22aTr1c, ~25!

where

a5@a0 a1 ¯ aL#T, r5@r 0 r 1 ¯ r L#T,

@Q# i , j5E
I x

W̃~x!xi 1 j dx, r i5E
I x

W̃~x!xi Pd~x! dx, and

c5E
I x

W̃~x!Pd
2~x! dx.

The optimal least-squares solution is therefore given by

aopt5Q21r . ~26!

To avoid calculating the integrals analytically, we can a
proximate the integral by a summation with sufficient lar
number of terms. Note that the approach developed he
also valid whenH0(v) is a linear-phase function, i.e., it i
also applicable to the design of linear-phase FIR PR fi
bank using the structure in Figs. 1~b! and 1~c!.

The design procedure can be easily implemented by
signal processing Toolbox of MATLAB. The functio
REMEZ is used to perform the Remez exchange algorit
(p5`), while the function FIRLS is used for computin
the least-squares solution (p52).

Fig. 3 Magnitude response of a(z) in Example 1.

Table 1 Coefficients of a(z) in Example 1.

n a(n) n

0 26.6386503768117623102003 11

1 1.8946462077616883102002 10

2 24.2568626271946303102002 9

3 8.8119467164097513102002 8

4 21.8613759070166343102001 7

5 6.2776177206404233102001 6
2814 Optical Engineering, Vol. 39 No. 10, October 2000
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3.2 Design Examples

In this section, the proposed design method is evalua
and compared with other conventional methods throu
several design examples.

3.2.1 Example 1: low-order minimax design

In this design example, the order of the all-pass funct
b(z) in the analysis low-pass filterH0(z) is chosen asN

Fig. 4 Frequency responses of Example 1: (a) magnitude re-
sponses of H0(z) and H1(z); proposed in this paper (solid line) and
proposed in Ref. 12 (dashed line); (b) magnitude responses of
G0(z) and G1(z); proposed in this paper (solid line) and proposed
in Ref. 12 (dashed line); and (c) passband phase error of H0(z) and
H1(z).
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53. To compare the performance of the proposed met
with that of Ref. 12, the low-pass filter in example 1 of Re
12 is used here. The order ofb(z) is 3 and its coefficients
are a3,150.473,a3,2520.094, anda3,350.025. A type II
FIR linear-phase functiona(z) with Modd511 is designed
using the minimax approach introduced in Sec. 3.1. T
order of the polynomialP(x) is L55 and the delay param
eter M is equal to 8. The coefficients and the frequen
response ofa(z) are shown, respectively, in Table 1 an
Fig. 3. Figure 4~a! shows the frequency responses of t
analysis filtersH0(z) andH1(z) designed by the propose
method, while Fig. 4~b! shows the frequency responses
the synthesis filtersG0(z) andG1(z). Compared with the
result in Ref. 12, both the passband and stopband cu
frequencies ofH1(z) are the same, which arevp1

50.63p

andvs1
50.37p, respectively. The stopband attenuation

H1(z) designed by the proposed method is improved
y,

-

re-
f

about 40 dB, which is about the same as that ofH0(z). The
bumping of H1(z) in the transition band is also signifi
cantly suppressed. The deviation from linear phase or
phase error in the passband is plotted in Fig. 4~c!. The
system delay of the proposed filter bank is slightly i
creased from 17 to 23 samples. The weighting funct
W̃(x) is set to 1 so that the stopband ofH1(z) is not equi-
ripple. It shows that the weighting function in Eq.~22! is
useful in achieving an equiripple response in the stopba
as we shall see later in examples 2 and 4. This demonstr
that the bumping problem is effectively suppressed by
proposed method, where a combination of all-pass
linear-phase FIR functions is employed. Also, the stopba
attenuation of the high-pass filter can be controlled by
ing linear-phase function with different orders, in exchan
for higher system delay.

The MATLAB source code of example 3.1 is given a
follows.
N=3; % order of all-pass function b( z )
% The allpass coefficients are given as: a 3,1 50.473, a 3,2 520.094, a 3,3 50.025. 12

% compute b( e j v) from equation (11)

% compute the lowpass filter H0( e j v) from (8)

Wp=0.371 ; % vp passband cutoff frequency of H0( e j v) (normalized by p)

Lwp=round(512 *Wp*2) ; % transform 2 vp to integer length (normalized by 512)

