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«Και πρώτα απ’ όλα τι εννοούμε λέγοντας παιδεία; Την
πληροφορία, την τεχνική, το δίπλωμα εξειδίκευσης που εξ-
ασφαλίζει γάμο, αυτοκίνητο κι ακίνητο, με πληρωμή την
πλήρη υποταγή του εξασφαλισθέντος ή την πνευματική και
ψυχική διάπλαση ενός ελεύθερου ανθρώπου, με τεχνική
αναθεώρησης κι ονειρικής δομής, με αγωνία απελευθέρωσης
και με διαθέσεις μιας ιπτάμενης φυγής προς τ’ άστρα;»

Μάνος Χατζιδάκις

"But first of all, what do we mean by education? The
information, the technique, or the diploma of specialisa-
tion, being potentially the guarantee of a marriage, mov-
able and immovable property, that comes along with the
price of full subordination of the person seeking this kind
of security? Or, the spiritual and mental structure of a
free man who practices the art of revision, and composed
by the very essence of dreams craves after the agony of
liberation for a flying escape to the stars?"

Manos Hadjidakis
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1. Introduction

In principle, partial differential equations (boundary value problems) emanate from
the mathematical description of phenomena or processes appearing in a great variety
of topics in physics, mechanics, engineering, chemistry, biology, or even finance. The
complexity of the resulting mathematical problems does not allow for an analytical so-
lution following classical analytical techniques. Thus, the development of (advanced)
numerical approximation techniques for the solution of these problems has been, in
modern times, the dominant approach to meet the ever-rising demands of mathemat-
ical applications to real-world problems.

1.1 The numerical solution of operator equations

A boundary value problem can typically be formulated as a well-posed operator equation
in the setting of Hilbert spaces. This means, one may rewrite the problem equivalently
as

Au = f, (1.1.1)

where A : H → K ′ is a boundedly invertible linear1 operator, i.e. A ∈ Lis(H ,K ′),
with H , K being Hilbert spaces over R, usually Sobolev spaces on a domain Ω ⊂ Rn,
and right hand side f ∈ K ′. Moreover, a correspondence of the operator A with a
bilinear form a(·, ·) on H × K can be achieved by the relation a(u, v) = (Au)(v), so
that (1.1.1) is equivalent to

a(u, v) = f(v), ∀v ∈ K . (1.1.2)

Considering finite dimensional subspaces Hh ⊂ H ,Kh ⊂ K , called the trial and
test spaces, respectively, an approximate solution of (1.1.2) is to find uh ∈ Hh such
that

a(uh, vh) = f(vh), ∀vh ∈ Kh. (1.1.3)

This uh is a so-called (Petrov-) Galerkin solution which satisfies the orthogonality
condition a(u− uh, vh) = 0, ∀vh ∈ Kh.

1For simplicity, in this introduction we consider linear operators only although the results extend
to certain classes of non-linear operators as well.
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1. Introduction

In the case when K = H , Kh = Hh, and a(·, ·) is elliptic, i.e., when the symmetric
part 1

2 (A + A′) ∈ Lis(H ,H ′), this Petrov-Galerkin solution, then called Galerkin
solution, exists and it is a quasi-best approximation to u ∈ H from Hh.

When the subspace Hh is chosen as the space of all piecewise polynomial functions
in H of some specified degree d − 1 w.r.t. to a partition of Ω into n-simplices we
speak about a finite element method. Often quasi-uniform partitions are considered.
Solving for subsequent uniform dyadically refined meshes, i.e., with a decreasing mesh
size h, a basic question on convergence is how does the error of the approximation to
u reduces as h → 0.

As an indicative example to the latter, if H is equal to Hm(Ω), or is a subspace
of that space, as with an elliptic boundary value problem of order 2m, and u is ap-
proximated by piecewise polynomials of degree d− 1 with d > m, then if u ∈ Hd(Ω),
one has an error of order N− d−m

n , where N := dimHh. In other words,

‖u− uh‖Hm(Ω) � N− d−m
n ‖u‖Hd(Ω), (1.1.4)

where ‘�’ denotes inequality modulo some constant factor. The fact that the rate of con-
vergence d−m

n is inversely proportional to n is known as the curse of dimensionality.
In order to realise the convergence rate d−m

n , we assumed that u ∈ Hd(Ω). In many
cases this condition is violated because non-smooth parts of the boundary (corners,
edges), or non-smooth coefficients in the partial differential operator, or a non-smooth
forcing function f cause singularities in the solution. In these cases, the consequences
of reduced regularity of the solution can be circumvented by enabling appropriate local
refinements of the partition that underlies the trial space. Since a priori the solution
is unknown, the question is how to find such partitions.

Adaptive finite element methods perform a repetition of the following loop: Given
a partition, determine the Galerkin solution associated to the current partition. Com-
pute an a posteriori error estimator, being a sum of local error indicators associated
to the individual simplices. Refine those simplices that are associated to the largest
indicators, and repeat. This adaptive method has been shown to give the best possible
convergence rate s in terms of the number of simplices N among essentially all possible
partitions of the domain into simplices. Moreover, under mild conditions, this rate s
is equal to the best possible rate d−m

n known for smooth solutions. These results,
however, hold true for elliptic problems only.

Our focus in this thesis will be on adaptive wavelet methods for solving operator
equations as originally introduced in [CDD01, CDD02] and further developed in, e.g.,
[GHS07, Ste14]. In particular since we consider wavelets from finite element spaces,
these methods have quite some similarities to adaptive finite element methods. An
important difference is, however, that proofs of optimality of adaptive wavelet methods
will not be restricted to elliptic problems.

1.1.1 Adaptive Wavelet Galerkin Methods

Considering the operator equation (1.1.1) in the previous section, we equip the (sep-
arable) Hilbert spaces H ,K with Riesz bases ΨH = {ψH

λ : λ ∈ ∨H } and ΨK =

2



1.1. The numerical solution of operator equations

{ψK
λ : λ ∈ ∨K }, respectively.
The collection ΨH being a Riesz basis for H (and similarly ΨK being one for

K ) means that the analysis operator FH : g �→ [g(ψH
λ )]λ∈∨H is boundedly invertible

from the dual H ′ to the sequence space �2(∨H ), i.e., it is in Lis(H ′, �2(∨H )), so that
its adjoint, known as the synthesis operator, F ′

H : v �→ v�ΨH :=
∑

λ∈∨H
vλψ

H
λ ∈

Lis(�2(∨H ),H ).
We will employ Riesz bases of wavelet type. Considering ΨH , for some nested

sequence V0 ⊂ V1 ⊂ · · · ⊂ H , with closH (∪j≥0Vj) = H , the basis will be a union of
a basis for V0 and bases for suitable complements spaces Vj+1 � Vj , for j = 0, 1, . . ..

Writing the unknown solution u of (1.1.1) as u = F ′
H u, and by pre-‘multiplying’

the equation with the invertible operator FK , we arrive at the equivalent problem

FK AF ′
H u = FK f, (1.1.5)

being a countable collection of coupled scalar equations, where the bi-infinite stiffness
matrix

A := FK AF ′
H = [a(ψH

µ , ψK
λ )](λ,µ)∈∨K ×∨H

∈ Lis(�2(∨H ), �2(∨K )),

and infinite load vector f := FK f = [f(ψK
λ )]λ∈∨K ∈ �2(∨K ).

To describe the adaptive wavelet Galerkin method (awgm) for solving (1.1.5), we
may restrict ourselves to the case that ∨ := ∨H = ∨K , and A = A� is positive
definite. Indeed, if this initially does not hold, then the following can be applied to
the normal equations

A�Au = A�f

which always do satisfy these assumptions, although from a quantitative point of view
this might be less attractive.

Like the adaptive finite element method, the awgm consists of a repetition of the
following three steps. Given a finite Λ ⊂ ∨, solve uΛ ∈ �2(Λ) ⊂ �2(∨) from the
Galerkin system

A|Λ×ΛuΛ = f |Λ.
The matrix A|Λ×Λ is symmetric, positive definite, and its condition number is bounded
by that of A. Next compute the residual f−AuΛ, whose support is contained in ∨\Λ.
Since A is boundedly invertible, it holds that ‖f − AuΛ‖�2(∨) � ‖u − uΛ‖�2(∨)(�
‖u − u�

ΛΨH ‖H ), meaning that ‖f − AuΛ‖�2(∨) can serve as an a posteriori error
estimator. Therefore, as the third step, collect those indices from f − AuΛ that
correspond to its largest entries and add them to Λ, and repeat.

With Λ0 � Λ1 � · · · ⊂ ∨ denoting the sequence generated by this awgm, it has
been shown that

(‖u− u�
Λi
ΨH ‖ �) ‖u− uΛi‖�2(∨) � (#Λi)

−s

for the best possible rate s > 0 among all such sequences.
The algorithm as presented is not realisable since it involves the evaluation of

the generally infinitely supported residuals f − AuΛi
. It has, however, been shown

3



1. Introduction

that the optimal rate is still realized with an approximate evaluation of the residual
within a fixed, sufficiently small relative tolerance. For wavelets that are sufficiently
smooth, and have sufficiently many vanishing moments, it has been shown that such
an approximate evaluation can be performed at linear cost. Additionally, by iteratively
solving the arising Galerkin systems within a fixed, sufficiently small relative tolerance,
one arrives at an algorithm that has optimal computational complexity.

1.1.2 Contributions from this thesis

1.1.2.1 FOSLS

The routine for the approximate evaluation of the residual that has been developed
is based on the observation that although generally each column of A has infinitely
many unknowns, this stiffness matrix is close to being sparse. This in the sense that
for the difference in ‘levels’ of wavelets ψλ and ψµ tending to infinity, the correspond-
ing entry Aλµ = a(ψµ, ψλ) tends to zero, with a rate that depends on the order of the
operator, the smoothness of the wavelets, and the number of their vanishing moments.
In the approximate matrix-vector multiplication routine, known as the apply-routine,
columns of A are approximated within tolerances that depend on the modulus of the
corresponding entry in the input vector, meaning that its outcome depends nonlin-
early on this vector. Although this routine gives rise to a qualitatively satisfactory
approximate residual evaluation routine, in a quantitative sense it has turned out to
be quite expensive.

Chapter 2 is devoted to the construction of an optimally converging awgm whilst
avoiding the use of apply. The idea is not to split the residual into two terms, the
application of the operator to the current approximate solution and the right-hand
side, but to approximate it as a whole. By doing so, one benefits from the fact that
the residual gets small when the iteration proceeds, whereas the aforementioned terms
do not, meaning that approximating each of them separately within a small relative
tolerance does not suffice.

Approximating a residual as a whole requires that both its terms can be represented
in a common dictionary. Considering continuous piecewise polynomial wavelets and
an operator of second order as we will do, the operator applied to a finite linear
combination of wavelets yields a distribution, which does not permit the suggested
approach.

Therefore, by introducing the flux ∇u as an additional separate variable, we write
our second order PDE as a system of PDEs of first order. W.r.t. suitable Hilbert
spaces, again denoted as H and K , the resulting operator H → K ′, denoted as
�A, is a homeomorphism with its range, generally being a proper subspace of K ′.
Consequently, we consider the well-posed first order system least squares (FOSLS)
problem of finding argmin�u∈H ‖ �A�u− �f‖K ′ . Its solution can be found by solving the
Euler-Lagrange equations

〈 �A�v, �A�u− �f〉K ′ = 0 ∀�v ∈ H .

4



1.1. The numerical solution of operator equations

Since for g ∈ K ′ the dual norm ‖g‖K ′ can generally not be evaluated, by equipping
K with a (wavelet) Riesz basis ΨK , we replace it by the equivalent norm

‖g(ψK
λ )λ∈∨K ‖�2(∨K ).

For background information on the FOSLS approach we refer to [CLMM94, BG09].
The resulting operator equation is now ready for the application of the awgm.

Regardless of the original PDE, its stiffness matrix is always symmetric and positive
definite, so that it is not needed to form normal equations (which actually has already
taken place on the ‘continuous level’). The reformulation as a first order system allows
a proper approximate residual evaluation scheme that now depends linearly on the
current approximate solution, and that is quantitatively more efficient than by using
the apply routine. A necessary, but mild condition for this scheme to be applicable
is the restriction to subsets Λ ⊂ ∨ that form trees, meaning that if λ ∈ Λ then its
natural parent on the next coarser level is included in Λ as well. The whole approach
applies equally well to semi-linear PDEs.

Our theoretical findings are supported by numerical experiments.

1.1.2.2 Quadratic wavelets on general polygons

The lowest order of the wavelet basis for the flux variable that is applicable turns out
to be two, i.e., piecewise linears. Consequently, to approximate the original variable
we need a wavelet basis consisting of piecewise quadratics. In view of applications for
solving parabolic PDEs that will be discussed below, we need wavelets that, properly
scaled, form a Riesz basis for Sobolev spaces with smoothness index s for s ranging
from 1 to −1. Moreover, we need such wavelets on general polygons in R2.

Available constructions of such wavelets are rare, and they yield either a basis with
disappointingly large condition numbers ([DS99c]), or wavelets with very large sup-
ports ([NS09]). In Chapter 3, we construct continuous piecewise quadratic wavelets on
general polygons that generate Riesz bases for Sobolev spaces with smoothness index
|s| < 3

2 , that have two vanishing moments, and that are given as linear combinations
of at most 13 nodal basis functions. The condition numbers are of the order 90 for
s = 1 and 40 for s = −1.

1.1.2.3 Adaptive wavelet solution of parabolic evolutionary PDEs

In the recent years there is a growing interest in simultaneous space-time solvers for
evolutionary PDEs. The reasons are three-fold. First, standard time-stepping schemes
are not very suited to approximate singularities that are local in space and time. Sec-
ondly, one aims to use the additional time dimension to enhance the possibilities
for a massive parallelization. Thirdly, the product structure of the space-time cylin-
der allows for a reduction in computational complexity and storage requirements by
employing tensor product approximation (in a non-adaptive setting known as sparse
grids).
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1. Introduction

Our investigations start with a well-posed simultaneous space-time variational for-
mulation of a parabolic PDE. Then in order to apply our new approximate residual
evaluation scheme, we rewrite this problem as a well-posed FOSLS formation. The
arising Hilbert spaces are Bochner spaces, or intersections of those. The natural con-
struction of Riesz bases for such spaces is by forming tensor products of temporal and
spatial wavelet bases. The application of tensor product bases has the advantage of
an effective dimension reduction. The whole time evolution can be approximated at a
rate of approximating one stationary problem.

A price to be paid for the use of tensor-product wavelets, however, is that the
residual evaluation is more complex. Other than with the usual ‘isotropic’ wavelets,
one cannot transform to a locally single-scale basis to perform the matrix-vector multi-
plication, since this would destroy the computational complexity. Restricting to index
sets Λ that satisfy a double-tree constraint, we design a proper approximate residual
evaluation scheme using the unidirectional principle that, in a non-adaptive setting,
has been introduced in [BZ96]. The resulting awgm solves the parabolic PDE at the
best possible rate in linear complexity, albeit at the expense of a rather complicated
implementation.

The theoretical findings are illustrated by numerical results that we consider as
being very competitive.

1.1.2.4 Details on implementation

In Chapter 5 we provide information on our implementation of the awgm. We give
details on the wavelet bases that have been used, and describe the implementation
of the approximate residual evaluation routine in the isotropic- and tensor-product
wavelet case. Information is provided about data structures that have been used, and
a number of relevant routines are given in pseudo code.
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2. An optimal adaptive wavelet method

for first order system least squares

In this chapter, it is shown that any well-posed 2nd order PDE can be reformulated
as a well-posed first order least squares system. This system will be solved by an
adaptive wavelet solver in optimal computational complexity. The applications that
are considered are second order elliptic PDEs with general inhomogeneous boundary
conditions, and the stationary Navier-Stokes equations.

2.1 Introduction

In this chapter, a wavelet method is constructed for the optimal adaptive solution of
stationary PDEs. We develop a general procedure to write any well-posed 2nd order
PDE as a well-posed first order least squares system. The (natural) least squares
formulations contain dual norms, that, however, impose no difficulties for a wavelet
solver. The advantages of the first order least squares system formulation are two-fold.

Firstly, regardless of the original problem, the least squares problem is symmetric
and positive definite, which opens the possibility to develop an optimal adaptive solver.
The obvious use of the least-squares functional as an a posteriori error estimator,
however, is not known to yield a convergent method (see, however, [CP15] for an
alternative for Poisson’s problem). As we will see, the use of the (approximate) residual
in wavelet coordinates as an a posteriori error estimator does give rise to an optimal
adaptive solver.

Secondly, as we will discuss in more detail in the following subsections, the optimal
application of a wavelet solver to a first order system reformulation allows for a sim-
pler, and quantitatively more efficient approximate residual evaluation than with the
standard formulation of second order. Moreover, it applies equally well to semi-linear
equations, as e.g. the stationary Navier-Stokes equations, and it applies to wavelets
that have only one vanishing moment.

The approach to apply the wavelet solver to a well-posed first order least squares
system reformulation also applies to time-dependent PDEs in simultaneous space-time
variational formulations, as parabolic problems or instationary Navier-Stokes equa-
tions. With those problems, the wavelet bases consist of tensor products of temporal
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2. An optimal adaptive wavelet method for first order system least squares

and spatial wavelets. Consequently, they require a different procedure for the approx-
imate evaluation of the residual in wavelet coordinates, which will be the topic of a
forthcoming chapter.

2.1.1 Adaptive wavelet schemes, and the approximate resid-
ual evaluation

Adaptive wavelet schemes can solve well-posed linear and nonlinear operator equations
at the best possible rate allowed by the basis in linear complexity ([CDD01, CDD02,
XZ03, CDD03a, Urb09, Ste09, Ste14]). Schemes with those properties will be called
optimal. The schemes can be applied to PDEs, which we study in this work, as well
as to integral equations ([DHS07]).

There are two kinds of adaptive wavelet schemes. One approach is to apply some
convergent iterative method to the infinite system in wavelet coordinates, with de-
creasing tolerances for the inexact evaluations of residuals ([CDD02, CDD03a]). These
schemes rely on the application of coarsening to achieve optimal rates.

The other approach is to solve a sequence of Galerkin approximations from spans
of nested sets of wavelets. The (approximate) residual in wavelet coordinates of the
current approximation is used as an a posteriori error estimator to make an optimal
selection of the wavelets to be added to form the next set ([CDD01]). With this
scheme, that is studied in the current work, the application of coarsening can be
avoided ([XZ03, GHS07]), and it turns out to be quantitatively more efficient. This
approach is restricted to PDOs whose Fréchet derivatives are symmetric and positive
definite (compact perturbations can be added though, see [Gan08]).

A key computational ingredient of both schemes is the approximate evaluation of
the residual in wavelet coordinates. Let us discuss this for a linear operator equation
Au = f , with, for some separable Hilbert spaces H and K , for convenience over R,
f ∈ K ′ and A ∈ Lis(H ,K ′) (i.e., A ∈ L(H ,K ′) and A−1 ∈ L(K ′,H )).

Equipping H and K with Riesz bases ΨH , ΨK , formally viewed as column
vectors, Au = f can be equivalently written as a bi-infinite system of coupled scalar
equations Au = f , where f = f(ΨK ) is the infinite ‘load vector’, A = (AΨH )(ΨK )
is the infinite ‘stiffness’ or system matrix, and u = u�ΨH .

Here we made use of following notations:

Notation 2.1.1. For countable collections of functions Σ and Υ, we write g(Σ) =
[g(σ)]σ∈Σ, M(Σ)(Υ) = [M(σ)(υ)]υ∈Υ,σ∈Σ, and 〈Υ,Σ〉 = [〈υ, σ〉]υ∈Υ,σ∈Σ, assuming g,
M , and 〈 , 〉 are such that the expressions at the right-hand sides are well-defined.

The space of square summable vectors of reals indexed over a countable index set
∨ will be denoted as �2(∨) or simply as �2. The norm on this space will be simply
denoted as ‖ · ‖.

As a consequence of A ∈ Lis(H ,K ′), we have that A ∈ Lis(�2, �2). For the
moment, let us additionally assume that A is symmetric and positive definite, as
when K = H , (Au)(v) = (Av)(u) and (Au)(u) � ‖u‖2H (u, v ∈ H ). If this is not
the case, then the following can be applied to the normal equations A�Au = A�f .
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2.1. Introduction

For the finitely supported approximations ũ to u that are generated inside the
adaptive wavelet scheme, the residual r = f − Aũ has to be approximated within a
sufficiently small relative tolerance. The resulting scheme has been shown to converge
with the best possible rate: Whenever u can be approximated at rate s, i.e. u ∈ As,
meaning that for any N ∈ N there exists a vector of length N that approximates u
within tolerance O(N−s), the approximations produced by the scheme converge with
this rate s. Moreover, the scheme has linear computational complexity under the cost
condition that

the approximate residual evaluation within an (absolute) tolerance ε � ‖r‖
requires not more than O(ε−1/s +#supp ũ) operations. (2.1.1)

The lower bound on ε reflects the fact that inside the adaptive scheme, it is never
needed to approximate a residual more accurately than within a sufficiently small, but
fixed relative tolerance. The validity of (2.1.1) will require additional properties of
ΨH and ΨK in addition to being Riesz bases. For that reason we consider wavelet
bases.

The standard way to approximate the residual within tolerance ε is to approximate
both f and Aũ separately within tolerance ε/2. Under reasonable assumptions, f can
be approximated within tolerance ε/2 by a vector of length O(ε−1/s).

For the approximation of Aũ, it is used that, thanks to the properties of the
wavelets as having vanishing moments, each column of A, although generally in-
finitely supported, can be well approximated by finitely supported vectors. In the
approximate matrix-vector multiplication routine introduced in [CDD01], known as
the APPLY-routine, the accuracy with which a column is approximated is judiciously
chosen depending on the size of the corresponding entry in the input vector ũ. It has
been shown to realise a tolerance ε/2 at cost O(ε−1/s|ũ|1/sAs +#supp ũ), for any s in
some range (0, s∗]. For wavelets that have sufficiently many vanishing moments, this
range was shown to include the range of s ∈ (0, smax] for which, in view of the order
of the wavelets, u ∈ As can possibly be expected (cf. [Ste04]). Using that for the
approximations ũ to u that are generated inside the adaptive wavelet scheme, it holds
that |ũ|As � |u|As , in those cases the cost condition is satisfied, and so the adaptive
wavelet scheme is optimal.

The APPLY-routine, however, is quite difficult to implement. Note, in particular,
that its outcome depends nonlinearly on the input vector ũ. Furthermore, in experi-
ments, the routine turns out to be quantitatively expensive. Finally, although it has
been generalized to certain classes of semi-linear PDEs, in those cases it has not been
shown that s∗ ≥ smax, meaning that for nonlinear problems the issue of optimality is
actually open.

2.1.2 An alternative for the APPLY routine

A main goal of this chapter is to develop a quantitatively efficient alternative for
the APPLY-routine, that, moreover, gives rise to provable optimal adaptive wavelet
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2. An optimal adaptive wavelet method for first order system least squares

schemes for classes of semi-linear PDEs, and applies to wavelets with only one vanish-
ing moment. As an introduction, we consider the model problem of Poisson’s equation

in one space dimension
{
−u′′ = f on (0, 1),

u = 0 at {0, 1}, that, in standard variational form, reads

as finding u ∈ H := H1
0 (0, 1) such that

〈u′, v′〉L2(0,1) = 〈f, v〉L2(0,1), (v ∈ K := H1
0 (0, 1)),

where, by identifying L2(0, 1)
′ with L2(0, 1) and using that H1

0 (0, 1) ↪→ L2(0, 1) is
dense, 〈 , 〉L2(0,1) is also used to denote the duality pairing on H−1(0, 1)×H1

0 (0, 1). We
consider piecewise polynomial, locally supported wavelet Riesz bases ΨH and ΨK for
H1

0 (0, 1). Let us exclusively consider admissible approximations ũ to u in the sense that
their finite supports form trees, meaning that if λ ∈ supp ũ, then then there exists a
µ ∈ supp ũ, whose level is one less than the level of λ, and meas(suppψH

λ ∩suppψH
µ ) >

0. It is known that the approximation classes As become only ‘slightly’ smaller by
this restriction to tree approximation compared to unconstrained approximation (cf.
[CDDD01]). What is more, the restriction to tree approximation seems mandatory
anyway to construct an optimal algorithm for nonlinear operators. The benefit of tree
approximation is that ũ := ũ�ΨH has an alternative, ‘single-scale’ representation as
a piecewise polynomial w.r.t. a partition T1 of (0, 1) with #T1 � #supp ũ.

For the moment, let us make the additional assumption that ΨH is selected inside
H2(0, 1). Then, for an admissible ũ, with its support denoted as ΛH , integration-by-
parts shows that

r := f −Aũ = 〈ΨK , f + ũ′′〉L2(0,1),

where ũ′′ is piecewise polynomial w.r.t. T1. If u ∈ As, then for any ε > 0 there exists
a piecewise polynomial fε w.r.t. a partition T2 of (0,1) into O(ε−1/s) subintervals
such that ‖f − fε‖H−1(0,1) ≤ ε. 1 The term f − fε is commonly referred to as data
oscillation.

The function fε+ũ′′ is piecewise polynomial w.r.t. the smallest common refinement
T of T1 and T2. Thanks to this piecewise smoothness of fε + ũ′′ w.r.t. T , and the
property of ψK

λ having one vanishing moment, |〈ψK
λ , fε + ũ′′〉L2(0,1)| is decreasing as

function of the minimal difference of the level of ψK
λ and that of any subinterval in T

that has non-empty intersection with suppψK
λ . Here with the level of ψK

λ or that of
an interval ω, we mean an � ∈ N0 such that 2−� � diam(suppψK

λ ) or 2−� � diamω,
respectively. In particular, given a constant ς > 0, there exists a constant k, such that
by dropping all λ for which the aforementioned minimal level difference exceeds k, the
remaining indices form a tree ΛK with #ΛK � #T � ε−1/s +#ΛH (dependent on
k), and (see Prop. 2.9.1)

‖fε −Aũ− (fε −Aũ)|ΛK ‖ ≤ ς‖fε + ũ′′‖H−1(0,1) ≤ ς‖f + ũ′′‖H−1(0,1) + ςε

� ς‖u− ũ‖H1(0,1) + ςε,

1Indeed, for an admissible ū with ‖u − ū‖ ≤ ε and #supp ū � ε−1/s, take fε = −ū′′ and use
‖f + ū′′‖H−1(Ω) � ‖u− ū‖H1(0,1) � ‖u− ū‖.

10



2.1. Introduction

and so, using ‖r‖ � ‖u− ũ‖H1(0,1) and ‖f − fε‖ � ‖f − fε‖H−1(0,1),

‖r− r|ΛK ‖ � ς‖r‖+ ε.

Note that for ς being sufficiently small, and so k sufficiently large, by taking ε suitably
the approximate residual will meet any accuracy that is required in the cost condition
(2.1.1).

By selecting ‘single scale’ collections ΦH and ΦK with spanΦH ⊇ spanΨH |ΛH

and spanΦK ⊇ spanΨK |ΛK , and #ΦH � #ΛH and #ΦK � #ΛK , this approxi-
mate residual r|ΛK can be computed in O(ΛK ) operations as follows: First express
ũ in terms of ΦH by applying a multi-to-single scale transformation to ũ, then ap-
ply to this representation the sparse stiffness matrix 〈(ΦK )′, (ΦH )′〉L2(0,1), subtract
〈ΦK , f〉L2(0,1), and finally apply the transpose of the multi-to-single scale transforma-
tion involving ΨK |ΛK and ΦK . This approximate residual evaluation thus satisfies
the cost condition for optimality, it is relatively easy to implement, and it is observed
to be quantitatively much more efficient.

It furthermore generalizes to semi-linear operators, in any case for nonlinear terms
that are multivariate polynomials in u and derivatives of u. Indeed, as an example,
suppose that instead of −u′′ = f the equation reads as −u′′+u3 = f . Then the residual
is given by 〈ΨK , f+ ũ′′− ũ3〉L2(0,1). Since fε+ ũ′′− ũ3 is a piecewise polynomial w.r.t.
T , the same arguments shows that 〈ΨK , f + ũ′′− ũ3〉L2(0,1)

∣∣
ΛK is a valid approximate

residual.

The essential idea behind our approximate residual evaluation is that, after the
replacement of f by fε, the different terms that constitute the residual are expressed
in a common dictionary, before the residual, as a whole, is integrated against ΨK . In
our simple one-dimensional example this was possible by selecting ΨH ⊂ H2(0, 1),
so that the operator could be applied to the wavelets in strong, or more precisely,
mild sense, meaning that the result of the application lands in L2(0, 1). It required
piecewise smooth, globally C1-wavelets. Although the same approach applies in more
dimensions, there, except on product domains, the construction of C1-wavelet bases
is cumbersome. For that reason, our approach will be to write a PDE of second order
as a system of PDEs of first order. It will turn out that there are several possibilities
to do so.

2.1.3 A common first order system least squares formula-
tion

To introduce ideas, let us again consider the model problem of Poisson’s equation in
one dimension. By introducing the additional unknown θ = u′, for given f ∈ L2(0, 1)
this PDE can be written as the first order system of finding (u, θ) ∈ H1

0 (0, 1)×H1(0, 1)
such that

�H(u, θ) := (−θ′ − f,−u′ + θ) = �0 in L2(0, 1)× L2(0, 1).

11



2. An optimal adaptive wavelet method for first order system least squares

The corresponding homogeneous operator2 �Hh := (v, η) �→ (−η′,−v′ + η) belongs to
Lis(H1

0 (0, 1)×H1(0, 1), L2(0, 1)×L2(0, 1)) (cf. [Ste13, (proof of) Thm. 3.1]). To arrive
at a symmetric and positive definite system, we consider the least squares problem of
solving

argmin
(u,θ)∈H1

0 (0,1)×H1(0,1)

‖ �H(u, θ)‖2L2(0,1)×L2(0,1)
.

Its solution solves the Euler-Lagrange equations

〈 �Hh(v, η), �H(u, θ)〉L2(0,1)×L2(0,1) = 0 ((v, η) ∈ H1
0 (0, 1)×H1(0, 1)).

which in this setting are known as the normal equations.
To these normal equations we apply the adaptive wavelet scheme, so with

‘H ’=‘K ’= H1
0 (0, 1)×H1(0, 1), (‘A’(u, θ))(v, η) := 〈 �Hh(v, η), �Hh(u, θ)〉L2(0,1)×L2(0,1)

and right-hand side ‘f ’(v, η) := 〈f,−η′〉L2(0,1). From �Hh being a homeomorphism
with its range, i.e.,

‖ �Hh(v, η)‖L2(0,1)×L2(0,1) � ‖(v, η)‖H1
0 (0,1)×H1(0,1),

being a consequence of �Hh being even boundedly invertible between the full spaces, it
follows that the bilinear form is bounded, symmetric, and coercive. After equipping
H1

0 (0, 1) and H1(0, 1) with wavelet Riesz bases ΨH1
0 and ΨH1

, for admissible ũ and θ̃,
with ũ := ũ�ΨH1

0 and θ̃ := θ̃�ΨH1

the residual reads as

r =

[
r1
r2

]
=

[
〈(ΨH1

0 )′, ũ′ − θ̃〉L2(0,1)

〈(ΨH1

)′, θ̃′ + f〉L2(0,1) + 〈ΨH1

, θ̃ − ũ′〉L2(0,1)

]
. (2.1.2)

The construction of an approximate residual follows the same lines as described
before for the standard variational formulation.3 The functions ũ′, θ̃, θ̃′ are piecewise
polynomials w.r.t. a partition T1 of (0, 1) into O(# supp ũ+#supp θ̃) subintervals. If
(u,θ) ∈ As, then there exists a piecewise polynomial fε w.r.t. a partition T2 of (0, 1)
into O(ε−1/s) subintervals such that ‖f − fε‖L2(0,1) ≤ ε. Thanks to the piecewise
smoothness of ũ′− θ̃ and θ̃′+fε, there exist trees ΛH1

0 and ΛH1

, with #ΛH1
0 +#ΛH1

�
#T1 +#T2 (dependent on ς), such that

∥∥∥r−
[

r1|ΛH1
0

r2|ΛH1

] ∥∥∥ � ς(‖ũ′ − θ̃‖L2(0,1) + ‖θ̃′ + fε‖L2(0,1)) + ε � ς‖r‖+ ε.

Since the approximate residual can be evaluated in O(#ΛH1
0∪ΛH1

) operations, we con-
clude that it satisfies the cost condition (2.1.1) for optimality of the adaptive wavelet
scheme.

2For general non-affine �H, �Hh should be read as the Fréchet derivative D �H(u, θ).
3Actually, in the current setting its analysis is more straightforward, because the residuals are

measured in L2(0, 1) instead of in H−1(0, 1).
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Remark 2.1.2. Recall that, as always with least squares formulations, the same results
are valid when lower order, possibly non-symmetric terms are added to the second
order PDE, as long as the standard variational formulation remains well-posed. Fur-
thermore, as we will discuss, least squares formulations allows to handle inhomogeneous
boundary conditions. Finally, as we will see, the approach of reformulating a 2nd or-
der PDE as a first order least squares problem, and then optimally solving the normal
equations applies to any well-posed PDE, not necessarily being elliptic.

In [CS15] we applied the adaptive wavelet scheme to a least squares formulation
of the current, common type. Disadvantages of this formulation are that (i) it re-
quires that f ∈ L2(0, 1), instead of f ∈ H−1(0, 1) as allowed in the standard varia-
tional formulation. Related to that, and more importantly, for a semi-linear equation
−u′′ + N(u) = f , (ii) it is needed that N maps H1

0 (0, 1) into L2(0, 1), instead of
into H−1(0, 1). Finally, with the generalization of this least squares formulation to
more than one space dimensions, (iii) the space H1(0, 1) for θ reads as H(div; Ω). In
[CS15], for two-dimensional connected polygonal domains Ω, we managed to construct
a wavelet Riesz basis for H(div; Ω). This construction, however, relied on the fact that,
in two dimensions, any divergence-free function is the curl of an H1-function. To the
best of our knowledge, wavelet Riesz bases for H(div; Ω) for non-product domains in
three and more dimensions have not been constructed.

In the next subsection, we describe a prototype of a least-squares formulation with
which these disadvantages (i)–(iii) are avoided.

2.1.4 A seemingly unpractical least squares formulation

The first order system least squares formulation that will be studied in this chapter
reads, for the model problem, as follows: Again we introduce θ = u′, but now consider
the first order system of finding (u, θ) ∈ H1

0 (0, 1)× L2(0, 1) such that

�H(u, θ) := (D′θ + f,−u′ + θ) = �0 in H−1(0, 1)× L2(0, 1).

where (D′θ)(v) := −〈θ, v′〉L2(0,1), i.e., D′θ is the distributional derivative of θ.
In ‘primal’ mixed form, this system reads as

〈θ, v′〉L2(0,1) + 〈θ − u′, η〉L2(0,1) = 〈f, v〉L2(0,1) ((v, η) ∈ H1
0 (0, 1)× L2(0, 1)).

The corresponding homogeneous operator �Hh is in Lis(H1
0 (0, 1)×L2(0, 1), H

−1(0, 1)×
L2(0, 1)), and the least squares problem reads as solving

argmin
(u,θ)∈H1

0 (0,1)×L2(0,1)

‖ �H(u, θ)‖2H−1(0,1)×L2(0,1)
, (2.1.3)

with normal equations reading as

0 = 〈 �Hh(v, η), �H(u, θ)〉H−1(0,1)×L2(0,1)

= 〈D′η,D′θ − f〉H−1(0,1) + 〈−v′ + θ,−u′ + θ〉L2(0,1)

(2.1.4)
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((v, η) ∈ H1
0 (0, 1)× L2(0, 1)).

In the terminology from [BG09], our current least squares problem is identified as
being unpractical because of the appearance of the dual norm. To deal with this, as in
[DKS02], we select some wavelet Riesz basis ΨĤ1

0 for H1
0 (0, 1), and replace the norm on

H−1(0, 1) in (2.1.3) by the equivalent norm defined by ‖g(ΨĤ1
0 )‖ for g ∈ H−1(Ω). Cor-

respondingly, in (2.1.4) we replace the inner product 〈g, h〉H−1(0,1) by g(ΨĤ1
0 )�h(ΨĤ1

0 ),
so that the resulting normal equations read as finding (u, θ) ∈ H1

0 (0, 1)×L2(0, 1) such
that

〈η, (ΨĤ1
0 )′〉L2(0,1)

{
〈(ΨĤ1

0 )′, θ〉L2(0,1) − 〈ΨĤ1
0 , f〉L2(0,1)

}
+ 〈−v′ + η,−u′ + θ〉L2(0,1) = 0

for all (v, η) ∈ H1
0 (0, 1)× L2(0, 1).

To apply the adaptive wavelet scheme to these normal equations, we equip H1
0 (0, 1)

and L2(0, 1) with wavelet Riesz bases ΨH1
0 and ΨL2 , respectively. When these bases

have order p+1 and p, the best possible convergence rate smax will be equal to p (p/n
on an n-dimensional domain). Note that the order of the basis ΨĤ1

0 is irrelevant.
For approximations (ũ, θ̃) = (ũ�ΨH1

, θ̃�ΨL2) for admissible ũ and θ̃, the residual
r of (ũ, η̃) reads as
[

〈(ΨH1
0 )′, ũ′ − θ̃〉L2(0,1)

〈ΨL2 , (ΨĤ1
0 )′〉L2(0,1)

{
〈(ΨĤ1

0 )′, θ̃〉L2(0,1) − 〈ΨĤ1
0 , f〉L2(0,1)

}
+ 〈ΨL2 , θ̃ − ũ′〉L2(0,1)

]

that, under the additional condition that ΨL2 ⊂ H1(0, 1), and thus θ̃ ∈ H1(0, 1), is
equal to

[
r1
r2

]
=

[
〈(ΨH1

0 )′, ũ′ − θ̃〉L2(0,1)

−〈ΨL2 , (ΨĤ1
0 )′〉L2(0,1)〈ΨĤ1

0 , θ̃′ + f〉L2(0,1) + 〈ΨL2 , θ̃ − ũ′〉L2(0,1)

]
. (2.1.5)

This last step is essential because it allows us, after the replacement of f by a piecewise
polynomial fε, to express θ̃′ + fε in a common dictionary. The additional condition
is satisfied by piecewise polynomial, globally continuous wavelets, which are available
on general domains in multiple dimensions.

In view of the previous discussions, to describe the approximate residual evaluation,
it suffices to consider the term 〈ΨL2 , z�(ΨĤ1

0 )′〉L2(0,1) with z := 〈ΨĤ1
0 , f + θ̃′〉L2(0,1).

The by now familiar approach is applied twice: The function θ̃′ is piecewise polynomial
w.r.t. a partition T1 into O(# supp θ̃) subintervals. If (u,θ) ∈ As, then there exists
a piecewise polynomial fε w.r.t. a partition T2 of (0,1) into O(ε−1/s) subintervals
such that ‖f − fε‖H−1(0,1) ≤ ε. Consequently, there exists a tree ΛĤ1

0 with #ΛĤ1
0 �

#supp θ̃ + ε−1/s (dependent on ς) such that ‖z − z|
ΛĤ1

0
‖ � ς‖f + θ̃′‖H−1(0,1) + ε.

