754 research outputs found

    A quadratic finite element wavelet Riesz basis

    Full text link
    In this paper, continuous piecewise quadratic finite element wavelets are constructed on general polygons in R2\mathbb{R}^2. The wavelets are stable in HsH^s for s<32|s|<\frac{3}{2} and have two vanishing moments. Each wavelet is a linear combination of 11 or 13 nodal basis functions. Numerically computed condition numbers for s{1,0,1}s \in \{-1,0,1\} are provided for the unit square.Comment: 13 page

    Review of modern numerical methods for a simple vanilla option pricing problem

    Get PDF
    Option pricing is a very attractive issue of financial engineering and optimization. The problem of determining the fair price of an option arises from the assumptions made under a given financial market model. The increasing complexity of these market assumptions contributes to the popularity of the numerical treatment of option valuation. Therefore, the pricing and hedging of plain vanilla options under the Black–Scholes model usually serve as a bench-mark for the development of new numerical pricing approaches and methods designed for advanced option pricing models. The objective of the paper is to present and compare the methodological concepts for the valuation of simple vanilla options using the relatively modern numerical techniques in this issue which arise from the discontinuous Galerkin method, the wavelet approach and the fuzzy transform technique. A theoretical comparison is accompanied by an empirical study based on the numerical verification of simple vanilla option prices. The resulting numerical schemes represent a particularly effective option pricing tool that enables some features of options that are depend-ent on the discretization of the computational domain as well as the order of the polynomial approximation to be captured better

    An optimal adaptive wavelet method for First Order System Least Squares

    Get PDF
    In this paper, it is shown that any well-posed 2nd order PDE can be reformulated as a well-posed first order least squares system. This system will be solved by an adaptive wavelet solver in optimal computational complexity. The applications that are considered are second order elliptic PDEs with general inhomogeneous boundary conditions, and the stationary Navier-Stokes equations.Comment: 40 page

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Hierarchical Riesz bases for Hs(Omega), 1 < s < 5/2

    Get PDF
    On arbitrary polygonal domains OmegasubsetRR2Omega subset RR^2, we construct C1C^1 hierarchical Riesz bases for Sobolev spaces Hs(Omega)H^s(Omega). In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from sin(2,frac52)s in (2,frac{5}{2}) to sin(1,frac52)s in (1,frac{5}{2}). Since the latter range includes s=2s=2, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned

    Optimal Sup-norm Rates and Uniform Inference on Nonlinear Functionals of Nonparametric IV Regression

    Full text link
    This paper makes several important contributions to the literature about nonparametric instrumental variables (NPIV) estimation and inference on a structural function h0h_0 and its functionals. First, we derive sup-norm convergence rates for computationally simple sieve NPIV (series 2SLS) estimators of h0h_0 and its derivatives. Second, we derive a lower bound that describes the best possible (minimax) sup-norm rates of estimating h0h_0 and its derivatives, and show that the sieve NPIV estimator can attain the minimax rates when h0h_0 is approximated via a spline or wavelet sieve. Our optimal sup-norm rates surprisingly coincide with the optimal root-mean-squared rates for severely ill-posed problems, and are only a logarithmic factor slower than the optimal root-mean-squared rates for mildly ill-posed problems. Third, we use our sup-norm rates to establish the uniform Gaussian process strong approximations and the score bootstrap uniform confidence bands (UCBs) for collections of nonlinear functionals of h0h_0 under primitive conditions, allowing for mildly and severely ill-posed problems. Fourth, as applications, we obtain the first asymptotic pointwise and uniform inference results for plug-in sieve t-statistics of exact consumer surplus (CS) and deadweight loss (DL) welfare functionals under low-level conditions when demand is estimated via sieve NPIV. Empiricists could read our real data application of UCBs for exact CS and DL functionals of gasoline demand that reveals interesting patterns and is applicable to other markets.Comment: This paper is a major extension of Sections 2 and 3 of our Cowles Foundation Discussion Paper CFDP1923, Cemmap Working Paper CWP56/13 and arXiv preprint arXiv:1311.0412 [math.ST]. Section 3 of the previous version of this paper (dealing with data-driven choice of sieve dimension) is currently being revised as a separate pape
    corecore