La=6 ; % half length of a( z )

delta –w=pi/1024; % frequency spacing Dv in [0, p]

for i=1:Lwp ,
H–delay(i)=H0(i)/exp(−j *delta –w* (i−1) *2*N); % compute A( e j v) from (18)

end

for i=1:Lwp ,
H0–(i)=real(H –delay(i))/((abs(H0(i)))ˆ2) ; % compute Pd [cos(2 v)](cos v)

end

for i=1:Lwp/2,

wi(i)=1 ; % weight in passband of a( e j v)

end

F=[(1:Lwp)/512, 0.99, 1] ; % desired frequency points

A=[H0 –(1:Lwp)0, 0]; % desired amplitude response

Wi=[wi 0.05] ; % weight in frequency axis

alpha=remez(2 *La−1,F,A,Wi) ; % compute a( z ) by Remez Exchange algorithm
he
-
s of
-
on of
th
ro-

at of
39,

he
eral
Vectors H–delay andH0– are used to store, respectivel

the samples ofA(ej v) in Eq. ~18! and the desired magni
tude response ofPd@cos(2v)#cos(v) from @0,2vp#. The
stopband cutoff frequency of the desired magnitude
sponse is selected as 0.99p. alpha is the solution ofa(z),
and is listed in Table 1.

3.2.2 Example 2: high order minimax design

In this example, the design ofH1(z) with higher order will
be illustrated. The order ofb(z) is chosen asN55 while
that of the type-II FIR function isModd519. The values of
L andM are 9 and 14, respectively. NoteH0(z) andb(z)
are designed by the algorithm proposed in Ref. 13. T
weighting function of Eq.~22! is used to achieve an equir
ipple response. Figure 5 shows the frequency response
the filtersH0(z) andH1(z). We can see that both the low
pass and the high-pass filters have a stopband attenuati
about 50 dB. Compared with the result in Ref. 14, bo
methods have comparable cutoff frequencies, but the p
posed method has higher stopband attenuation than th
Ref. 14, and the system delay of the proposed design is
which is also lower than 43 reported in Ref. 14. Sincea(z)
is a linear-phase FIR function, the design complexity of t
proposed method is also much lower than using the gen
IIR function reported in Ref. 14.
2815Optical Engineering, Vol. 39 No. 10, October 2000
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3.2.3 Example 3: least-squares design

In this example, the highpass filterH1(z) is designed using
the least-squares approach introduced in Sec. 3.1. The
pass functionb(z) and the system delay~i.e., 23! are the
same as example 1. The order of the type II functiona(z)
~see Table 2! is Modd511, which is identical to that of
example 1 for a fair comparison. Figure 6 shows the m
nitude responses of the analysis filters,H0(z) andH1(z).

3.2.4 Example 4: comparison with maximally flat
FIR function

In this example, the proposed method is compared with
one proposed in Ref. 18. In Ref. 18,H0(z) and a(z) are
chosen as the half band and maximally flat FIR filters,
spectively. Asa(z) is not optimized using any measure, i
performance is limited. Without loss of generality,b(z) in
our system is chosen as an all-pass function, instead
half band FIR filter, with orderN58. In the proposed
method,a(z) consists of a type II FIR function with 14
taps and is designed by the Remez exchange algorithm.
magnitude response of the resulting filterH1(z) is shown
as solid line in Fig. 7. The weighting function of Eq.~22! is
again used to achieve an equiripple response. The da
line in Fig. 7 shows the magnitude response of the fi
Ĥ1(z) whena(z) is chosen as a maximally flat FIR func
tion with the same order. We can see that the filters
signed by the proposed method has a much sharper c
than that based on the maximally flat FIR function.

The preceding comparison is summarized in Table
This includes the results in Examples 1 to 4, and th
using allpass-based IIR~Ref. 12!, general IIR~Ref. 14! and
maximally flat FIR filter bank.18 Notevpi

, vsi
, i 50, 1, are,

Fig. 5 Magnitude responses of H0(z) and H1(z) in Example 2.

Table 2 Coefficient of a(z) in Example 3

n a(n) n

0 24.8632150501532263102003 11

1 1.6310663872679503102002 10

2 23.9764582156336223102002 9

3 8.4994786112636783102002 8

4 21.8416588046786313102001 7

5 6.2679403654787753102001 6
2816 Optical Engineering, Vol. 39 No. 10, October 2000
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respectively, the cut-off frequencies of analysis filte
Hi(z), i 50, 1 dsl

, i 50, 1 are their stopband attenuation
andt is the system delay.