The function z̃ := z|�
ΛĤ1

0
ΨĤ1

0 is piecewise polynomial w.r.t. a partition T2 of (0,1)

into O(#ΛĤ1
0 ) subintervals. Consequently, exists a tree ΛL2

1 with #ΛL2
1 � #ΛĤ1

0

(dependent on ς) such that ‖〈ΨL2 , z̃′〉L2(0,1) − 〈ΨL2 , z̃′〉L2(0,1)

∣∣
Λ

L2
1
‖ ≤ ς‖z̃‖H1(0,1) �

14



2.1. Introduction

ς(‖z‖+‖z−z|
ΛĤ1

0
‖) � ς(‖f+ θ̃′‖H−1(0,1)+ε). Combining this with the approximations

for the other two terms that constitute the residual, we infer that there exist trees ΛH1
0

and ΛL2 with #ΛH1
0 +#ΛL2 � #supp#ũ+#supp θ̃+ ε−1/s (dependent on ς), such

that
∥∥∥r−

[
r1|ΛH1

0

r̃2|ΛL2

] ∥∥∥ � ς(‖ũ′ − θ̃‖L2(0,1) + ‖θ̃′ + fε‖H−1(0,1)) + ε � ς‖r‖+ ε,

where r̃2 is constructed from r2 by replacing z by z|
ΛĤ1

0
. This approximate residual

evaluation satisfies the cost condition (2.1.1) for optimality.
As we will see in Sect. 2.2, the advantage of the current construction of a first

order system least squares problem is that it applies to any well-posed (semi-linear)
second order PDE. The two instances of the spaces H1

0 (0, 1) represent the trial and test
spaces in the standard variational formulation, and well-posedness of the latter implies
well-posedness of the least squares formulation. The additional space L2(0, 1) reads in
general as an L2-type space. So, in particular, with this formulation, H(div)-spaces
do not enter. The price to be paid is that (2.1.5) is somewhat more complicated than
(2.1.2), and that therefore its approximation is somewhat more costly to compute.
Remark 2.1.3. The more popular ‘dual’ mixed formulation of our model problem
reads as finding (u, θ) ∈ L2(0, 1) × H1(0, 1) such that 〈−θ′, v〉L2(0,1) + 〈θ, η〉L2(0,1) +
〈u, η′〉L2(0,1) = 〈f, v〉L2(0,1) ((v, η) ∈ L2(0, 1) ×H1(0, 1)). The resulting least squares
formulation has the combined disadvantages of both other formulations that we con-
sidered. It requires f ∈ L2(0, 1), possibly nonlinear terms should map into L2(0, 1),
in more than one dimension the space H1(0, 1) reads as an H(div)-space, and one of
the norms involved in the least squares minimalisation is a dual norm.
Remark 2.1.4. With the aim to avoid both a dual norm in the least squares mini-
malisation, and H(div) or other vectorial Sobolev spaces as trial spaces, in our first
investigations of this least squares approach in [Ste14], we considered the ‘extended div-
grad’ first order system least squares formulation studied in [CMM97a]. A sufficient
and necessary ([Ste13]), but restrictive condition for its well-posedness is H2-regularity
of the homogeneous boundary value problem.

2.1.5 Layout of the chapter

In Sect. 2.2, a general procedure is given to reformulate any well-posed semi-linear
2nd order PDE as a well-posed first order least squares problem. As we will see,
this procedure gives an effortless derivation of well-posed first order least squares
formulations of elliptic 2nd order PDEs, and that of the stationary Navier-Stokes
equations. The arising dual norm can be replaced by the equivalent �2-norm of a
functional in wavelet coordinates.

In Sect. 2.3, we recall properties of the adaptive wavelet Galerkin method (awgm).
Operator equations of the form F (z) = 0, where, for some Hilbert space H , F : H →
H ′ and DF (z) is symmetric and positive definite, are solved by the awgm at the
best possible rate from a Riesz basis for H . Furthermore, under a condition on the

15



2. An optimal adaptive wavelet method for first order system least squares

cost of the approximate residual evaluations, the method has optimal computational
complexity.

In the short Sect. 2.4, it is shown that the awgm applies to the normal equations
that result from the first order least squares problems as derived in Sect. 2.2.

In Sect. 2.5, we apply the awgm to a first order least squares formulation of a semi-
linear 2nd order elliptic PDE with general inhomogeneous boundary conditions. Under
a mild condition on the wavelet basis for the trial space, the efficient approximate
residual evaluation that was outlined in Sect. 2.1.4 applies, and it satisfies the cost
condition, so that the awgm is optimal. Wavelet bases that satisfy the assumptions
are available on general polygonal domains. Some technical results needed for this
section are given in Appendix 2.9.

In Sect. 2.6 the findings from Sect. 2.5 are illustrated by numerical results.
In Sect. 2.7, we consider the so-called velocity–pressure–velocity gradient and the

velocity–pressure–vorticity first order system formulations of the stationary Navier-
Stokes equations. Results analogously to those demonstrated for the elliptic problem
will be shown to be valid here as well.
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least squares problem

2.2 Reformulation of a semi-linear second order
PDE as a first order system least squares
problem

In an abstract framework, we give a procedure to write semi-linear second order PDEs,
that have well-posed standard variational formulations, as a well-posed first order sys-
tem least squares problems. A particular instance of this approach has been discussed
in Sect. 2.1.4.

For some separable Hilbert spaces U and V , for convenience over R, consider a
differentiable mapping

G : U ⊃ dom(G) → V ′.

Remark 2.2.1. In applications G is the operator associated to a variational formulation
of a PDO with trial space U and test space V .

For T being another separable Hilbert space, let

G = G0 +G1G2, where G1 ∈ L(T ,V ′), G2 ∈ L(U ,T ), (2.2.1)

i.e., G1 and G2 are bounded linear operators.

Remark 2.2.2. In applications, as those discussed in Sect. 2.5 and 2.7, G1G2 will be
a factorization of the leading second order part of the PDO (possibly modulo terms
that vanish at the solution, cf. Sect. 2.7.2) into a product of first order PDOs.

Obviously, u solves G(u) = 0 if and only if it is the first component of the solution
(u, θ) of

�H(u, θ) := (G0(u) +G1θ, θ −G2u) = �0,

where �H : U × T ⊃ dom(G)× T = dom( �H) → V ′ × T .
The following lemma shows that well-posedness of the original formulation implies

that of the reformulation as a system.

Lemma 2.2.3. Let DG(u) ∈ L(U ,V ′) be a homeomorphism with its range, meaning
that ‖DG(u)v‖V ′ � ‖v‖U (v ∈ U ). Then

D �H(u, θ) =

[
DG0(u) G1

−G2 I

]
∈ L(U × T ,V ′ × T )

is a homeomorphism with its range, being {(f, g) ∈ V ′ × T : f − G1g ∈ ranDG(u)}.
In particular, with r,R > 0 such that r‖v‖U ≤ ‖DG(u)(v)‖V ′ ≤ R‖v‖U , it holds that

‖(v, η)‖2U ×T ≤
[
( 1+‖G2‖

r )2 + (1 + 1+‖G1‖(1+‖G2‖)
r )2

]∥∥∥D �H(u, θ)

[
v
η

] ∥∥∥
2

V ′×T
, (2.2.2)

∥∥∥D �H(u, θ)

[
v
η

] ∥∥∥
2

V ′×T
≤

(
(R+(1+‖G1‖)‖G2‖)2+(1+‖G1‖)2

)
‖(v, η)‖2U ×T . (2.2.3)
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2. An optimal adaptive wavelet method for first order system least squares

Remark 2.2.4. Since ranDG(u) = V ′ iff ranD �H(u, θ) = V ′ × T , in particular we
have that DG(u) ∈ Lis(U ,V ′) implies that D �H(u, θ) ∈ Lis(U × T ,V ′ × T ).

Proof. We have D �H(u, θ)

[
v
η

]
=

[
DG0(u)v +G1η

η −G2v

]
=

[
DG(u)v +G1(η −G2v)

η −G2v

]
by

DG0(·) = DG(·)−G1G2. So

ranD �H(u, θ) ⊆ {(f, g) ∈ V ′ × T : f −G1g ∈ ranDG(u)}. (2.2.4)

By estimating ‖D �H(u, θ)

[
v
η

]
‖V ′×T ≤ ‖DG(u)v+G1(η−G2v)‖V ′ +‖η−G2v‖T , one

easily arrives at (2.2.3).
For (f, g) being in the set at the right-hand side in (2.2.4), consider the system

D �H(u, θ)

[
v
η

]
=

[
f
g

]
⇐⇒

{
DG0(u)v +G1η= f

η −G2v= g
⇐⇒

{
DG(u)v= f −G1g

η= g +G2v
.

This system has a unique solution, so that the ⊆-symbol in (2.2.4) reads as an equality
sign, and r‖v‖U ≤ ‖f‖V ′ +‖G1‖‖g‖T and ‖η‖T ≤ ‖g‖T +‖G2‖‖v‖U . By estimating
‖(v, η)‖U ×T ≤ ‖v‖U + ‖η‖T one easily arrives at (2.2.2).

In the following, we will always assume that

(i) there exists a solution u of G(u) = 0;

(ii) G is two times continuously Fréchet differentiable in a neighborhood of u;

(iii) DG(u) ∈ L(U ,V ′) is a homeomorphism with its range.

Then

(a) (u, θ) = (u,G2u) solves �H(u, θ) = �0;

(b) �H is two times continuously Fréchet differentiable in a neighborhood of (u, θ);

(c) D �H(u, θ) ∈ L(U × T ,V ′ × T ) is a homeomorphism with its range,

the latter by Lemma 2.2.3. In summary, when the equation G(u) = 0 is well-posed
((i)-(iii) are valid), then so is �H(u, θ) = �0 ((a)-(c) are valid), and solving one equation
is equivalent to solving the other.
Remark 2.2.5. Actually, one might dispute whether these equations should be called
well-posed when ranDG(u) � V ′ and so ranD �H(u, θ) � V ′ × T . In any case,
under conditions (i)–(iii), and so (a)–(c), the corresponding least-squares problems
and resulting (nonlinear) normal equations are well-posed, as we will see next.

A solution (u, θ) of �H(u, θ) = �0 is a minimizer of the least squares functional

Q(u, θ) := 1
2‖ �H(u, θ)‖2V ′×T .

In particular, it holds that
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Lemma 2.2.6. For �H : U ×T ⊃ dom( �H) → V ′ ×T , and �H being Fréchet differen-
tiable at a root (u, θ), property (c) is equivalent to the property that for (ũ, θ̃) ∈ U ×T
in a neighbourhood of (u, θ),

Q(ũ, θ̃) � ‖u− ũ‖2U + ‖θ − θ̃‖2T .

Proof. This is a consequence of �H(ũ, θ̃) = D �H(u, θ)(ũ−u, θ̃− θ)+ o(‖ũ−u‖U + ‖θ̃−
θ‖T ).

A minimizer (u, θ) of Q is a solution of the Euler-Lagrange equations

DQ(u, θ)(v, η) =
〈
D �H(u, θ)

[
v
η

]
, �H(u, θ)

〉
V ′×T

= 0 ((v, η) ∈ (U × T )), (2.2.5)

that, in this setting, are usually called (nonlinear) normal equations. Using (a)-(b),
one computes that

D2Q(u, θ)(v1, η1)(v2, η2) =
〈
D �H(u, θ)

[
v1
η1

]
, D �H(u, θ)

[
v2
η2

] 〉
V ′×T

.

We conclude the following: Under the assumptions (a)–(c), it holds that

(1) DQ is a mapping from a subset of a separable Hilbert space, viz. U ×T , to its
dual;

(2) there exists a solution of DQ(u, θ) = 0 (viz. any solution of �H(u, θ) = 0);

(3) DQ is continuously Fréchet differentiable in a neighborhood of (u, θ);

(4) 0 < D2Q(u, θ) = D2Q(u, θ)′ ∈ Lis(U × T , (U × T )′).

As a consequence of the last property, one infers that in a neighborhood of (u, θ),
DQ(u, θ) = 0 has exactly one solution.

In view of the above findings, in order to solve G(u) = 0, for a G that satisfies
(i)–(iii), we are going to solve the (nonlinear) normal equations DQ(u, θ) = 0. A major
advantage of DQ over G is that its derivative is symmetric and coercive.

A concern, however, is whether, for given (u, θ), (v, η) ∈ U × T , DQ(u, θ)(v, η)
as given by (2.2.5) is evaluable. We will think of the inner product on T as being
evaluable. In our applications, T will be of the form L2(Ω)

N . To deal with the dual
norm on V ′, we equip V with a Riesz basis

ΨV = {ψV
λ : λ ∈ ∨V },

meaning that the analysis operator

FV : g �→ [g(ψV
λ )]λ∈∨V ∈ Lis(H , �2(∨V )),
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and so its adjoint, known as the synthesis operator,

F ′
V : v �→ v�ΨV :=

∑
λ∈∨V

vλψ
V
λ ∈ Lis(�2(∨V ),V ′).

In the definition of the least squares functional Q, and consequently in that of DQ,
we now replace the standard dual norm on V ′ by the equivalent norm ‖FV · ‖�2(∨V ).
Then in view of the definition of �H and the expression for D �H, we obtain that

DQ(u, θ)(v, η) =

(DG0(u)v +G1η)(Ψ
V )�(G0(u) +G1θ)(Ψ

V ) + 〈η −G2v, θ −G2u〉T ,
(2.2.6)

where (1)–(4) are still valid.

Remark 2.2.7. We refer to [BLP97] for an alternative approach to solve least square
problems that involves dual norms.

To solve the obtained (nonlinear) normal equations DQ(u, θ) = 0 we are going
to apply the adaptive wavelet Galerkin method (awgm). Note that the definition
of DQ(u, θ)(v, η) still involves an infinite sum over ∨V that later, inside the solution
process, is going to be replaced by a finite one.

2.3 The adaptive wavelet Galerkin method
(awgm)

In this section, we summarize findings about the awgm from [Ste14, CS15]. Let

(I) F : H ⊃ dom(F ) → H ′, with H being a separable Hilbert space;

(II) F (z) = 0;

(III) F be continuously differentiable in a neighborhood of z;

(IV) 0 < DF (z) = DF (z)′ ∈ Lis(H ,H ′).

In our applications, the triple (F,H , z) will read as (DQ,U × T , (u, θ)), so that
(I)-(IV) are guaranteed by (1)–(4).

Let Ψ = {ψλ : λ ∈ ∨} be a Riesz basis for H , with analysis operator
F : g �→ [g(ψλ)]λ∈∨ ∈ Lis(H , �2(∨)), and so synthesis operator F ′ : v �→ v�Ψ :=∑

λ∈∨ vλψλ ∈ Lis(�2(∨),H ′). For any Λ ⊂ ∨, we set

�2(Λ) := {v ∈ �2(∨) : suppv ⊂ Λ}.

For satisfying the forthcoming Condition 2.3.5 that concerns the computational cost,
it will be relevant that Ψ is a basis of wavelet type.

20



2.3. The adaptive wavelet Galerkin method (awgm)

Writing z = F ′z, and with

F := FFF ′ : �2(∨) → �2(∨),

an equivalent formulation of F (z) = 0 is given by

F(z) = 0.

We are going to approximate z, and so z, by a sequence of Galerkin approximations
from the spans of increasingly larger sets of wavelets, which sets are created by an
adaptive process. Given Λ ⊂ ∨, the Galerkin approximation zΛ, or equivalently,
zΛ := z�ΛΨ, are the solutions of 〈F(zΛ),vΛ〉�2(∨) = 0 (vΛ ∈ �2(Λ)), i.e., F(zΛ)|Λ = 0,
and F (zΛ)(vΛ) = 0 (vΛ ∈ span{ψλ : λ ∈ Λ}), respectively. These solutions exist
uniquely when inf z̃Λ∈�2(Λ) ‖z− z̃Λ‖ is sufficiently small ([PR94, Ste14]).

In order to be able to construct efficient algorithms, in particular when F is non-
affine, it will be needed to consider only sets Λ from a certain subset of all finite
subsets of ∨. In our applications, this collection of so-called admissible Λ will consist
of (Cartesian products of) finite trees. For the moment, it suffices when the collection
of admissible sets is such that the union of any two admissible sets is again admissible.

To provide a benchmark to evaluate our adaptive algorithm, for s > 0, we define
the nonlinear approximation class

As :=
{
z ∈�2(∨) : ‖z‖As :=

sup
ε>0

ε×min
{
(#Λ)s : Λ is admissible, inf

z̃∈�2(Λ)
‖z− z̃‖ ≤ ε

}
< ∞

}
.

(2.3.1)

A vector z is in As if and only if there exists a sequence of admissible (Λi)i, with
limi→∞ #Λi = ∞, such that supi infzi∈�2(Λi)(#Λi)

s‖z− zi‖ < ∞. This means that z
can be approximated in �2(∨) at rate s by vectors supported on admissible sets, or,
equivalently, z can be approximated in H at rate s from spaces of type span{ψλ : λ ∈
Λ, Λ is admissible}.

The adaptive wavelet Galerkin method (awgm) defined below produces a sequence
of increasingly more accurate Galerkin approximations zΛ to z. The, generally, infinite
residual F(zΛ) is used as an a posteriori error estimator. A motivation for the latter
is given by the following result.

Lemma 2.3.1. For ‖z− z̃‖ sufficiently small, it holds that ‖F(z̃)‖ � ‖z− z̃‖.

Proof. With z̃ = z̃�Ψ, it holds that ‖F(z̃)‖ � ‖F (z̃)‖H ′ . From (II)-(III), we have
F (z̃) = DF (z)(z̃− z)+ o(‖z̃− z‖H ). The proof is completed by ‖DF (z)(z̃− z)‖H ′ �
‖z̃ − z‖H by (IV).

This a posteriori error estimator guides an appropriate enlargement of the current
set Λ using a bulk chasing strategy, so that the sequence of approximations converge
with the best possible rate to z. To arrive at an implementable method, that is even
of optimal computational complexity, both the Galerkin solution and its residual are
allowed to be computed inexactly within sufficiently small relative tolerances.
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Algorithm 2.3.2 (awgm).

% Let 0 < µ0 ≤ µ1 < 1, δ, γ > 0 be constants, Λ0 ⊂ ∨ be admissible,
% and zΛ0

∈ �2(Λ0). Let Z be a neighborhood of z ∈ �2(∨).

for i = 0, 1, . . . do

(R) ζ := 2δ
1+δ‖ri−1‖. % (Read ‖r−1‖ as some scalar � ‖z‖.)

do ζ := ζ/2; Compute ri ∈ �2(∨) such that ‖ri − F(zΛi
)‖ ≤ ζ.

until ζ ≤ δ
1+δ‖ri‖.

(B) Determine an admissible Λi+1 ⊃ Λi with ‖ri|Λi+1
‖ ≥ µ0‖ri‖ such that

#(Λi+1 \ Λi) � #(Λ̃ \ Λi) for any admissible Λ̃ ⊃ Λi with ‖ri|Λ̃‖ ≥ µ1‖ri‖.

(G) Compute zΛi+1 ∈ �2(Λi+1) ∩ Z with ‖F(zΛi+1)|Λi+1‖ ≤ γ‖ri‖.

endfor

In step (R), by means of a loop in which an absolute tolerance is decreased, the true
residual F(zΛi

) is approximated within a relative tolerance δ. In step (B), bulk chasing
is performed on the approximate residual. The idea is to find a smallest admissible
Λi+1 ⊃ Λi with ‖ri|Λi+1‖ ≥ µ0‖ri‖. In order to be able to find an implementation
that is of linear complexity, the condition of having a truly smallest Λi+1 has been
relaxed. Finally, in step (G), a sufficiently accurate approximation of the Galerkin
solution w.r.t. the new set Λi+1 is determined.

Convergence of the adaptive wavelet Galerkin method, with the best possible rate,
is stated in the following theorem.

Theorem 2.3.3 ([Ste14, Thm. 3.9]). Let µ1, γ, δ, infvΛ0∈�2(Λ0) ‖z−vΛ0
‖, ‖F(zΛ0

)|Λ0
‖,

and the neighborhood Z of the solution z all be sufficiently small. Then, for some
α = α[µ0] < 1, the sequence (zΛi)i produced by awgm satisfies

‖z− zΛi
‖ � αi‖z− zΛ0

‖.

If, for whatever s > 0, z ∈ As, then #(Λi+1 \ Λ0) � ‖z− zΛi‖−1/s.

The computation of the approximate Galerkin solution zΛi+1
can be implemented

by performing the simple fixed point iteration

z
(j+1)
Λi+1

= z
(j)
Λi+1

− ωF(z
(j)
Λi+1

)|Λi+1
. (2.3.2)

Taking ω > 0 to be a sufficiently small constant and starting with z
(0)
Λi+1

= zΛi
, a fixed

number of iterations suffices to meet the condition ‖F(z(j+1)
Λi+1

)|Λi+1
‖ ≤ γ‖ri‖. This

holds also true when each of the F()|Λi+1
evaluations is performed within an absolute

tolerance that is a sufficiently small fixed multiple of ‖ri‖.
Optimal computational complexity of the awgm –meaning that the work to obtain

an approximation within a given tolerance ε > 0 can be bounded on some constant
multiple of the bound on its support length from Thm. 2.3.3,– is guaranteed under the
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following two conditions concerning the cost of the “bulk chasing” process, and that
of the approximate residual evaluation, respectively. Indeed, apart from some obvious
computations, these are the only two tasks that have to be performed in awgm.

Condition 2.3.4. The determination of Λi+1 in Algorithm 2.3.2 is performed in
O(# supp ri +#Λi) operations.

In case of unconstrained approximation, i.e., any finite Λ ⊂ ∨ is admissible, this
condition is satisfied by collecting the largest entries in modulus of ri, where, to
avoid a suboptimal complexity, an exact sorting should be replaced by an approximate
sorting based on binning. With tree approximation, the condition is satisfied by the
application of the so-called Thresholding Second Algorithm from [BD04]. We refer to
[Ste14, §3.4] for a discussion.

To understand the second condition, that in the introduction was referred to as the
cost condition (2.1.1), note that inside the awgm it is never needed to approximate a
residual more accurately than within a sufficiently small, but fixed relative tolerance.

Condition 2.3.5. For a sufficiently small, fixed ς > 0, there exists a neighborhood Z
of the solution z of F(z) = 0, such that for all admissible Λ ⊂ ∨, z̃ ∈ �2(Λ) ∩ Z, and
any ε > 0, there exists an r ∈ �2(∨) with

‖F(z̃)− r‖ ≤ ς‖F(z̃)‖+ ε,

that one can compute in O(ε−1/s +#Λ) operations. Here s > 0 is such that z ∈ As.

Under both conditions, the awgm has optimal computational complexity:

Theorem 2.3.6. In the setting of Theorem 2.3.3, and under Conditions 2.3.4 and
2.3.5, not only #zΛi , but also the number of arithmetic operations required by awgm

for the computation of zΛi is O(‖z− zΛi‖−1/s).

2.4 Application to normal equations

As discussed in Sect. 2.2, we will apply the awgm to the (nonlinear) normal equations
DQ(u, θ) = 0, with DQ from (2.2.6). That is, we apply the findings collected in the
previous section for the general triple (F,H , z) now reading as (DQ,U × T , (u, θ)).

For ΨU = {ψU
λ : λ ∈ ∨U } and ΨT = {ψT

λ : λ ∈ ∨T } being Riesz bases for U and
T , respectively, we equip U × T with Riesz basis

Ψ = {ψλ : λ ∈ ∨ := ∨U ∪ ∨T } := (ΨU , 0T ) ∪ (0U ,ΨT ) (2.4.1)

(w.l.o.g. we assume that ∨U ∩ ∨T = ∅). With F ∈ Lis(U × T , �2(∨)) being the
corresponding analysis operator, and DQ := FDQF ′, for [ũ�, θ̃�]� ∈ �2(∨), and with
(ũ, θ̃) := [ũ�, θ̃�]Ψ, we have

DQ([ũ�, θ̃�]�) =

[
DG0(ũ)(Ψ

U )(ΨV )�

G1(Ψ
T )(ΨV )�

] (
G0(ũ) +G1θ̃

)
(ΨV )

+

〈[
−G2(Ψ

U )
ΨT

]
, θ̃ −G2ũ

〉

T

.

(2.4.2)
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2. An optimal adaptive wavelet method for first order system least squares

In this setting, using Lemma 2.3.1, Condition 2.3.5 can be reformulated as follows:

Condition 2.3.5*. For a sufficiently small, fixed ς > 0, there exists a neighborhood of
the solution (u, θ) of DQ(u, θ) = 0, such that for all admissible Λ ⊂ ∨, all [ũ�, θ̃�]� ∈
�2(Λ), with (ũ, θ̃) := [ũ�, θ̃�]Ψ being in this neighborhood, and any ε > 0, there exists
an r ∈ �2(∨) with

‖DQ([ũ�, θ̃�]�)− r‖ ≤ ς(‖u− ũ‖U + ‖θ − θ̃‖T ) + ε,

that one can compute in O(ε−1/s + #Λ) operations, where s > 0 is such that
[u�, θ�]� ∈ As.

To verify this condition, we will use the additional property, i.e. on top of (1)–(4),
that ‖u − ũ‖U + ‖θ − θ̃‖T � ‖G0(ũ) − G1θ̃‖V ′ + ‖θ̃ − G2ũ‖T , which is provided by
Lemma 2.2.6.

2.5 Semi-linear 2nd order elliptic PDE

We apply the solution method outlined in Sect. 2.2-2.4 to the example of a semi-linear
2nd order elliptic PDE with general (inhomogeneous) boundary conditions. The main
task will be to verify Condition 2.3.5*.

2.5.1 Reformulation as a first order system least squares
problem

Let Ω ⊂ Rn be a bounded domain, ΓN ∪ ΓD = ∂Ω with meas(ΓN ∩ ΓD) = 0,
meas(ΓD) > 0 when ΓD �= ∅, and A : Ω → Rn×n

symm with ξ�A(·)ξ � ‖ξ‖2 (ξ ∈ Rn,
a.e.). We set

U := H1(Ω) or, in case meas(ΓD) = 0, possibly U := H1(Ω)/R ,

and
V = V1 × V2 := {u ∈ U : u|ΓD

= 0} ×H− 1
2 (ΓD) .

For N : U ⊃ dom(N) → V ′
1 , f ∈ V ′

1 , g ∈ H
1
2 (ΓD), and h ∈ H− 1

2 (ΓN ), we consider
the semi-linear boundary value problem




− divA∇u+N(u) = f on Ω,
u = g on ΓD,

A∇u · n = h on ΓN ,
(2.5.1)

that in standard variational form reads as finding u ∈ U such that

(Gu)(v) :=

∫

Ω

A∇u · ∇v1 + (N(u)− f)v1dx−
∫

ΓN

hv1 ds+

∫

ΓD

(u− g)v2 ds = 0
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2.5. Semi-linear 2nd order elliptic PDE

(v = (v1, v2) ∈ V ).
We assume that this variational problem has a solution u, and that G, i.e., N , is

two times continuously Fréchet differentiable in a neighborhood of u, and DG(u) ∈
L(U ,V ′) is a homeomorphism with its range, i.e., we assume that

G : U ⊃ dom(G) → V ′ satisfies (i) − (iii)

formulated in Sect. 2.2.

Remarks 2.5.1. Because U → H
1
2 (ΓD) : u �→ u|∂Ω is surjective, from [Ste13, Thm. 2.1]

it follows that condition (iii) is satisfied when

L := w �→
(
v1 �→

∫

Ω

A∇w · ∇v1 +DN(u)(w)v1 dx
)
∈ Lis(V1,V

′
1 )

(actually, L being a homeomorphism with its range is already sufficient).
By writing g = u0|ΓD

for some u0 ∈ U , one infers that for linear N , existence of a
(unique) solution u, i.e. (i), follows from L ∈ Lis(V1,V ′

1 ). For g = 0, the conditions of
N being monotone and locally Lipschitz are sufficient for having a (unique) solution
u. Relaxed conditions on N suffice to have a (locally unique) solution. We refer to
[BS11].

Using the framework outlined in Sect. 2.2, we write this second order elliptic PDE
as a first order system least squares problem. Putting T = L2(Ω)

n , we define

G1 ∈ L(T ,V ′), G2 ∈ L(U ,T ),

by

G2u = A∇u, (G1
�θ)(v1, v2) =

∫

Ω

�θ · ∇v1 dx.

The results from Sect. 2.2 show that the solution u can be found as the first
component of the minimizer (u, �θ) ∈ U × T of

Q(u, �θ) := 1
2

(∥∥v1 �→
∫

Ω

�θ · ∇v1 + (N(u)− f)v1 dx−
∫

ΓN

v1h ds
∥∥2

V ′
1
+

‖�θ −A∇u‖2L2(Ω)n + ‖u− g‖2V ′
2

)
,

(2.5.2)

being the solution of the normal equations DQ(u, �θ) = 0, and furthermore, that these
normal equations are well-posed in the sense that they satisfy (1)–(4).

To deal with the ‘unpractical’ norm on V ′, as in Sect. 2.1.4, at the end of Sect. 2.2,
and in Sect. 2.4, we equip V1 and V2 with wavelet Riesz bases

ΨV1 = {ψV1

λ : λ ∈ ∨V1
}, ΨV2 = {ψV2

λ : λ ∈ ∨V2
},

and replace, in the definition of Q, the norms on their duals by the equivalent norms
defined by ‖g(ΨV1)‖ or ‖g(ΨV2)‖, for g ∈ V ′

1 or g ∈ V ′
2 , respectively.
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2. An optimal adaptive wavelet method for first order system least squares

Next, after equiping U and T with Riesz bases

ΨU = {ψU
λ : λ ∈ ∨U }, ΨT = {ψT

λ : λ ∈ ∨T },

and so U × T with Ψ = (ΨU , 0T ) ∪ (0U ,ΨT ), we apply the awgm to the resulting
system

DQ([u�,θ�]�)=
〈[
A∇ΨU

−ΨT

]
,A∇u−�θ

〉
L2(Ω)n

+

[
〈ΨU,ΨV2〉L2(ΓD)

0∨T

]
〈ΨV2 , u−g〉L2(ΓD)+

[
〈DN(u)ΨU,ΨV1〉L2(Ω)

〈ΨT ,∇ΨV1〉L2(Ω)n

]{〈
ΨV1,N(u)−f

〉
L2(Ω)

−
〈
ΨV1,h

〉
L2(ΓN )

+〈∇ΨV1,�θ〉L2(Ω)n

}
= 0,

where (u, �θ) := [u�,θ�]Ψ.
To express the three terms in v �→ 〈v,N(u)−f〉L2(Ω)−〈v, h〉L2(ΓN )+〈∇v, �θ〉L2(Ω)n ∈

V ′
1 w.r.t. one dictionary of functions on Ω and one dictionary of functions on ΓN ,

similarly to Sect. 2.1.4 we impose the additional, but in applications easily realisable
condition that

ΨT ⊂ H(div; Ω). (2.5.3)

Then for finitely supported approximations [ũ�, θ̃�]� to [u�,θ�]�, for (ũ,
�̃
θ) :=

[ũ�, θ̃�]Ψ ∈ U ×H(div; Ω), we have

DQ([ũ�,θ̃�]�)=
〈[
A∇ΨU

−ΨT

]
,A∇ũ−�̃

θ
〉
L2(Ω)n

+

[
〈ΨU,ΨV2〉L2(ΓD)

0∨T

]
〈ΨV2,ũ−g〉L2(ΓD)+

[
〈DN(ũ)ΨU ,ΨV1〉L2(Ω)

〈ΨT ,∇ΨV1〉L2(Ω)n

]{〈
ΨV1 , N(ũ)−f−div

�̃
θ
〉
L2(Ω)

+
〈
ΨV1 ,

�̃
θ · n− h

〉
L2(ΓN )

}
,

(2.5.4)
where we used the vanishing traces of v ∈ V1 at ΓD, to write 〈∇v,

�̃
θ〉L2(Ω)n as

〈v,− div
�̃
θ〉L2(Ω) + 〈v, �̃θ · n〉L2(ΓN ).

Each of the terms A∇ũ − �̃
θ, ũ − g, N(ũ) − f − div

�̃
θ, and �̃

θ · n − h correspond,
in strong form, to a term of the least squares functional, and therefore their norms
can be bounded by a multiple of the norm of the residual, which is the basis of our
approximate residual evaluation. In order to verify Condition 2.3.5*, we have to collect
some assumptions on the wavelets, which will be done in the next subsection.
Remark 2.5.2. If ΓD = ∅, then obviously (2.5.4) should be read without the second
term involving ΨV2 . If ΓD �= ∅ and homogeneous Dirichlet boundary conditions are
prescribed on ΓD, i.e., g = 0, it is simpler to select U = V1 = {u ∈ H1(Ω): u|ΓD

= 0},
and to omit integral over ΓD in the definition of G, so that again (2.5.4) should be
read without the second term involving ΨV2 .

2.5.2 Wavelet assumptions and definitions

We formulate conditions on ΨV1 , ΨV2 , ΨU , and ΨT , in addition to being Riesz bases
for V1, V2, U , and T , respectively.
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2.5. Semi-linear 2nd order elliptic PDE

Recalling that T = T1 × · · · × Tn, we select ΨT of canonical form

(ΨT1 , 0T2
, . . . , 0Tn

) ∪ · · · ∪ (0T1
, . . . , 0Tn−1

,ΨTn),

where ΨTq = {ψTq

λ : λ ∈ ∨Tq} is a Riesz basis for Tq (with ∨Tq′ ∩ ∨Tq”
= ∅ when

q′ �= q′′).
For ∗ ∈ {U ,T1, . . . ,Tn,V1}, we collect a number of (standard) assumptions, (w1)–

(w4), on the scalar-valued wavelet collections Ψ∗ = {ψ∗
λ : λ ∈ ∨∗} on Ω. Corresponding

assumptions on the wavelets ΨV2 on ΓD will be formulated at the end of this subsec-
tion. To each λ ∈ ∨∗, we associate a value |λ| ∈ N0, which is called the level of λ.
We will assume that the elements of Ψ∗ have one vanishing moment, and are locally
supported, piecewise polynomial of some degree m, w.r.t. dyadically nested partitions
in the following sense:

(w1) There exists a collection OΩ := {ω : ω ∈ OΩ} of closed polytopes, such that,
with |ω| ∈ N0 being the level of ω, meas(ω∩ω′) = 0 when |ω| = |ω′| and ω �= ω′;
for any � ∈ N0, Ω̄ = ∪|ω|=�ω; diamω � 2−|ω|; and ω is the union of ω′ for some
ω′ with |ω′| = |ω| + 1. We call ω the parent of its children ω′. Moreover, we
assume that the ω ∈ OΩ are uniformly shape regular, in the sense that they
satisfy a uniform Lipschitz condition, and meas(Fω) � meas(ω)

n−1
n for Fω being

any facet of ω.

(w2) suppψ∗
λ is contained in a connected union of a uniformly bounded number of ω’s

with |ω| = |λ|, and restricted to each of these ω’s is ψ∗
λ a polynomial of degree

m.

(w3) Each ω is intersected by the supports of a uniformly bounded number of ψ∗
λ’s

with |λ| = |ω|.

(w4)
∫
Ω
ψ∗
λ dx = 0, possibly with the exception of those λ with dist(suppψ∗

λ,ΓD) �
2−|λ|, or with |λ| = 0.

Generally, the polynomial degree m will be different for the different bases, but oth-
erwise fixed. The collection OΩ is shared among all bases. Note that the conditions
of ΨU being a basis for U , and to consist of piecewise polynomials, implies that
U ⊂ C(Ω̄). Wavelets of in principle arbitrary order that satisfy these assumptions
can be found in e.g. [DS99c, NS09].

Definition 2.5.3. A collection T ⊂ OΩ such that Ω = ∪ω∈T ω, and for ω1 �= ω2 ∈ T ,
meas(ω1∩ω2) = 0 will be called a tiling. With Pm(T ), we denote the space of piecewise
polynomials of degree m w.r.t. T . The smallest common refinement of tilings T1 and
T2 is denoted as T1 ⊕ T2.

To be able to find, in linear complexity, a representation of a function, given as
linear combination of wavelets, as a piecewise polynomial w.r.t. a tiling –mandatory
for an efficient evaluation of nonlinear terms–, we will impose a tree constraint on
the underlying set of wavelet indices. A similar approach was followed earlier in
[DSX00, CDD03b, XZ05, BU08, Vor09].
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2. An optimal adaptive wavelet method for first order system least squares

Definition 2.5.4. To each λ ∈ ∨∗ with |λ| > 0, we associate one µ ∈ ∨∗ with
|µ| = |λ| − 1 and meas(suppψ∗

λ ∩ suppψ∗
µ) > 0. We call µ the parent of λ, and so λ a

child of µ.
To each λ ∈ ∨∗, we associate some neighbourhood S(ψ∗

λ) of suppψ∗
λ, with diameter

� 2−|λ|, such that S(ψ∗
λ) ⊂ S(ψ∗

µ) when λ is a child of µ.
We call a finite Λ ⊂ ∨∗ a tree, if it contains all λ ∈ ∨∗ with |λ| = 0, as well as the

parent of any λ ∈ Λ with |λ| > 0.

Note that we now have tree structures on the set OΩ of polytopes, and as well as
on the wavelet index sets ∨∗. We trust that no confusion will arise when we speak
about parents or children.

For some collections of wavelets, as the Haar or more generally, Alpert wavelets
([Alp93]), it suffices to take S(ψ∗

λ) := suppψ∗
λ. The next result shows that, thanks to

(w1)-(w2), a suitable neighbourhood S(ψ∗
λ) as meant in Definition 2.5.4 always exists.

Lemma 2.5.5. With C := supλ∈∨∗
2|λ| diam suppψ∗

λ, a valid choice of S(ψ∗
λ) is given

by {x ∈ Ω: dist(x, suppψ∗
λ) ≤ C2−|λ|}.

Proof. For µ, λ ∈ ∨∗ with |µ| = |λ| − 1 and meas(suppψ∗
λ ∩ suppψ∗

µ) > 0, and x ∈ Ω

with dist(x, suppψ∗
λ) ≤ C2−|λ|, it holds that dist(x, suppψ∗

µ) ≤ dist(x, suppψ∗
λ) +

diam(suppψ∗
λ) ≤ C2−|µ|.

A proof of the following proposition, as well as an algorithm to apply the multi-
to-single-scale transformation that is mentioned, is given in [Ste14, §4.3].

Proposition 2.5.6. Given a tree Λ ⊂ ∨∗, there exists a tiling T (Λ) ⊂ OΩ with
#T (Λ) � #Λ such that span{ψ∗

λ : λ ∈ Λ} ⊂ Pm(T (Λ)). Moreover, equipping
Pm(T (Λ)) with a basis of functions, each of which supported in ω for one ω ∈ T (Λ),
the representation of this embedding, known as the multi- to single-scale transform,
can be applied in O(#Λ) operations.

The benefit of the definition of S(ψ∗
λ) appears from the following lemma.

Lemma 2.5.7. Let Ω = Σ0 ⊇ Σ1 ⊇ · · · . Then

Λ∗ :=
{
λ ∈ ∨∗ : meas(S(ψ∗

λ) ∩ Σ|λ|) > 0
}

is a tree.

Proof. The set Λ∗ contains all λ ∈ ∨∗ with |λ| = 0, as well as, by definition of S(·),
the parent of any λ ∈ Λ∗ with |λ| > 0.

In Proposition 2.5.6 we saw that for each tree Λ there exists a tiling T (Λ), with
#T (Λ) � #Λ, such that span{ψ∗

λ : λ ∈ Λ} ⊂ Pm(T (Λ)). Conversely, in the following,
given a tiling T , and a constant k ∈ N0, we construct a tree Λ∗(T , k) with #Λ∗(T , k) �
#T (dependent on k) such that a kind of reversed statements hold: In Appendix 2.9,
statements of type limk→∞ sup0�=g∈Pm(T )

‖〈Ψ∗,g〉L2(Ω)|∨∗\Λ∗(T ,k)‖
‖g‖∗′

= 0 will be shown,
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2.5. Semi-linear 2nd order elliptic PDE

meaning that for any tolerance there exist a k such that for any g ∈ Pm(T ) the relative
error in dual norm in the best approximation from the span of the corresponding dual
wavelets with indices in Λ∗(T , k) is less than this tolerance.

Definition 2.5.8. Given a tiling T ⊂ OΩ, let t(T ) ⊂ OΩ be its enlargement by adding
all ancestors of all ω ∈ T . Given a k ∈ N0, we set

Λ∗(T , k) :=
{
λ ∈ ∨∗ : meas

(
S(ψ∗

λ) ∩
⋃

{ω∈t(T ) : |ω|=max(|λ|−k,0)}

ω
)
> 0

}
.

Proposition 2.5.9. The set Λ∗(T , k) is a tree, and #Λ∗(T , k) � #T (dependent on
k ∈ N0).

Proof. The first statement follows from Lemma 2.5.7. Since the number of children of
any ω ∈ OΩ is uniformly bounded, it holds that #t(T ) � #T , and so #Λ∗(T , k) � #T
as a consequence of the wavelets being locally supported.

Example 2.5.10. Let Ψ = {ψλ : λ ∈ ∨} be the collection of Haar wavelets on Ω = (0, 1),
i.e., the union of the function ψ0,0 ≡ 1, and, for � ∈ N and k = 0, . . . , 2�−1 − 1, the
functions ψ�,k := 2

�−1
2 ψ(2�−1(·) − k), where ψ ≡ 1 on [0, 12 ] and ψ ≡ −1 on ( 12 , 1].

Writing λ = (�, k), we set |λ| = �. The parent of λ with |λ| > 0 is µ with |µ| = |λ| − 1
and suppψλ ⊂ suppψµ, and S(ψλ) := suppψλ.

Let OΩ be the union, for � ∈ N0 and k = 0, . . . , 2� − 1, of the intervals 2�[k, k + 1]
to which we assign the level �.

Now as an example let Λ ⊂ ∨ be the set {(0, 0), (1, 0), (2, 0), (3, 0)}, which is a tree
in the sense of Definition 2.5.4. It corresponds to the solid parts in the left picture
in Figure 2.1. The (minimal) tiling T (Λ) as defined in Proposition 2.5.6 is given by

(3, 1)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(0, 0)

(1, 0)

(2, 0)

(3, 0)

(4, 0) (4, 1)

(2, 1)

Figure 2.1: The index set of the Haar basis given as an infinite binary tree, and its
subsets Λ = {(0, 0), (1, 0), (2, 0), (3, 0)} (left) and Λ(T (Λ), 1) (right).

{[0, 1
8 ], [

1
8 ,

1
4 ], [

1
4 ,

1
2 ], [

1
2 , 1]}.

Conversely, taking T := T (Λ), the set Λ(T , 1) ⊂ ∨ as defined in Definition 2.5.8
is given by {(0, 0), (1, 0), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0), (4, 1)} and is illustrated in the
right picture in Figure 2.1.
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2. An optimal adaptive wavelet method for first order system least squares

Definition 2.5.11. Recalling from (2.4.1) and the first lines of this subsection that
the Riesz basis Ψ for U × T is of canonical form

Ψ = (ΨU , 0T1
, . . . , 0Tn

) ∪ (0U ,ΨT1 , 0T2
, . . . , 0Tn

) ∪ · · · ∪ (0U , 0T1
, . . . , 0Tn−1

,ΨTn),

with index set ∨ := ∨U ∪ ∨T1
∪ · · · ∪ ∨Tn

, we call Λ ⊂ ∨ admissible when each of
Λ ∩ ∨U ,Λ ∩ ∨T1 , . . . ,Λ ∩ ∨Tn are trees. The tiling T (Λ) is defined as the smallest
common refinement T (Λ∩∨U )⊕T (Λ∩∨T1)⊕ · · · ⊕ T (Λ∩∨Tn). Conversely, given a
tiling T ⊂ OΩ and a k ∈ N0, we define the admissible set Λ(T , k) ⊂ ∨ by ΛU (T , k) ∪
ΛT1(T , k) ∪ · · · ∪ ΛTn(T , k).

Remark 2.5.12. Let ΨU be a wavelet basis for U of order dU > 1 (i.e., all wavelets
ψU
λ up to level � span all piecewise polynomials in U of degree dU − 1 w.r.t. {ω : ω ∈

OΩ, |ω| = �}), and similarly, for 1 ≤ q ≤ n, let ΨTq be a wavelet basis for Tq of
order dT > 0. Recalling the definition of an approximation class given in (2.3.1), a
sufficiently smooth solution (u, �θ) is in As for s = smax := min(dU −1

n , dT

n ), whereas
on the other hand membership of As for s > smax cannot be expected under whatever
smoothness condition.

For s ≤ smax, a sufficient and ‘nearly’ necessary condition for (u, �θ) ∈ As is that
(u, �θ) ∈ Bsn+1

p,τ (Ω)×Bsn
p,τ (Ω)

n for 1
p < s+ 1

2 and arbitrary τ > 0, see [CDDD01]. This
mild smoothness condition in the ‘Besov scale’ has to be compared to the condition
(u, �θ) ∈ Hsn+1(Ω)×Hsn(Ω)n that is necessary to obtain a rate s with approximation
from the spaces of type span{ψU

λ : |λ| ≤ L} ×
∏n

q=1 span{ψ
Tq

λ : |λ| ≤ L}.

We pause to add three more assumptions on our PDE: We assume that w.r.t. the
coarsest possible tiling {ω : ω ∈ OΩ, |ω| = 0} of Ω̄,

A is piecewise polynomial, (2.5.5)
N(u) is a partial differential operator of at most first order, with coeffi-
cients that are piecewise polynomials in u and x, and (2.5.6)

ΓN , and so ΓD, is the union of facets of ω ∈ OΩ with |ω| = 0. (2.5.7)

Remark 2.5.13. The subsequent analysis can easily be generalized to A being piecewise
smooth. With some more efforts other nonlinear terms N can be handled as well. For
example, for N(u) of the form n1(u)u, it will be needed that for some m ∈ N, for each
ω ∈ OΩ, there exists a subspace Vω ⊂ H1

0 (ω) with ‖ · ‖H1(ω) � 2|ω|‖ · ‖L2(ω) on Vω, and

‖N(p1) + p2‖L2(ω) � sup
0�=v∈Vω

〈N(p1) + p2, v〉L2(ω)

‖v‖L2(ω)
(p1, p2 ∈ Pm(ω))

(cf. proof of Lemma 2.9.2).
Finally in this subsection we formulate our assumptions on the wavelet Riesz basis

ΨV2 = {ψV2

λ : λ ∈ ∨V2
} for H− 1

2 (ΓD). We assume that it satisfies the assumptions
(w2) and (w3) with OΩ reading as

OΓD
= {ω ∩ ΓD : ω ∈ OΩ, measn−1(ω ∩ ΓD) > 0}.
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2.5. Semi-linear 2nd order elliptic PDE

Furthermore, we impose that

‖ψV2

λ ‖H−1(ΓD) � 2−|λ|/2. (2.5.8)

which, for biorthogonal wavelets, is essentially is (w4) (cf. [DS99c, lines following
(A.2)]). (To relax the smoothness conditions on ΓD needed for the definition of
H−1(ΓD), one can replace (2.5.8) by ‖ψV2

λ ‖Hs(ΓD) � 2|λ|(s+
1
2 ) for some s ∈ [−1,− 1

2 )).
The definition of a boundary tiling TΓD

⊂ OΓD
is similar to Definition 2.5.3. Also

similar to the corresponding preceding definitions are that of a tree Λ ⊂ ∨V2 , and
of the boundary tiling TΓD

(Λ) ⊂ OΓD
for Λ ⊂ ∨V2

being a tree. Conversely, for a
boundary tiling TΓD

⊂ OΓD
and k ∈ N0, for ∗ ∈ {U ,V2} we define the tree

Λ∗(TΓD
, k) :=

{
λ ∈ ∨∗ : measn−1(S(ψ∗

λ) ∩
⋃

{ω∈T̄ΓD
: |ω|=max(|λ|−k,0)}

ω) > 0
}
.

2.5.3 An appropriate approximate residual evaluation

Given an admissible Λ ⊂ ∨, [ũ�, θ̃�]� ∈ �2(Λ) with (ũ,
�̃
θ) := [ũ�, θ̃�]Ψ sufficiently

close to (u, �θ), and an ε > 0, our approximate evaluation of DQ([ũ�, θ̃�]�), given in
(2.5.4), is built in the following steps, where k ∈ N0 is a sufficiently large constant:

(s1) Find a tiling T (ε) ⊂ OΩ, such that

inf
(gε,fε,�hε)∈Pm(T (ε)∩ΓD)∩C(ΓD)×Pm(T (ε))×Pm(T (ε))n

(
‖g − gε‖

H
1
2 (ΓD)

+

‖v1 �→
∫

Ω

(f − fε)v1 dx+

∫

ΓN

(h− �hε · n)v1 ds‖V ′
1

)
≤ ε.

Set T (Λ, ε) := T (Λ)⊕ T (ε).

(s2) (a) Approximate

r
( 1
2 )

1 := 〈ΨV1 , N(ũ)− f − div
�̃
θ〉L2(Ω) + 〈ΨV1 ,

�̃
θ · n− h〉L2(ΓN )

by
r̃
( 1
2 )

1 := r
( 1
2 )

1 |ΛV1 (T (Λ,ε),k).

(b) With r̃
( 1
2 )

1 := (r̃
( 1
2 )

1 )�ΨV1 , approximate

r1 =

[
r11
r12

]
:=

[
〈DN(ũ)ΨU , r̃

( 1
2 )

1 〉L2(Ω)

〈ΨT ,∇r̃
( 1
2 )

1 〉L2(Ω)n

]

by r̃1 =

[
r̃11
r̃12

]
:= r1|Λ(T (ΛV1 (T (Λ,ε),k)),k).
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2. An optimal adaptive wavelet method for first order system least squares

(s3) Approximate

r2 :=

〈[
−A∇ΨU

ΨT

]
,
�̃
θ −A∇ũ

〉

L2(Ω)n

by r̃2 := r2|Λ(T (Λ),k).

(s4) (a) Approximate r
( 1
2 )

3 := 〈ΨV2 , ũ− g〉L2(ΓD) by

r̃
( 1
2 )

3 := r
( 1
2 )

3 |ΛV2 (T (Λ,ε)∩ΓD,k).

(b) With r̃
( 1
2 )

3 := (r̃
( 1
2 )

3 )�ΨV2 , approximate r3 :=

[
〈ΨU , r̃

( 1
2 )

3 〉L2(ΓD)

0∨T

]
by

r̃3 := r3|Λ(TΓD
(ΛV2 (T (Λ,ε)∩ΓD,k)),k).

Although (s2)–(s4) may look involved at first glance, the same kind of approxima-
tion is used at all instances. Each term in (2.5.4) consists essentially of a wavelet basis
that is integrated against a piecewise polynomial, or more precisely, a function that
can be sufficiently accurately approximated by a piecewise polynomial thanks to the
control of the data oscillation by the refinement of the partition performed in (s1). In
each of these terms, all wavelets are neglected whose levels exceed locally the level of
the partition plus a constant k.

In the next theorem it is shown that this approximate residual evaluation satisfies
the condition for optimality of the adaptive wavelet Galerkin method.

Theorem 2.5.14. For an admissible Λ ⊂ ∨, [ũ�, θ̃�]� ∈ �2(Λ) with (ũ,
�̃
θ) :=

[ũ�, θ̃�]Ψ sufficiently close to (u, �θ), and an ε > 0, consider the steps (s1)-(s4). With
s > 0 such that [u�,θ�]� ∈ As, let T (ε) from (s1) satisfy #T (ε) � ε−1/s. Then

‖DQ([ũ�, θ̃�]�)− (r̃1 + r̃2 + r̃3)‖ � 2−k/2(‖u− ũ‖U + ‖�θ − �̃
θ‖T ) + ε,

where the computation of r̃1+ r̃2+ r̃3 requires O(#Λ+ε−1/s) operations. So by taking
k sufficiently large, Condition 2.3.5* is satisfied.

Before giving the proof of this theorem, let us discuss matters related to step (s1).
First of all, existence of tilings T (ε) as mentioned in the theorem is guaranteed. Indeed,
because of [u�,θ�]� ∈ As, given C > 0, for any ε > 0 there exists a [ũ�

ε , θ̃
�
ε ]

� ∈ �2(Λε),
where Λε is admissible and #Λε � ε−1/s, such that ‖[u�,θ�]� − [ũ�

ε , θ̃
�
ε ]

�‖ ≤ ε/C.
By taking a suitable C, from Lemma 2.2.6, (2.5.2) and (2.5.3) we infer that with
(ũε,

�̃
θε) := [ũ�

ε , θ̃
�
ε ]Ψ,

‖ũε − g‖
H

1
2 (ΓD)

+ ‖v1 �→
∫

Ω

(N(ũε)− div
�̃
θε − f)v1 dx+

∫

ΓN

(
�̃
θε · n− h)v1 ds‖V ′

1
≤ ε.
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Since ũε ∈ Pm(T (Λε)) ∩ C(Ω), N(ũε) − div
�̃
θε ∈ Pm(T (Λε)),

�̃
θε ∈ Pm(T (Λε))

n, and
#T (Λε) � #Λε, the tiling T (ε) := T (Λε) satisfies the assumptions.

Loosely speaking, this result can be rephrased by saying that if the solution of
DQ([u�,θ�]�) = 0 is in As, then so is the forcing function (f, g, h). This is not
automatically true, cf. [CDN12] for a discussion in the adaptive finite element context,
but in the current setting it is a consequence of the fact that, thanks to assumption
(2.5.3), the first order partial differential operators apply to the wavelet bases Ψ∗ for
∗ ∈ {U ,T1, . . . ,Tn,V1,V2} in ‘mild’ sense (the result of the application of each of
these operators lands in L2-space).

Knowing that a suitable T (ε) exists is different from knowing how to construct
it. For our convenience thinking of g = h = 0, and so U = V1 = H1

0 (Ω),
assuming that f ∈ L2(Ω) one has inffε∈Pm(T ) ‖f − fε‖2H−1(Ω) � osc(f, T )2 :=∑

ω∈T diam(ω)2 inffω∈Pm(ω) ‖f − fω‖2L2(ω). Ignoring quadrature issues, for any par-
tition T , osc(f, T ) is computable. A quasi-minimal partition T (ε) such that
osc(f, T (ε)) � ε can be computed using the Thresholding Second Algorithm from
[BD04]. Now the assumption to be added to Theorem 2.5.14 is that for such a parti-
tion, #T (ε) � ε−1/s.

Note that it is nowhere needed to explicitly approximate the forcing functions by
approximating their wavelet expansions.

Proof of Theorem 2.5.14. By construction we have

DQ([ũ�, θ̃�]�)− (r̃1 + r̃2 + r̃3) =

[
〈DN(ũ)ΨU ,ΨV1〉L2(Ω)

〈ΨT ,∇ΨV1〉L2(Ω)n

]
(r

( 1
2 )

1 − r̃
( 1
2 )

1 )

+r1 − r̃1 + r2 − r̃2 +

[
〈ΨU ,ΨV2〉L2(ΓD)

0∨T

]
(r

( 1
2 )

3 − r̃
( 1
2

3 ) + r3 − r̃3.

From ΨU , ΨT , and ΨV1 being Riesz bases, and N : U ⊃ dom(N) → V ′
1 being continu-

ously differentiable at u, one infers that
[
〈DN(ũ)ΨU ,ΨV1〉L2(Ω)

〈ΨT ,∇ΨV1〉L2(Ω)n

]
∈ L(�2(∨V1), �2(∨)),

with a norm that is bounded uniformly in ũ from a neighbourhood of u. Similarly, from
u �→ u|ΓD

∈ L(U , H
1
2 (ΓD)), and ΨU and ΨV

2 being Riesz bases for U and H
1
2 (ΓD)′,

respectively, we infer that
[
〈ΨU ,ΨV2〉L2(ΓD)

0

]
∈ L(�2(∨V2

), �2(∨)). We conclude that

‖DQ([ũ�, θ̃�]�)− (r̃1 + r̃2 + r̃3)‖ �

‖r(
1
2 )

1 − r̃
( 1
2 )

1 ‖+ ‖r1 − r̃1‖+ ‖r2 − r̃2‖+ ‖r(
1
2 )

3 − r̃
( 1
2 )

3 ‖+ ‖r3 − r̃3‖.
(2.5.9)

We bound all terms at the right-hand side.
With fε, �hε from (s1), using that ΨV1 is a Riesz basis, we have that

‖r(
1
2 )

1 − r̃
( 1
2 )

1 ‖ � ε+ (2.5.10)∥∥∥
(
〈ΨV1 , N(ũ)−fε − div

�̃
θ〉L2(Ω) + 〈ΨV1 , (

�̃
θ − �hε) · n〉L2(ΓN )

)∣∣
∨V1

\ΛV1 (T (Λ,ε),k)

∥∥∥.
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2. An optimal adaptive wavelet method for first order system least squares

From N(ũ)− fε − div
�̃
θ ∈ Pm(T (Λ, ε)), and �̃

θ−�hε ∈ Pm(T (Λ, ε))n, Proposition 2.9.1
shows that the norm at the right-hand side of (2.5.10) is � 2−k

∥∥v1 �→
∫
Ω
�̃
θ · ∇v1 +

(N(ũ)− fε)v1 dx−
∫
ΓN

�hε · nv1 ds
∥∥

V ′
1
. Again by using (s1), we infer that

‖r(
1
2 )

1 − r̃
( 1
2 )

1 ‖ � ε+2−k
∥∥v1 �→

∫

Ω

�̃
θ ·∇v1 +(N(ũ)− f)v1 dx−

∫

ΓN

hv1 ds
∥∥

V ′
1
. (2.5.11)

Thanks to ∇r̃
( 1
2 )

1 ∈ Pm(T (ΛV1(T (Λ, ε), k)))n, an application of Proposition 2.9.4
(first estimate) shows that

‖r12 − r̃12‖ � 2−k/2‖r̃(
1
2 )

1 ‖V1
� 2−k/2‖r̃(

1
2 )

1 ‖.

Our assumptions on N show that DN(ũ)w is of the form p1(ũ)w + �p2(ũ) · ∇w for
some piecewise polynomials p1 and p2 in ũ and x w.r.t. {ω : ω ∈ OΩ, |ω| = 0}, where
moreover w �→ p1(ũ)w ∈ L(U ,V ′

1 ), �w �→ �p2(ũ) · �w ∈ L(L2(Ω)
n,V ′

1 ), uniformly in ũ
in a neighborhood of u ∈ U . Consequently, applications of Propositions 2.9.3-2.9.4
(second estimate) show that

‖r11 − r̃11‖ � 2−k‖p1(ũ)r̃
( 1
2 )

1 ‖U ′ + 2−k/2‖�p2(ũ)r̃
( 1
2 )

1 ‖L2(Ω)n

� 2−k/2‖r̃(
1
2 )

1 ‖V1
� 2−k/2‖r̃(

1
2 )

1 ‖.

Now use that ‖r̃(
1
2 )

1 ‖ ≤ ‖r(
1
2 )

1 − r̃
( 1
2 )

1 ‖+‖r(
1
2 )

1 ‖, and ‖r(
1
2 )

1 ‖ �
∥∥v1 �→

∫
Ω
�̃
θ ·∇v1+(N(ũ)−

f)v1 dx−
∫
ΓN

hv1 ds
∥∥

V ′
1
, to conclude that

‖r1− r̃1‖ � 2−k/2
(
ε+

∥∥v1 �→
∫

Ω

�̃
θ ·∇v1+(N(ũ)−f)v1 dx−

∫

ΓN

hv1 ds
∥∥

V ′
1

)
. (2.5.12)

Thanks to �̃
θ−A∇ũ ∈ Pm(T (Λ))n by (2.5.5), and A� being piecewise polynomial,

an application of Proposition 2.9.4 shows that

‖r2 − r̃2‖ � 2−k/2‖�̃θ −A∇ũ‖L2(Ω)n . (2.5.13)

With gε from (s1), using that ΨV2 is a Riesz basis for H− 1
2 (ΓD), we have that

‖r(
1
2 )

3 − r̃
( 1
2 )

3 ‖ � ε+ ‖〈ΨV2 , ũ− gε〉L2(ΓD)|∨V2
\ΛV2 (T (Λ,ε)∩ΓD,k)‖. (2.5.14)

From ũ|ΓD
− gε ∈ Pm(T (Λ, ε) ∩ ΓD) ∩ C(ΓD), Proposition 2.9.5 shows that the norm

at the right-hand side of (2.5.14) is � 2−k/2‖ũ− gε‖
H

1
2 (ΓD)

. Again by using (s1), we
infer that

‖r(
1
2 )

3 − r̃
( 1
2 )

3 ‖ � ε+ 2−k/2‖ũ− g‖
H

1
2 (ΓD)

. (2.5.15)
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Thanks to r̃
( 1
2 )

3 ∈ Pm(TΓD
(ΛV2(T (Λ, ε) ∩ ΓD, k))), Proposition 2.9.6 shows that

‖r3 − r̃3‖ � 2−k/2‖r̃(
1
2 )

3 ‖
H− 1

2 (ΓD)
� 2−k/2‖r̃(

1
2 )

3 ‖. Now use that ‖r̃(
1
2 )

3 ‖ ≤ ‖r(
1
2 )

3 −

r̃
( 1
2 )

3 ‖+ ‖r(
1
2 )

3 ‖, and ‖r(
1
2 )

3 ‖ � ‖ũ− g‖
H

1
2 (ΓD)

to conclude that

‖r3 − r̃3‖ � 2−k/2
(
ε+ ‖ũ− g‖

H
1
2 (ΓD)

)
. (2.5.16)

By collecting the upper bounds (2.5.11)–(2.5.16) derived for all five terms at the
right-hand side of (2.5.9), and by using Lemma 2.2.6 in combination with the least
squares functional given in (2.5.2), the proof of the first statement is completed.

To bound the cost of the computations, we consider the computation of r̃
( 1
2 )

1 .

First, find a representation of N(ũ)− div
�̃
θ as an element of Pm(T (Λ, ε)) by applying

multi- to single-scale transforms. For each tile ω ∈ T (ΛV1(T (Λ, ε), k)), and for φ

running over some basis of Pm(ω), compute 〈φ,N(ũ) − f − div
�̃
θ〉L2(ω). From this,

compute [〈ψV1

λ , N(ũ)−f−div
�̃
θ〉L2(Ω)]λ∈ΛV1 (T (Λ,ε),k) by applying a transpose of a multi-

to single-scale transform. Similar steps yield [〈ψV1

λ ,
�̃
θ · n − h〉L2(ΓN )]λ∈ΛV1 (T (Λ,ε),k).

The total cost involved in computing r̃
( 1
2 )

1 is bounded by a multiple of #T (Λ, ε) �
#Λ+ ε−1/s operations.

Since fully analogous considerations apply to bounding the cost of the computations
of r̃1, r̃2, r̃

( 1
2 )

3 , and r̃3, the proof is completed.

2.6 Numerical results

For Ω ⊂ R2 being the L-shaped domain (0, 1)2 \ [ 12 , 1)
2, we consider the semi-linear

boundary value problem
{

−∆u+ u3 = f on Ω,
u = 0 on ∂Ω,

(2.6.1)

where, for simplicity, f = 1 (to test our code we also tried some right hand sides
corresponding to some fabricated polynomial solutions u). With U = H1

0 (Ω) = V ,
T = L2(Ω)

2, we applied the awgm (Algorithm 2.3.2), with F reading as DQ, for the
adaptive solution of [u�,θ�]� from

DQ([u�,θ�]�)=



〈∂1ΨU , ∂1u− θ1〉L2(Ω) + 〈∂2ΨU , ∂2u− θ2〉L2(Ω)

〈ΨT1 , θ1 − ∂1u〉L2(Ω)

〈ΨT2 , θ2 − ∂2u〉L2(Ω)




+



〈ΨU , 3u2ΨV 〉L2(Ω)

〈ΨT1 , ∂1Ψ
V 〉L2(Ω)

〈ΨT2 , ∂2Ψ
V 〉L2(Ω)


〈ΨV , u3−f−div �θ

〉
L2(Ω)

= 0,

where u := u�ΨU , θi := θ�
i Ψ

Ti .
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2. An optimal adaptive wavelet method for first order system least squares

Here we equipped Ti (i = 1, 2) with the continuous piecewise linear three-point
wavelet basis from [Ste98b], the space V with the same basis (obviously scaled differ-
ently, and with homogeneous boundary conditions incorporated), and U with a newly
developed continuous piecewise quadratic wavelet basis.

2−�

Figure 2.2: Meshes w.r.t. which the wavelets are piecewise polynomial.

These bases can be applied on any polygon, and they satisfy all assumptions (w1)-
(w4). In particular all wavelets except possibly those ‘near’ the Dirichlet boundary
have one vanishing moment. For each basis, to each wavelet that is not on the coarsest
level we associate one parent on the next coarsest level according to Definition 2.5.4.
For any � ∈ N0 the subsets of the bases consisting of all wavelets up to some level span
exactly the space of continuous piecewise linears, continuous piecewise linears zero at
∂Ω, or continuous piecewise quadratics zero at ∂Ω, respectively, w.r.t. the subdivision
of Ω as indicated in Figure 2.2.

On a bounded domain, the three-point basis has actually not been proven to be
stable in L2(Ω). Although alternative bases are available whose Riesz basis property
has been proven, we opted for the three-point basis, because of its efficient imple-
mentation and because numerical results indicated that it is stable. In Figure 2.3,
numerically computed condition numbers are given of sets of all wavelets up to some
level.

Figure 2.3: Condition numbers of 〈∇ΨU
N ,∇ΨU

N 〉L2(Ω)2 , 〈∇ΨV
N ,∇ΨV

N 〉L2(Ω)2 , and
〈ΨTi

N ,ΨTi

N 〉L2(Ω), where Ψ∗
N is the subset of all wavelets from Ψ∗ up to some level,

where N denotes its cardinality.
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The continuous piecewise quadratic wavelets are biorthogonal ones with the ‘dual
multiresolution analysis’ being the sequence of continuous piecewise linears, zero at
the ∂Ω, w.r.t. one additional level of refinement. Details of this basis construction are
given in the next chapter.

We performed the approximate evaluation of DQ(·) according to (s1)-(s4) and
Theorem 2.5.14 in Sect. 2.5.3 with some simplifications because of the current homo-
geneous Dirichlet boundary conditions and sufficiently smooth right-hand side ((s1)
and (s4) are void, and in (s2) the boundary term is void). Taking the parameter k = 1,
it turns out that the approximate evaluation is sufficiently accurate to be used in Step
(R) of awgm (so we do not perform a loop), as well in the simple fixed point iteration
(2.3.2) with damping ω = 1

4 that we use for Step (G). We took the parameter γ in
Step (G) equal to 0.15 (more precisely, for stopping the iteration we checked whether
the norm of the approximate residual, restricted to Λi+1, is less or equal to 0.15‖ri‖).

For the bulk chasing, i.e. Step (B), we simply collected the indices of the largest
entries of the approximate residual ri until the norm of the residual restricted to those
indices is not less than 0.4‖ri‖ (i.e. µ1 = 0.4), and then, after adding the indices from
the current Λi to this set, we expand it to an admissible set (cf. Definition 2.5.11).
Although this simple procedure is neither guaranteed to satisfy Condition 2.3.4 nor
(B) for some constant 0 < µ0 ≤ µ1, we observed that it works satisfactory in practice.

In view of the orders 3 and 2 of the bases for U and T , and the fact the PDE
is posed in n = 2 space dimensions, the best possible convergence rate that can be
expected is min( 3−1

2 , 2−0
2 ) = 1. In Figure 2.4, we show the norm of the approximate

residual vs. the total number of wavelets underlying the approximation for (u, �θ). The

Figure 2.4: Norm of the (approximate) residual, normalized by the norm of the initial
residual, generated by the awgm vs. the total number of wavelets. The dotted line
indicates the best possible slope −1.
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2. An optimal adaptive wavelet method for first order system least squares

norm of the approximate residual is proportional to the U × T -norm of the error in
the approximation for (u, �θ). We conclude that it decays with the best possible rate.
Moreover, we observed that the computing times scale linearly with the number of
unknowns. Throughout the iteration, the number of wavelets for the approximation
for u is of the same order as the number of wavelets for the approximation for �θ. The
maximum level that is reached at the end of the computations is 26 for u and 28 for
�θ). An approximate solution is illustrated in Figure 2.5. Centers of the supports of the
wavelets that were selected for the approximation for u are illustrated in Figure 2.6.

Figure 2.5: The approximation for u from the span of 202 wavelets.

Finally, in order to get an impression of the condition number of the bi-infinite
linearized normal equations that eventually we are solving, we consider the Poisson
equation, i.e. (2.6.1) without the u3 term. We are interested in the spectral condition
number of the ‘system matrix’ given by




〈∇ΨU ,∇ΨU 〉L2(Ω)2 −〈∂1ΨU ,ΨT1〉L2(Ω) −〈∂2ΨU ,ΨT2〉L2(Ω)

−〈ΨT1 , ∂1Ψ
U 〉L2(Ω) 〈ΨT1 ,ΨT1〉L2(Ω) 0

−〈ΨT2 , ∂2Ψ
U 〉L2(Ω) 0 〈ΨT1 ,ΨT1〉L2(Ω)


+

(2.6.2)


0 0 0
0 〈ΨT1 , ∂1Ψ

V 〉L2(Ω)〈∂1ΨV ,ΨT1〉L2(Ω) 〈ΨT1 , ∂1Ψ
V 〉L2(Ω)〈∂2ΨV ,ΨT2〉L2(Ω)

0 〈ΨT2 , ∂2Ψ
V 〉L2(Ω)〈∂1ΨV ,ΨT1〉L2(Ω) 〈ΨT2 , ∂2Ψ

V 〉L2(Ω)〈∂2ΨV ,ΨT2〉L2(Ω)




To that end we numerically approximated the condition numbers of the finite square
blocks of rows and columns with indices in Λ, with Λ running over the wavelet index
sets that were created by the awgm. Even such a finite block cannot be evaluated ex-
actly, because it still involves the infinite collection ΨV . Given a Λ, we restricted this
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Figure 2.6: Centers of the supports of the first 10366 wavelets for the approximation
for u that were selected by the awgm.

collection to the wavelets with indices in ΛV (T (Λ), k) as defined by Proposition 2.5.6
and Definition 2.5.8, where, as always, we take k = 1. The resulting matrix is exactly
the one that we approximately invert in Step (G) by the fixed point iteration. The
computed condition numbers are given in Figure 2.7. We performed the same compu-
tation also for k = 2, so with an enlarged set of wavelet indices from the basis ΨV ,
and found nearly indistinguishable results. We may conclude that for Λ → ∞, the
given numbers give accurate approximations for the condition number of the matrix
in (2.6.2).

2.7 Stationary Navier-Stokes equations

For n ∈ {2, 3, 4}, let Ω ⊂ Rn be a bounded Lipschitz domain. The stationary Navier-
Stokes equations in velocity–pressure formulation and with no-slip boundary condi-
tions are given by





−ν��u+ (�u · ∇)�u+∇p = �f on Ω
div �u = g on Ω

�u = 0 on ∂Ω.

In order to obtain, in any case in the linear Stokes case, results that hold uniformly
in ν > 0, one may equip the spaces for velocities and pressure with ν-dependent
norms. The equivalent, but notationally more convenient approach that we will follow
is to keep the standard norms, but to make the substitutions �̆u =

√
ν �u, p̆ = 1√

ν
p,

39



2. An optimal adaptive wavelet method for first order system least squares

Figure 2.7: Condition numbers of the (approximate) Galerkin system matrices vs.
#Λ.

�̆
f = 1√

ν
�f , and ğ =

√
ν g. For convenience dropping the˘-accents, the equations for

the new unknowns read as




−��u+ ν−3/2(�u · ∇)�u+∇p = �f on Ω
div �u = g on Ω

�u = 0 on ∂Ω.

In variational form they read as finding (�u, p) ∈ U := H1
0 (Ω)

n × L2(Ω)/R such

that for some (�f, g) ∈ U ′,

G(�u, p)(�v, q) :=

∫

Ω

∇�u : ∇�v − p div�v + ν−3/2(�u · ∇)�u · �v + q(div �u− g)− �f · �v dx = 0

((�v, q) ∈ V := U ).
It is known that G : U → U ′, and that a solution (�u, p) exists (see e.g. [GR79,

Ch. IV]). Furthermore, G is two times differentiable with its second derivative being
constant. We will assume that DG(�u, p) ∈ L(U ,U ′) is a homeomorphism with its
range, so that each of the conditions (i)–(iii) from Sect. 2.2 are satisfied. The latter is
known to hold true, with its range being equal to U ′, when �f is sufficiently small, in
which case the solution (�u, p) is also unique (e.g. see [GR79, Ch. IV]). For the linear
case, so without the term ν−3/2(�u · ∇)�u, thanks to our re-scaling, DG(�u, p) = G ∈
Lis(U ,U ′), and is independent of ν.

Using the framework outlined in Sect. 2.2, we write this second order elliptic PDE
as a first order system least squares problem. There are different possibilities to do so.
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2.7.1 Velocity–pressure–velocity gradient formulation

With T := L2(Ω)
n2

, we define

G1 ∈ L(T ,U ′), G2 ∈ L(U ,T ),

by

G2(�u, p) = ∇�u, (G1θ)(�v, q) =

∫

Ω

θ : ∇�v dx

The results from Sect. 2.2 show that the solution (�u, p) can be found as the first
components of the minimizer (�u, p, θ) ∈ U × T of

Q(�u, p, θ) := 1
2

(∥∥�v �→
∫

Ω

θ : ∇�v − p div�v + ν−3/2(�u · ∇)�u · �v − �f · �v‖2H−1(Ω)n+

‖ div �u− g‖2L2(Ω) + ‖θ −∇�u‖2
L2(Ω)n2

)
,

(2.7.1)

and so as the solution of the normal equations DQ(�u, p, θ) = 0. Here we have used
that on H1

0 (Ω)
n, ‖ div ·‖(L2(Ω)/R)′ = ‖ div ·‖L2(Ω). Following [BG09], we call θ = ∇�u

the velocity gradient. As follows from Sect. 2.2, these normal equations are well-posed
in the sense that they satisfy (1)–(4). This gives us an alternative, effortless proof for
[CMM97b, Thm. 3.1].

To deal with the ‘unpractical’ norm on H−1(Ω)n, we equip H1
0 (Ω)

n with some
wavelet Riesz basis

Ψ(Ĥ1
0 )

n

= {ψ(Ĥ1
0 )

n

λ : λ ∈ ∨(Ĥ1
0 )

n},

and replace, in the definition of Q, the norm on its dual by the equivalent norm defined
by ‖�h(Ψ(Ĥ1

0 )
n

)‖ for �h ∈ H−1(Ω)n.
Next, after equipping ∗ ∈ {H1

0 (Ω)
n, L2(Ω)/R, L2(Ω)

n2} with a Riesz basis Ψ∗ =

{ψ∗
λ : λ ∈ ∨∗}, and so H1

0 (Ω)
n × L2(Ω)/R × L2(Ω)

n2

with

Ψ := (Ψ(H1
0 )

n

, 0L2/R, 0Ln2
2
) ∪ (0(H1

0 )
n ,ΨL2/R, 0

Ln2
2
) ∪ (0(H1

0 )
n , 0L2/R,Ψ

Ln2

2 ),

with index set ∨ := ∨(H1
0 )

n ∪∨L2/R∪∨
Ln2

2
, we apply the awgm to the resulting system

DQ([u�,p�,θ�]�) =



〈divΨ(H1

0 )
n

, div �u− g〉L2(Ω)

0∨L2/R

0∨
Ln2
2


+



〈∇Ψ(H1

0 )
n

,∇�u− θ〉L2(Ω)n2

0∨L2/R

〈ΨLn2

2 , θ −∇�u〉L2(Ω)n2


+



〈 (�u·∇)Ψ(H1

0)n+(Ψ(H1
0)n ·∇)�u

ν3/2 ,Ψ(Ĥ1
0 )

n〉L2(Ω)n

−〈ΨL2/R, divΨ(Ĥ1
0 )

n〉L2(Ω)

〈ΨLn2

2 ,∇Ψ(Ĥ1
0 )

n〉L2(Ω)n2



{
〈Ψ(Ĥ1

0 )
n

, (�u·∇)�u
ν3/2 − �f〉L2(Ω)n

+ 〈∇Ψ(Ĥ1
0 )

n

, θ〉L2(Ω)n2 − 〈divΨ(Ĥ1
0 )

n

, p〉L2(Ω)

}
= 0.
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To express the three terms in �v �→ 〈�v, ν−3/2(�u · ∇)�u− �f〉L2(Ω)n + 〈∇�v, θ〉L2(Ω)n2 −
〈div�v, p〉L2(Ω) ∈ H−1(Ω)n w.r.t. one dictionary, similarly to Sect. 2.1.4 we impose the
additional, but in applications easily realizable conditions that

ΨL2/R ⊂ H1(Ω), ΨLn2

2 ⊂ H(div; Ω)n. (2.7.2)

Then for finitely supported approximations [ũ�, p̃�, θ̃�]� to [u�,p�,θ�]�, for
(�̃u, p̃, θ̃) := [ũ�, p̃�, θ̃�]Ψ ∈ H1

0 (Ω)
n ×H1(Ω)×H(div; Ω)n, we have

DQ([ũ�, p̃�, θ̃�]�)=



〈divΨ(H1

0 )
n

,div �̃u− g〉L2(Ω)

0∨L2/R

0∨
Ln2
2


+



〈∇Ψ(H1

0 )
n

,∇�̃u− θ̃〉L2(Ω)n2

0∨L2/R

〈ΨLn2

2 , θ̃ −∇�̃u〉L2(Ω)n2


+



〈 (�̃u·∇)Ψ(H1

0)n+(Ψ(H1
0)n ·∇)�̃u

ν3/2 ,Ψ(Ĥ1
0 )

n〉L2(Ω)n

−〈ΨL2/R, divΨ(Ĥ1
0 )

n〉L2(Ω)

−〈divΨLn2

2 ,Ψ(Ĥ1
0 )

n〉L2(Ω)n


〈Ψ(Ĥ1

0 )
n

, (�̃u·∇)�̃u
ν3/2 − �f−div θ̃+∇p̃〉L2(Ω)n .

(2.7.3)
Each of the terms div �̃u − g, ∇�̃u − θ̃ , ν−3/2(�̃u · ∇)�̃u − �f − div θ̃ + ∇p̃ correspond,
in strong form, to a term of the least squares functional, and therefore their norms
can be bounded by a multiple of the norm of the residual, which is the basis of our
approximate residual evaluation.

This approximate residual evaluation follows the same lines as with the elliptic
problem from Sect. 2.5. Actually, things are easier here because we assume homo-
geneous boundary conditions. Selecting the Riesz bases for the Cartesian products
H1

0 (Ω)
n and L2(Ω)

n2

of canonical form, we assume that all scalar-valued bases Ψ∗

for ∗ ∈ {Ĥ1
0 , H

1
0 , L2/R, L2} satisfy the assumptions that were made in Sect. 2.5.2, in

particular (w1)–(w4). Let Λ := supp[ũ�, p̃�, θ̃�]� be admissible, i.e., Λ∩∨∗ are trees.

(s1) Find a tiling T (ε) ⊂ OΩ, such that

inf
�fε∈Pm(T (ε))n, gε∈Pm(T (ε))/R

‖�f − �fε‖H−1(Ω)n + ‖g − gε‖L2(Ω) ≤ ε.

If [u�,p�,θ�]� ∈ As, then such a tiling exists with #T (ε) � ε−1/s. Set
T (Λ, ε) := T (Λ)⊕ T (ε).

(s2) (a) Approximate r
( 1
2 )

1 := 〈Ψ(Ĥ1
0 )

n

, ν−3/2(�̃u ·∇)�̃u − �f − div θ̃ + ∇p̃〉L2(Ω)n by

r̃
( 1
2 )

1 := r
( 1
2 )

1 |
Λ(Ĥ1

0)n (T (Λ,ε),k)
.

(b) With r̃
( 1
2 )

1 := (r̃
( 1
2 )

1 )�Ψ(H1
0 )

n

, approximate

r1 =



r11
r12
r13


 :=



〈 (�̃u·∇)Ψ(H1

0)n+(Ψ(H1
0)n ·∇)�̃u

ν3/2 , r̃
( 1
2 )

1 〉L2(Ω)n

−〈ΨL2/R, div r̃
( 1
2 )

1 〉L2(Ω)

−〈divΨLn2

2 , r̃
( 1
2 )

1 〉L2(Ω)n
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by r̃1 := r1|Λ(T (Λ(H1
0)n (T (Λ,ε),k)),k)

.