4 Design of IIR Wavelet Bases

4.1 Theory and Design Procedure

The theory of wavelets is closely related to that of multira
filter banks.19,20 It has been shown that discrete dyad
wavelets can be obtained from two-channel PR filter ba
with added regularity condition. For biorthogonal dyad
wavelet bases, it has been proved that21,22H0(z) andG0(z)

should haveK0 ~or K̃0! zeros atz521 ~the K-regularity
condition!. In addition,H1(z) andG1(z) should also have
at least one zero atz51. This is equivalent to saying tha

dkH0~z!

dzk U
z5p

50, k50, 1, . . . ,K0 ;
dkG0~z!

dzk U
z5p

50,

k50, , . . . ,K̃0 , ~27!

H1~1!5G1~1!50. ~28!

Substituting Eqs.~8! and ~9! into Eqs.~27! and ~28!, one
gets a set of linear equations that must be satisfied.
problem is a constrained nonlinear optimization proble
with linear constraints, which can be solved using the s
routine NCONF in the IMSL library. If all the freedom is
used to maximize the number of zeros atz521, then Eq.

Table 3 Coefficients of allpass filter b(z) in Example 5.

n an

0 1.000000000000000e1000

1 4.8768620982371233102001

2 21.0734546517944313102001

3 4.2195864288626063102002

4 21.7864787221243783102002

5 8.3910635413866053102003

Table 4 Coefficients of â(n) in Example 5, â(n)52â(182n), n
510, . . . ,18.

n â(n)

0 25.7362081335181013102004

1 2.0911981482558943102003

2 24.1642678004796023102003

3 8.2388247177069383102003

4 21.4245202402985073102002

5 2.3960967152565543102002

6 23.9125117283163023102002

7 6.6774976530206143102002

8 21.3159643806194563102001

9 0
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~27! becomes a system of linear equations, which can
used to solve for the filter coefficients. Alternatively, ifp
52 in Eq. ~21!, the objective function becomes quadra
and the problem is recognized as a quadratic programm
problem with equality constraints. Again, this can be solv
numerically with relatively ease. In this section, we lim
ourselves to a class of wavelet bases withK051 using the
methods introduced in Sec. 3. The advantage is that it i
analytic solution and is very easy to apply. More precise
we only impose one zero atz521 for H0(z) andG0(z).

First, it is observed thatH0(z) always has a zero atz
521 if b(z) is an all-pass function. Therefore,H0(z) sat-
isfies the regularity condition withK051. For the high-pass
filter H1(z), a zero atz51 impliesa(z)uz5151. Since this
constraint cannot be incorporated directly into the Par
McClellan algorithm, it is imposed intoa(z) by the follow-
ing factorization:

a~z!5~12z21!â~z!1 1
2 ~11z21!z2Ld, ~29!

where â(z) is a type III linear-phase filter with orde
Meven5Modd21, Ld5Meven/2. Equation~29! is obtained
by observing thata(z) is symmetric so that its coefficient
except the two around the center of symmetry can be w
ten as a product of a type III linear-phase function and
2z21). The remaining two coefficients are multiple of (

Fig. 6 Magnitude responses of H0(z) and H1(z) in example 3: pro-
posed in this paper (solid line); proposed in Ref. 12 (dashed line).

Fig. 7 Magnitude responses of example 4: H0(z) (solid line), opti-

mal H1(z) (solid line); Ĥ1(z) based on maximally flat a(z) proposed
in Ref. 18 (dashed line).
1z21)z2Ld. Using a scale factor of 1/2, Eq.~29! guarantees
that the required conditiona(z)uz5151 is satisfied. Since
â(z) is a type III linear-phase function, it can be written

â~ej v!5 j exp~2 j vMeven/2! sinv P̃~cosv!, ~30!

where

P̃~cosv!5 (
k50

L

ak~cosv!k, L5~Meven22!/2.

Substituting Eq.~30! into Eq. ~29!, one obtains

a~ej v!52 sin~v/2! exp@ j ~p2v!/2#

• j exp~2 j vMeven/2!sin~v!P̃~cosv!

1cos~v/2! exp~2 j v/2!exp~2 j vMeven/2!

5exp~2 j vModd/2! @22sin~v/2! sin~v!P̃~cosv!

1cos~v/2!#. ~31!