(s3) Approximate

r2 =



r21
r22
r23


 :=



〈divΨ(H1

0 )
n

, div �̃u− g〉L2(Ω)

0∨L2/R

0∨
Ln2
2


 by r̃2 := r2|Λ(T (Λ,ε),k)

(s4) Approximate

r3 =



r31
r32
r33


 :=



〈∇Ψ(H1

0 )
n

,∇�̃u− θ̃〉L2(Ω)n2

0∨L2/R

〈ΨLn2

2 , θ̃ −∇�̃u〉L2(Ω)n2


 by r̃3 := r3|Λ(T (Λ,ε),k).

The same arguments (actually a subset) that led to Theorem 2.5.14 show the
following theorem.

Theorem 2.7.1. For an admissible Λ ⊂ ∨, [ũ�, p̃�, θ̃�]� ∈ �2(Λ) with (�̃u, p̃, θ̃) suffi-
ciently close to (�u, p, θ), and an ε > 0, consider the steps (s1)-(s4). With s > 0 such
that [ũ�, p̃�, θ̃�]� ∈ As, it holds that

‖DQ([ũ�, p̃�,θ̃�]�)− (r̃1 + r̃2 + r̃3)‖

� 2−k/2(‖�u− �̃u‖H1
0 (Ω)n + ‖p− p̃‖L2(Ω) + ‖θ − θ̃‖L2(Ω)n2 ) + ε,

where the computation of r̃1+ r̃2+ r̃3 requires O(#Λ+ε−1/s) operations. So by taking
k sufficiently large, Condition 2.3.5* is satisfied.

We conclude that the awgm is an optimal solver for the stationary Navier-Stokes
equations in the form DQ([u�,p�,θ�]�) = 0 resulting from the velocity–pressure–
velocity gradient formulation. Obviously, we cannot claim or even expect that this
holds true uniformly in a vanishing viscosity parameter ν. This because in the limit
already well-posedness of DG(�u, p) cannot be expected.

2.7.2 Velocity–pressure–vorticity formulation

Restricting to n ∈ {2, 3}, we set T := L2(Ω)
2n−3 , and define

G1 ∈ L(T ,U ′), G2 ∈ L(U ,T ),

by

G2(�u, p) = curl �u, (G1�ω)(�v, q) =

∫

Ω

�ω · curl�v dx

where for n = 2, curl should be read as the scalar-valued operator �v �→ ∂xv2 − ∂yv1.
(and so �ω · curl �u as ω curl �u). The (formal) adjoint curl′ equals curl for n = 3, whereas
for n = 2 it is v �→ [∂yv,−∂xv]

�.
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2. An optimal adaptive wavelet method for first order system least squares

Since a vector field in the current space T has 2n−3 components, instead of n2 as
in the previous subsection, the first order system formulation studied in this subsection
is more attractive. As we will see, later in its derivation it will be needed that g = 0,
i.e., div �u = 0.

Using that on H1
0 (Ω)

n×H1
0 (Ω)

n,
∫
Ω
∇�u : ∇�v−div �u div�v−curl �u·curl�v dx = 0, the

results from Sect. 2.2 show that the solution (�u, p) can be found as the first component
of the solution in U × T of the system

�H1(�u, p, �ω) :=
(
(�v, q) �→

∫

Ω

�ω · curl�v + div �u div�v − p div�v + ν−3/2(�u · ∇)�u · �v

+ q(div �u− g)− �f · �v dx, �ω − curl �u
)
= �0

on U ′ × T , being a minimizer of

Q1(�u, p, �ω) :=
1
2

(∥∥�v �→
∫

Ω

�ω · curl�v + div �u div�v − p div�v + (�u·∇)�u·�v
ν3/2 − �f · �v dx‖2H−1(Ω)n

+ ‖ div �u− g‖2L2(Ω) + ‖�ω − curl �u‖2L2(Ω)2n−3

)
.

The function �ω = curl �u is known as the vorticity.
Since G satisfies (i)–(iii), �H1 satisfies (a)–(c), and so by Lemma 2.2.6,

Q1(�̃u, p̃, �̃ω) � ‖(�̃u, p̃, �̃ω)− (�u, p, �ω)‖2U ×T (2.7.4)

for (�̃u, p̃, �̃ω) in a neighborhood of (�u, p, �ω).
From here on, we assume that

g = 0,

so that the velocities component of the exact solution is divergence-free. This will
allow us to get rid of the second order term ∇ div �u in the definition of �H1. We define

�H2(�u, p, �ω) :=
(
(�v, q) �→

∫

Ω

�ω · curl�v− p div�v+ (�u·∇)�u·�v
ν3/2 + q div �u− �f ·�v dx, �ω− curl �u

)

with corresponding quadratic functional

Q2(�u, p, �ω) :=
1
2

(∥∥�v �→
∫

Ω

�ω · curl�v − p div�v + (�u·∇)�u·�v
ν3/2 − �f · �v dx‖2H−1(Ω)n

+ ‖ div �u‖2L2(Ω) + ‖�ω − curl �u‖2L2(Ω)2n−3

)
.

Clearly the solution of �H1(�u, p, �ω) = 0 is a solution of �H2(�u, p, �ω) = 0 ((a)), and
�H2 is two times continuously differentiable ((b)). From ‖�v �→

∫
Ω
div �u div�v dx‖H−1(Ω)n

� ‖ div �u‖L2(Ω), one infers that Q1 � Q2 by the triangle inequality, and analogously
Q2 � Q1. Thanks to (2.7.4), an application of Lemma 2.2.6 shows that �H2 satisfies
also (c). We conclude that �H2(�u, p, �ω) is a well-posed first order system formulation
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of G(�u, p) = 0, and consequently, that (�u, p, �ω) can be found by solving the normal
equations DQ2(�u, p, �ω) = 0, which are well-posed in the sense that they satisfy (1)–(4).
This gives us an alternative, effortless proof of [CMM95, Thm. 2.1].

As usual, to deal with the ‘unpractical’ norm on H−1(Ω)n, we equip H1
0 (Ω)

n with
a wavelet Riesz basis

Ψ(Ĥ1
0 )

n

= {ψ(Ĥ1
0 )

n

λ : λ ∈ ∨(Ĥ1
0 )

n},

and replace, in the definition of Q2, the norm on its dual by the equivalent norm
‖�g(Ψ(H1

0 )
n

)‖ for �g ∈ H−1(Ω)n.
Next, after equipping ∗ ∈ {H1

0 (Ω)
n, L2(Ω)/R, L2(Ω)

2n−3} with Riesz basis Ψ∗ =
{ψ∗

λ : λ ∈ ∨∗}, and so H1
0 (Ω)

n × L2(Ω)/R × L2(Ω)
2n−3 with

Ψ := (Ψ(H1
0 )

n

, 0L2/R, 0L2n−3
2

) ∪ (0(H1
0 )

n ,ΨL2/R, 0L2n−3
2

) ∪ (0(H1
0 )

n , 0L2/R,Ψ
L2n−3

2 )

with index set ∨ := ∨(H1
0 )

n ∪ ∨L2/R ∪ ∨L2n−3
2

, we apply the awgm to the resulting
system

DQ2([u
�,p�,ω�]�) =



〈divΨ(H1

0 )
n

, div �u〉L2(Ω)

0∨L2/R

0∨
L
2n−3
2


+



〈curlΨ(H1

0 )
n

, curl �u− �ω〉L2(Ω)2n−3

0∨L2/R

〈ΨL2n−3
2 , �ω − curl �u〉L2(Ω)2n−3




+



〈 (�u·∇)Ψ(H1

0)n+(Ψ(H1
0)n ·∇)�u

ν3/2 ,Ψ(Ĥ1
0 )

n

〉L2(Ω)n

−〈ΨL2/R, divΨ(Ĥ1
0 )

n

〉L2(Ω)

〈ΨL2n−3
2 , curlΨ(Ĥ1

0 )
n

〉L2(Ω)2n−3



{
〈Ψ(Ĥ1

0 )
n

, (�u·∇)�u

ν3/2 − �f〉L2(Ω)n+

〈curlΨ(Ĥ1
0 )

n

, �ω〉L2(Ω)2n−3 − 〈divΨ(Ĥ1
0 )

n

, p〉L2(Ω)

}
= 0.

To express the three terms in �v �→ 〈�v, ν−3/2(�u·∇)�u− �f〉L2(Ω)n+〈curl�v, �ω〉L2(Ω)2n−3−
〈div�v, p〉L2(Ω) w.r.t. one dictionary, we impose the easily realizable conditions that

ΨL2/R ⊂ H1(Ω), ΨL2n−3
2 ⊂ H(curl; Ω)

Then for finitely supported approximations [ũ�, p̃�, ω̃�]� to [u�,p�,ω�]�, for
(�̃u, p̃, �̃ω) := [ũ�, p̃�, ω̃�]Ψ ∈ H1

0 (Ω)
n ×H1(Ω)×H(curl′; Ω), we have

DQ2([ũ
�, p̃�, ω̃�]�)=



〈divΨ(H1

0 )
n

,div �̃u〉L2(Ω)

0∨L2/R

0∨
L
2n−3
2


+



〈curlΨ(H1

0 )
n

, curl �̃u− �̃ω〉L2(Ω)2n−3

0∨L2/R

〈ΨL2n−3
2 , �̃ω −∇�̃u〉L2(Ω)2n−3


+



〈 (�̃u·∇)Ψ(H1

0)n+(Ψ(H1
0)n ·∇)�̃u

ν3/2 ,Ψ(Ĥ1
0 )

n

〉L2(Ω)n

−〈ΨL2/R, divΨ(Ĥ1
0 )

n

〉L2(Ω)

〈ΨL2n−3
2 , curlΨ(Ĥ1

0 )
n

〉L2(Ω)2n−3


〈Ψ(Ĥ1

0 )
n

, (
�̃u·∇)�̃u

ν3/2 − �f+curl′ �̃ω+∇p̃〉L2(Ω)n .

The design of an approximate residual evaluation follows analogous steps as in the
previous subsection. Equipping Cartesian products with bases of canonical form, and
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assuming that the scalar-valued bases Ψ∗ for ∗ ∈ {Ĥ1
0 , H

1
0 , L2/R, L2} satisfy (w1)–

(w4), and that [ũ�, p̃�, ω̃�]� is supported on an admissible set, four steps fully anal-
ogous to (s1)–(s4) in the previous subsection define an approximation scheme that
satisfies Condition 2.3.5*. We conclude that the awgm is an optimal solver for the
stationary Navier-Stokes equations in the form DQ([u�,p�,θ�]�) = 0 resulting from
the velocity–pressure–vorticity formulation. Again, also here we cannot claim or even
expect that this holds true uniformly in a vanishing viscosity parameter ν.

2.8 Conclusion

We have seen that a well-posed (system of) 2nd order PDE(s) can always be formu-
lated as a well-posed 1st order least squares system. The arising dual norm(s) can
be replaced by the equivalent �2-norm(s) of the wavelet coefficients of the functional.
The resulting Euler-Lagrange equations, also known as the (nonlinear) normal equa-
tions, can be solved at the best possible rate by the adaptive wavelet Galerkin method.
We developed a new approximate residual evaluation scheme that also for semi-linear
problems satisfies the condition for optimal computational complexity, and that is
quantitatively much more efficient than the usual apply scheme. Moreover, regard-
less of the order of the wavelets, it applies already to wavelet bases that have only
one vanishing moment. As applications we discussed optimal solvers for first order
least squares reformulations of 2nd order elliptic PDEs with inhomogeneous boundary
conditions, and that of the stationary Navier-Stokes equations. In Chapter 4 we will
apply this approach to time-evolution problems.

2.9 Appendix: Decay estimates

We collect a number of decay estimates that have been used in the proof of Theo-
rem 2.5.14. Recall the definition of the spaces U and V given at the beginning of
Sect. 2.5.1.

The following proposition and subsequent lemma have been used to bound ‖r(
1
2 )

1 −
r̃
( 1
2 )

1 ‖. The presence of the boundary integral and the fact that the upper bound that
is given depends on the norm of g as a whole, and not on norms of g1 and g2 requires
a non-standard treatment.

Proposition 2.9.1. For a tiling T ⊂ OΩ, let g ∈ V ′
1 be of the form

g(v) =

∫

Ω

g1v dx+

∫

ΓN

�g2 · nv ds,

where g1 ∈ Pm(T ), �g2 ∈ Pm(T )n. Then
∥∥g(ΨV1)

∣∣
∨V1

\ΛV1 (T ,k)

∥∥ � 2−k‖g‖V ′
1

(uniform in T and g).
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Proof. Since by assumption (w4), for λ ∈ ∨V1
with |λ| > 0 either

∫
Ω
ψV1

λ dx = 0 or
dist(suppψV

λ ,ΓD) � 2−|λ|, an application of Friedrich’s or Poincaré’s inequality shows
that ‖ψV1

λ ‖L2(Ω) � 2−|λ||ψV1

λ |H1(Ω) � 2−|λ|.
Since by (w1)–(w2), each descendant ω′ ∈ OΩ of ω ∈ T with |ω′| > |ω| + k is

intersected by the supports of a uniformly bounded number of λ ∈ ∨V1
\ ΛV1(T , k)

with |λ| = |ω′|, we have

∑
λ∈∨V1

\ΛV1 (T ,k)

∣∣∣
∫

Ω

g1ψ
V1

λ dx
∣∣∣
2

≤
∑

λ∈∨V1
\ΛV1 (T ,k)

∑
ω∈T

4−|λ|‖g1‖2L2(ω∩suppψ
V1
λ )

� 4−k
∑
ω∈T

4−|ω|‖g1‖2L2(ω),

(2.9.1)

A standard homogeneity argument shows that for ω ∈ T and v ∈ H1(ω),
‖v‖L2(∂ω) � 2−|ω|/2(|v|H1(ω) + 2|ω|‖v‖L2(ω)), so that ‖ψV1

λ ‖L2(ΓN ) � 2−|λ|/2. Writ-
ing ∂ω ∩ ΓN as ∂ωN , the arguments that led to (2.9.1) show that

∑
λ∈∨V1

\ΛV1 (T ,k)

∣∣∣
∫

ΓN

�g2 · nψV1

λ ds
∣∣∣
2

�
∑

λ∈∨V1
\ΛV1 (T ,k)

∑
ω∈T

2−|λ|‖�g2 · n‖2L2(ωN∩suppψ
V1
λ )

� 2−k
∑
ω∈T

2−|ω|‖�g2 · n‖2L2(ωN ).

(2.9.2)

By combining (2.9.1), (2.9.2) with Lemma 2.9.2, the proof is completed unless
U = V1 = H1(Ω)/R. In the latter case, define ḡ1 := g1 − meas(Ω)−1g(1) and
ḡ(v) :=

∫
Ω
ḡ1v dx +

∫
ΓN

�g2 · nv ds. From g(ΨV1)
∣∣
∨V1

\ΛV1 (T ,k)
= ḡ(ΨV1)

∣∣
∨V1

\ΛV1 (T ,k)
,

and ‖g‖V ′
1

= ‖ḡ‖V ′
1
, applications of (2.9.1), (2.9.2) and that of Lemma 2.9.2 to ḡ

complete the proof in this case.

Lemma 2.9.2. In the situation of Proposition 2.9.1, with additionally g(1) = 0 when
U = V1 = H1(Ω)/R, it holds that

∑
ω∈T

4−|ω|‖g1|ω‖2L2(ω) + 2−|ω|‖�g2 · n|ω‖2L2(∂ω∩ΓN ) � ‖g‖2V ′ .

Proof. Thanks to the uniform shape regularity condition, for any ω ∈ OΩ, there exists
a Vω ⊂ H1

0 (ω) such that

‖v‖H1(ω) � 2|ω|‖v‖L2(ω) (v ∈ Vω),

‖p‖L2(ω) � sup
0�=v∈Vω

∫
ω
pv dx

‖v‖L2(ω)
(p ∈ Pm(ω)).

For each ω ∈ T , select vω ∈ Vω with ‖g1|ω‖L2(ω)‖vω‖L2(ω) �
∫
ω
g1|ωvω dx, and

‖vω‖L2(ω) = 4−|ω|‖g1|ω‖L2(ω). Then, with v =
∑

ω∈T vω ∈ H1
0 (Ω), we have
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2. An optimal adaptive wavelet method for first order system least squares

∑
ω∈T 4−|ω|‖g1|ω‖2L2(ω) �

∫
Ω
g1v dx. By combining this with

‖v‖2H1(Ω) =
∑
ω∈T

‖vω‖2H1(ω) �
∑
ω∈T

4|ω|‖vω‖2L2(ω) =
∑
ω∈T

4−|ω|‖g1|ω‖2L2(ω),

and g(v) =
∫
Ω
g1v dx, we arrive at

√∑
ω∈T 4−|ω|‖g1|ω‖2L2(ω) �

g(v)
‖v‖H1(Ω)

≤ ‖g‖V ′ , with

the last inequality being valid when H1
0 (Ω) ⊂ V1.

Otherwise, when V1 = H1(Ω)/R, we take v̄ = v−
∫
Ω
v dx

meas(Ω)1 ∈ V . Then ‖v̄‖H1(Ω) �

‖v‖H1(Ω), g(v) = g(v̄) by assumption, and so g(v)
‖v‖H1(Ω)

� g(v̄)
‖v̄‖H1(Ω)

≤ ‖g‖V ′ .
For bounding the second term in the statement of the lemma, for a tile ω ∈ OΩ

we write ∂ω ∩ ΓN as ∂ωN . Thanks to the uniform shape regularity condition, for any
ω ∈ OΩ with meas(∂ωN ) > 0, there exists a Vω ⊂ {v ∈ H1(ω) : v|∂ω\∂ωN

= 0} such
that

‖v‖H1(ω) � 2|ω|/2‖v‖L2(∂ωN ) (v ∈ Vω),

‖�p · n‖L2(∂ωN ) � sup
0 �=v∈Vω

∫
∂ωN

�p · nv ds
‖v‖L2(∂ωN )

(�p ∈ Pm(ω)n),

Vω ⊥L2(ω) Pm(ω).

For each ω ∈ T with meas(∂ωN ) > 0, select vω ∈ Vω with ‖�g2|ω ·
n‖L2(∂ωN )‖vω‖L2(∂ωN ) �

∫
∂ωN

�g2|ω ·nvω ds, and ‖vω‖L2(∂ωN ) = 2−|ω|‖�g2 ·n|ω‖L2(∂ωN ).
For the other ω ∈ T , set vω = 0. Then, for the function v =

∑
ω∈T vω ∈ {w ∈

H1(Ω): w|ΓD
= 0}, we have

∑
ω∈T

2−|ω|‖�g2 · n|ω‖2L2(∂ωN ) �
∫

ΓN

�g2 · nv ds.

By combining this with

‖v‖2H1(Ω) =
∑
ω∈T

‖vω‖2H1(ω) �
∑
ω∈T

2|ω|‖vω‖2L2(∂ωN ) =
∑
ω∈T

2−|ω|‖�g2 · n|ω‖2L2(∂ωN ),

and g(v) =
∫
ΓN

�g2 · nv dx, we arrive at
√∑

ω∈T
2−|ω|‖g2|ω · n‖2L2(∂ωN ) �

g(v)

‖v‖H1(Ω)
≤ ‖g‖V ′ ,

in the case that {w ∈ H1(Ω): w|ΓD
= 0} ⊂ V1.

Otherwise, when V1 = H1(Ω)/R, we take v̄ = v−
∫
Ω
v dx

meas(Ω)1 ∈ V . Then ‖v̄‖H1(Ω) �

‖v‖H1(Ω), g(v) = g(v̄) by assumption, and so g(v)
‖v‖H1(Ω)

� g(v̄)
‖v̄‖H1(Ω)

≤ ‖g‖V ′ .

An easy version of the proof of Proposition 2.9.1 shows the following result, which
has been used to bound ‖r11 − r̃11‖ in the proof of Theorem 2.5.14.
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2.9. Appendix: Decay estimates

Proposition 2.9.3. For a tiling T ⊂ OΩ, and g ∈ Pm(T ), it holds that
∥∥〈ΨU , g〉L2(Ω)

∣∣
∨U \ΛU (T ,k)

∥∥ � 2−k‖g‖U ′

(uniform in T and g).

The statements from the following proposition have been used to bound the terms
‖r11 − r̃11‖ (first statement) and ‖r2 − r̃2‖ (both statements) in the proof of Theo-
rem 2.5.14.

Proposition 2.9.4. For a tiling T ⊂ OΩ, g ∈ Pm(T ), 1 ≤ q ≤ n, and �g ∈ Pm(T )n,
it holds that

∥∥〈ΨTq , g〉L2(Ω)

∣∣
∨Tq\Λ

Tq (T ,k)

∥∥ � 2−k/2‖g‖L2(Ω)

∥∥〈∇ΨU , �g〉L2(Ω)n
∣∣
∨U \ΛU (T ,k)

∥∥ � 2−k/2‖�g‖L2(Ω)n

(uniform in T , g, and �g).

Proof. Since by assumption (w2), for λ ∈ ∨Tq
\ ΛTq (T , k), suppψTq

λ has non-empty
intersection with a uniformly bounded number of ω ∈ T , we have

∑

λ∈∨Tq\Λ
Tq (T ,k)

∣∣ ∑
ω∈T

〈ψTq

λ , g〉L2(ω)

∣∣2 �
∑
ω∈T

∑

λ∈∨Tq\Λ
Tq (T ,k)

|〈ψTq

λ , g〉L2(ω)|2. (2.9.3)

Given ω ∈ T and � ∈ N0, we set

Λ
(1)
ω,� = {λ ∈ ∨Tq

: |λ| = �, suppψ
Tq

λ ⊂ ω, ψ
Tq

λ has a vanishing moment}

Λ
(2)
ω,� = {λ ∈ ∨Tq

\ Λ(1)
ω,� : |λ| = �, meas(suppψ

Tq

λ ∩ ω) > 0}.

For λ ∈ Λ
(2)
ω,�, we estimate

|〈ψTq

λ , g〉L2(ω)| ≤ ‖ψTq

λ ‖L1(Ω)‖g‖L∞(ω) � 2−�n/22|ω|n/2‖g‖L2(ω). (2.9.4)

Using that #Λ
(2)
ω,� � 2(�−|ω|)(n−1) (cf. (w4)) , we infer that

∑
�>|ω|+k

∑

λ∈Λ
(2)
ω,�

|〈ψTq

λ , g〉L2(ω)|2 � 2−k‖g‖2L2(ω). (2.9.5)

Using that for λ ∈ Λ
(1)
ω,�, ψ

Tq

λ has a vanishing moment, we find that

|〈ψTq

λ , g〉L2(ω)| � ‖ψTq

λ ‖L1(Ω)2
−�‖g‖W 1

∞(ω) � 2−�n/22−�2|ω|2|ω|n/2‖g‖L2(ω). (2.9.6)

From #Λ
(1)
ω,� � 2(�−|ω|)n, we obtain

∑
�>|ω|+k

∑

λ∈Λ
(1)
ω,�

|〈ψTq

λ , g〉L2(ω)|2 � 4−k‖g‖2L2(ω). (2.9.7)
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2. An optimal adaptive wavelet method for first order system least squares

The proof of the first inequality follows from (2.9.3), (2.9.5), and (2.9.7).
To prove the second inequality, for any λ ∈ ∨U , similar to (2.9.4) we have

|〈∇ψU
λ , �g〉L2(ω)n | ≤ ‖ψU

λ ‖W 1
1 (Ω)‖�g‖L∞(ω)n � 2−|λ|n/22|ω|n/2‖�g‖L2(ω)n .

When ψU
λ has a vanishing moment and suppψU

λ ⊂ ω, we have

|〈∇ψU
λ , �g〉L2(ω)n | = |〈ψU

λ , div�g〉L2(ω)| � ‖ψU
λ ‖L1(Ω)2

−|λ|‖�g‖W 2
∞(ω)n

� 2−|λ|n/24−|λ|4|ω|2|ω|/2‖�g‖L2(ω)n

replacing (2.9.6). From these two estimates, the second inequality follows similarly to
the first one.

The following proposition has been used to bound the term ‖r(
1
2 )

3 − r̃
( 1
2 )

3 ‖ in the
proof of Theorem 2.5.14.

Proposition 2.9.5. For a boundary tiling TΓD
⊂ OΓD

, and g ∈ Pm(TΓD
) ∩ C(ΓD),

‖〈ΨV2 , g〉L2(ΓD)|∨V2
\ΛV2 (TΓD

,k)‖ � 2−k/2‖g‖
H

1
2 (ΓD)

.

Proof. Using (2.5.8), similar to (2.9.1)
∑

λ∈∨V2
\ΛV2 (TΓD

,k)

∣∣∣
∫

ΓD

gψV2

λ ds
∣∣∣
2

≤
∑

λ∈∨V2
\ΛV2 (TΓD

,k)

∑
ω∈TΓD

2−|λ|‖g‖2
H1(ω∩suppψ

V2
λ )

� 2−k
∑

ω∈TΓD

2−|ω|‖g‖2H1(ω) � 2−k‖g‖2
H

1
2 (ΓD)

,

by an application of an inverse inequality.

The following proposition has been used to bound the term ‖r3 − r̃3‖ in the proof
of Theorem 2.5.14.

Proposition 2.9.6. For a boundary tiling TΓD
⊂ OΓD

, and g ∈ Pm(TΓD
),

‖〈ΨU , g〉L2(ΓD)|∨U \ΛU (TΓD
,k)‖ � 2−k/2‖g‖

H− 1
2 (ΓD)

.

Proof. In the proof of Proposition 2.9.1, we saw that ‖ΨV1

λ ‖L2(ΓN ) � 2−|λ|/2. The
same arguments show that ‖ΨU

λ ‖L2(ΓD) � 2−|λ|/2. Consequently, similar to (2.9.1),
∑

λ∈∨U \ΛU (TΓD
,k)

∣∣∣
∫

ΓD

gψU
λ ds

∣∣∣
2

≤
∑

λ∈∨U \ΛU (TΓD
,k)

∑
ω∈TΓD

2−|λ|‖g‖2L2(ω∩suppψU
λ )

� 2−k
∑

ω∈TΓD

2−|ω|‖g‖2L2(ω) � 2−k‖g‖2
H− 1

2 (ΓD)
,

where the last inequality follows from analogous arguments as were applied in the first
paragraph of the proof of Lemma 2.9.2.
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3. A quadratic finite element wavelet

Riesz basis

In this chapter, continuous piecewise quadratic finite element wavelets are constructed
on general polygons in R2. The wavelets are stable in Hs for |s| < 3

2 and have two
vanishing moments. Each wavelet is a linear combination of 11 or 13 nodal basis
functions. Numerically computed condition numbers for s ∈ {−1, 0, 1} are provided
for the unit square.

3.1 Introduction

It is well-known that, properly scaled, an infinite countable collection of wavelets can
generate Riesz bases for a scale of Sobolev spaces. Such wavelets can be applied for the
numerical solution of PDEs and singular integral equations. For suitable wavelets, the
(infinite) stiffness matrix of such an operator equation is boundedly invertible, so that
the residual of an approximation is equivalent to its error, meaning that this residual
can be used as an a posteriori error estimator for driving an adaptive algorithm.
Using that wavelets have vanishing moments, even for singular integral equations
the matrix is close to being sparse, and therefore its application can be efficiently
approximated. Furthermore, in any case for elliptic equations, any principal submatrix
is uniformly well-conditioned allowing for an efficient iterative solution of the arising
Galerkin systems.

As with most wavelet applications, it is important that the wavelets have local
supports. Other than with classical wavelet applications, as data compression and
signal analysis, for solving operator equations the corresponding dual wavelets do not
enter the computations, and their support sizes are irrelevant. This induces a lot of
freedom in the construction of suitable wavelet bases. For more information on the
application of wavelets for the (adaptive) solution of operator equations, we refer to
[Dah97, Ste09, Urb09] and the references cited there.

Traditionally, wavelets are constructed on the line or on the interval [0, 1]. Then
the application of a tensor product construction yields wavelets on Rn or [0, 1]n. For
equipping more general domains in Rn, or their boundaries, with wavelet bases domain
decomposition techniques have been developed (e.g. [CTU99, DS99a, DS99b]).
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3. A quadratic finite element wavelet Riesz basis

Another approach to treat non-product domains is to construct wavelets in finite
element spaces w.r.t. a nested sequence of meshes. This approach, to which also
this chapter is devoted, inherits the full flexibility from the finite element method
concerning the shape of the domain.

To realize the Riesz basis property, one can rely on the theory of biorthogonal
space decompositions ([Dah96]). It starts with two multiresolution analyses (Vj)j≥0,
(Ṽj)j≥0 on the given domain that both satisfy Jackson and Bernstein estimates, and
for which Vj and Ṽj are relatively close in the sense that they satisfy inf-sup conditions,
uniformly in j. Then for each j, one constructs the wavelets on ‘level’ j as a uniformly
L2 well-conditioned basis for the biorthogonal complement Vj ∩ Ṽ

⊥L2
j−1 of Vj−1 in Vj .

The union over j of such wavelets form, properly scaled, a Riesz basis for the Sobolev
space with smoothness index s for s in an interval (smin, smax) � 0 determined by
the aforementioned Jackson and Bernstein estimates. With finite element wavelets,
both multiresolution analyses are sequences of finite element spaces w.r.t. a common
sequence of meshes. Linear finite elements of this type, with Ṽj = Vj , were constructed
in [KO95, Ste98a, FQ00, HM00], and higher order ones, also with Ṽj �= Vj , can be
found in [DS99c, NS09]. With the exception of [Ste98a], the constructions in these
references were restricted to two space dimensions.

An alternative possibility is to relax ‘true’ biorthogonality w.r.t. L2 to an ap-
proximate biorthogonality, for instance biorthogonality w.r.t. to a level-dependent,
approximate L2-scalar product. Usually the resulting wavelet bases have smaller sup-
ports than those that span truly L2-biorthogonal complements, but on the other hand
typically their smin is larger and sometimes positive. Linear finite element wavelets of
this type can be found in [VW96, Ste98b, LO96], and quadratic ones in [Liu06].

In Chapter 4, we apply an adaptive wavelet method for solving time-dependent
parabolic PDEs in a simultaneous space-time variational formulation. One of the
arising spaces that has to be equipped with a wavelet Riesz basis is the intersection of
the Bochner spaces L2((0, T );H

1
0 (Ω))∩H1((0, T );H−1(Ω)), where Ω ⊂ R2 denotes the

spatial domain. We will equip this space with a basis of tensor products of temporal
wavelets and spatial wavelets. In order to obtain a Riesz basis for the aforementioned
intersection space, the collection of temporal wavelets has to be, properly scaled, a
Riesz basis for L2(0, T ) and for H1(0, T ), which collections of wavelets are amply
available, whereas the collection Ψ of spatial wavelets has to be, properly scaled, a
Riesz basis for H1

0 (Ω) and for its dual H−1(Ω). Moreover, in order to obtain a sufficient
near-sparsity of the resulting stiffness matrix, we need these wavelets from Ψ to have
2 vanishing moments, or more precisely, cancellation properties of order 2. Finally,
since we write the PDE as a first order system least squares problem, and a suitable
wavelet basis for the flux variable is at least of order 2, we need the wavelets from Ψ
to be of order 3, i.e. piecewise quadratics.

Piecewise quadratics wavelets in finite element spaces were constructed in [DS99c,
Liu06, NS09]. Those in [Liu06] have small supports, but are not stable in Hs for s ≤ 0
and do not have vanishing moments. The quadratic wavelets in the other two references
satisfy our needs, and have even 3 vanishing moments (Ṽj = Vj). Unfortunately
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3.2. Theory on biorthogonal wavelet bases

the condition numbers of those from [DS99c] turned out to be very large. For that
reason, in [NS09] we applied the available freedom in the general construction from
[DS99c] to arrive at wavelets that are much better conditioned. The price to be paid
was an increased support size. The continuous piecewise quadratic finite element
wavelets from [NS09] are linear combinations of 87 nodal basis functions. In the
current work, we change Ṽj into the space of continuous piecewise linears w.r.t. a
dyadically refined mesh, and use the fact that the latter space can be equipped with
basis functions of smaller supports to construct piecewise quadratic wavelets that
satisfy all our needs, have condition numbers similar to those from [NS09], and are
given as linear combinations of 11 or 13 nodal basis functions (these numbers depend
on the valence of the vertices in the initial mesh, and the current numbers apply when
this valence is 6). The same construction principle can be applied in three dimensions,
but it will require calculations on a reference tetrahedron that so far we have not
performed.

This chapter is organized as follows: In Sect. 3.2 we review the general theory on
biorthogonal space decompositions, and in Sect. 3.3 we apply the general principles of
the element-by-element construction of finite element wavelets to construct continu-
ous piecewise quadratic wavelets in two space dimensions, with small supports and 2
vanishing moments. We provide numerically computed condition numbers in H1, L2

and H−1-norms.

We will use the following notations. By C � D we will mean that C can be
bounded by a multiple of D, independently of parameters which C and D may depend
on. Obviously, C � D is defined as D � C, and C � D as C � D and C � D.

For normed linear spaces A and B, for convenience in this chapter always over R,
L(A ,B) will denote the space of bounded linear mappings A → B endowed with the
operator norm ‖ · ‖L(A ,B).

For a countable set ∨, the norm and scalar product on �2(∨) will be denoted as
‖ ·‖ and 〈 , 〉, respectively. For real square matrices A and B of the same size, we write
A ≥ B when for all real vectors x, 〈Ax, x〉 ≥ 〈Bx, x〉.

A countable collection of functions Σ will be formally viewed as a column vector.
Then for a sequence of scalars c = (cσ)σ∈Σ, we set c�Σ :=

∑
σ∈Σ cσσ. For countable

collections of functions Σ and Φ in a Hilbert space H , we define the (formal) matrix
〈Σ,Φ〉H := [〈σ, φ〉H ]σ∈Σ,φ∈Φ.

We use the symbol N0 to denote {0, 1, · · · }.

3.2 Theory on biorthogonal wavelet bases

Let V , Ṽ ,H be separable Hilbert spaces with V , Ṽ ↪→ H with dense embedding.
Identifying H with its dual, we obtain the Gelfand triples V ↪→ H ↪→ V ′ and
Ṽ ↪→ H ↪→ Ṽ ′ with dense embeddings. For s ∈ [−1, 1], we set the interpolation
spaces V s := [V ′,V ] 1

2 s+
1
2

and Ṽ s := [Ṽ ′, Ṽ ] 1
2 s+

1
2
. The following theorem is a special

case of an even more general result proven in [Dah96].
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3. A quadratic finite element wavelet Riesz basis

Theorem 3.2.1 (Biorthogonal space decompositions, [DS99c]). Consider two mul-
tiresolution analyses

V0 ⊂ V1 ⊂ · · · ⊂ H , with closH (∪j≥0Vj) = H ,

Ṽ0 ⊂ Ṽ1 ⊂ · · · ⊂ H , with closH (∪j≥0Ṽj) = H .

Suppose that for j ≥ 0 there exist uniformly bounded biorthogonal projectors Qj ∈
L(H ,H ) such that

ranQj = Vj , ran(I −Qj) = Ṽ ⊥H
j , (3.2.1)

and that, for some ρ, ρ̃ > 1,

inf
vj∈Vj

‖v − vj‖H � ρ−j‖v‖V (v ∈ V ),

inf
ṽj∈Ṽj

‖ṽ − ṽj‖H � ρ̃−j‖ṽ‖Ṽ (ṽ ∈ Ṽ ),
(3.2.2)

and
‖vj‖V � ρj‖vj‖H (vj ∈ Vj), ‖ṽj‖Ṽ � ρ̃j‖ṽj‖H (ṽ ∈ Ṽj). (3.2.3)

Then, with Q−1 := 0, for every s ∈ (−1, 1) it holds that

‖v‖2V s �
∞∑
j=0

ρ2js‖(Qj −Qj−1)v‖2H (v ∈ V s).

Remark 3.2.2 (e.g. [Ste03]). Existence of the biorthogonal projector Qj as in (3.2.1)
is equivalent to each of the following conditions:

(1) βj := inf
0�=vj∈Vj

sup
0�=ṽj∈Ṽj

〈vj , ṽj〉H
‖vj‖H ‖ṽj‖H

= inf
0 �=ṽj∈Ṽj

sup
0 �=vj∈Vj

〈vj , ṽj〉H
‖vj‖H ‖ṽj‖H

> 0,

(2) for any Riesz basis Φj for Vj there exists a (unique) H -dual Riesz basis Φ̃j for
Ṽj ,

(3) there exist some Riesz bases Φj and Φ̃j for Vj and Ṽj , respectively, such that
〈Φj , Φ̃j〉H is bounded invertible.

It holds that ‖Qj‖−1
L(H ,H ) = βj ≥

‖〈Φj ,Φ̃j〉−1
H ‖−1

√
‖〈Φj ,Φj〉H ‖‖〈Φ̃j ,Φ̃j〉H ‖

.

Corollary 3.2.3. In the situation of Thm. 3.2.1, for j ≥ 0 let Ψj = {ψj,x : x ∈ Jj}
be a uniform Riesz basis for ran(Qj − Qj−1) = Vj ∩ Ṽ ⊥H

j−1 (Ṽ−1 := {0}), i.e., with
κH (Ψj) := ‖〈Ψj ,Ψj〉H ‖‖〈Ψj ,Ψj〉−1

H ‖ it holds that supj κH (Ψj) < ∞. Then for
s ∈ (−1, 1),

∞⋃
j=0

ρ−jsΨj is a Riesz basis for V s.
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In particular, with κs denoting the quotient of the supremum and infimum over
v ∈ Vs of ‖v‖2V s/

∑∞
j=0 ρ

2js‖(Qj −Qj−1)v‖2H , it holds that

κV s

( ∞⋃
j=0

ρ−jsΨj

)
≤ κs × sup

j≥0
κH (Ψj).

Recalling that ran(Q0 −Q−1) = V0, the remaining challenge is the construction of
Ψj for j ≥ 1, i.e. Ψj+1 for j ≥ 0:

Proposition 3.2.4 ([NS09]). For j ≥ 0, let Θj ∪Σj+1 and Φ̃j be uniform Riesz bases
for Vj+1 and Ṽj, respectively, such that 〈Θj , Φ̃j〉H = Id. Then

Ψj+1 = Ξj+1 − 〈Ξj+1, Φ̃j〉H Θj (3.2.4)

is a uniform Riesz basis for Vj+1 ∩ Ṽ ⊥H
j = ran(Qj+1 −Qj).

With

δj := inf
0�=v̂j∈spanΘj

sup
0�=ṽj∈Ṽj

〈v̂j , ṽj〉H
‖v̂j‖H ‖ṽj‖H

,

εj := sup
0�=v̂j∈spanΘj

sup
0�=wj+1∈spanΞj+1

〈v̂j , wj+1〉H
‖v̂j‖H ‖wj+1‖H

,

it holds that

κH (Ψj+1) ≤
(1 + δ−1

j )√
1− εj

κH (Ξj+1).

To complete our overview of the theory of biorthogonal space decompositions and
wavelets, in the next two remarks we discuss dual wavelets. The first remark will
become relevant for the numerical approximation of the H−1(Ω)-condition numbers
of the (primal) wavelets that we will construct. The second remark will shed light
on the difference between the general setting of biorthogonal space decompositions
that we consider, and the more restricted framework for the construction of locally
supported wavelets, whose duals are locally supported too, that is usually considered
in one dimension.
Remark 3.2.5 (dual wavelets). With ( )∗ denoting the adjoint w.r.t. 〈 , 〉H , under the
conditions of Thm 3.2.1 equivalently it holds that for every s ∈ (−1, 1),

‖ṽ‖2
Ṽ s �

∞∑
j=0

ρ2js‖(Q∗
j −Q∗

j−1)ṽ‖2H (ṽ ∈ Ṽ s),

so that for Ψ̃j being any uniform Riesz basis for ran(Q∗
j −Q∗

j−1) = Ṽj+1 ∩ V ⊥H
j ,

∞⋃
j=0

ρ−jsΨ̃j is a Riesz basis for Ṽ s.
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One verifies that the pair (ran(Q∗
j−Q∗

j−1), ran(Qj−Qj−1)) satisfies (1) with infsup
constant γj := ‖Qj − Qj−1‖−1

L(H ,H ) � 1. Consequently, as stated in Remark 3.2.2,
given a Riesz basis Ψj for ran(Qj −Qj−1), there exists a unique dual or biorthogonal
Riesz basis Ψ̃j for ran(Q∗

j −Q∗
j−1), i.e. with 〈Ψj , Ψ̃j〉H = Id. From

γj‖c�j Ψ̃j‖H ≤ sup
0 �=vj∈ran(Qj−Qj−1)

〈c�j Ψ̃j , vj〉H
‖vj‖H

≤ ‖c�j Ψ̃j‖H ,

and

sup
0 �=vj∈ran(Qj−Qj−1)

〈c�j Ψ̃j , vj〉H
‖vj‖H

= sup
0�=dj

〈c�j Ψ̃j ,d
�
j Ψj〉H

‖vj‖H
= sup

0 �=dj

〈cj ,dj〉
‖dj‖

‖dj‖
‖d�

j Ψj‖H

one infers that κH (Ψ̃j) ≤ γ−1
j κH (Ψj). Consequently, when the Ψj are uniform Riesz

bases for ran(Qj−Qj−1), then their duals are uniform Riesz bases for ran(Q∗
j −Q∗

j−1),
and for s ∈ (−1, 1),

⋃∞
j=0 ρ

−jsΨj and
⋃∞

j=0 ρ
jsΨ̃j are H -biorthogonal Riesz bases for

V s and Ṽ −s, respectively.
Moreover, if Ṽ = V , then from

‖c�DΨ‖V s = sup
0 �=d∈�2

〈c�DΨ,d�D−1Ψ̃〉H
‖d�D−1Ψ̃‖Ṽ −s

= sup
0�=d∈�2

〈c,d〉
‖d‖

‖d‖
‖d�D−1Ψ̃‖Ṽ −s

,

where D is an invertible diagonal matrix, Ψ = ∪jΨj , and Ψ̃ = ∪jΨ̃j , and the analogous
result with interchanged roles of (Ψ,D) and (Ψ̃,D−1), one infers that κV s(DΨj) =

κṼ −s(D−1Ψ̃), and so in particular that κV s(
⋃∞

j=0 ρ
−jsΨj) = κṼ −s(

⋃∞
j=0 ρ

jsΨ̃j).

Remark 3.2.6 (dual wavelets cont’d). An explicit expression for Ψ̃j can be obtained
in the following special case: For j ≥ 0, let Φj and Φ̃j be H -biorthogonal Riesz
bases for Vj and Ṽj , respectively. Let Mj = [Mj,0 Mj,1] be the basis transformation
from Φj ∪ Ψj+1 to Φj+1, i.e., [Φ�

j Ψ�
j+1] = Φ�

j+1Mj . Analogously, let [Φ̃�
j Ψ̃�

j+1] =

Φ̃�
j+1M̃j . Biorthogonality shows that Mj,0 = 〈Φ̃j+1,Φj〉H , Mj,1 = 〈Φ̃j+1,Ψj+1〉H ,

and analogous relations at the dual side, as well as M̃j = M−�
j .

Now let Ψj be constructed as in Prop. 3.2.4 for the case that Θj = Φj and thus
spanΘj = Vj . Then (3.2.4) reads as Mj,1 = (Id − Mj,0M̃

�
j,0)Rj,1, where Rj,1 =

〈Φ̃j+1,Ξj+1〉H . We conclude that

Mj = [Mj,0 Rj,1]

[
Id −M̃�

j,0Rj,1

0 Id

]
, i.e. M̃j =

[
Id 0

R�
j,1M̃j,0 Id

]
[Mj,0 Rj,1]

−�,

meaning that dual wavelets become explicitly available in terms of Φ̃j+1 when addi-
tionally Ξj+1 is chosen such that the basis transformation [Mj,0 Rj,1]

−1 from Φj+1 to
the two-level basis Φj ∪ Ξj+1 is explicitly available.

Classical ‘stationary’ wavelet constructions on the line provide explicitly given (pri-
mal and) dual wavelets. Explicit knowledge of dual wavelets is crucial for applications
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3.3. Construction of quadratic Lagrange finite element wavelets

as data compression and data analysis. For applications as preconditioning and the
(adaptive) solving of operator equations, however, dual wavelets do not enter the
computation, and wavelet constructions on general, non-rectangular domains usually
do not provide them (an exception is [Ste03]). Allowing spanΘj �= Vj , thus giving
up explicit knowledge of dual wavelets, gives an enormous additional freedom in the
construction of Ψj+1 in Prop. 3.2.4, which we will also exploit in the current work.

3.3 Construction of quadratic Lagrange finite
element wavelets

3.3.1 Multi-resolution analyses

Given a conforming triangulation T0 of a polygon Ω ⊂ R2, let (Tj)j≥0 be the sequence
of triangulations where Tj+1 is created from Tj by subdividing each triangle T ∈ Tj
into four sub-triangles by connecting the midpoints of the edges of T (red-refinement).

For Γ ⊂ ∂Ω being a union of closed edges of triangles T ∈ T0, we define Vj (Ṽj) as
the space of continuous piecewise quadratics (linears) w.r.t. Tj (Tj+1) that vanish at
Γ. We let N (Tj) denote the set of vertices that are not on Γ of T ∈ Tj .

We take H := L2(Ω), and for some t ∈ [1, 3
2 ), define V = Ṽ := H1

0,Γ(Ω) ∩Ht(Ω).
With these definitions, the Jackson and Bernstein estimates (3.2.2)–(3.2.3) are satisfied
with ρ = 2t. After having equipped Vj and Ṽj with uniform Riesz bases, later in
Sect. 3.3.3, with the aid of Remark 3.2.2 we will verify also the remaining condition
(3.2.1) of Theorem 3.2.1. For |s| ≤ 2, we define

Z s :=
[
(H1

0,Γ(Ω) ∩H2(Ω))′, H1
0,Γ(Ω) ∩H2(Ω)

]
s
4+

1
2

�




H1
0,Γ(Ω) ∩Hs(Ω) s ∈ [1, 2],

Hs
0,Γ(Ω) s ∈ ( 12 , 1),

[L2(Ω), H
1
0,Γ(Ω)] 12 s = 1

2 ,

Hs(Ω) s ∈ [0, 1
2 ),

(Z −s)′ s ∈ [−2, 0).

Thanks to the reiteration theorem we have that V s � Z st. Since t ∈ [1, 3
2 ) was

arbitrary, from Corollary 3.2.3 we conclude that if Ψj is a uniform L2(Ω)-Riesz basis
for Vj ∩ Ṽ

⊥L2(Ω)

j−1 , then for |s| < 3
2 ,

∞⋃
j=0

2−jsΨj is a Riesz basis for Z s.

From the approximation properties of (Vj)j , we infer that for j ≥ 0, ψj+1,x ∈ Ψj+1,
p ∈ [1,∞] and 1

p + 1
q = 1,

|〈u, ψj+1,x〉L2(Ω)| ≤ ‖ψj+1,x‖Lp(Ω) inf
vj∈Vj

‖u− vj‖Lq(suppψj,x)

� ‖ψj+1,x‖Lp(Ω)(2
−j)2|u|W 2

q (conv hull(suppψj,x)) (u ∈ W 2
q (Ω) ∩H1

0,Γ(Ω)),
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3. A quadratic finite element wavelet Riesz basis

that is, the wavelets will have cancellation properties of order 2. In particular, when
conv hull(suppψj+1,x) ∩ Γ = ∅, ψj+1,x has 2 vanishing moments.

3.3.2 Local-to-global basis construction

In this subsection it will be shown how to reduce the construction of the various
collections of functions on Ω, that are needed for the construction of the biorthogonal
wavelet basis corresponding to the primal and dual multi-resolution analyses (Vj)j
and (Ṽj)j , to the construction of corresponding collections of ‘local’ functions on the
reference triangle

T = {λ ∈ R3 :
3∑

i=1

λi = 1, λi ≥ 0}.

For 1 ≤ i ≤ 3, let Ti = {λ ∈ T : λi ≤ 1
2}, and let T4 = T \ ∪3

i=1Ti (red-refinement).
For any closed triangle T , let λT (x) ∈ T denote the barycentric coordinates of

x ∈ T with respect to the set of vertices of T ordered in some way.
We consider finite collections of functions Σ = {σλ : λ ∈ IΣ} on T , where IΣ is a

finite set of points in T , that satisfy

(V) σλ vanishes on any edge or vertex that does not include λ,

(S) π(IΣ) = IΣ and σλ = σπ(λ) ◦ π for any permutation π : R3 → R3,

(I) Σ is a linearly independent collection of continuous functions.

Such collections of local functions can be used to assemble collections of global
functions in a way known from finite element methods: For j ≥ 0 and with

IΣj
:= {x ∈ Ω̄ \ Γ : λT (x) ∈ IΣ for some T ∈ Tj}, (3.3.1)

we define the collection Σj = {σj,x : x ∈ IΣj
} of functions on Ω by

σj,x(y) =

{
µ(x; Tj)σλT (x)(λT (y)) if x, y ∈ T ∈ Tj

0 otherwise (3.3.2)

with scaling factor µ(x; Tj) :=
(∑

{T∈Tj : T�x} vol(T )
)− 1

2 . Note that the assumptions
(V), (S) and (I) show that Σj are independent collections of well-defined, continuous
functions on Ω.

Lemma 3.3.1. Let Σ and Σ̃ be two collections of ‘local’ functions on T both satis-
fying (V), (S) and (I). Let Σj and Σ̃j denote the corresponding collections of ‘global’
functions on Ω. Then:

(i) ‖〈Σj ,Σj〉L2(Ω)‖ ≤
∥∥ 〈Σ,Σ〉L2(T )

vol(T )

∥∥, ‖〈Σj ,Σj〉−1
L2(Ω)‖ ≤

∥∥( 〈Σ,Σ〉L2(T )

vol(T )

)−1∥∥.

(ii) If IΣ = IΣ̃, and µId ≤ 〈Σ,Σ̃〉L2(T )

vol(T ) ≤ M Id then µId ≤ 〈Σj , Σ̃j〉L2(Ω) ≤ M Id.
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3.3. Construction of quadratic Lagrange finite element wavelets

(iii) sup
0�=vj∈spanΣj

0�=ṽj∈span Σ̃j

〈vj , ṽj〉L2(Ω)

‖vj‖L2(Ω)‖ṽj‖L2(Ω)
≤ sup

0�=v∈spanΣ

0�=ṽ∈span Σ̃

〈v, ṽ〉L2(Σ)

‖v‖L2(Σ)‖ṽ‖L2(Σ)
.

Proof. We note that for c̃j ∈ �2(IΣ̃j
), cj ∈ �2(IΣj

), it holds that

〈
〈Σj , Σ̃j〉L2(Ω)c̃j , cj

〉
= 〈c�j Σj , c̃

�
j Σ̃j〉L2(Ω)

=
∑
T∈Tj

vol(T )

vol(T )

〈 ∑
x∈IΣj

∩T

cj,xµ(x; Tj)σλT (x),
∑

y∈IΣ̃j
∩T

c̃j,yµ(y; Tj)σ̃λT (y)

〉
L2(T )

=
∑
T∈Tj

〈 〈Σ, Σ̃〉L2(T )

vol(T )
c̃Tj ,T , cTj ,T

〉
,

where

c̃Tj ,T :=
(
c̃j,λ−1

T (λ)µ(λ
−1
T (λ); Tj)

√
vol(T )

)
λ∈IΣ̃

,

cTj ,T :=
(
cj,λ−1

T (λ)µ(λ
−1
T (λ); Tj)

√
vol(T )

)
λ∈IΣ

and
∑
T∈Tj

‖c̃Tj ,T ‖2 =
∑
T∈Tj

∑
y∈IΣ̃j

∩T

|c̃j,y|2µ(y; Tj)2 vol(T )

=
∑

y∈IΣ̃j

|c̃j,y|2µ(y; Tj)2
∑

{T∈Tj : T�y}

vol(T ) = ‖c̃j‖2,

and similarly
∑

T∈Tj
‖cTj ,T ‖2 = ‖cj‖2.

These relations show (ii) and (i), for the latter using that for A = A� > 0,
‖A‖ = sup0�=x

〈Ax,x〉
‖x‖2 , ‖A−1‖−1 = inf0�=x

〈Ax,x〉
‖x‖2 .

Denoting the value of the supremum at the right hand side of (iii) as Q, we have

〈vj , ṽj〉L2(Ω) =
∑
T∈Tj

vol(T )

vol(T )
〈vj ◦ λ−1

T , ṽj ◦ λ−1
T 〉L2(T )

≤ Q
∑
T∈Tj

vol(T )

vol(T )
‖vj ◦ λ−1

T ‖L2(T )‖ṽj ◦ λ−1
T ‖L2(T )

≤ Q
[ ∑
T∈Tj

vol(T )

vol(T )
‖vj ◦ λ−1

T ‖2L2(T )

] 1
2
[ ∑
T∈Tj

vol(T )

vol(T )
‖ṽj ◦ λ−1

T ‖2L2(T )

] 1
2

= Q‖vj‖L2(Ω)‖ṽj‖L2(Ω),

which completes the proof.
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3. A quadratic finite element wavelet Riesz basis

3.3.3 Verification of the uniform inf-sup conditions for
(Vj, Ṽj)j≥0

As a first application of the local-to-global basis construction discussed in the previous
subsection, we will verify the existence of the uniform bounded biorthogonal projectors
from (3.2.1).

Setting I0 := N3
0∩T , and for i ≥ 1, Ii := (2−iN3

0∩T )\Ii−1, we let N := {nλ : λ ∈
I0 ∪ I1} and Ñ := {ñλ : λ ∈ I0 ∪ I1} denote the standard nodal bases of P2(T ) and
C(T ) ∩

∏4
i=1 P1(Ti), respectively.

The with N and Ñ corresponding ‘global’ collections Nj and Ñj , defined by
(3.3.1)–(3.3.2), span the spaces Vj and Ṽj , respectively. The index sets of these collec-
tions satisfy INj

= IÑj
= N (Tj+1). Lemma 3.3.1(i) shows that Nj and Ñj are uniform

L2(Ω)-Riesz bases for their spans. With I0 ∪ I1 (and I2) numbered as indicated in
Figure 3.1, a direct computation shows that

10

211 126

4

8

3

9

5

1

7

15

13 14

Figure 3.1: Numbering of I0 ∪ I1 ∪ I2.

〈N , Ñ〉L2(T )

vol(T )
=

1

480




16 −3 −3 −10 0 0
−3 16 −3 0 −10 0
−3 −3 16 0 0 −10
2 14 14 70 30 30
14 2 14 30 70 30
14 14 2 30 30 70



.

With λ := λmin

(
1

2 vol(T ) (〈N , Ñ〉L2(T ) + 〈N , Ñ〉�L2(T ))
)
≈ 0.0191, it holds that

〈N ,Ñ〉L2(T )

vol(T ) ≥ λId and thus, by Lemma 3.3.1(ii), 〈Nj , Ñj〉L2(Ω) ≥ λId, which shows
that supj ‖〈Nj , Ñj〉−1

L2(Ω)‖ ≤ λ−1. Now Remark 3.2.2 shows that the inf-sup condition
(1), and thus equivalently (3.2.1), are indeed satisfied.

3.3.4 Local collections Θ, Ξ, and Φ̃ underlying the con-
struction of Ψj+1

In order to construct Ψj+1 for j ≥ 0 by means of equation (3.2.4), we need to specify
the collections Θj , Ξj+1 and Φ̃j of functions on Ω. We will construct them from
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3.3. Construction of quadratic Lagrange finite element wavelets

collections Θ = {θλ : λ ∈ I0 ∪ I1}, Ξ = {ξλ : λ ∈ I2}, and Φ̃ = {φ̃λ : λ ∈ I0 ∪ I1},
respectively, of functions on T that satisfy (V), (S), and (I), and for which Θ ∪ Σ

and Φ̃ are bases for C(T ) ∩
∏4

i=1 P2(Ti) and C(T ) ∩
∏4

i=1 P1(Ti), respectively, and
〈Θ, Φ̃〉L2(T ) = vol(T )Id. Then by an application of Lemma 3.3.1, we know that, as
required, Θj ∪Σj+1 and Φ̃j are uniform Riesz bases for Vj+1 and Ṽj , respectively, and
〈Θj , Φ̃j〉L2(Ω) = Id. The index sets of these collections satisfy IΘj

= IΦ̃j
= N (Tj+1),

and IΣj+1
= N (Tj+2) \ N (Tj+1).

We will specify Θ ∪ Σ and Φ̃ in terms of the usual nodal bases Nf and Ñ for
C(T ) ∩

∏4
i=1 P2(Ti) and C(T ) ∩

∏4
i=1 P1(Ti), respectively. For completeness, with

Nf we mean the collection of functions in C(T ) ∩
∏4

i=1 P2(Ti) that have value 1 in
one of the points of I0 ∪ I1 ∪ I2 and vanish at the others. Aiming at wavelets that
have relatively small supports, we exploit the available freedom in the construction
to obtain θλ and ξλ with small supports and a matrix 〈Ξ, Φ̃〉L2(T ) that is sparsely
populated.

We define Φ̃ as indicated in Figure 3.2, and Θ as indicated in Figure 3.3. Both
these collections satisfy (V), (S), and (I), and Φ̃ is a basis for C(T ) ∩

∏4
i=1 P1(Ti). A

direct computation shows that 〈Θ, Φ̃〉L2(T ) = vol(T )Id.
We define Ξ as indicated in Figure 3.4. It satisfies (V), (S), and (I), and since
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81

0 0 0 0 1 −2
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0 0 0
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25

1 0 0 0
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50
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0 0 1
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−8
25

1
25

−5
4

1 1

0 0 0 50
81

0 50
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−8
25

1
25

0 0 1
25

−8
25
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4

1

0 0 0 50
81

50
81

0 1
25

−8
25

−8
25

1
25

0 0 1 1 −5
4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

�= 0,

we conclude that Θ ∪Ξ is a basis for C(T ) ∩
∏4

i=1 P2(Ti).
It holds that

〈ξ( 3
4 ,

1
4 ,0)

, φ̃λ〉L2(T ) = vol(T )×

{
3

100 λ = (1, 0, 0),

0 λ ∈ (I0 ∪ I1) \ {(1, 0, 0)},

〈ξ( 1
4 ,

1
4 ,

1
2 )
, φ̃λ〉L2(T ) = vol(T )×




−1
48 λ = (0, 0, 1),
27
240 λ = ( 12 ,

1
2 , 0),

0 λ ∈ (I0 ∪ I1) \ {(0, 0, 1), ( 12 ,
1
2 , 0)},
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−4
27

1 −4
27 1

Figure 3.2: φ̃(1,0,0) (left) and φ̃( 1
2 ,

1
2 ,0)

(right) in terms of Ñ . The other φ̃λ are obtained
by permuting the barycentric coordinates.

6

72 6

50
81

530
81

1560
81

530
81

50
81

Figure 3.3: θ(1,0,0) (left) and θ( 1
2 ,

1
2 ,0)

(right) in terms of Nf . The other θλ are obtained
by permuting the barycentric coordinates.

where the other values of 〈ξµ, φ̃λ〉L2(T ) for (µ, λ) ∈ I2 × (I1 ∪ I0) are obtained by
permuting the barycentric coordinates.

3.3.5 Definition of the Ψj

We take Ψ0 = N0, being a Riesz basis for V0. In the previous subsection, from
corresponding local collections we have constructed uniform Riesz bases Θj∪Σj+1 and
Φ̃j for Vj+1 and Ṽj , respectively, such that 〈Θj , Φ̃j〉L2(Ω) = Id. For j ≥ 0, the collection
of wavelets Ψj+1 is now given by the explicit formula Ψj+1 = Ξj+1−〈Ξj+1, Φ̃j〉L2(Ω)Θj .
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1 −12
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1 1

Figure 3.4: ξ( 3
4 ,

1
4 ,0)

(left) and ξ( 1
4 ,

1
4 ,

1
2 )

(right) in terms of Nf . The other ξλ’s (five and
two) are obtained by permuting the barycentric coordinates.
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3.3. Construction of quadratic Lagrange finite element wavelets

These wavelets will depend on the topology of T0 via the the local-to-global basis
construction (3.3.1)–(3.3.2) that we applied for the definition of Θj , Σj+1, and Φ̃j , as
well via the inner product 〈Ξj+1, Φ̃j〉L2(Ω).

Despite of these dependencies on T0, as well as that on Γ, we can distinguish
between two types of wavelets: A wavelet ψj+1,x of the first type stems from ξλ of
type ξ( 3

4 ,
1
4 ,0)

(see Figure 3.4), so that x ∈ N (Tj+2) \ N (Tj+1) is on an edge of a
T ∈ Tj . It equals ξj+1,x minus a multiple of one (or, near the Dirichlet boundary,
possibly zero) θj,y with y ∈ N (Tj) (left picture in Figure 3.2). A wavelet ψj+1,x of the
second type stems from ξλ of type ξ( 1

4 ,
1
4 ,

3
4 )

, so that x ∈ N (Tj+2) \N (Tj+1) is interior
to a T ∈ Tj . It equals ξj+1,x minus a multiple of two (or, near the Dirichlet boundary,
possibly one or zero) θj,y’s, where one y ∈ N (Tj) and the other is in N (Tj+1) \N (Tj)
(right picture in Figure 3.2). The supports of both types of wavelets (away from the
Dirichlet boundary) are illustrated in Figure 3.5.

Figure 3.5: Wavelets ψj+1,x for x ∈ N (Tj+2) \ N (Tj+1) on an edge of a T ∈ Tj (left)
or interior to a T ∈ Tj (right). Indicated are x (•), the support of ξj+1,x (vertical
shading), and that of the θj,y’s (horizontal shading). The support of the wavelet is
the union of these supports.
The wavelets are linear combinations of 11 (left) or 13 (right) quadratic nodal basis
functions (i.e. functions from Nj+1) (the numbers 11 and 13 apply when the valence
of each interior vertex in Tj is 6).

3.3.6 Condition numbers

For Ω = (0, 1)2, T0 =
{
{(x, y) : 0 ≤ x ≤ y ≤ 1}, {(x, y) : 0 ≤ y ≤ x ≤ 1}

}
, and Γ = ∂Ω,

we have computed κL2(Ω)(
⋃J

j=0 Ψj) and κH1
0 (Ω)(

⋃J
j=0 Ψj), with H1

0 (Ω) equipped with
| · |H1(Ω), and with the wavelets normalized in the corresponding norm. That is, we
have computed the condition numbers of the (normalized) mass and stiffness matrices.
The results are given in Tables 3.1 and 3.2.

Remark 3.3.2. The principles behind the finite element wavelet construction applied
in this work were introduced in [Ste98a, DS99c]. The realizations of finite element
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3. A quadratic finite element wavelet Riesz basis

Table 3.1: L2-condition numbers of the L2-normalized wavelets up to level J .

J 0 1 2 3 4 5 6 7 8
κL2((0,1)2) 1 4.8 7.3 8.3 8.9 9.2 9.7 9.8 9.9

Table 3.2: H1
0 -condition numbers of the H1

0 -normalized wavelets up to level J .

J 0 1 2 3 4 5 6 7 8
κH1

0 ((0,1)
2) 1 27 41 54 63 70 76 81 85

wavelets for given primal and dual orders from [DS99c] were revisited in [NS09] in
order to obtain smaller condition numbers. The two-dimensional piecewise quadratic
wavelets from [NS09] have 3 vanishing moments (since Ṽj = Vj). Their L2- and H1

0 -
condition numbers on the square on level J = 6 were 12 and 60, respectively, for
the H1

0 -case somewhat improving upon the condition numbers from Table 3.2. On
the other hand, for a regular mesh where all vertices have valence 6, each quadratic
wavelet away from the boundary in [NS09] is a linear combination of not less than 87
nodal basis functions, which high number was the motivation for the current work.

Two-dimensional quadratic finite element wavelets where each wavelet is a linear
combination of only 4 or 6 nodal basis functions were introduced in [Liu06]. These
wavelets are based on a splitting of Vj+1 into Vj and an orthogonal complement w.r.t. a
‘discrete’ level-dependent scalar product on Vj+1. It was shown that the wavelets
generate a Riesz basis for Hs for s ∈ (0.3974, 3

2 ). These wavelets, however, have no
vanishing moment, and, consequently, they cannot be expected to generate a Riesz
basis for Hs for s ≤ 0.

Finally, since for our application in solving parabolic PDEs it is needed that the
wavelets form a Riesz basis in H−1(Ω), based on κH−1(Ω)(DΨ) = κH1

0 (Ω)(D
−1Ψ̃)

(see Remark 3.2.5), where Ψ̃ is the dual wavelet basis and D � blockdiag[2−j ]j≥0 �
diag[|ψ̃|H1(Ω)]ψ̃∈Ψ̃, additionally we have computed κH1

0 (Ω)(
⋃J

j=0 Ψ̃j) with these dual
wavelets being normalized w.r.t. | · |H1(Ω). The results are given in Table 3.3. Since,
as explained in Remark 3.2.6, these computations involve the applications of inverses
of mass matrices and that of two-level transforms at the primal side, which inverses

Table 3.3: H1-condition numbers of the H1-normalized dual wavelets up to level J .

J 0 1 2 3 4 5 6
κH1

0 ((0,1)
2) 1 6.5 14 22 28 32 36
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3.3. Construction of quadratic Lagrange finite element wavelets

in our case are densely populated, we computed these condition numbers only up to
level 6.
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4. An optimal adaptive tensor prod-

uct wavelet solver of a space-time

FOSLS formulation of parabolic evo-

lution problems

In this chapter we construct a well-posed first order system least squares (FOSLS)
simultaneously space-time formulation of parabolic PDEs. Using an adaptive wavelet
solver, this problem is solved with the best possible rate in linear complexity. Thanks
to the use of a basis that consists of tensor products of wavelets in space and time, this
rate is equal to that when solving the corresponding stationary problem. Our findings
are illustrated by numerical results.

4.1 Introduction

After pioneering earlier work in [BJ89, BJ90], in recent years one witnesses a re-
newed and growing interest in simultaneously space-time solvers for evolutionary PDEs
(e.g. [And14, MST14, Ste15, LMN16, ECD16, DFW16]). Instead of reducing the prob-
lem to a coupled system of ODEs, as with the method of lines, or to a sequence of
stationary PDEs, as with time marching schemes like Rothe’s method, one aims to
solve the problem as a whole. The motivations to do so are to obtain a reduction
in the computational complexity or storage requirements by exploiting the product
structure of the space-time cylinder for tensor product approximation (see [GO07]);
to construct meshes that are optimally adapted to singularities that are local in space
and time (improving upon the rather limited possibilities of local time stepping); and,
finally, to use the additional time dimension to enhance the possibilities for a massive
paralellization (e.g. [GN16]).

When aiming at a convergent or rather optimally convergent adaptive solution
method, a major obstruction is that a space-time variational formulation does not lead
to a bilinear form that is symmetric or coercive. In [SS09, GK11, KSU16], considering
parabolic PDEs, this problem was tackled as follows: By equipping the (Bochner)
spaces w.r.t. which the bilinear form is well-posed with (wavelet) Riesz bases, the vari-
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4. An optimal adaptive tensor product wavelet solver of a space-time FOSLS
formulation of parabolic evolution problems

ational problem has an equivalent formulation as a well-posed bi-infinite matrix-vector
formulation. By now forming normal equations one arrives at a well-posed symmetric
positive bi-infinite matrix-vector problem whose solution can be approximated at the
best possible nonlinear approximation rate using the adaptive wavelet scheme devel-
oped in [CDD01, GHS07].

For both the evaluation of the a posteriori error estimator, and for solving the
arising Galerkin systems, a key ingredient of these schemes is, for the current finite
approximate solution vector, the approximate evaluation of the residual of the infinite
system of equations within a tolerance that is equal to a fixed multiple of the current
error, and at a cost such that the overall scheme has optimal computational complexity.
In the original scheme this was performed by approximating separately both the right-
hand side vector and the matrix-vector multiplication each within half this tolerance.
For the second task an ingenious scheme was constructed, the so-called apply-routine,
that approximates each column of the matrix with an accuracy dependent on the
modulus of the corresponding entry in the input vector. To have a proper decay of the
matrix entries away from the diagonal, it requires that the wavelets have sufficiently
many vanishing moments dependent on their order. Even for linear operators the
apply routine is non-linear, and unfortunately it turned out to be quantitatively quite
demanding.

In Chapter 2 we developed an alternative for the apply routine. It is based on
the observation that if the wavelets are sufficiently smooth, then each entry of the
residual vector equals the residual of the equation in mild form integrated against a
wavelet. Now it can be shown that if the current approximation is from the span of the
wavelets up to some level, then a sufficiently accurate residual vector approximation is
obtained by ignoring all entries of this vector that correspond to wavelets whose levels
exceed that level by a fixed constant. This observation also applies to non-uniform,
adaptive settings as long as the approximate solutions are sought in spans of wavelets
whose indices form trees. For this scheme, the number of vanishing moments of the
wavelets does not have to grow with their order, and often one vanishing moment
suffices. To compute the remaining entries of the residual vector in linear complexity,
i.e., those that cannot be ignored, the current approximate solution is first written in a
locally finite single-scale basis, then its residual is integrated against single-scale basis
functions, after which the transposed multi-to-single scale transformation is applied.
Without difficulty the scheme applies to semi-linear PDEs as well.

The key idea behind this alternative residual evaluation scheme is not to split
the residual functional into two terms and to approximate them separately, but to
represent both terms in one common dictionary before integrating their difference
against a wavelet basis. In this way one benefits from the fact that the norm of this
functional decreases proportionally to the error in the approximation, meaning that
one is allowed to make a fixed relative error in the second step. The approach requires
that the application of the PDO to any wavelet lands in L2, for operators of 2nd order
meaning that the (piecewise polynomial) wavelets have to be globally C1. To avoid
this unpleasant condition, in Chapter 2 we showed that any well-posed semi-linear 2nd
order PDE can be written as a well-posed First Order System Least Squares (FOSLS)
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problem to which the whole machinery can be applied. In this case, it suffices to have
bases of globally continuous (piecewise polynomial) wavelets which are available on
arbitrary polytopes.

In the current chapter we apply the approach introduced in Chapter 2 to parabolic
evolutionary PDEs written in a well-posed simultaneously space-time variational for-
mulation. We transform this problem to a well-posed FOSLS formulation, and equip
the arising Bochner spaces with bases that are tensor products of temporal and spa-
tial wavelet bases. The advantage of tensor product approximation is that it allows to
solve the full time evolution at an order of computational complexity that is equal as
when solving the corresponding stationary problem.

This advantage, however, does not come for free. As a counterpart for the tree
approximations with non-tensor product wavelet approximation for stationary prob-
lems studied in Chapter 2, here we will allow only approximate solutions from spans
of tensor-product wavelets whose index pairs form multi-trees (more particular, dou-
ble trees). With this restriction, we will be able to show that a sufficiently accurate
residual vector approximation is obtained as follows: Drop each entry of this residual
vector that corresponds to a tensor-wavelet for which one or both its levels exceed
by more than a fixed constant the corresponding level of any tensor-wavelet in the
multi-tree with which it has an overlapping support.

To compute the remaining entries of the residual vector in linear complexity, we
will rely on a generalisation from [KS14] of an algorithm originally developed in [BZ96]
in the (non-adaptive) sparse-grid setting. Note that now we cannot rely on a residual
evaluation by writing the current approximation in a locally finite single-scale repre-
sentation, since the complexity of such a representation generally will not be of the
order of complexity of the tensor-wavelet representation. The unavailability of such a
locally finite single-scale representation has the consequence that we are not able to
handle non-linear PDEs.

In a non-FOSLS setting, we studied adaptive tensor product wavelet methods for
solving simultaneously space-time variational formulations of parabolic PDEs already
in [SS09, CS11]. In those works, we considered unconstrained approximation, i.e. no
multi-tree constraints, and relied on the apply-routine for the approximate residual
evaluation. In [SS09] quantitative aspects were not considered, and in order to get a
reasonably fast implementation in [CS11] we considered custom designed wavelets that
for a PDO with constant coefficients on rectangular spatial domains yield a stiffness
matrix that is truly sparse, and therefore can be applied exactly in optimal complexity.

This chapter is organized as follows: In Sect. 4.2 we give a well-posed FOSLS
formulation of a parabolic PDE. One of the residuals in this system will be measured
in a dual norm. To circumvent its evaluation, we replace this norm by an equivalent
sequence norm of this residual integrated against a wavelet basis.

In Sect. 4.3 we recall some relevant facts about the adaptive wavelet Galerkin
method (awgm) for solving general well-posed operator equations.

In Sect. 4.4 we apply the awgm to the FOSLS formulation of the parabolic PDE.
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We construct tensor product bases for the arising Bochner spaces, specify the multi-
tree constraint on the index sets of the bases, and investigate the best possible ap-
proximation rate that can be achieved. Most of our efforts will be devoted to the
construction of an approximate residual evaluation such that the overall scheme con-
verges with the best possible rate in linear complexity. A number of technical decay
estimates will be postponed to the appendix.

In Sect. 4.5, we test our awgm on the heat equation on a two-dimensional L-
shaped spatial domain with homogenous Dirichlet boundary conditions. In two ex-
amples where the initial condition satisfies the usual condition to vanish at the lateral
boundary, we observe the best possible converge rate. In an example where the initial
condition violates this lowest order compatibility condition, and thus the exact solu-
tion is discontinuous along a two-dimensional manifold, a reduced rate is observed. We
envisage that the ‘full’ rate will be restored by replacing the isotropic spatial wavelets
by (piecewise) tensor product wavelets.

A short conclusion and a brief discussion of issues that are open to further inves-
tigations are presented in Sect. 4.6.

In this work, by C � D we will mean that C can be bounded by a multiple of D,
independently of parameters which C and D may depend on. Obviously, C � D is
defined as D � C, and C � D as C � D and C � D.

For normed linear spaces A and B, L(A ,B) will denote the space of bounded
linear mappings A → B endowed with the operator norm ‖ · ‖L(A ,B). The sub-
set of invertible operators in L(A ,B) with inverses in L(B,A ) will be denoted as
Lis(A ,B).

For countable sets ∨1,∨2, the norms on �2(∨i) and on L(�2(∨1), �2(∨2)) will often
simply denoted as ‖ · ‖.

4.2 Well-posed FOSLS formulation of a parabolic
PDE

For a bounded domain Ω ⊂ Rn, I := (0, T ) for some T > 0, and A = A� ∈ L∞(I ×
Ω)n×n with ξ�A(·)ξ � ‖ξ‖2 (ξ ∈ Rn, a.e. on I × Ω), we consider the semi-linear
parabolic time evolution problem




∂u
∂t −∇x ·A∇xu+N(u) = g on I× Ω,

u = 0 on I× ∂Ω,
u(0, ·) = h on Ω,

(4.2.1)

Multiplying this equation by smooth test functions v of time and space that vanish
at [0, T ] × ∂Ω, integrating both sides over time and space, and, applying integration
by parts in space, we arrive at the variational problem of finding

u ∈ U := L2(I;H
1
0 (Ω)) ∩H1(I;H−1(Ω)),
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4.2.Well-posed FOSLS formulation of a parabolic PDE

such that for all

v ∈ V = V1 × V2 := L2(I;H
1
0 (Ω))× L2(Ω),

it holds that

(Gu)(v) :=

∫

I

∫

Ω

(∂u
∂t

+N(u)− g
)
v1 +A∇xu · ∇xv1 dx dt+

∫

Ω

(u(0, ·)− h)v2 dx = 0.

We assume that

• a solution u exists,

• G, i.e., N , is two times continuously Fréchet differentiable in a neighborhood of
u,

• DG(u) ∈ L(U ,V ′) is a homeomorphism with its range,

i.e., that conditions (i)-(iii) from Sect. 2.2 are satisfied.

Remark 4.2.1 (linear case). In the case that for some�b ∈ L∞(I×Ω)n and c ∈ L∞(I×Ω),

N(u) = Nu := �b · ∇xu+ cu, (4.2.2)

these conditions are known to be satisfied even with DG(u) ∈ Lis(U ,V ′), see e.g.
[DL92, Ch.XVIII], [SS09]. In this linear case, G is affine and so DG(u)(v) = G(v) −
G(0), and the solution u is unique.

For the verification of the conditions in semi-linear cases, we refer to e.g. [Tem97].
Using the general framework outlined in Sect. 2.2, we write our second order PDE

as a first order system least squares (FOSLS) problem: With

�T := L2(I;L2(Ω)
n) ,

it holds that

�p �→
(
(v1, v2) �→

∫

I

∫

Ω

�p · ∇xv1 dx
)
∈ L( �T ,V ′), u �→ A∇xu ∈ L(U , �T ).

Consequently, for any solution u of G(u) = 0, it holds that (u, �p) := (u,A∇xu) ∈
U × �T is a zero of the least squares functional

Q(u, �p) := 1
2

(
‖H1(u, �p)‖2V ′

1
+ ‖H2(u, �p)‖2L2(Ω) + ‖H3(u, �p)‖2�T

)
, (4.2.3)

where

H1(u, �p) := v1 �→
∫

I

∫

Ω

(∂u
∂t

+N(u)− g
)
v1 + �p · ∇xv1 dx dt,

H2(u, �p) := u(0, ·)− h, H3(u, �p) := �p−A∇xu,

and so a solution of DQ(u, �p) = 0. This latter operator equation is well-posed in the
sense that
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• DQ : U × �T ⊃ dom(DQ) → (U × �T )′ is continuously Fréchet differentiable in
a neighborhood of any solution (u, �p),

• 0 < D2Q(u, �p) = D2Q(u, �p)′ ∈ Lis(U × �T , (U × �T )′), so that any solution is
(u, �p) locally unique,

• for (u, �p) being a zero of Q, it holds that

Q(w, �q) � ‖u− w‖2U + ‖�p− �q‖2�T (4.2.4)

in a neighborhood of (u, �p).

Remark 4.2.2 (linear case cont’d). If N is linear, and thus G is affine, then DQ is
affine, and therefore D2Q(u, p)(v, �q) = DQ(v, �q) − DQ(0,�0); in particular, D2Q is
constant. The equation DQ(u, �p) = 0 is uniquely solvable, and therefore its solution
(u, �p) is the zero of Q and u is the solution of G(u) = 0. The relation (4.2.4) holds
globally.

Remark 4.2.3. In [MS01, MS02] a least-squares functional similar to (4.2.3) has been
studied with, essentially, ‖ · ‖2V ′

1
being replaced by ‖ · ‖2L2(I;L2(Ω)n). As a consequence,

a norm equivalence as in (4.2.4) could not be demonstrated, but on the other hand
the evaluation of the dual norm is avoided.

To deal with the dual norm in the definition of Q, we equip V1 with a Riesz basis

ΨV1 = {ψV1

λ : λ ∈ ∨V1
},

meaning that the analysis operator

FV1
: g �→ g(ΨV1) := [g(ψV1

λ )]λ∈∨V1
∈ Lis(V ′

1 , �2(∨V1
)),

and so its adjoint, known as the synthesis operator,

F ′
V1

: v �→ v�ΨV1 :=
∑

λ∈∨V1

vλψ
V1

λ ∈ Lis(�2(∨V1
),V1).

In the definition of the least squares functional Q, we now replace the standard dual
norm on V ′

1 by the equivalent norm ‖FV1
· ‖�2(∨V1

), which yields that

DQ(u, �p)(w, �q) =
〈
DH1(u, �p)(w, �q)(Ψ

V1), H1(u, �p)(Ψ
V1)

〉
�2(∨V1

)
+

〈DH2(u, �p)(w, �q), H2(u, �p)〉L2(Ω) + 〈DH3(u, �p)(w, �q), H3(u, �p)〉 �T .