Using again the expression ofH0(ej v) in Eq. ~18!,

H0~ej v!5A~ej v!exp~2 j 2vN!,

the error functionE(v) can be written as

Table 5 Frequency performance comparison with other methods.

vp0
vs0

vp1
vs1

ds0
ds1

t

Example 1 0.37p 0.63p 0.63p 0.37p 42 42 23

Example 2 0.4p 0.6p 0.6p 0.4p 52 52 39

Example 3 0.37p 0.63p 0.63p 0.37p 42 42 23

Example 4 0.4p 0.6p 0.6p 0.3p 71 75 45

Example 0.4p 0.6p 0.6p 0.4p 52 50 39

Ref. 12 0.3p 0.63p 0.63p 0.37p 42 32 17

Ref. 14 0.4p 0.6p 0.6p 0.4p 46 49 43

Ref. 18 0.4p 0.6p 0.6p 0.2p 71 71 45

Notes
vp0

: passband cutoff frequency of H0(z)
vs0

: stopband cutoff frequency of H0(z)
vp1

: passband cutoff frequency of H1(z)
vs1

: stopband cutoff frequency of H1(z)
ds0

: stopband attenuation of H0(z) (dB)
ds1

: stopband attenuation of H1(z) (dB)
t: system delay (samples)
2817Optical Engineering, Vol. 39 No. 10, October 2000
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E~v!5exp@2 j v~2M11!#

2a~ej 2v!A~ej v!exp~2 j 2vN!

5exp@2 j v~2M11!#

2exp@2 j v~Modd12N!#A~ej v!

3$cosv22 sinv sin~2v!P̃@~cos 2v!#%

5exp@2 j v~2M11!#$@12A~ej v! cosv#

12 sinv sin~2v!P̃@cos~2v!#A~ej v!%

5exp@2 j v~2M11!#$B~ej v!

1 P̃@cos~2v!#C~ej v!%, 0,v,p/2, ~32!

where

B~ej v!512A~ej v! cosv and C~ej v!

52 sinv sin~2v!A~ej v!u. ~33!

As P̃@cos(2v)# is a real-valued function, the minimum
value of

uE~v!u5uB~ej v!12 sinv sin~2v!P̃@cos~2v!#A~ej v!u

is attained when

P̃@cos~2v!#5Pd@cos~2v!#

52
Re@B* ~ej v!A~ej v!#

2 sinv sin~2v!uA~ej v!u2 ,

0,v,p/2. ~34!

The solution ofa(z), âopt(z), is obtained by approximat
ing Pd@cos(2v)# in Eq. ~34! using different normp. When
p5`, the solution can readily be obtained by the Rem
exchange algorithm, where efficient implementation
MATLAB is available. Writing x5cos(2v), the weighting
function of Eq.~34! is

W̃`~x!52 sin@0.5 arccos~x!#

3sin@arccos~x!#uA$exp@ j 0.5 arccos~x!#u2. ~35!

Fig. 8 Magnitude responses of H0(z) and H1(z) in Example 5.
2818 Optical Engineering, Vol. 39 No. 10, October 2000
4.2 Example 5

In this design example, an IIR 2-channel wavelet basis
designed using the method proposed in Sec. 4.1. The or

Fig. 9 Scaling and wavelet functions of Example 5: (a) analysis
scaling function; (b) analysis wavelet function; (c) synthesis scaling
function; (d) synthesis wavelet function.
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of the allpass functionb(z) and the type III FIR linear-
phase functionâ(z) areN55 andMeven518, respectively.
The order of the polynomialP̃(z), L, andM in Eq. ~9! are,
respectively, 8 and 14. The weighting function of Eq.~35!
is used to achieve an equiripple response ofH1(z). Figure
8 shows the frequency responses of the analysis low-
and high-pass filters,H0(z) and H1(z). Compared with
that in Example 2, there is no obvious degradation in
frequency response ofH1(z) after the incorporation of the
zero atz51. The system delay is 39, which is also the sa
as that in Example 2. Figures 9~a! and 9~b! show, respec-
tively, the analysis scaling and wavelet functions deriv
from this IIR filter bank. Their dual synthesis scaling a
wavelet functions are shown in Fig. 9~c! and 9~d!. We can
see that they are very smooth and fairly symmetric due
the passband linear phase property. Coefficients ofb(z)
and â(n) used in this design example are depicted
Tables 3 and 4, and frequency performance compared
other methods is depicted in Table 5.

5 Conclusion

A very simple algorithm for the design of two-chann
causal stable IIR PR filter banks is presented. It is based
the structure previously proposed by Phoong et al.12 By
using a combination of all-pass and linear-phase FIR fu
tions, the bumping problem found in the all-pass-based
PR filter bank12 is significantly suppressed. In additio
flexible stopband attenuation of the high-pass filter c
readily be obtained in exchange for a greater delay.
design problem is formulated as a polynomial approxim
tion problem and is solved effectively using the Rem
exchange algorithm. The extension of this method to
design of a class of IIR wavelet bases is also studied. F
thermore, as the proposed structure is robust to coeffic
quantization and its design is extremely simple, it will
very useful in many applications, such as wavelet-ba
signal analysis and systems.23,24
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