To solve this operator equation DQ(u, �p) = 0 we are going to apply the adaptive
wavelet Galerkin method.
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4.3 The adaptive wavelet Galerkin method (awgm)

In this section, we summarize findings about the awgm from Chapter 2 and [Ste14,
CS15]. Let

(I) F : H ⊃ dom(F ) → H ′, with H being a separable Hilbert space;

(II) F (z) = 0;

(III) F be continuously differentiable in a neighborhood of z;

(IV) 0 < DF (z) = DF (z)′ ∈ Lis(H ,H ′).

In our applications, the triple (F,H , z) will read as (DQ,U × �T , (u, �p)), so that we
already know that (I)-(IV) are valid.

Let Ψ = {ψλ : λ ∈ ∨} be a Riesz basis for H , with analysis operator F : g �→
g(Ψ) ∈ Lis(H ′, �2(∨)), and so synthesis operator F ′ : v �→ v�Ψ ∈ Lis(�2(∨),H ). For
any Λ ⊂ ∨, we set

�2(Λ) := {v ∈ �2(∨) : suppv ⊂ Λ}.

For satisfying the forthcoming Condition 4.3.4 that concerns the computational cost,
it will be relevant that Ψ is a basis of wavelet type.

Writing z = F ′z, and with

F := FFF ′ : �2(∨) → �2(∨),

an equivalent formulation of F (z) = 0 is given by

F(z) = 0.

We are going to approximate z, and so z, by a sequence of Galerkin approximations
from the spans of increasingly larger sets of wavelets, which sets are created by an
adaptive process. Given Λ ⊂ ∨, the Galerkin approximation zΛ, or equivalently,
zΛ := z�ΛΨ, are the solutions of 〈F(zΛ),vΛ〉�2(∨) = 0 (vΛ ∈ �2(Λ)), i.e., F(zΛ)|Λ = 0,
and F (zΛ)(vΛ) = 0 (vΛ ∈ span{ψλ : λ ∈ Λ}), respectively.

In order to be able to construct efficient algorithms, it will be needed to consider
only sets Λ from a certain subset of all finite subsets of ∨. This collection of so-called
admissible Λ will specified later. For the moment, it suffices to know that the union
of any two admissible sets is again admissible.

To provide a benchmark to evaluate our adaptive algorithm, for s > 0, we define
the nonlinear approximation class

As :=
{
z ∈�2(∨) : ‖z‖As :=

sup
ε>0

ε×min
{
(#Λ)s : Λ is admissible, inf

z̃∈�2(Λ)
‖z− z̃‖ ≤ ε

}
< ∞

}
.

(4.3.1)
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A vector z is in As if and only if there exists a sequence of admissible (Λi)i, with
limi→∞ #Λi = ∞, such that supi infzi∈�2(Λi)(#Λi)

s‖z− zi‖ < ∞.
The adaptive wavelet Galerkin method (awgm) defined below produces a sequence

of increasingly more accurate Galerkin approximations zΛ to z. The, generally, infinite
residual F(zΛ) is used as an a posteriori error estimator.

This a posteriori error estimator guides an appropriate enlargement of the current
set Λ using a bulk chasing strategy, so that the sequence of approximations converge
with the best possible rate to z. To arrive at an implementable method, that is even
of optimal computational complexity, both the Galerkin solution and its residual are
allowed to be computed inexactly within sufficiently small relative tolerances.

Algorithm 4.3.1 (awgm).

% Let 0 < µ0 ≤ µ1 < 1, δ, γ > 0 be constants, Λ0 ⊂ ∨ be admissible,
% and zΛ0

∈ �2(Λ0). Let Z be a neighborhood of z ∈ �2(∨).

for i = 0, 1, . . . do

(R) ζ := 2δ
1+δ‖r̃i−1‖. % (Read ‖r̃−1‖ as some scalar � ‖z‖.)

do ζ := ζ/2; Compute r̃i ∈ �2(∨) such that ‖r̃i − F(zΛi
)‖ ≤ ζ.

until ζ ≤ δ
1+δ‖r̃i‖.

(B) Determine an admissible Λi+1 ⊃ Λi with ‖r̃i|Λi+1‖ ≥ µ0‖r̃i‖ such that
#(Λi+1 \ Λi) � #(Λ̃ \ Λi) for any admissible Λ̃ ⊃ Λi with ‖r̃i|Λ̃‖ ≥ µ1‖r̃i‖.

(G) Compute zΛi+1
∈ �2(Λi+1) ∩ Z with ‖F(zΛi+1

)|Λi+1
‖ ≤ γ‖r̃i‖.

endfor

In step (R), by means of a loop in which an absolute tolerance is decreased, the true
residual F(zΛi

) is approximated within a relative tolerance δ. In step (B), bulk chasing
is performed on the approximate residual. The idea is to find a smallest admissible
Λi+1 ⊃ Λi with ‖r̃i|Λi+1‖ ≥ µ0‖r̃i‖. For reasons of computational efficiency, the
condition of having a truly smallest Λi+1 has been relaxed. Finally, in step (G), a
sufficiently accurate approximation of the Galerkin solution w.r.t. the new set Λi+1 is
determined.

Convergence of the adaptive wavelet Galerkin method, with the best possible rate,
is stated in the following theorem.

Theorem 4.3.2 ([Ste14, Thm. 3.9]). Let µ1, γ, δ, infvΛ0∈�2(Λ0) ‖z−vΛ0
‖, ‖F(zΛ0

)|Λ0
‖,

and the neighborhood Z of the solution z all be sufficiently small. Then, for some
α = α[µ0] < 1, the sequence (zΛi

)i produced by awgm satisfies

‖z− zΛi
‖ � αi‖z− zΛ0

‖.

If, for whatever s > 0, z ∈ As, then #(Λi+1 \ Λ0) � ‖z− zΛi‖−1/s.

The computation of the approximate Galerkin solution zΛi+1
can be implemented

by performing the simple fixed point iteration

z
(j+1)
Λi+1

= z
(j)
Λi+1

− ωF(z
(j)
Λi+1

)|Λi+1
. (4.3.2)
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4.4. The adaptive wavelet Galerkin method (awgm)

Taking ω > 0 to be a sufficiently small constant and starting with z
(0)
Λi+1

= zΛi
, a fixed

number of iterations suffices to meet the condition ‖F(z(j+1)
Λi+1

)|Λi+1
‖ ≤ γ‖r̃i‖. This

holds also true when each of the F()|Λi+1 evaluations is performed within an absolute
tolerance that is a sufficiently small fixed multiple of ‖r̃i‖.

Optimal computational complexity of the awgm –meaning that the work to obtain
an approximation within a given tolerance ε > 0 can be bounded on some constant
multiple of the bound on its support length from Theorem 4.3.2,– is guaranteed under
the following two conditions concerning the cost of the “bulk chasing” process, and
that of the approximate residual evaluation, respectively.

Condition 4.3.3. The determination of the next index set Λi+1 in Algorithm 4.3.1
is performed in O(# supp r̃i +#Λi) operations.

Condition 4.3.4 (Cost condition). For a sufficiently small, fixed ς > 0, there exists
a neighborhood Z of the solution z of F(z) = 0, such that for all admissible Λ ⊂ ∨,
z̃ ∈ �2(Λ) ∩ Z, and ε > 0, there exists an r̃ ∈ �2(∨) with

‖F(z̃)− r̃‖ ≤ ς‖z− z̃‖+ ε,

that one can compute in O(ε−1/s +#Λ) operations. Here s > 0 is such that z ∈ As.

Under both conditions, the awgm has optimal computational complexity:

Theorem 4.3.5. In the setting of Theorem 4.3.2, and under Conditions 4.3.3 and
4.3.4, not only #zΛi

, but also the number of arithmetic operations required by awgm

for the computation of zΛi
is O(‖z− zΛi

‖−1/s).

In the setting of F = DQ, and Q being the FOSLS-functional associated to our
parabolic time evolution problem, we will be able to verify Condition 4.3.4 only when
DQ is affine, i.e., when our PDO is linear, i.e., N(u) = Nu as given in (4.2.2). In this
case where

0 < DF(z)� = DF(z) ≡ DF : z̃ �→ F(z̃)− F(0) ∈ L(�2(∨), �2(∨)),

first of all the conditions in Theorem 4.3.2 of infvΛ0
∈�2(Λ0) ‖z−vΛ0‖, ‖F(zΛ0)|Λ0‖, and

the neighborhood Z being sufficiently small can be dropped.
Secondly, for any Λ ⊂ ∨ and ε > 0, our approximate residual r̃ as meant in

Condition 4.3.4 will be of the form AΛ,εz̃+bε, where AΛ,ε = A�
Λ,ε ∈ L(�2(Λ), �2(Λ)).

The construction of r̃ will show that, in addition to ‖F(z̃)−(AΛ,εz̃+bε)‖ ≤ ς‖F(z̃)‖+ε
for all z̃ ∈ �2(Λ), and thus ‖F(0)− bε‖ ≤ ε, it holds that ‖DF−AΛ,ε‖L(�2(Λ),�2(∨)) �
ζ‖DF‖L(�2(∨),�2(∨)). Consequently, by taking ζ sufficiently small, this AΛ,ε can be
used for solving the arising Galerkin problems by a Krylov iteration assuming that the
initial residual is computed sufficiently accurate (see [GHS07, Thm. 2.5] for details).
This method is much more efficient than the simple fixed point iteration applicable in
the general nonlinear case.
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4.4 Application to the FOSLS formulation

4.4.1 Expression for the residual

As announced before, we apply the awgm to solving DQ(u, �p) = 0 where, in order to
be able to satisfy the cost condition Condition 4.3.4, we take N(u) = Nu as given in
(4.2.2). Besides the Riesz basis ΨV1 for V1 introduced earlier, let ΨU := {ψU

λ : λ ∈
∨U } and Ψ

�T := {ψ �T
λ : λ ∈ ∨ �T } be Riesz bases for U and �T , respectively. Then

(ΨU ,�0 �T ) ∪ (0U ,Ψ
�T ) := {(ψU

λ ,�0 �T ) : λ ∈ ∨U } ∪ {(0U , ψ
�T
λ ) : λ ∈ ∨ �T }

is a Riesz basis for U × �T , with analysis operator F ∈ Lis((U × �T )′, �2(∨U × �T )), with
∨U × �T := ∨U ∪ ∨ �T . Since with T := L2(I, L2(Ω)), it holds that �T = T n, we select

Ψ
�T of the form {ψT

λ �ei : (λ, i) ∈ ∨ �T := ∨T × {1, . . . , n}} with ΨT := {ψT
λ : λ ∈ ∨T }

being a Riesz basis for T . We write (u, �p) = F ′[u� p�]�.
For the application of the awgm, for each [w� q�]� supported on an admissible

(and thus finite) subset of ∨U × �T we have to construct a computationally efficient
approximation for the residual DQ([w� q�]�), where DQ := FDQF ′. For that goal
we impose the condition that ΨT ⊂ L2(I;H

1(Ω)), so that

Ψ
�T ⊂ L2(I;H(div; Ω)). (4.4.1)

Then with (w, �q) := (w�ΨU ,q�Ψ
�T ), we obtain that

DQ([w� q�]�) =
[
〈( ∂

∂t +N)ΨU ,ΨV1〉L2(I×Ω)

〈Ψ �T ,∇xΨ
V1〉L2(I×Ω)n

]
〈ΨV1 ,

∂w

∂t
+Nw −∇x · �q − g

〉
L2(I×Ω)

+

[
〈ΨU (0, ·), w(0, ·)− h〉L2(Ω)

0

]
+

[
〈−A∇xΨ

U , �q −A∇xw〉L2(I×Ω)n

〈Ψ �T , �q −A∇xw〉L2(I×Ω)n

]
,

(4.4.2)

where we applied (4.4.1), and the zero boundary conditions satisfied by ΣV1 , to write
〈∇xΨ

V1 , �q
〉
L2(I×Ω)n

as 〈ΨV1 ,−∇x · �q
〉
L2(I×Ω)

. Note that the residual consists of three
terms, each of them being essentially one of the three terms of the least squares
functional (4.2.3) in strong form integrated against a wavelet basis.

In view of (4.2.4), for the current application of awgm the cost condition can be
reformulated as follows

Condition 4.3.4*. For a sufficiently small, fixed ς > 0, for all admissible Λ ⊂ ∨U × �T ,
[w� q�]� ∈ �2(Λ), and ε > 0, there exists an r̃ ∈ �2(∨U × �T ) with

‖DQ([w� q�]�)− r̃‖ ≤

ς
(
‖∂w
∂t

+Nw −∇x · �q − g‖V ′
1
+ ‖w(0, ·)− h‖L2(Ω) + ‖�q −A∇xw‖ �T

)
+ ε,

(4.4.3)
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4.4. Application to the FOSLS formulation

that one can compute in O(ε−1/s+#Λ) operations, where s > 0 is such that [u� p�]� ∈
As.

4.4.2 Tensor product bases

In view of the definitions of U , V1, and T as being Bochner spaces, their bases will
consist of tensor products of functions of collections of temporal and spatial functions,
apart from a normalisation in case of U . For ∗ ∈ {U ,V1,T }, let

Θ∗ = {θ∗λ : λ ∈ �∗}

be collections of ‘temporal’ wavelets on I, such that

ΘV1 , ΘT are Riesz bases for L2(I).

We assume that ΘU ⊂ H1(I), and that

ΘU

‖ΘU ‖L2(I)
,

ΘU

‖ΘU ‖H1(I)
are Riesz bases for L2(I), H

1(I),

respectively. Here with ΘU /‖ΘU ‖L2(I), and similarly for other normalisations or
collections, we mean the collection {θU

λ /‖θU
λ ‖L2(I) : λ ∈ �U }.

For ∗ ∈ {U ,V1,T }, let
Σ∗ = {σ∗

µ : µ ∈ �∗}

be collections of ‘spatial’ wavelets on Ω, such that,

ΣV1 , ΣT are Riesz bases for H1
0 (Ω), L2(Ω),

respectively, ΣU ⊂ H1
0 (Ω), and

ΣU

‖ΣU ‖H−1(Ω)
,

ΣU

‖ΣU ‖H1(Ω)
are Riesz bases for H−1(Ω), H1

0 (Ω), (4.4.4)

respectively. An interpolation argument shows that, consequently, ΣU /‖ΣU ‖L2(Ω) is
a Riesz basis for L2(Ω).

Under the above assumptions, we have that

ΨV1 := ΘV1 ⊗ ΣV1 , ΨT := ΘT ⊗ ΣT , ΨU :=
ΘU ⊗ ΣU

‖ΘU ⊗ ΣU ‖U
(4.4.5)

are Riesz bases for V1, T , and U with index sets ∨∗ = �∗ ×�∗ for ∗ being V1, T , or
U , respectively. For the last statement we refer to [GO95].
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4.4.3 Piecewise polynomial spatial and temporal wavelets

For ∗ ∈ {U ,T ,V1}, we collect a number of (standard) assumptions on the spatial
wavelet collections Σ∗ = {σ∗

λ : λ ∈ �∗} on Ω. To each λ ∈ �∗, we associate a value
|λ| ∈ N0, which is called the level of λ. We will assume that the elements of Σ∗

are locally supported, piecewise polynomial of some degree m, w.r.t. dyadically nested
partitions in the following sense:

(s1) There exists a collection OΩ := {ω : ω ∈ OΩ} of closed polytopes, such that, with
|ω| ∈ N0 being the level of ω, meas(ω ∩ ω′) = 0 when |ω| = |ω′| and ω �= ω′; for
any � ∈ N0, Ω̄ = ∪|ω|=�ω; diamω � 2−|ω|; and ω is the union of ω′ for some ω′

with |ω′| = |ω|+1. We call ω the parent of its children ω′. Moreover, we assume
that the ω ∈ OΩ are uniformly shape regular, in the sense that they satisfy a
uniform Lipschitz condition.

(s2) suppσ∗
λ is contained in a connected union of a uniformly bounded number of ω’s

with |ω| = |λ|, and restricted to each of these ω’s is σ∗
λ a polynomial of degree

m.

(s3) Each ω is intersected by the supports of a uniformly bounded number of σ∗
λ’s

with |λ| = |ω|.

(s4) Σ∗ has the cancellation property of order 1 meaning that

|
∫

Ω

σ∗
µv dx| � 2−|µ|‖σ∗

µ‖L1(Ω)|v|W 1
∞(suppσ∗

µ)
(σ ∈ �∗, v ∈ W 1

∞(Ω) ∩H1
0 (Ω)).

Generally, the polynomial degree m will be different for the different bases, but oth-
erwise fixed. The collection OΩ is shared among all bases.

In addition to (s1)–(s4), we assume that ΣU has the cancellation properties of
order 2 :

(sU
4 ) |

∫
Ω
σU
µ v dx|�4−|µ|‖σU

µ ‖L1(Ω)|v|W 2
∞(suppσU

µ ) (σ ∈ �U, v ∈ W 2
∞(Ω)∩H1

0 (Ω)).

Wavelets of in principle arbitrary order that satisfy all these assumptions can be
found in e.g. [DS99c, NS09].

Remark 4.4.1. In both (s4) and (sU
4 ), suppσ∗

µ could be read as a neighborhood of this
support of diameter 2−|µ|, which requires an only minor adaptation of some proofs.

Definition 4.4.2 (tiling). A collection T ⊂ OΩ such that Ω = ∪ω∈T ω, and for
ω1 �= ω2 ∈ T , meas(ω1 ∩ ω2) = 0 will be called a tiling. With Pm(T ), we denote the
space of piecewise polynomials of degree m w.r.t. T . The smallest common refinement
of tilings T1 and T2 is denoted as T1 ⊕ T2.

To be able to find, in linear complexity, a representation of a function, given as
linear combination of wavelets, as a piecewise polynomial w.r.t. a tiling we will impose
a tree constraint on the underlying set of wavelet indices:
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4.4. Application to the FOSLS formulation

Definition 4.4.3 (trees). To each λ ∈ �∗ with |λ| > 0, we associate one µ ∈ �∗ with
|µ| = |λ| − 1 and meas(suppσ∗

λ ∩ suppσ∗
µ) > 0. We call µ the parent of λ, and so λ a

child of µ.
To each λ ∈ �∗, we associate some neighbourhood S(σ∗

λ) of suppσ∗
λ, with diameter

� 2−|λ|, such that S(σ∗
λ) ⊂ S(σ∗

µ) when λ is a child of µ.
We call a finite Λ ⊂ �∗ a tree, if it contains all λ ∈ �∗ with |λ| = 0, as well as the

parent of any λ ∈ Λ with |λ| > 0.

Remark 4.4.4. Note that we have parent-child relations on the set OΩ of polytopes as
well as on the index sets �∗ (and similarly later on the index sets �∗). We trust that
no confusion will arise.

For some collections of wavelets, as the Haar or more generally, Alpert wavelets
([Alp93]), it suffices to take S(σ∗

λ) := suppσ∗
λ in order to satisfy the nestedness as-

sumption made in Definition 4.4.3. The next result shows that, thanks to (s1)-(s2), a
suitable neighbourhood S(σ∗

λ) always exist.

Lemma 4.4.5. With C := supλ∈�∗
2|λ| diam suppσ∗

λ, a valid choice of S(σ∗
λ) is given

by {x ∈ Ω: dist(x, suppσ∗
λ) ≤ C2−|λ|}.

A proof of the following proposition, as well as an algorithm to apply the multi-
to-single-scale transformation that is mentioned, is given in [Ste14, §4.3].

Proposition 4.4.6 (tree-to-tiling). Given a tree Λ ⊂ �∗, there exists a tiling T (Λ) ⊂
OΩ with #T (Λ) � #Λ such that span{σ∗

λ : λ ∈ Λ} ⊂ Pm(T (Λ)). Moreover, equipping
Pm(T (Λ)) with a basis of functions, each of which supported in ω for one ω ∈ T (Λ),
the representation of this embedding, known as the multi- to single-scale transform,
can be applied in O(#Λ) operations.

Conversely, given a tiling, we define an element-tree and, given an integer k, a
wavelet-tree:

Definition 4.4.7 (tiling-to-tree). Given a tiling T ⊂ OΩ, let t(T ) ⊂ OΩ be its
enlargement by adding all ancestors of all ω ∈ T . Given a k ∈ N0, we set the k-
neighborhood of T in �∗ by

�∗(T , k) :=
{
λ ∈ �∗ : meas

(
S(σ∗

λ) ∩
⋃

{ω∈t(T ) : |ω|=max(|λ|−k,0)}

ω
)
> 0

}
.

Proposition 4.4.8. The set �∗(T , k) is a tree, and #�∗(T , k) � #T (dependent on
k ∈ N0).

Remark 4.4.9. The idea behind the definitions related to tilings is the following: With
the application of the awgm to FOSLS formulations of PDEs where the wavelet bases
are of non-tensor product form as studied in Chapter 2, the residual consists of terms
of the form 〈Σ∗, g〉L2(Ω), where, for some tiling T , g ∈ Pm(T ) because it is from the
span of a set of wavelets with indices from a tree. Now estimates of the form

lim
k→∞

sup
0�=g∈Pm(T )

‖〈Σ∗, g〉L2(Ω)|�∗\�∗(T ,k)‖
‖g‖∗′

= 0
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were shown, meaning that in order to approximate 〈Σ∗, g〉L2(Ω) within some given
relative error it is sufficient to compute this vector on a k-neighborhood of T in �∗,
where k is a suitable constant. Furthermore, with the aid of multi- to locally single-
scale transformations, 〈Σ∗, g〉L2(Ω)|�∗(T ,k) can be exactly evaluated in � #�∗(T , k) �
#T operations.

Such results, together with analogous ones for temporal wavelets, will be the ba-
sis for the residual approximation in the current setting of the application of tensor
product wavelets, where will restrict to approximations from spans of sets of wavelets
with indices that from multi-trees.

Moving to the temporal wavelet collections, for ∗ ∈ {U ,T ,V1} we assume that
Θ∗ = {θ∗λ : λ ∈ �∗} satisfies conditions (t1)–(t3) analogous to (s1)–(s3) with OΩ

reading as OI = {[i2−�T, (i + 1)2−�T ] : � ∈ N0, i = 0, . . . , 2� − 1}, and the level |ω| of
ω = [i2−�T, (i + 1)2−�T ] being defined as �. In addition, we assume that Θ∗ has the
cancellation property of order 1 :

(t4) |
∫
I
θ∗µv dx| � 2−|µ|‖θ∗µ‖L1(I)|v|W 1

∞(supp θ∗
µ)

(σ ∈ �∗, v ∈ W 1
∞(I)).

Remark 4.4.10. Compared to (s4), note that (t4) is imposed for all v ∈ W 1
∞(I) instead

of for only v ∈ W 1
∞(I) ∩H1

0 (I).
To each λ ∈ �∗ with |λ| > 0, we associate one µ ∈ �∗ with |µ| = |λ| − 1 and

meas(supp θ∗λ ∩ supp θ∗µ) > 0. We call µ the parent of λ, and so λ a child of µ. To each
λ ∈ �∗, we associate some neighbourhood S(θ∗λ) of supp θ∗λ, with diameter � 2−|λ|,
such that S(θ∗λ) ⊂ S(θ∗µ) when λ is a child of µ. We call a finite Λ ⊂ �∗ a tree, if it
contains all λ ∈ �∗ with |λ| = 0, as well as the parent of any λ ∈ Λ with |λ| > 0.

Finally in this subsection, we add one more assumption on our PDE: We assume
that its coefficients

A, 
b, and c (cf. (4.2.2)) are piecewise polynomial w.r.t. the coarsest
possible tiling {ωI × ωΩ : (ωI, ωΩ) ∈ OI ×OΩ, |ωI| = |ωΩ| = 0} of Ī × Ω̄.

(4.4.6)

4.4.4 Alpert wavelets

Recall the least squares functional Q from (4.2.3). It consists of three ‘residuals’
∂w
∂t +Nw−∇x ·
q− g, w(0, ·)−h, and 
q−A∇xw (not to be confused with the residual
DQ([w� q�]�)), whose norms are minimized. A main ingredient of our approximate
evaluation of DQ([w� q�]�) will consist of representing all terms in each of the three
‘residuals’ in a common dictionary. If w and 
q would be from spans of sets of non-
tensor product wavelets whose index sets form trees, then such a dictionary can consist
of the piecewise polynomials of some degree w.r.t. a tiling whose cardinality is of the
order of the sum of the cardinalities of both trees. This is the setting considered
in Chapter 2 for the solution of stationary PDEs. In the current setting of tensor
product approximation, such a ‘single-scale’ representation of optimal cardinality does
not exist unless we put conditions on the wavelet index sets that are so restrictive that
the advantages of tensor product approximation concerning favourable approximation
rates are lost.
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Instead, focussing to the first and third ‘residual’, we employ a representation in
terms of tensor products of temporal and spatial Alpert wavelets. Unfortunately, this
procedure does not apply to nonlinear terms being the reason for our restriction to
N(u) = Nu from (4.2.2).

Definition 4.4.11 (Alpert wavelets [Alp93]). We let Θa = {θaλ : λ ∈ �a} denote
an orthonormal basis for L2(I) such that supp θaλ = ω for some ω ⊂ OI with |ω| =
max(|λ| − 1, 0), and span{θaλ : |λ| ≤ �} = Pm({ω ∈ OI : |ω| = �}).

Similarly, we let Σa = {σa
µ : µ ∈ �a} denote an orthonormal basis for L2(Ω) such

that suppσa
µ = ω for some ω ⊂ OΩ with |ω| = max(|µ| − 1, 0), and span{σa

µ : |λ| ≤
�} = Pm({ω ∈ OΩ : |ω| = �}).

We set Ψa := Θa ⊗ Σa.

4.4.5 Multi-tree approximation

We need a definition of admissible subsets of the index set of our basis for U ×
�T that on the one hand is sufficiently restrictive to allow for the evaluation of the

approximate residuals in linear complexity, and on the other hand yields the favourable
approximation rates known from unconstrained tensor product approximation. For
that goal we consider multi-trees as a substitute for the concept of a tree in the non-
tensor product case.

Definition 4.4.12 (multi-trees). For ∗ ∈ {U ,V1,T , a}, Λ ⊂ ∨∗ := �∗×�∗ is called a
multi-tree when for any (λ, µ) ∈ Λ, Λ2(λ) := {γ : (λ, γ) ∈ Λ} and Λ1(µ) := {γ : (γ, µ) ∈
Λ} are trees in �∗ and �∗, respectively. We set Λ2 := ∪λ∈�∗Λ2(λ), Λ1 := ∪µ∈�∗Λ1(µ).

If Λ ⊂ ∨∗ is multi-tree, then Λ1 and Λ2, being unions of trees, are trees in �∗ and �∗,
respectively.

Simple examples of multi-trees, suited for approximation of functions without local
singularities, are sets {(λ, µ) ∈ ∨∗ : (|λ|, |µ|) ∈ S} for finite ∅ �= S ⊂ N2

0 with the
property that if (i, j) ∈ S then {(max(i − 1, 0), j), (i,max(j − 1, 0))} ∈ S. Examples
of such multi-trees are index sets corresponding to ‘full’ or ‘sparse-grids’, see [BG04].

Concerning the efficient computation of residuals we recall the following result
from [KS14] that builds on earlier work from [BZ96] dealing with sparse-grids: Let
a be a bilinear form such that for u(t, x) = u1(t)u2(x) and v(t, x) = v1(t)v2(x), it
holds that a(u, v) = a1(u1, v1)a2(u2, v2), where the ai are local, i.e., ai(ui, vi) = 0
when | suppui ∩ supp vi| = 0, and such that for ω ∈ OΩ or ω ∈ OI and p, q ∈
Pm(ω) the evaluation of ai(p, q) can be performed in O(1) operations. Then for
∗, ◦ ∈ {U ,V1,T , a}, multi-trees Λ∗ ⊂ ∨∗, Λ◦ ⊂ ∨◦, and w ∈ �2(Λ∗), the matrix-
vector product (

a(Ψ◦,Ψ∗)w
)
|Λ◦ (4.4.7)

can be evaluated in O(max(#Λ∗,#Λ◦)) operations.
Although the definition in [KS14] of a tree and therefore that of a multi-tree are

slightly different from the current definitions, the results from [KS14] carry over to the
current setting without much difficulty. For details we refer to Chapter 5, Sect. 5.3.
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Recalling that the solution of our operator equation DQ(u, �p) = 0 lives in U × �T ,
being the Cartesian product of U and the n-fold Cartesian product of T , and which
has been equipped with Riesz basis (ΨU ,�0 �T ) ∪ (0U ,Ψ

�T ) with index set ∨U × �T =
∨U ∪ ∨ �T = ∨U ∪ (∨T , 1) ∪ · · · ∪ (∨T , n), the following definition is natural.

Definition 4.4.13 (admissible index sets). A set Λ ⊂ ∨U × �T is called admissible
when ΛU := Λ∩∨U and, for all 1 ≤ i ≤ n, Λ �Ti

:= {λ : (λ, i) ∈ Λ∩ (∨T , i)} ⊂ ∨T are
multi-trees. We set Λ �T := Λ ∩ ∨ �T .

Definition 4.4.14. For ∗, ◦ ∈ {U ,V1,T , a}, a multi-tree Λ ⊂ ∨∗, and k ∈ N0, we
define its k-neighborhood in ∨◦ by

∨◦(Λ, k) := {(λ′, µ′) ∈ ∨◦ : ∃(λ, µ) ∈ Λ with |λ| = max(|λ′| − k, 0),

|µ| = max(|µ′| − k, 0), and meas
(
S(θ◦λ′)× S(σ◦

µ′) ∩ S(θ∗λ)× S(σ∗
µ)
)
> 0}.

We set ∨ �T (Λ, k) := ∪n
i=1(∨T (Λ, k), i).

Proposition 4.4.15. The k-neighborhood ∨◦(Λ, k), defined in Definition 4.4.14, is a
multi-tree, and # ∨◦ (Λ, k) � #Λ (dependent on k).

Proof. Thanks to Λ being a multi-tree, the definition of ∨◦(Λ, k) would not change
if the conditions |λ| = max(|λ′| − k, 0), |µ| = max(|µ′| − k, 0) read as |λ| ≥ |λ′| − k,
|µ| ≥ |µ′|−k. One infers that ∨◦(Λ, k) is a multi-tree. The statement #∨◦(Λ, k) � #Λ
(dependent on k) follows from the locality of the wavelets.

4.4.6 Best possible rate

Let the bases ΘU , ΣU , ΘT , and ΣT be of orders dUt
> 1, dUx

> 1, dTt
> 0, and

dTx
> 0, respectively. Recalling the definition of the approximation class As, the

largest value smax of s for which [u� p�]� ∈ As can be expected, and for sufficiently
smooth (u, �p) ∈ U × �T actually [u� p�]� ∈ As, is given by

smax = min
(
dUt

− 1,
dUx − 1

n
, dTt

,
dTx

n

)
,

see [SS09, Sect. 7]. This holds true assuming the minimum is not attained for simul-
taneously dTt

and dTx

n , in which case this maximal rate is attained up to a log-factor.
Note that when limited by the orders of the spatial wavelets, the value smax for

the approximation rate of the time-dependent problem is equal to the approximate
rate for the corresponding stationary problem, being the major advantage of tensor
product approximation.

The value of smax has been derived using ‘sparse-grid type’ multi-trees assuming
sufficient smoothness of the solution. Using multi-trees that are adapted to local
singularities of the solution, it can be expected that this rate can be attained to a much
larger class of functions. Results on unconstrained tensor-product approximation can
be found in [Nit06, SU09]. Based on results on non-tensor product tree approximation
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([CDDD01]), we anticipate that the multi-tree constraint on the index sets makes the
approximation classes only ‘slightly’ smaller. See also [DS10] for results on multi-tree
tensor-product approximation of the solution of elliptic PDEs.

4.4.7 Constructing the approximate residual

Given a fixed ς > 0, for all admissible Λ ⊂ ∨U × �T , [w� q�]� ∈ �2(Λ), and ε > 0, we
construct an approximation r̃ ∈ �2(∨U × �T ) to DQ([w� q�]�) that satisfies the error
bound (4.4.3) from the cost condition Condition 4.3.4*.

The first statement of the following lemma shows that with (w, �q) :=

(w�ΨU ,q�Ψ
�T ) it holds that ∂w

∂t + Nw − ∇x · �q ∈ spanΨa
∣∣
∨a(Λ,0)

. The second and
third statements of this lemma will imply a similar statement for the third ‘residual’,
being �q −A∇xw.

Lemma 4.4.16. Let Λ ⊂ ∨U × �T be admissible. Then

∨a(Λ, 0) := ∨a(ΛU , 0) ∪ ∪n
i=1 ∨a (Λ �Ti

, 0)

is a multi-tree, # ∨a (Λ, 0) � #Λ and

span(
∂

∂t
+N)ΨU

∣∣
ΛU

+ span∇x ·Ψ �T
∣∣
Λ �T

⊂ spanΨa
∣∣
∨a(Λ,0)

,

spanA∇xΨ
U
∣∣
ΛU

+ spanΨ
�T
∣∣
Λ �T

⊂
n∏

i=1

spanΨa
∣∣
∨a(Λ,0)

ei,

spanA�A∇xΨ
U
∣∣
ΛU

+ spanA�Ψ
�T
∣∣
Λ �T

⊂
n∏

i=1

spanΨa
∣∣
∨a(Λ,0)

ei.

Proof. The first statement follows by the L2-orthogonality of the Alpert wavelets and
the fact that, using assumption (4.4.6), the element of the collections ( ∂

∂t +N)ΨU
∣∣
ΛU

and span∇x · Ψ �T
∣∣
Λ �T

are piecewise polynomials. The proofs of the second and third
statements are similar.

The term 〈ΨU (0, ·), w(0, ·)− h〉L2(Ω) in DQ([w� q�]�), resulting from the second
‘residual’ w(0, ·) − h, reads as E〈 ΣU

‖ΣU ‖L2(Ω)
, (E�w)� ΣU

‖ΣU ‖L2(Ω)
− h〉L2(Ω), with the

∨U ×�U -matrix E defined by

E(λ,µ),µ′ =

{
θU
λ (0)‖σU

µ ‖L2(Ω)

‖θU
λ ⊗σU

µ ‖U
if (λ, µ) ∈ ∨U , µ′ = µ,

0 if µ �= µ′ ∈ �U .

Its transpose E� represents the trace mapping at t = 0 w.r.t. to the bases ΘU ×ΣU

‖ΘU ×ΣU ‖U

and ΣU

‖ΣU ‖L2(U )
for U and L2(Ω), respectively.

Since w is finitely supported, E�w can be computed exactly in optimal complexity.
The function w(0, ·) = (E�w)� ΣU

‖ΣU ‖L2(Ω)
is piecewise polynomial w.r.t. some tiling T .
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Given an ε > 0, h will be approximated within tolerance ε by a piecewise polynomial
hε w.r.t. some tiling T (ε), so that w(0, ·) − hε is piecewise polynomial w.r.t. the
tiling T ⊕ T (ε). Now 〈 ΣU

‖ΣU ‖L2(Ω)
, w(0, ·)− h〉L2(Ω) ∈ �2(�U ) will be approximated by

restricting it to a k-neighborhood of T ⊕ T (ε) (cf. Def. 4.4.7). The remaining issue
how to approximate the application of E is dealt with in the following lemma.

Lemma 4.4.17. For k ∈ N0 define Ek by

(Ek)(λ,µ),µ′ =

{
(E(λ,µ),µ′ if

∣∣|λ| − 2|µ|
∣∣ ≤ k,

0 otherwise.

Then E,Ek ∈ L(�2(�U ), �2(∨U )), ‖E − Ek‖ � 2−k/2, and #suppEkv � #suppv
(dependent on k).

Proof. By the inequalities

‖θU
λ ‖H1(I) � 2|λ|‖θU

λ ‖L2(I) � ‖θU
λ ‖H1(I), (4.4.8)

‖σU
µ ‖L2(Ω) � 2−|µ|‖σU

µ ‖H1(Ω), ‖σU
µ ‖L2(Ω) � 2|µ|‖σU

µ ‖H−1(Ω), (4.4.9)

which will be demonstrated below, |θU
λ (0)|2 � ‖θU

λ ‖L2(I)‖θU
λ ‖H1(I) by the trace in-

equality, and, finally, the definition of U , we obtain

∣∣∣θ
U
λ (0)‖σU

µ ‖L2(Ω)

‖θU
λ ⊗ σU

µ ‖U

∣∣∣
2

�
( ‖θU

λ ‖L2(I)

‖θU
λ ‖H1(I)

‖σU
µ ‖2H1(Ω)

‖σU
µ ‖2L2(Ω)

+
‖θU

λ ‖H1(I)

‖θU
λ ‖L2(I)

‖σU
µ ‖2H−1(Ω)

‖σU
µ ‖2L2(Ω)

)−1

�
(
2−|λ|4|µ| + 2|λ|4−|µ|)−1 ≤ 2−|�|,

when � := |λ| − 2|µ| ∈ Z. From this result, one easily infers the statements of the
lemma.

From (s4), we have

‖σU
µ ‖2L2(Ω) � 2−|µ|‖σU

µ ‖L1(Ω)|σU
µ |W 1

∞(Ω)

� 2−|µ|2−|µ|n/2‖σU
µ ‖L2(Ω)2

|µ|n/2‖σU
µ ‖H1(Ω),

which shows first inequality in (4.4.9). The second one is a consequence of ‖σU
µ ‖2L2(Ω) ≤

‖σU
µ ‖H1(Ω)‖σU

µ ‖H−1(Ω) � 2|µ|‖σU
µ ‖L2(Ω)‖σU

µ ‖H−1(Ω).
The first inequality in (4.4.8) is the inverse inequality for polynomials. Thanks

to (t4), the second one in a consequence of ‖θU
λ ‖2L2(I)

� 2−|λ|‖θU
λ ‖L1(I)|θU

λ |W 1
∞(I) �

2−|λ|‖θU
λ ‖L2(I)|θU

λ |H1(I). Note that here (t4) has been used also for v �∈ H1
0 (I), cf.

Remark 4.4.10.

We are ready to specify our approximate evaluation of DQ([w� q�]�):

Algorithm 4.4.18 (approximate residual evaluation).
Input: data g ∈ L2(I;H

−1(Ω)), h ∈ L2(Ω), an admissible Λ ⊂ ∨U × �T , [w� q�]� ∈
�2(Λ), ε > 0, and k2, k3, k4, k5, k6 ∈ N0.

Output: r̃ := r̃1 + r̃2 + r̃3 ≈ DQ([w� q�]�) defined as follows:
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(S1) Find a multi-tree ∨a(ε) ⊂ ∨a such that

inf
gε∈spanΨa

∣∣
∨a(ε)

‖g − gε‖L2(I;H−1(Ω)) ≤ ε.

Find a tiling T (ε) ∈ OΩ such that

inf
hε∈Pm(T (ε))

‖h− hε‖L2(Ω) ≤ ε.

(S2) With ∨a(Λ, ε) := ∨a(Λ, 0) ∪ ∨a(ε) and (w, �q) := [w� q�]Ψ, approximate

r 1
2
:= 〈ΨV1 ,

∂w

∂t
+Nw −∇x · �q − g〉L2(I×Ω)

by r̃ 1
2
:= 〈ΨV1 , ∂w

∂t +Nw −∇x · �q − gε〉L2(I×Ω)|∨V1
(∨a(Λ,ε),k2).

(S3) With r̃ 1
2
:= r̃�1

2

ΨV1 , approximate

r1 :=

[
〈( ∂

∂t +N)ΨU , r̃ 1
2
〉L2(I×Ω)

〈Ψ �T ,∇xr̃ 1
2
〉L2(I×Ω)n

]

by r̃1 := r1|∨U (∨V1
(∨a(Λ,ε),k2),k3)∪∨ �T (∨V1

(∨a(Λ,ε),k2),k3).

(S4) With Λ↓ := ∪{λ∈(Λ∩∨U )1 : θU
λ (0)�=0}(Λ ∩ ∨U )2(λ) ⊂ �U , set T (Λ↓, ε) := T (ε) ⊕

T (Λ↓), and approximate

r 3
2
:=

〈 ΣU

‖ΣU ‖L2(Ω)
, w(0, ·)− h

〉
L2(Ω)

by r̃ 3
2
:=

〈
ΣU

‖ΣU ‖L2(Ω)
, w(0, ·)− hε

〉
L2(Ω)

|�U (T (Λ↓,ε),k4).

(S5) Approximate r2 :=

[
Er̃ 3

2

0

]
by r̃2 :=

[
Ek5

r̃ 3
2

0

]
.

(S6) Approximate

r3 :=

[
〈∇xΨ

U , A�(A∇xw − �q)〉L2(I×Ω)n

〈Ψ �T , �q −A∇xw〉L2(I×Ω)n

]

by r̃3 = r̃3(k6) := r3|∨U (∨a(Λ,0),k6)∪∨ �T (∨a(Λ,0),k6).

Theorem 4.4.19. For g ∈ L2(I;H
−1(Ω)), h ∈ L2(Ω), let s > 0 be such that the

solution of DQ([u� p�]�) = 0 satisfies [u� p�]� ∈ As. Let ∨a(ε) and T (ε) from
(S1) satisfy max(# ∨a (ε),#T (ε)) � ε−1/s. Then given an admissible Λ ⊂ ∨U × �T ,
[w� q�]� ∈ 
2(Λ), and ε > 0, r̃ produced by Algorithm 4.4.18 satisfies

‖DQ([w� q�]�)− r̃‖ �2−k/2
[
‖∂w
∂t

+Nw −∇x · �q − g‖L2(I;H−1(Ω))+

‖w(0, ·)− h‖L2(Ω) + ‖�q −A∇xw‖L2(I;L2(Ω)n)

]
+ ε,

(4.4.10)
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where k := min(k2, k3, k4, k5, k6), and its computation requires O(#Λ + ε−1/s) opera-
tions. So by taking k a sufficiently large constant, Assumption 4.3.4* is satisfied.

Remark 4.4.20. Collections ∨a(ε) and T (ε) as in the statement of the theorem exist,
and so the condition about them concerns their actual construction.

Indeed, when [u� p�]� ∈ As, then given an ε > 0 there exists an admissi-
ble Λε ⊂ ∨U × �T with #Λε � ε−1/s and a [u�

ε p�
ε ]

� ∈ �2(Λε) with, for a con-
stant C > 0 determined below, ‖[u� p�]� − [u�

ε p�
ε ]

�‖ ≤ ε
C , and thus with

(u, �p) := (u�ΨU ,p�Ψ
�T ) and (uε, �pε) := (u�

ε Ψ
U ,p�

ε Ψ
�T ), ‖u−uε‖U +‖�p−�pε‖ �T � ε.

Using that g = ∂
∂tu + Nu − ∇x · �p, we infer that, by selecting a proper C, with

gε := ∂
∂tuε +Nuε −∇x · �pε, it holds that ‖g − gε‖L2(I;H−1(Ω)) ≤ ε. Since as shown in

Lemma 4.4.16, span( ∂
∂t +N)ΨU

∣∣
(Λε)U

+ span∇x · Ψ �T
∣∣
(Λε) �T

⊂ spanΨa
∣∣
∨a(Λε,0)

and

# ∨a (Λε, 0) � #Λε � ε−1/s, we conclude that a suitable ∨a(ε) exists.
Similarly, since h = u(0, ·), with (Λε)↓ defined similarly as in (S4), by taking

hε := (uε|(Λε)↓)
�ΣU and possibly adjusting C, it holds that ‖h − hε‖L2(Ω) ≤ ε. The

collection (Λε)↓ is a tree in �U , and so hε ∈ Pm(T (ε)) with, thanks to Proposi-
tion 4.4.6, #T (ε) � #(Λε)↓ � #Λε � ε−1/s.

Proof of Theorem 4.4.19. The expression for DQ([w� q�]�) given in (4.4.2), and the
definitions of ri and r̃i, for i ∈ { 1

2 , 1,
3
2 , 2, 3}, show that

DQ([w� q�]�)− r̃ =

r1 − r̃1 +

[
〈 ∂
∂tΨ

U ,ΨV1〉L2(Ω)

〈Ψ �T ,∇xΨ
V1〉L2(Ω)n

]
(r 1

2
− r̃ 1

2
) + r2 − r̃2 +E(r 3

2
− r̃ 3

2
) + r3 − r̃3.

The boundedness of E (cf. Lemma 4.4.17) and, by the Riesz bases properties of
ΨU , ΨV1 and Ψ

�T , that of 〈Ψ �T ,∇xΨ
V1〉L2(I×Ω)n and 〈 ∂

∂tΨ
U ,ΨV1〉L2(I×Ω), show that

‖DQ([w� q�]�)− (r̃1 + r̃2 + r̃3)‖ �
∑

i∈{ 1
2 ,1,

3
2 ,2,3}

‖ri − r̃i‖.

Below, we will show that all five terms at the right-hand side are bounded by a multiple
of the right-hand side of (4.4.10).

For gε ∈ spanΨa
∣∣
∨a(ε)

, we write

r 1
2
− r̃ 1

2
= 〈ΨV1 ,

∂w

∂t
+Nw−∇x ·�q−gε〉L2(I×Ω)

∣∣
∨V1

\∨V1
(∨a(Λ,ε),k)

+〈ΨV1 , gε−g〉L2(I×Ω).

From the first statement of Lemma 4.4.16, we know that ∂
∂tw + Nw − ∇x · �q − gε ∈

spanΨa|∨a(Λ,ε). An application of the forthcoming Theorem 4.7.3 shows that conse-
quently the norm of the first term is � 2−k/2‖ ∂

∂tw + Nw − ∇x · �q − gε‖L2(I;H−1(Ω)).
From ΨV1 being a Riesz basis for L2(I;H

1
0 (Ω)), it follows that the norm of the second

term is � ‖g − gε‖L2(I;H−1(Ω)). From (S1), we infer that

‖r 1
2
− r̃ 1

2
‖ � 2−k/2‖∂w

∂t
+Nw −∇x · �q − g‖L2(I;H−1(Ω)) + ε.
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Applications of the forthcoming Corollaries 4.7.7 and 4.7.9 show that ‖r1 − r̃1‖ �
2−k/2‖r 1

2
‖, whereas ‖r 1

2
‖ ≤ ‖r 1

2
− r̃ 1

2
‖ + ‖r̃ 1

2
‖ and ‖r̃ 1

2
‖ � ‖∂w

∂t + Nw − ∇x · �q −
g‖L2(I;H−1(Ω)).

For hε ∈ Pm(T (ε)), we write

r 3
2
−r̃ 3

2
=

〈 ΣU

‖ΣU ‖L2(Ω)
, w(0, ·)−hε

〉
L2(Ω)

∣∣∣
�U \�U (T (Λ↓,ε),k)

+
〈 ΣU

‖ΣU ‖L2(Ω)
, hε−h

〉
L2(Ω)

.

Note that w(0, ·) ∈ spanΣU
∣∣
Λ↓

, and that Λ↓ is a tree in �U . Using that ΣU satisfies
(s1)-(s4), analogously to Proposition 2.9.4 one shows that that the norm of the first
term is � 2−k/2‖w(0, ·)−hε‖L2(Ω). From ΣU /‖ΣU ‖L2(Ω) being a Riesz basis it follows
that the norm of the second term is � ‖h − hε‖L2(Ω). From (S1), we infer that
‖r 3

2
− r̃ 3

2
‖ � 2−k/2‖w(0, ·)− h‖L2(Ω) + ε.

An application of Lemma 4.4.17 shows that ‖r2−r̃2‖ � 2−k/2‖r̃ 3
2
‖, whereas ‖r̃ 3

2
‖ �

‖w(0, ·)− h‖L2(Ω).
From the second and third statements of Lemma 4.4.16, we know that �q−A∇xw,

A�(A∇xw − �q) ∈
∏n

i=1 spanΨ
a|∨a(Λ,0)ei. Now an application of the forthcoming

Corollary 4.7.11 shows that ‖r3 − r̃3‖ � 2−k/2‖�q − A∇xw‖L2(I×Ω)n , which completes
the proof of (4.4.10).

The computation of r̃ 1
2
, r̃1, r̃ 3

2
, r̃2 or r̃3 requires a number of operations that is of

the order

# ∨V1 (∨a(Λ, ε), k),

# ∨U (∨V1(∨a(Λ, ε), k), k) + # ∨ �T (∨V1(∨a(Λ, ε), k), k),

#�U (T (Λ↓, ε), k) + #Λ,

k#�U (T (Λ↓, ε), k),

# ∨U (∨a(Λ, 0), k) + # ∨ �T (∨a(Λ, 0), k),

respectively. Each of these numbers can be bounded by a multiple (dependent on k)
of #Λ+ ε−1/s which proves the statement about the total complexity of computing r̃.

The statement about the cost of computing r̃ 1
2

follows by expressing ∂
∂tw +

Nw − ∇x · �q − gε in terms of Ψa|∨a(Λ,ε), and then by applying the statement about
the cost of the evaluation of (4.4.7). A similar argument applies for the com-
putation of r̃1 when 〈NΨU , r̃ 1

2
〉L2(I×Ω) is written as 〈ΨU ,Ψa〉L2(I×Ω)d for some

d ∈ ∨a(∨V1
(∨a(Λ, ε), k), 0), as well as for the computation of r̃3. The evalu-

ation of r̃ 3
2

requires first the computation of E�w, which takes O(#Λ) opera-
tions, then hε needs to be subtracted taking O(#Λ↓ + #T (ε)) operations, and fi-
nally

〈
ΣU

‖ΣU ‖L2(Ω)
, w(0, ·) − hε

〉
L2(Ω)

|�U (T (Λ↓,ε),k) needs to be evaluated which takes

O(#�U (T (Λ↓, ε), k)) operations (cf. Remark 4.4.9). The statement about the cost
of the evaluation of r̃2 follows directly from the definition of Ek.
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Finally, recall that in addition to the cost condition Condition 4.3.4* that has
been verified in Theorem 4.4.19, another condition, Condition 4.3.3, is required to
conclude by Theorem 4.3.5 that the awgm is optimal. This condition requires the
determination of an admissible Λ̃ ⊃ Λ with essentially quasi-minimal #(Λ̃ \ Λ) such
that ‖r̃|Λ̃‖ ≥ µ0‖r̃‖. Unfortunately in our setting of multi-tree approximation, we
are not aware of an algorithm that is guaranteed to yield such a Λ̃. In our numerical
experiments, as a first step we constructed some set Λ̂ ⊃ Λ with quasi-minimal #(Λ̂\Λ)
such that ‖r̃|Λ̂‖ ≥ µ0‖r̃‖ by applying a bucket sort procedure on the entries of r̃.
Secondly, we enlarged Λ̂ to an admissible set. In experiments we observed that #(Λ̃\Λ̂)
is at most a small multiple of #(Λ̂ \ Λ) which means that Condition 4.3.3 is satisfied,
but we do not have a proof of this.

4.5 Numerical results

We consider the heat equation, i.e. A = Id and N = 0, on the L-shaped domain
Ω = (0, 1)\[ 12 , 1)

2 and I = (0, 1). For our convenience we take g = 1, and consider three
different initial conditions h = 0, h = 1, and h(x, y) = 50x(x−1)(x− 1

2 )y(y−1)(y− 1
2 ).

We select the spatial wavelet collections Σ∗ for ∗ ∈ {U ,V1,T } s.t. σ∗
λ for |λ| = �

is piecewise polynomial w.r.t. the triangulation of Ω indicated in Figure 4.1, which
specifies the collection OΩ. We take ΣV1 to be the continuous piecewise linear three-

2−(�+2)

Figure 4.1: Partition of Ω on level � ∈ N0.

point wavelet basis from [Ste98b], satisfying homogenous boundary conditions, and
normalized such that it is a Riesz basis for H1

0 (Ω), and for ΣT we select this three-
point wavelet basis, now without boundary conditions, and normalized such that it
is a Riesz basis for L2(Ω) (for a brief presentation see Sect. 5.2). For ΣU we take a
continuous piecewise quadratic wavelet basis that was constructed in Chapter 3, and
that when normalized in H1(Ω) or in H−1(Ω) is a Riesz basis for H1

0 (Ω) or H−1(Ω),
respectively.

For ΘV1 and ΘT we take a discontinuous L2(I)-orthonormal piecewise linear
wavelet basis, and for ΘU the continuous piecewise linear three-point wavelet basis
(without boundary conditions).

These collections satisfy all conditions (s1)-(s4), (sU
4 ), and (t1)-(t4), and using

them we build the tensor product wavelet bases ΨV1 , ΨT and ΨU as in (4.4.5).
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It holds that dUt
= dTt

= dTx
= 2 and dUx

= 3, meaning that the best possible
rate smax = 1.

Recall that DQ is affine, so that its (symmetric positive definite) linear part is given
by D2Q : [w� q�]� �→ DQ[w� q�]�−DQ[0 0]�. We have approximated the condition
number of this system matrix by restricting it to the square block corresponding to
all wavelets with indices λ ∈ ∨U , (µ, i) ∈ ∨T × {1, 2} with |λ|, |µ| less than some
integer. Even these Galerkin matrices cannot be evaluated exactly because they are of
the form A�

1 A1 +A2 +A3 where the rows of A1 run over the infinite index set ∨V1
.

Similarly to Step (S2) in Algorithm 4.4.18 we made an approximation by omitting all
rows corresponding to indices γ ∈ ∨V1

for which |γ| exceeds any value of |λ| or |µ| by
more than a constant k that was taken sufficiently large so that it hardly affected the
computed condition numbers. These numbers, illustrated in Figure 4.2 indicate that
the condition number of the infinite system matrix can be expected to be of the order
of 700.

Figure 4.2: Approximate condition numbers of the Galerkin matrices vs. their dimen-
sion.

In Sect. 2.6 for an analogous FOSLS formulation of the corresponding stationary
operator, i.e. the Laplace operator, and with the same spatial wavelets (and thus
without temporal wavelets), we found a condition number of the order of 550.

We applied the awgm given in Algorithm 4.3.1. In step (R) of this algorithm,
instead of performing a loop we simply computed the approximated residual by one
application of Algorithm 4.4.18. In step (B) we applied bulk chasing as explained in
the last paragraph of the previous Section 4.4 with parameter µ = 0.5. The Galerkin
matrices in step (G) were approximated using Algorithm 4.4.18, and approximately
solved with parameter γ = 0.2 using CG iteration as explained in the last paragraph
of Section 4.3.

The parameters k2, k3 and k6 in Algorithm 4.4.18 were chosen to be equal to 1.
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Furthermore, (k4, k5) was taken to be equal to (1, 3), (4, 7) or (1, 5) for h = 0, h = 1,
and h(x, y) = 50x(x − 1)(x − 1

2 )y(y − 1)(y − 1
2 ), respectively. Since g, and in all

three cases, h are global polynomials, ε in (S1) equals 0, where ∨a(0) corresponds
to the Cartesian product of the indices corresponding to the temporal and spatial
‘scaling functions’, and T (0) is the initial triangulation of Ω. For details about the
implementation we refer to Chapter 5.

Figure 4.3: Norm residual vs. number of wavelets (dashed line has slope −1), and
centers supports of the selected 4500 wavelets for h = 0 and g = 1.

In the left pictures in Figures 4.3-4.5, for right-hand side g = 1, and initial condi-
tions h = 0, h = 1, and h(x, y) = 50x(x − 1)(x − 1

2 )y(y − 1)(y − 1
2 ), respectively, the

�2-norm of the (approximate) residual is given vs. the number of wavelets from the
basis for U × �T = L2(I;H

1
0 (Ω)) ∩H1(I;H−1(Ω))× L2(I;L2(Ω)

2).
For h = 0 and h(x, y) = 50x(x − 1)(x − 1

2 )y(y − 1)(y − 1
2 ), one observes that the

awgm converges with the best possible rate s = 1. Moreover, thanks to the tensor
product approximation not only the rate but also in an absolute sense the results are
rather close to the results we found in Figure 2.4 for the corresponding stationary
problem with errors in (u,∇xu) measured in H1

0 (Ω) × L2(Ω)
2. This means that one

obtains the additional time dimension nearly for free.
This norm is equivalent to the U × �T -norm in the error of the approximation to

(u, �p) = (u,∇xu). In the right pictures one finds the centers of the supports of the
tensor product wavelets that were selected by the adaptive method.

For h = 1, the observed rate indicates that the exact solution is only in A 1
2 . This

reduction in the best approximation rate can be understood as follows: With this
initial condition, the solution u is discontinuous at the full intersection of the lateral
boundary and the bottom of the space-time space cylinder, inducing strong refinements
near this intersection, as illustrated in the right picture of Figure 4.4. Although the
solution is smooth in the direction tangential to this intersection, since the spatial
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wavelets are isotropic the method cannot benefit from this smoothness causing the
reduced best approximation rate.

Figure 4.4: Norm residual vs. number of wavelets (dashed line has slope − 1
2 ), and

centers supports of the selected 4131 wavelets for h = 1 and g = 1.

We expect that if we would have applied a spatial piecewise tensor product wavelet
basis as constructed in [CDFS13], this reduction would not have occurred, and also
for this problem we would have obtained rates as if we would solve a one-dimensional
problem. We have however chosen for the current isotropic spatial wavelets because of
their (relatively) easy construction, and because they apply to any polygon. Moreover,
parabolic problems are usually studied assuming that the data satisfies the lowest order
compatibility condition of a vanishing initial condition at the homogenous Dirichlet
boundary.

Note that the initial condition h(x, y) = 50x(x − 1)(x − 1
2 )y(y − 1)(y − 1

2 ) does
vanish at ∂Ω, but does not satisfy the next compatibility condition of −∆h = g(= 1)
at ∂Ω. Nevertheless, it seems to give rise to the best possible rate allowed by the
polynomial orders that were applied.

4.6 Conclusion

In this chapter an optimal adaptive wavelet solver has been developed for solving a
simultaneously space-time FOSLS formulation of parabolic PDEs. Thanks to the use
of tensor products of wavelets in space and time the whole time evolution can be
solved at a complexity of solving the corresponding stationary problem, which has
been illustrated by numerical results.

A theoretical issue that has not yet been satisfactorily solved is that of bulk chasing
under a multi-tree constraint (cf. last paragraph of Sect. 4.4). It may require a
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Figure 4.5: Norm residual vs. number of wavelets (dashed line has slope −1), and
centers supports of the selected 4345 wavelets for h(x, y) = 50x(x − 1)(x − 1

2 )y(y −
1)(y − 1

2 ) and g = 1.

generalisation to multi-trees of the tree approximation routines given in [BD04].
Other than in Chapter 2 dealing with stationary PDEs and non-tensor product

approximation, in order to construct an approximate residual evaluation of linear
complexity we had to restrict ourselves to linear PDOs. It would be interesting to
circumvent this restriction.

In [SS17], we constructed well-posed simultaneously space-time saddle-point for-
mulations of instationary Stokes and Navier-Stokes equations. Using the approach
from Chapter 2, these formulations can be recast as well-posed FOSLS so that, mod-
ulo the treatment of the nonlinear term in NSE, the adaptive scheme from the current
work applies.

Adaptive finite element (afem) schemes usually have better quantitative properties
than adaptive wavelet schemes. To the best of our knowledge, for simultaneously
space-time variational formulations, currently there are no afem schemes available
that are proven to converge, let alone to be optimal or to give rates as for stationary
problems. Our FOSLS formulation might give an opening towards such results because
it gives a well-posed symmetric positive definite problem.

4.7 Appendix: Decay estimates

In this appendix we prove the technical results Theorem 4.7.3, Corollaries 4.7.7, 4.7.9,
and 4.7.11 that were used in the proof of Theorem 4.4.19.

The following lemma is an application of Schur’s lemma that is often used to bound
the spectral norm of a matrix whose the row and column indices run over index sets
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of multi-level bases.

Lemma 4.7.1. For index sets J, J ′, let | · | : J ∪ J ′ → N0, and let M :=
[mλ′,λ](λ′,λ)∈J ′×J be such that for some ξ ≥ 0, � > 0,

#{λ′ : mλ′,λ �= 0, |λ′| = |λ|+ k} � 2ξk (λ ∈ J, k ∈ N0),

#{λ : mλ′,λ �= 0, |λ′| = |λ|+ k} � 1 (λ′ ∈ J ′, k ∈ N0),

and
|mλ′,λ| � 2(|λ|−|λ′|)(�+ ξ

2 ) (|λ′| ≥ |λ|).

Then
‖|M

∣∣
{(λ′,λ) : |λ′|>|λ|+k}|‖ � 2−�k,

where (M
∣∣
{(λ′,λ) : |λ′|>|λ|+k})λ′,λ :=

{
mλ′,λ when |λ′| > |λ|+ k
0 otherwise , and ‖ · ‖ denotes

the matrix spectral norm, i.e., here the norm on L(�2(J), �2(J ′)). The absolute value
refers to taking entry-wise absolute value. (Similar notations will be used at other
occasions.)

Proof. With I�′,� := [|mλ′,λ|]{(λ′,λ) : |λ′|=�′,|λ|=�}, we have

‖|M
∣∣
{(λ′,λ) : |λ′|>|λ|+k}|‖

2 � max
�′

∑
�<�′−k

‖I�′,�‖ ×max
�

∑
�′>�+k

‖I�′,�‖,

where �, �′ run over N0.
The number of non-zero entries in each column or row of I�′,� is � 2ξ(�

′−�) or � 1,
respectively. Using ‖ · ‖2 ≤ ‖ · ‖1‖ · ‖∞, we infer that ‖I�′,�‖2 � 2ξ(�

′−�) · 2(
ξ
2+�)(�−�′) ·

1 · 2(
ξ
2+�)(�−�′) = 4�(�−�′).

The next lemma concerns near-sparsity of a generalized mass matrix corresponding
to two temporal wavelet bases.

Lemma 4.7.2. For k ∈ N0, Θ∗,Θ◦ ∈ {ΘV1 ,ΘT ,Θa,ΘU /‖ΘU ‖L2(I)} we have

‖|〈Θ∗,Θ◦〉L2(I)

∣∣
{(λ′,λ) : |λ′|>|λ|+k}|‖ � 2−k/2.

Proof. Using that Θ∗ satisfies (t1)–(t4), being the counterparts of (s1)-(s4) for the
spatial wavelets, we split the matrix into Br + Bs, where Br contains all its entries
〈θ∗λ′ , θ◦λ〉L2(I) for which supp θ∗λ′ is contained in ω for some ω ∈ OI with |ω| = |λ| (the
‘regular’ entries), and where Bs contains the remaining (‘singular’) entries.

The number of non-zero entries with |λ′| = �′ and |λ| = � in each column or row
of Br is � 2�

′−� or � 1, respectively. Thanks to (t4), for each of these entries we
have |〈θ∗λ′ , θ◦λ〉L2(I)| ≤ ‖θ∗λ′‖L1(I)2

−�′ |θ◦λ|W 1
∞(supp θ∗

λ′ )
� 23(�−�′)/2. An application of

Lemma 4.7.1 with ξ = � = 1 shows that ‖|Br|‖ � 2−k.
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The number of non-zero entries with |λ′| = �′ and |λ| = � in each column or row of
Bs is � 1. For each of these entries, we have |〈θ∗λ′ , θ◦λ〉L2(I)| ≤ ‖θ∗λ′‖L1(I)‖θ◦λ‖L∞(I) �

2(�−�′)/2. An application of Lemma 4.7.1 with ξ = 0, � = 1
2 shows that ‖|Bs|‖ �

2−k/2.

The following theorem provides the main ingredient for bounding ‖r 1
2
− r̃ 1

2
‖.

Theorem 4.7.3. Let Λa ⊂ ∨a be a multi-tree, and r ∈ spanΨa
∣∣
Λa For k ∈ N0, it

holds that
‖〈ΨV1 , r〉L2(I×Ω)|∨V1

\∨V1
(Λa,k)‖ � 2−k/2‖r‖L2(I;H−1(Ω)). (4.7.1)

Proof. We write r =
∑

(λ,µ)∈Λa rλµθ
a
λ ⊗ σa

µ, and let

δλ(µ
′) :=

{
0 |µ′| ≤ max{|µ| : µ ∈ Λa

2(λ), meas(S(σV1

µ′ ) ∩ suppσa
µ) > 0}+ k

1 elsewhere
,

Writing ΛV1 := ∨V1
(Λa, k), from 1

2 (a+ b)2 ≤ (a2 + b2), we have that

1

2
‖〈ΨV1 , r〉L2(I×Ω)|∨V1

\ΛV1 ‖2 ≤
∑

µ′∈�V1

∑

λ′∈�V1
\ΛV1

1 (µ′)

∣∣ ∑
|λ′|>|λ|+k

〈θV1

λ′ , θ
a
λ〉L2(I)〈σ

V1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2+

∑
µ′∈�V1

∑

λ′∈�V1
\ΛV1

1 (µ′)

∣∣ ∑
|λ|≥|λ′|−k

〈θV1

λ′ , θ
a
λ〉L2(I)δλ(µ

′)〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2
(4.7.2)

Here we could insert the factor δλ(µ′) in the second sum because of the following reason:
Let (λ′, µ′) ∈ ∨V1

\ ΛV1 and λ ∈ Λa
1 with |λ| ≥ |λ′| − k. If meas(S(θV1

λ′ ) ∩ supp θaλ) =

0, then the value of δλ(µ
′) is irrelevant. If meas(S(θV1

λ′ ) ∩ supp θaλ) > 0, then the
definition of ΛV1 = ∨V1(Λ

a, k) shows that |µ′| > |µ| + k for all µ ∈ Λa
2(λ) with

meas(S(σV1

µ′ ) ∩ suppσa
µ) > 0, meaning that δλ(µ

′) = 1.
Using Lemma 4.7.2 for (Θ∗,Θ◦) = (ΘV1 ,Θa), the first sum can be bounded on a

multiple of
∑

µ′∈�V1

2−k
∑
λ∈�a

∣∣〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2

= 2−k
∑
λ∈�a

∑
µ′∈�V1

∣∣〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2 � 2−k
∑
λ∈�a

‖
∑

µ∈Λa
2 (λ)

rλµσ
a
µ‖2H−1(Ω)

� 2−k‖
∑
λ∈�a

θaλ ⊗
∑

µ∈Λa
2 (λ)

rλµσ
a
µ‖2L2(I;H−1(Ω)) = 2−k‖r‖2L2(I;H−1(Ω)),

where we used that ΣV1 is a Riesz basis for H1
0 (Ω), and that Θa is a Riesz basis for

L2(I).
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To bound the second sum, recall that for µ ∈ �a, it holds that suppσa
µ = ωµ for

some ωµ ∈ OΩ with |ωµ| = max(|µ| − 1, 0). Define the tiling T (λ) ∈ OΩ as the union,
over the leaves µ of the tree Λa

2(λ), of the children of ωµ when |µ| > 0, or of ωµ itself
when |µ| = 0. Then span{σa

µ : µ ∈ Λa
2(λ)} = Pm(T (λ)), and {µ′ ∈ �V1 : δλ(µ

′) = 1} =
�V1 \�V1(T (λ), k), cf. Definition 4.4.7.

Since Θa and ΘV1 are Riesz bases for L2(I), and so 〈ΘV1 ,Θa〉L2(I) ∈
L(�2(�a), �2(�V1)), invoking Proposition 2.9.1 using that ΣV1 satisfies (s1)–(s4), the
second sum can be bounded on a multiple of

∑
µ′∈�V1

∑
λ∈�a

∣∣δλ(µ′)〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2

=
∑
λ∈�a

∑
µ′∈�V1

∣∣δλ(µ′)〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω)

∣∣2 �
∑
λ∈�a

4−k‖
∑

µ∈Λa
2 (λ)

rλµσ
a
µ‖2H−1(Ω)

� 4−k‖
∑
λ∈�a

θaλ ⊗
∑

µ∈Λa
2 (λ)

rλµσ
a
µ‖2L2(I;H−1(Ω)) = 4−k‖r‖2L2(I;H−1(Ω)),

where we used that Θa is a Riesz basis for L2(I).

If Θa would have been a Riesz basis for H−1(Ω), then in the proof of The-
orem 4.7.3 it would have been natural to write 〈σV1

µ′ ,
∑

µ∈Λa
2 (λ)

rλµσ
a
µ〉L2(Ω) as

〈ΣV1 ,Σa〉L2(Ω)[rλµ]µ∈Λa
2 (λ)

. In this case the approach of the insertion of the factor
δλ(µ

′) would have given the bound

1
2

√
2
∥∥〈ΨV1 ,Ψa〉L2(I×Ω)

∣∣
∨V1

\ΛV1 (Λa,k)×Λa

∥∥ ≤
∥∥〈ΘV1 ,Θa〉L2(I)|{(λ′,λ) : |λ′|>|λ|+k}

∥∥∥∥〈ΣV1 ,Σa〉L2(Ω)

∥∥+∥∥〈ΘV1 ,Θa〉L2(I)

∥∥∥∥〈ΣV1 ,Σa〉L2(Ω)

∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∥∥.
Although in the current setting where 〈ΣV1 ,Σa〉L2(Ω) �∈ L(�2(�a), �2(�V1

)), this esti-
mate makes not much sense, for other collections this result, formulated in the next
proposition, is going to be useful.

Proposition 4.7.4. For ∗, ◦ ∈ {U ,V1,T , a}, let M� := [m�
λ′,λ](λ′,λ) ∈

L(�2(�∗), �2(�◦)), M� := [m�
µ′,µ](µ′,µ) ∈ L(�2(�∗), �2(�◦)), where m�

λ′,λ = 0 when
meas(S(θ◦λ′) ∩ supp θ∗λ) = 0, and m�

µ′,µ = 0 when meas(S(σ◦
µ′) ∩ suppσ∗

µ) = 0. Then
for a multi-tree Λ∗ ⊂ ∨∗, and k ∈ N0, it holds that

1
2

√
2 ‖M� ⊗M�

∣∣
(∨◦\Λ◦(Λ∗,k))×Λ∗‖ ≤

‖M�

∣∣
{(λ′,λ) : |λ′|>|λ|+k}‖‖M�‖+ ‖M�‖‖M�

∣∣
{(µ′,µ) : |µ′|>|µ|+k}‖.

The remaining of this appendix will consist of various applications of Proposi-
tion 4.7.4 for which in several lemmas we estimate norms of type

‖M�

∣∣
{(λ′,λ) : |λ′|>|λ|+k}‖ or ‖M�

∣∣
{(λ′,λ) : |λ′|>|λ|+k}‖.

The next lemma deals with the first task.
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Lemma 4.7.5. For k ∈ N0, it holds that

∥∥∥
∣∣∣
〈 ΣU

‖ΣU ‖H−1(Ω)
,ΣV1

〉
L2(Ω)

∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∣∣∣
∥∥∥ � 2−k/2,

∥∥∥
∣∣∣
〈 ∂

∂xi
ΣU

‖ΣU ‖H1(Ω)
,Σa

〉
L2(Ω)

∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∣∣∣
∥∥∥ � 2−k/2.

Proof. For proving the first inequality, we split the matrix into Br + Bs, where Br

contains all its entries
〈

σU
µ′

‖σU
µ′ ‖H−1(Ω)

, σV1
µ

〉
L2(Ω)

for which suppσU
µ′ is contained in ω

for some ω ∈ OΩ with |ω| = |µ| (the ‘regular’ entries), and where Bs contains the
remaining (‘singular’) entries.

Thanks to (sU
4 ), for the regular entries we can estimate

|〈σU
µ′ , σV1

µ 〉L2(Ω)| � ‖σU
µ′ ‖L1(Ω)4

−|µ′||σV1
µ |W 2

∞(suppσU
µ′ )

� 4−|µ′|2−|µ′|n2 ‖σU
µ′ ‖L2(Ω)2

|µ|2|µ|
n
2 ‖σV1

µ ‖H1(Ω)

� 2(|µ|−|µ′|)(1+n
2 )‖σU

µ′ ‖H−1(Ω)

where we used ‖σV1
µ ‖H1(Ω) � 1, and

‖σU
µ′ ‖2L2(Ω) ≤ ‖σU

µ′ ‖H1(Ω)‖σU
µ′ ‖H−1(Ω) � 2|µ

′|‖σU
µ′ ‖L2(Ω)‖σU

µ′ ‖H−1(Ω).

An application of Lemma 4.7.1 with ξ = n and � = 1 shows that ‖|Br|‖ � 2−k.
Since the wavelets σV1

µ are piecewise polynomial functions in H1(Ω), they are con-
tained in W 1

∞(Ω). Using (s4), for the remaining singular entries we estimate

|〈σU
µ′ , σV1

µ 〉L2(Ω)| � ‖σU
µ′ ‖L1(Ω)2

−|µ′||σV1
µ |W 1

∞(suppσU
µ′ )

� 2(|µ|−|µ′|)n
2 ‖σU

µ′ ‖H−1(Ω)

again by ‖σV1
µ ‖H1(Ω) � 1, and ‖σU

µ′ ‖L2(Ω) � 2|µ
′|‖σU

µ′ ‖H−1(Ω) (cf. (4.4.9)). An appli-
cation of Lemma 4.7.1 with ξ = n− 1 and � = 1/2 shows that ‖|Bs|‖ � 2−k/2.

Moving to the second inequality, we split the matrix into Br + Bs, where Br

contains all its entries
〈 ∂

∂xi
σU
µ′

‖σU
µ′ ‖H1(Ω)

, σa
µ

〉
L2(Ω)

for which suppσU
µ′ is contained in ω ∩ Ω

for some ω ∈ OΩ with |ω| = |µ| (the ‘regular’ entries), and where Bs contains the
remaining (‘singular’) entries.

Thanks to (s4), for the regular entries we can estimate

|〈 ∂

∂xi
σU
µ′ , σa

µ〉L2(Ω)| = |〈σU
µ′ ,

∂

∂xi
σa
µ〉L2(Ω)| � ‖σU

µ′ ‖L1(Ω)2
−|µ′||σa

µ|W 2
∞(suppσU

µ′ )

� 4−|µ′|2−|µ′|n2 ‖σU
µ′ ‖H1(Ω)4

|µ|2|µ|
n
2 ‖σa

µ‖L2(Ω) � 2(|µ|−|µ′|)(2+n
2 )‖σU

µ′ ‖H1(Ω),
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where we used that ‖σU
µ′ ‖L2(Ω) � 2−|µ′|‖σU

µ′ ‖H1(Ω) ((4.4.9)). An application of
Lemma 4.7.1 with ξ = n and � = 2 shows that ‖|Br|‖ � 4−k.

For the remaining singular entries we estimate

|〈 ∂

∂xi
σU
µ′ , σa

µ〉L2(Ω)| � ‖σU
µ′ ‖W 1

1 (Ω)‖σa
µ‖L∞(suppσU

µ′ )

� 2(|µ|−|µ′|)n
2 ‖σU

µ′ ‖H1(Ω)‖σa
µ‖L2(suppσU

µ′ )
.

An application of Lemma 4.7.1 with ξ = n − 1 and � = 1/2 shows that ‖|Bs|‖ �
2−k/2.

Lemma 4.7.6. For k ∈ N0, it holds that

∥∥∥
∣∣∣
〈 (ΘU )′

‖(ΘU )′‖L2(I)
,ΘV1

〉
L2(I)

∣∣
{(λ′,λ) : |λ′|>|λ|+k}

∣∣∣
∥∥∥ � 2−k/2.

Proof. We split the matrix into Br +Bs, where Br contains all (‘regular’) entries

〈 (θU
λ′ )′

‖(θU
λ′ )′‖L2(I)

, θV1

λ

〉
L2(I)

for which supp θU
λ′ is contained in ω ∩ I for some ω ∈ OI with |ω| = |λ| (so that

in particular θU
λ′ vanishes on ∂I), and where Bs contains the remaining (‘singular’)

entries.
For the regular entries, we can estimate

|〈(θU
λ′ )′, θV1

λ 〉L2(I)| = |〈θU
λ′ , (θV1

λ )′〉L2(I)| � ‖θU
λ′ ‖L1(I)2

−|λ′|‖θV1

λ ‖W 2
∞(supp θU

λ′ )

� 2−|λ′|/22−|λ′|‖(θU
λ′ )′‖L2(I)2

−|λ′|4|λ|2|λ|/2‖θV1

λ ‖L2(I) � 2
5
2 (|λ|−|λ′|)‖(θU

λ′ )′‖L2(I),

where we used (t4), Poincaré’s inequality, an inverse inequality, and ‖θV1

λ ‖L2(I) � 1.
An application of Lemma 4.7.1 with ξ = 1 and � = 2 shows that ‖|Br|‖ � 4−k.

For the remaining singular entries, we estimate

|〈(θU
λ′ )′, θV1

λ 〉L2(I)| ≤ ‖(θU
λ′ )′‖L1(I)‖θ

V1

λ ‖L∞(I) � 2−
1
2 (|λ|−|λ′|)‖(θU

λ′ )′‖L2(I).

An application of Lemma 4.7.1 with ξ = 0 and � = 1
2 shows that ‖|Bs|‖ � 2−k/2.

The following Corollary will be used to bound ‖(r1 − r̃1)|∨U ‖.

Corollary 4.7.7. Let ΛV1 ⊂ ∨V1 be a multi-tree. Then for k ∈ N0,

‖
〈

∂
∂tΨ

U ,ΨV1
〉
L2(I×Ω)

∣∣
(∨U \∨U (ΛV1 ,k))×ΛV1

‖
‖
〈
bi

∂
∂xi

ΨU ,ΨV1
〉
L2(I×Ω)

∣∣
(∨U \∨U (ΛV1 ,k))×ΛV1

‖
‖
〈
cΨU ,ΨV1

〉
L2(I×Ω)

∣∣
(∨U \∨U (ΛV1 ,k))×ΛV1

‖





� 2−k/2.
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Proof. (a). From ‖θU
λ ⊗ σU

µ ‖U ≥ ‖θU
λ ‖H1(I)‖σU

µ ‖H−1(Ω), for the first inequality it is
sufficient to prove that

‖
〈 (ΘU )′

‖ΘU ‖H1(I)
⊗ ΣU

‖ΣU ‖H−1(Ω)
,ΘV1 ⊗ ΣV1

〉
L2(I×Ω)

∣∣
(∨U \∨U (ΛV1 ,k))×ΛV1

‖ � 2−k/2.

From ΘU /‖ΘU ‖H1(I), ΘV1 , ΣU /‖ΣU ‖H−1(Ω), and ΣV1 being Riesz bases for H1(I),
L2(I), H−1(Ω), and H1

0 (Ω), we have
〈 (ΘU )′

‖ΘU ‖H1(I)
,ΘV1

〉
L2(I)

∈ L(�2(�V1
), �2(�U )),

〈 ΣU

‖ΣU ‖H−1(Ω)
,ΣV1

〉
L2(Ω)

∈ L(�2(�V1
), �2(�U )).

The proof of the first inequality is completed by applications of Proposition 4.7.4 and
Lemmata 4.7.5(first statement)–4.7.6.

(b). From span ∂
∂xi

biΨ
V1 |ΛV1 ⊂ spanΨa|∨a(ΛV1 ,0) (similar to Lemma 4.4.16), for

c ∈ �2(Λ
V1) there exists a d ∈ �2(∨a(Λ

V1 , 0)) such that
〈
bi

∂

∂xi
ΨU ,ΨV1

〉
L2(I×Ω)

c =
〈
ΨU ,−c�

∂

∂xi
(biΨ

V1)
〉
L2(I×Ω)

=
〈
ΨU ,d�Ψa

〉
L2(I×Ω)

=
〈
ΨU ,Ψa

〉
L2(I×Ω)

d,

where
‖d‖ � ‖d�Ψa‖L2(I×Ω) = ‖c� ∂

∂xi
(biΨ

V1)‖L2(I×Ω) � ‖c‖.

From ‖θU
λ ⊗ σU

µ ‖U ≥ ‖θU
λ ‖L2(I)‖σU

µ ‖H1(Ω), and ∨U (ΛV1 , k) = ∨U (∨a(Λ
V1 , 0), k)

it remains to be proven that

‖
〈 ΘU

‖ΘU ‖L2(I)
⊗

∂
∂xi

ΣU

‖ΣU ‖H1(Ω)
,Θa⊗Σa

〉
L2(I×Ω)

∣∣
(∨U \∨U (∨a(ΛV1 ,0),k))×∨a(ΛV1 ,0)

‖ � 2−k/2.

Indeed, this gives

‖
(〈

bi
∂

∂xi
ΨU ,ΨV1

〉
L2(I×Ω)

c
)∣∣∣

∨U \∨U (ΛV1 ,k)
‖

= ‖
(〈
ΨU ,Ψa

〉
L2(I×Ω)

d
)∣∣∣

∨U \∨U (ΛV1 ,k)
‖ � 2−k/2‖d‖ � 2−k/2‖c‖,

showing the second inequality.
From ΘU /‖ΘU ‖L2(I), Θ

a, ΣU /‖ΣU ‖H1(Ω), and Σa being Riesz bases for L2(I),
L2(I), H1

0 (Ω), and L2(Ω), we have
〈 ΘU

‖ΘU ‖L2(I)
,Θa

〉
L2(I)

∈ L(�2(�a), �2(�U )),

〈 ∂
∂xi

ΣU

‖ΣU ‖H1(Ω)
,Σa

〉
L2(Ω)

∈ L(�2(�Va
), �2(�U )).
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The proof of the remaining inequality is completed by applications of Proposi-
tion 4.7.4, Lemma 4.7.2 for (Θ∗,Θ◦) = ( ΘU

‖ΘU ‖L2(I)
,Θa), and the second statement

from Lemma 4.7.5.
(c). A subset of the arguments that showed the second inequality gives third

one.

Lemma 4.7.8. For k ∈ N0 and 1 ≤ i ≤ n, it holds that
∥∥∥
∣∣∣
〈
ΣT , ∂iΣ

V1

〉
L2(Ω)n

∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∣∣∣
∥∥∥ � 2−k/2,

Proof. We split the matrix into Br + Bs, where Br contains all its entries〈
σT
µ′ , ∂iσ

V1
µ

〉
L2(Ω)n

for which suppσT
µ′ is contained in ω ∩ Ω for some ω ∈ OΩ with

|ω| = |µ| (the ‘regular’ entries), and where Bs contains the remaining (‘singular’)
entries.

For the regular entries using (s4) we can estimate

|〈σT
µ′ , ∂iσ

V1
µ 〉L2(Ω)n | � ‖σT

µ′ ‖L1(Ω)n2
−|µ′||σV1

µ |W 2
∞(suppσT

µ′ )

� 2(|µ|−|µ′|)(1+n
2 )

An application of Lemma 4.7.1 with ξ = n and � = 1 shows that ‖|Br|‖ � 2−k.
Since the wavelets σV1

µ are piecewise polynomial, and functions in H1(Ω), they are
contained in W 1

∞(Ω). For the remaining singular entries we estimate

|〈σT
µ′ , ∂iσ

V1
µ 〉L2(Ω)n | � ‖σT

µ′ ‖L1(Ω)n |σV1
µ |W 1

∞(suppσT
µ′ )

� 2(|µ|−|µ′|)n
2 .

An application of Lemma 4.7.1 with ξ = n − 1 and � = 1/2 shows that ‖|Bs|‖ �
2−k/2.

The following Corollary will be used to bound ‖(r1 − r̃1)|∨ �T
‖.

Corollary 4.7.9. Let ΛV1 ⊂ ∨V1
be a multi-tree. Then for k ∈ N0,

∥∥∥〈Ψ �T ,∇xΨ
V1
〉
L2(I×Ω)n

∣∣
(∨ �T \∨ �T (ΛV1 ,k))×ΛV1

∥∥∥ � 2−k/2.

Proof. Using Lemma 4.7.2 for (Θ∗,Θ◦) = (ΘT ,ΘV1), Lemma 4.7.8,
〈
ΘT ,ΘV1

〉
L2(I)

∈
L(�V1

,�T ), and
〈
ΣT , ∂iΣ

V1
〉
L2(Ω)n

∈ L(�V1
,�T ), the proof follows from Proposi-

tion 4.7.4.

Lemma 4.7.10. For k ∈ N0, 1 ≤ i ≤ n, it holds that

∥∥∥
∣∣∣
〈 ∇ΣU

‖ΣU ‖H1(Ω)
,Σaei

〉
L2(Ω)n

∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∣∣∣
∥∥∥ � 2−k/2,

‖〈ΣT ,Σa〉L2(Ω)n
∣∣
{(µ′,µ) : |µ′|>|µ|+k}

∥∥∥ � 2−k/2.
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Proof. For proving the first inequality, we split the matrix into Br + Bs, where Br

contains all its entries
〈 ∇σU

µ′

‖σU
µ′ ‖H1(Ω)

, σa
µei

〉
L2(Ω)n

for which suppσU
µ′ is contained in

ω ∩ Ω for some ω ∈ OΩ with |ω| = |µ| (the ‘regular’ entries), and where Bs contains
the remaining (‘singular’) entries.

For the regular entries, using (s4) and the first inequality in (4.4.9), we estimate

∣∣∣
〈 ∂iσ

U
µ′

‖σU
µ′ ‖H1(Ω)

, σa
µ

〉
L2(Ω)n

∣∣∣ =
∣∣∣
〈 σU

µ′

‖σU
µ′ ‖H1(Ω)

, ∂iσ
a
µ

〉
L2(Ω)n

∣∣∣

� 2−|µ′| ‖σ
U
µ′ ‖L1(Ω)

‖σU
µ′ ‖H1(Ω)

|σa
µ|W 2(suppσU

µ′ )
� 2−|µ′|2−|µ′|n/22−|µ′|2|µ|n/222|µ|

= 2(2+n/2)(|µ′|−|µ|).

An application of Lemma 4.7.1 with ξ = n and � = 2 shows that ‖Br‖ � 4−k.
For the singular entries, we estimate

∣∣∣
〈 ∂iσ

U
µ′

‖σU
µ′ ‖H1(Ω)

, σa
µ

〉
L2(Ω)n

∣∣∣ � ‖∂iσU
µ′ ‖L1(Ω)

‖σU
µ′ ‖H1(Ω)

‖σa
µ‖L∞(Ω) � 2(|µ

′|−|µ|)n/2.

An application of Lemma 4.7.1 with ξ = n−1 and � = 1/2 shows that ‖|Bs|‖ � 2−k/2.
The proof of the second inequality proceeds along the by now well-known steps.

Using assumption (s4) on ΣT one shows that ‖|Br|‖ � 2−k, whereas ‖|Bs|‖ � 2−k/2.

The following Corollary will be used to bound ‖r3 − r̃3‖.

Corollary 4.7.11. Let Λa ⊂ ∨a be a multi-tree. Then for k ∈ N0,
∥∥∥〈∇xΨ

U ,Ψaei
〉
L2(I×Ω)n

∣∣
(∨U \∨U (Λa,k))×Λa

∥∥∥ � 2−k/2.

∥∥∥〈Ψ �T ,Ψaei
〉
L2(I×Ω)n

∣∣
(∨ �T \∨ �T (Λa,k))×Λa

∥∥∥ � 2−k/2.

Proof. From ‖θU
λ ⊗ σU

µ ‖U ≥ ‖θU
λ ‖L2(I)‖σU

µ ‖H1(Ω), in order to prove the first result
it suffices to show that

∥∥∥
〈 ΘU

‖ΘU ‖L2(I)
⊗ ∇ΣU

‖ΣU ‖H1(Ω)
,Θa ⊗ Σaei

〉
L2(I×Ω)n

∣∣∣
∨U \∨U (Λa,k)×Λa

∥∥∥ � 2−k/2.

This and the second result follow from applications of Proposition 4.7.4, Lemma 4.7.2,
and Lemma 4.7.10.
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5. On the awgm implementation

In this chapter we aim to demonstrate the developments towards an implementation
of the Adaptive Wavelet Galerkin Method (awgm) scheme described in Sect. 2.3 and
Sect. 4.3, and applied to the elliptic (stationary case) and parabolic (non-stationary or
time dependent case) partial differential equations reformulated as first order system
least squares (FOSLS). These formulations were presented in detail in Chapter 2 and
Chapter 4. The developments consist of relevant definitions, the design and possi-
ble implementation of algorithms with the focus on obtaining optimal computational
complexity.

5.1 Introduction

The awgm primarily builds on a sufficiently accurate finite approximation of the gen-
erally infinite residual. Furthermore, it employs a bulk chasing strategy to determine
subsequent nested approximation spaces based on an a posteriori error indicator given
by the residual. At last, it solves the arising Galerkin systems that correspond to those
approximation spaces.

Optimality of the awgm is characterised by two features, best convergence rate and
linear computational cost. The solution u of an operator equation F (u) = 0 belonging
to the approximation class As (see Def. 2.3.1) means it can be approximated from
the spans of subsets of the wavelet basis at a rate s. When the number of arithmetic
operations is an absolute multiple of the cardinality of a wavelet subset Λ, then the
computational time taken is a linear function of #Λ.

A primary constraint on the support of approximations to u turns out to be the
restriction to a tree structure. This makes the approximation class As only slightly
smaller (cf. [CDDD01], see [CDD03b] for details), but from a computational point
of view it forms the ground for a more efficient application of matrix-vector mul-
tiplications arising in the adaptive solver. Tree approximation even constitutes a
necessity for realising optimal computational complexity in case of a non-linear op-
erator. It allows for a transition from a multilevel to a single-scale representation
of a function u in linear complexity. A similar approach has been taken earlier in
[DSX00, CDD03b, XZ05, BU08, Vor09]. In consequence, knowing how to apply a
multi- to single-scale transformation in O(#Λ) operations, one can compute the ap-
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plication of a stiffness matrix a(Ψ,Ψ) w.r.t. a wavelet basis Ψ by first applying the
multi- to single-scale transformation, then, with Φ denoting the single-scale basis,
applying a(Φ,Φ), whose individual entries one can compute in O(1) operations, and
eventually returning to wavelet coordinates by applying the adjoint transformation.

The outline of this chapter is as follows: In Sect. 5.2 we give a brief overview of
the wavelets used in our applications.

In Sect. 5.3 we give a series of necessary definitions. We discuss the definition a
wavelet tree and that of a tiling to facilitate an efficient implementation of multi- to
single-scale transformations. The creation of a tiling goes through the construction
of an element tree, which is therefore defined subsequently. This section ends with
definitions of extended wavelet (single or double) trees, and algorithms for producing
them in linear complexity.

In Sect. 5.4, following a prior rigorous work in [KS14], we present three algorithms
for fast-evaluation of system matrices w.r.t wavelet bases, applying either the full ma-
trix, or its upper- or lower-triangular part, respectively. We adapt the first algorithm
to overcome its limitation of being only applicable to bilinear forms. Proofs of correct-
ness, and of a linear operation count of the algorithms are also included. A procedure
to apply tensor-product operators completes this section.

In Sect. 5.5 we describe briefly the main data structures used in our implementa-
tions.

In Sect. 5.6 and 5.7, all the aforementioned parts find their use in the development
of efficient implementations of the awgm applied to an elliptic semi-linear, and a
parabolic evolution partial differential equation, both formulated as first order system
least squares problems. Those implementations have produced the numerical results
found in Sect. 2.6 and Sect. 4.5.
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5.2 Wavelets bases: A brief presentation of col-
lections in use

In our wavelet approximation methods we consider wavelet collections, commonly de-
noted as Ψ = {ψλ : λ ∈ ∨}, in one and two dimensions, which are piecewise polynomial
functions of a given polynomial degree. When appropriately scaled, these collections
form Riesz bases for a range of Sobolev spaces.

5.2.1 Haar wavelets

The collection of Haar wavelets will be considered on the domain Ω = (0, 1). It
consists of the union of the function ψ0,0 ≡ 1, and, for � ∈ N and k = 0, . . . , 2�−1 − 1,
the functions

ψ�,k := 2
�−1
2 ψ(2�−1(·)− k),

where ψ ≡ 1 on [0, 1
2 ] and ψ ≡ −1 on ( 12 , 1]. We write a wavelet index λ = (�, k)

and let |λ| = � denote its level. Consequently, a Haar wavelet at level � > 0 and with
index k will be a non-zero piecewise constant function on the interval 2−(�−1)[k, k+1].
One may verify that the Haar wavelets form an orthonormal discontinuous piecewise
constant wavelet basis for L2(Ω).

0 1

1
2`=2

!2`=2

2!`

Figure 5.1: L2(Ω)-orthonormal Haar wavelets (left: scaling function on coarsest level,
right: 2�−1 wavelets for � = 1, · · · )

5.2.2 Orthonormal discontinuous piecewise linear wavelets

A collection of orthonormal discontinuous piecewise linear wavelets was constructed on
Ω = (0, 1), starting with ψ0,0 ≡ 1 and following a Gram-Schmidt process. Noting that
P1(0, 1) has dimension two, the second wavelet on level 0 is ψ0,1(t) = 2

√
3(t − 1

2 ) (as
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seen in Figure 5.2, left). Similarly, a basis for the space of
∏2J−1

i=0 P1(i2
−J , (i+1)2−J)

is given by {ψ0,0, ψ0,1} ∪ {ψ�,k : 1 ≤ � ≤ J, 0 ≤ k ≤ 2� − 1}, where

ψ�,k(t) =

{
2�/2(1− 3(2�t− k)), t ∈ 2−�[k, k + 1]
2�/2(2 + (2�t− k)), t ∈ 2−�[k + 1, k + 2]

if k is even (Figure 5.2, right in black) and

ψ�,k(t) =

{ √
32�/2(1− 2(2�t− k)), t ∈ 2−�[k − 1, k]

−
√
32�/2(1− 2(2�t− k)), t ∈ 2−�[k, k + 1]

if k is odd (Figure 5.2, right in red).

10

1

!
p

3

p
3

!
p

3 " 2`=2

p
3 " 2`=2

p
3 " 2`=2

!2 " 2`=2

2 " 2`=2

2!`

2`=2

!2`=2

Figure 5.2: L2(Ω)-orthonormal discontinuous piecewise linear wavelets.

5.2.3 Continuous piecewise linear 3-point wavelets in 1D

5.2.3.1 The collection without boundary conditions

With Ω = [0, 1] we consider a continuous piecewise linear 3-point wavelet collection
without boundary conditions that for a set including all wavelets up to level J spans
the space H1(Ω)∩

∏2J−1
i=0 P1(i2

−J , (i+1)2−J). Properly scaled it provides a basis for
L2(Ω) as well as for H1(Ω). For proofs and details of construction we refer to [Ste96].

We equip level 0 with scaling functions ψ0,0 = 1 and ψ0,1(t) = 2t − 1. Then for
� ∈ N and k = 1, . . . , 2� − 1, with the exception of level 1 where ψ1,1(t) = 4t − 1 if
t ∈ [0, 1

2 ] and ψ1,1(t) = −2t+2 if t ∈ [ 12 , 1], the masks of ψ�,k, w.r.t. linear nodal basis
and with nodal points being in {0, 2−�, 2 · 2−�, · · · , 1}, are given by [−1 1 − 1

2 ] if
k = 1, [− 1

2 1 − 1] if k = 2� − 1 and [− 1
2 1 − 1

2 ] otherwise.
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1

1

1

−1

− 1
2

−1

−1

Figure 5.3: Continuous, piecewise linear wavelets without boundary conditions.

5.2.3.2 The collection with boundary conditions

Applying the same approach, one can construct a continuous piecewise linear 3-point
wavelet collection vanishing at t = 0. A set including all wavelets up to level J spans
the space

(∏2J−1
i=0 P1(i2

−J , (i + 1)2−J)
)
∩ H1

0,{0}(Ω). With appropriate scaling this
collection gives wavelet bases for L2(Ω) and H1

0,{0}(Ω).
The coarsest level is equipped with ψ0,0(t) = t, while level 1 consists of ψ1,1(t) = 2t

if t ∈ [0, 1
2 ] and ψ1,1(t) = −2t+2 if t ∈ [ 12 , 1]. Then, with � ∈ N, � > 1, k = 1, . . . , 2�−1

and with nodal points in {0, 2−�, 2 ·2−�, · · · , 1}, the masks now read as [1 − 1
2 ] if k = 1,

and [− 1
2 1 − 1] if k = 2� − 1, and [− 1

2 1 − 1
2 ] otherwise.

5.2.4 Continuous piecewise linear 3-point wavelets in 2D

A collection of continuous piecewise linear 3-point hierarchical wavelets can be con-
structed on general meshes in two dimensions [Ste98b]. Scaled accordingly, in our
applications, the collection with zero boundary conditions generates a basis for the
space H1

0 (Ω), or a basis for L2(Ω).
We describe briefly the construction from [Ste98b]. We consider a general polygon

Ω ⊂ R2, and an initial triangulation T0 of Ω, i.e. a conforming partition of Ω into
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1

1

−1

1

−1

− 1
2

Figure 5.4: Continuous, piecewise linear wavelets, zero at the left boundary.

triangles. A sequence of nested finite element spaces V0 ⊂ V1 ⊂ · · · ⊂ H is considered,
with V� corresponding to a partition T� of Ω, at level �, w.r.t to triangle splitting
by connecting the mid-points of the edges of triangles T ∈ T�−1. All the vertices
of triangles in T ∈ T�, also known as nodes, are collected in Ω�. If zero boundary
conditions are imposed, we exclude the nodes lying on ∂Ω.

We define a discrete scalar product on V� with the use of the trapezoidal rule on
a triangle by (u, v)T�

=
∑

T∈T�

vol(T )
3

∑
x∈T u(x)v(x). With S0 = V0 and for � ≥ 0, a

multiscale decomposition, i.e. a sequence of spaces S� such that VJ =
∑J

�=0 S� and
S� ⊂ V�, is defined by

S�+1 = V�+1 �
⊥(·,·)T�+1 V�.

Subsequently, the space V� is equipped with the linear nodal basis {φ�,x : x ∈ Ω�}.
We equip S0 with the same basis as V0, and, for � ≥ 1, the space S� with {ψ�,x : x ∈
Ω� \ Ω�−1} where

ψ�,x = φ�,x −
∑

y∈Ω�−1

(φ�,x, φ�−1,y)T�

(φ�,y, φ�−1,y)T�

φ�,y.

It follows that each wavelet ψ�,x is a linear combination of at most three nodal basis
function. In particular, away from the boundary, a wavelet at level � is a linear
combination of two nodal basis functions corresponding to vertices of a single edge of
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Figure 5.5: A continuous piecewise linear 3-point wavelet, away from the boundary,
at level 1. This wavelet consists of a linear combination of three scaling functions,
associated to three nodes lying on the edge of a triangle T ∈ T0 (T0 is drawn in black
solid lines). The middle node is a vertex in Ω1 and is indicated with a ’•’, while the
nodes lying in the coarser level are indicated with a blank point ’◦’.

a triangle T ∈ T�−1, together with the nodal basis function on the mid-point of this
edge which is a node in Ω� (see Figure 5.5).

5.2.5 Continuous piecewise quadratic wavelets in 2D

In Chapter 3, we presented a collection of continuous piecewise quadratic wavelets
constructed on general polygons Ω ⊂ R2, with each wavelet being a linear combination
of 11 or 13 nodal basis functions. In our applications, properly scaled they generate
Riesz bases for H−1(Ω), L2(Ω), and H1

0 (Ω).
For details of construction and definition of the wavelets we refer to Sect. 3.3.5. In

Figure 5.6 we illustrate the two main wavelet types whose supports were pictured in
Figure 3.5 of the aforementioned section.

5.3 Definition and construction of trees

5.3.1 The wavelet tree

Admissible approximations of functions for the awgm are finite linear combinations
of wavelets with the corresponding set of indices organised as a tree. The definition of
a wavelet tree with respect to a wavelet collection Ψ is given below.

Definition 5.3.1. Let ∨ be an infinite set of indices so that Ψ = {ψλ : λ ∈ ∨}. To
each λ ∈ ∨ with |λ| > 0, where |λ| denotes the level of the wavelet, we associate one
µ ∈ ∨ with |µ| = |λ| − 1 and meas(suppψλ ∩ suppψµ) > 0. We call µ the parent of λ,
and so λ a child of µ.

Moreover, to each λ ∈ ∨, we associate some neighborhood S(ψλ) of suppψλ, with
diameter � 2−|λ|, such that S(ψλ) ⊂ S(ψµ) when λ is a child of µ.
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Figure 5.6: Continuous piecewise quadratic wavelets on level 1, consisting of a linear
combination of 11 (top) and 13 (bottom) basis functions respectively (cf. Figure 3.5).
In terms of the explicit formula given in Sect. 3.3.5, the wavelet on top is a linear
combination of one function ξ (center indicated with a ’•’) and one function θ (center
indicated with ’◦’), while the wavelet at the bottom consists of one ξ and two θ’s.

A finite Λ ⊂ ∨ is called a wavelet tree, if it contains all λ ∈ ∨ with |λ| = 0, as well
as the parent of any λ ∈ Λ with |λ| > 0. We denote by Λ� its subset with all λ ∈ Λ
with |λ| = �.

Note that when wavelets on the same level have overlapping supports, then for
each wavelet generally there are more than one candidates to meet the requirements
for being its parent.

In other works concerning tree approximation, the definition of a tree sometimes
includes multiple parents assigned to a wavelet such that the support of a child is
covered by the union of the supports of its parents ([KS14]), or a similar coverage
is achieved by the formation of a graded tree (for this approach see [Ste14]). This
nestedness of the supports is a necessary characteristic of the tree structure in view
of the application of multi- to single-scale transformations in linear complexity. For
reasons of efficiency and control of the computational costs we opt for single parents,
and stretch the notion of nestedness with the use of the S-neighborhood.

To capture the benefit from the use of the S-neighborhood, we recall here Lemma
2.5.7 without repeating the proof.
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Lemma 5.3.2. Let Ω = Ω0 ⊇ Ω1 ⊇ · · · with Ω� being subdomains of Ω. Then

Λ :=
{
λ ∈ ∨ : meas(S(ψλ) ∩ Ω|λ|) > 0

}

is a tree.

The most representative case to reveal the significance of the single parent property
is lying on the adaptive mechanism. For instance, let Λ ⊂ ∨ be the occurring set of
indices after the enlargement by a bulk chasing procedure, meaning the set carries
the wavelet indices which corresponded to the largest in modulus components of the
approximate residual. This set is often not a tree and must be extended to one by
adding the missing parents. Hence, the density of the new approximation set is greatly
influenced by the choice of the number of parents. For the goal of an optimal error
reduction rate, it is desired to have a fine control of the density of these sets, in other
words to maintain admissibility of Λ under (near-) minimal cardinality.

5.3.2 Tilings and the element tree

The wavelet collections in consideration are constructed in sequences of Lagrange
finite-element spaces w.r.t. uniformly dyadically refined nested sequences of underlying
partitions starting from an initial partition of a polytopal domain Ω. We assume
there exists a collection of closed polytopes shared by all wavelets as in (w1) given in
Sect. 2.5.2 and that (w2)-(w4) are satisfied.

Definition 5.3.3. A collection T ⊂ OΩ such that Ω = ∪ω∈T ω, and for ω1 �= ω2 ∈ T ,
meas(ω1∩ω2) = 0 will be called a tiling. With Pm(T ), we denote the space of piecewise
polynomials of degree m w.r.t. T . The smallest common refinement of tilings T1 and
T2 is denoted as T1 ⊕ T2.

As a consequence of the assumption (w2), wavelet supports are inherently decom-
posed in polytopes belonging to OΩ. The consideration of tilings then reveals the
contribution of the tree structure in transforming a function given by a linear combi-
nation of wavelets to a locally finite single scale representation while the amount of
work needed scales linearly with the number of wavelets. Such transformations are
included in the algorithms presented in Sect. 5.4. A proof of the following proposition
is given in [Ste14, §4.3].

Proposition 5.3.4. Given a tree Λ ⊂ ∨, there exists a tiling T (Λ) ⊂ OΩ with
#T (Λ) � #Λ such that span{ψλ : λ ∈ Λ} ⊂ Pm(T (Λ)). Moreover, equipping Pm(T (Λ))
with a basis of functions, each of which supported in ω for one ω ∈ T (Λ), the rep-
resentation of this embedding, known as the multi- to single-scale transform, can be
applied in O(#Λ) operations.

In order to create the tiling T (Λ), exploiting Lemma 5.3.2 we would like to con-
struct level-wise sets of elements w.r.t to the subdomains Ω�. This leads us to define
the concept of an element tree.
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For simplicity we confine our discussion to two dimensions and take the aforemen-
tioned polytopes as being triangles. Starting with T0 = Ω, for � ∈ N0 we consider T� to
be partitions of Ω, with triangular elements, corresponding to uniform red-refinement,
i.e. the element splitting by connecting the mid-points of the edges. By red-refinement
each triangular element T has four children. We call � the level of the partition T�.
With T := {T ∈ T� : � ∈ N0}, for a set Σ ⊂ T we define

child(Σ) := {T ∈ T : T is a child of a T ′ ∈ Σ},

and when Σ ⊂ T \ T0,

parent(Σ) := {T ∈ T : T is the parent of a T ′ ∈ Σ}.

Definition 5.3.5. A multilevel set of elements Σ ⊂ T is an element tree, when

parent(Σ \ T0) ∪ child(parent(Σ \ T0)) ∪ T0 ⊂ Σ.

Note that in the preceding definition an element tree must include a union of three
sets. The first set provides that the parent of each element is included in Σ. The
second requires that all siblings of an element belong to Σ. The third inclusion means
that Σ contains the initial partition T0, i.e. its roots.

After a prerequisite definition that links the wavelet levels with that of a partition,
in the next proposition we sketch the construction of an element tree arising from a
wavelet tree.

Definition 5.3.6. Given a wavelet tree Λ ⊂ ∨, the level of each wavelet coincides
with the level of the coarsest uniform partition with respect to which it is a piecewise
polynomial of the specified degree.

Lemma 5.3.7. Given a wavelet tree Λ ⊂ ∨, valid S-neighborhoods are given by

S(ψ∗
λ) := {child(T ), T ∈ T|λ|−1 : |T ∩ Ŝ(ψ∗

λ)| > 0}. (5.3.1)

where Ŝ is a (preferably small) neighborhood of suppψλ with diam(Ŝ(ψλ)) � 2−|λ|,
such that S(ψλ) ⊂ S(ψparent(λ)) holds ∀λ ∈ Λ. For |λ| = 0 one can take S(ψλ) := Ω.

Proposition 5.3.8. Let a wavelet tree Λ ⊂ ∨. Then, with the S-neighborhood defined
as in Lemma 5.3.7, and with � ∈ N0, the set

Σ(Λ) :=
⋃
�≥0

⋃
λ∈Λ�

{T ∈ T� : |T ∩ S(ψλ)| > 0}

is an element tree with #Σ(Λ) � #Λ.

Proof. The set Σ(Λ) is an element tree if it satisfies Definition 5.3.5. When � = 0 by
definition S(ψλ) := Ω and thus T0 ⊂ Σ(Λ). One easily deduces that parent(Σ(Λ)\T0),
and child(parent(Σ(Λ) \ T0)) are included in Σ(Λ) by definition of S.

The support of each wavelet contains a uniformly bounded number of triangles and
so does its S-neighborhood. From this we conclude that #Σ(Λ) � #Λ.
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Remark 5.3.9. A reasonable approach to keep the area of Ŝ(ψλ) close to its minimum
is to choose parent(λ) to be such that meas(Ŝ(ψλ) ∩ Ŝ(ψparent(λ))) is maximal. A
direct verification for all the two dimensional wavelet collections presented in Sect. 5.2
shows that a suitable Ŝ is given by

Ŝ(ψλ) := suppψλ.

Definition 5.3.10. Given an element tree Σ, we define the tiling T (Σ) as the collec-
tion of leaves of Σ, where the leaves are the elements without children in this set.

To construct the sets of leaves one has to remove those elements that have children
in the set, and thus the set will eventually contain all the last generation of children
from each tree branch. This means the covering property is kept, and that all pairs of
remaining elements do not have a mutual overlap with positive measure. The opposite
procedure is followed in the next definition.

Definition 5.3.11. Given a tiling T , we define the element tree Σ(T ) as the collection
that is generated by adding all ancestors to any T ∈ T .

5.3.3 The extended wavelet tree.

A motivation for the proposed schemes on the approximate evaluation of the residual
in wavelet coordinates was to provide an alternative for the standard way of approx-
imation, that involves a separate approximation of the right hand side and that of
the application of the operator using the APPLY-routine (see Sect. 2.1.1). If at a
given iteration of the awgm the approximate solution is supported on a wavelet set
Λ, it is shown that when evaluating the residual as a whole, it suffices at step (R)
to approximate the residual on some neighborhood of Λ and still obtain the optimal
error reduction. Such neighborhoods are given in the next definition for single trees,
whereas a multi-dimensional version is described in the next section.

Definition 5.3.12. Given an element tree Σ and a k ∈ N, we define the extended
wavelet tree as

Λ∗(Σ, k) := {λ ∈ ∨∗ : |S(ψλ) ∩ T | > 0 for some T ∈ Σ with |T | = max(|λ| − k, 0)}

In order to create Λ∗(Σ, k) level-by-level, we need the sets

Σ� := {T ∈ Σ: |T | = �}. (5.3.2)

An algorithm growtree that given an element tree produces the extended tree Λ
is given below.

[Λ∗] := growtree(Σ, k)
% Input: element tree Σ, k ∈ N.
% Output: extended tree Λ∗.
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Λ∗ := {λ ∈ ∨, |λ| = 0} % Initialise Λ∗ with all wavelet indices on level 0

for � = 0 to maxT∈Σ |T |
for T ∈ Σ�

m = 1
while m ≤ k

add to Λ∗ all λ ∈ ∨∗ with |λ| = �+m and |S(ψλ) ∩ T | > 0
m = m+ 1

endwhile
endfor

endfor

Theorem 5.3.13. A call of growtree yields the output as specified, at the cost of
O(#Σ) operations.

Proof. As a consequence on locality of wavelets in ∨∗ (cf. (w2)-(w3)), each element
at a certain level can only intersect a uniformly bounded number of wavelets on the
finer level, thus, #Λ � #Σ. After running through all elements of the element tree,
and with use of Lemma 5.3.2, one easily verifies that Λ∗ is produced as specified. We
conclude that the total operations cost is O(#Σ).

5.3.4 The double-tree and its kth-neighborhood.

Let us now define a multi-dimensional version of the tree concept. With Ψ now reading
as

Ψ := {ψλ := ⊗iψ
(i)
λi

: λ ∈ ∨ :=
∏
i

∨i}.

we denote a collection of tensor product wavelets where λ is now a multi-index. In
view of our forthcoming applications, w.l.o.g. hereafter we will consider i ∈ {1, 2} and
hence a two-dimensional multi-tree, called double-tree.

To prepare for the definition of a double-tree, we define ¬i to be the value in {1, 2}
unequal to i. Furthermore, if λ = (λ1, λ2) is a pair of indices, the projector onto the
ith argument is Pi(λ1, λ2) := λi.

Definition 5.3.14. For Λ ⊂ ∨ = ∨1 ×∨2 we call Λ a double-tree when for i ∈ {1, 2}
and any µ ∈ P¬iΛ, the fiber

Λi,µ := Pi(P¬i|Λ)−1{µ}

is a tree (in ∨i). That is, Λ is a double-tree when ‘frozen’ in any of its coordinates, at
any value of that coordinate, it is a tree in the remaining coordinate.

From Λ = ∪µ∈P¬iΛ(P¬i|Λ)−1{µ}, we have PiΛ = ∪µ∈P¬iΛΛi,µ, which, being a
union of trees, is a tree itself. Moreover, we set Λi := PiΛ.

In Definition 5.3.12 we presented the kth-neighborhood of a (single) tree, also called
the extended tree. Analogously, we will construct the kth-neighborhood of a double-
tree applying unidirectional operations following the same principles. Let us first give
a definition for the extended double-tree.
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Definition 5.3.15. For a double-tree Λ ⊂ ∨, and k ∈ N0, we define its k-neighborhood
in ∨̄ = ∨̄1 × ∨̄2 by

Λ̄ = ∨̄(Λ, k) := {(λ′
1, λ

′
2) ∈ ∨̄ : ∃(λ1, λ2) ∈ Λ with |λ1| = max(|λ′

1| − k, 0),

|λ2| = max(|λ′
2| − k, 0), and meas

(
S(ψ(1)

λ′
1
)× S(ψ(2)

λ′
2
) ∩ S(ψ(1)

λ1
)× S(ψ(2)

λ2

)
> 0}.

Remark 5.3.16. The S-neighborhood appearing in the preceding definition is equal to
the one given in (5.3.1).

Proposition 5.3.17. The kth-neighborhood Λ̄, defined in Definition 5.3.15, is a
double-tree, and #Λ̄ � #Λ (dependent on k).

5.3.5 A routine growDbltree for extending a double-tree.

We present a model algorithm growDbltree that given a double-tree Λ ⊂ ∨ = ∨1×∨2

creates its kth neighborhood in ∨̄ = ∨̄1×∨̄2. Considering that the algorithm constructs
the new double-tree using unidirectional operations, for simplicity, and w.l.o.g. we
choose to start the extension by the first direction, i.e., in ∨̄1.

[Λ̄] := growDbltree(Λ, k)
% Input: double-tree Λ, k ∈ N.
% Output: kth-neighborhood Λ̄ in ∨̄.

Λ̄ := {(λ′
1, λ

′
2) ∈ ∨̄, |λ′

1| = 0, |λ′
2| = 0}

for λ′
1 ∈ Λ̄1(Σ(P1Λ), k) % unidirectionally extended tree in the 1st-direction

if |λ′
1| = 0 then m = 0 else m = 1 endif

while m ≤ k and |λ′
1| ≥ m

Cover(λ′
1,m) := {λ1 ∈ P1Λ, |λ1| = |λ′

1| −m, |S(ψ(1)
λ′
1
) ∩ S(ψ(1)

λ1
)| > 0}

for µ ∈ Cover(λ′
1,m)

Λ̄2,λ′
1
:= Λ̄2(Σ(Λ2,µ), k) % unidirectional extention in the 2nd-direction

Λ̄ := Λ̄ ∪ ({λ′
1} × Λ̄2,λ′

1
)

endfor
m = m+ 1
endwhile

endfor

Theorem 5.3.18. A call of growDbltree yields the output as specified, at the cost of
O(#Λ) operations.

Proof. At first, the routine creates an element tree by means of Σ(P1Λ). By Prop. 5.3.8
and locality of wavelets in ∨̄ we infer #Σ(P1Λ)) � #P1Λ and Λ̄1(Σ(P1Λ), k) � #P1Λ
respectively. Moreover, following Lemma 5.3.2, the set P1Λ̄ = Λ̄1(Σ(P1Λ), k) is a tree.
Thereafter, the extension of the double-tree Λ in the 1st direction w.r.t. ∨̄1 is created
in O(#P1Λ) operations.
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For all λ′
1 ∈ P1Λ̄, we create the sets Cover(λ′

1,m) as defined. Assuming we can find
these sets in O(1) operations, we freeze the double-tree Λ in each µ ∈ Cover(λ′

1,m)
and grow the remaining tree in the other direction according to Definition 5.3.12.
Again with the use of Lemma 5.3.2 the sets added to Λ̄ are trees. After repetition for
all λ′

1’s the desired extended tree Λ̄ is a double-tree.
In addition, ∀λ′

1 ∈ P1Λ̄, with |λ′
1| > 0, we have

#

max{|λ′
1|,k}⋃

m=1

⋃
µ∈Cover(λ′

1,m)

Σ(Λ2,µ) � #

max{|λ′
1|,k}⋃

m=1

⋃
µ∈Cover(λ′

1,m)

Λ2,µ

and

#Λ̄2,λ′
1
� #

max{|λ′
1|,k}⋃

m=1

⋃
µ∈Cover(λ′

1,m)

Σ(Λ2,µ).

If |λ′
1| = 0 then the following holds

#Λ̄2,λ′
1
� #

⋃
µ∈Cover(λ′

1,0)

Σ(Λ2,µ).

Then, the last three relations imply,

∑

λ′
1∈P1Λ̄

#Λ̄2,λ′
1
� #

⋃
µ∈Cover(λ′

1,0)

Λ2,µ +
∑

λ′
1∈P1Λ̄

|λ′
1|�=0

#

max{|λ′
1|,k}⋃

m=1

⋃
µ∈Cover(λ′

1,m)

Λ2,µ.

Note that the sets Λ̄2,λ′
1

and Cover(λ′
1,m) are dependent on k. Thus, considering each

λ′
1 ∈ P1Λ̄ was genererated by a uniformly bounded number of wavelets in P1Λ with

at most k levels difference, we infer that #Λ̄ � #Λ dependent on k. Since #P1Λ is a
bounded multiple of #Λ, we conclude that the total operations cost is O(#Λ).

Remark 5.3.19. Depending on the wavelet collections composing the tensor-product
wave- lets, a careful selection of the starting direction to build Λ̄ could result in smaller
computational cost overall.

5.4 The application of system matrices

The overall quantitative performance of the awgm relies heavily on the efficient eval-
uation of matrix-vector multiplications which carry the main weight of calculations
for both the approximation of the residual and the solution of Galerkin systems. In
this section we will present modified versions of algorithms for the application of sys-
tem matrices w.r.t. (tensor product) wavelet bases developed in [KS14]. These will
form the cornerstone for the design of the forthcoming implementations (Sect. 5.6.6)
in optimal computational complexity. Three auxiliary algorithms for applying a lower
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and an upper triangular matrix as well as their corresponding sum are presented first.
Finally, we present a procedure to apply matrices corresponding to tensor product
operators.

5.4.1 A routine eval corresponding to a mapping between
scalar-valued functions.

The evaluation of products between stiffness matrices w.r.t. wavelet bases and coeffi-
cient vectors in linear complexity requires special attention. Since the matrix entries
are inner products between basis functions the cost of a direct calculation per entry
could be intolerably large in view of the multilevel structure of the basis. Pairs of
wavelets that result in non-zero matrix entries have to be identified, and these en-
tries need to be approximated using numerical quadrature. In addition, the desired
complexity may not be achieved for general index sets.

On the other hand, under the tree constraint one can achieve a transition between
a multi- and a single-scale representation by applying multi- to single-scale transfor-
mations and their adjoints respectively in linear complexity (see Prop. 5.3.4). In the
algorithm presented here, these transformations are incorporated to facilitate a tran-
sition to a single-scale representation simultaneously with building the matrix-vector
product for which only the calculation of products between scaling functions on the
same level is needed. Afterwards, the transpose transformation is applied to return to
the wavelet representation. The locality of the bilinear forms and that of the wavelet
supports lead to sparse single-scale and transformation matrices. Moreover, due to
the fact that scalar products between scaling functions can be computed in O(1) op-
erations, the operation count is proportional to the vector’s size.

Consider wavelet collections Ψ̆, Ψ of orders m1 and m2 and m := max{m1,m2},
with corresponding sets of indices in ∨̆ and ∨ respectively. The sets Ψ̆�, Ψ� are the
restrictions of Ψ̆ and Ψ to their elements at level �. Furthermore, ∨̆�↑ and ∨�↑ denote
the subsets of ∨̆ and ∨ of indices with levels being greater or equal to �.

For T ∈ T, let ΦT denote the nodal basis of Pd(T ) with d := m − 1, and let
Φ := (ΦT )T∈T, Φ� := (ΦT ){T∈T : |T |=�}. The dimension of Pd(T ) is given by

n = n(d) :=
1

2
(d+ 1)(d+ 2) (5.4.1)

Viewing sets of functions as column vectors, there exist matrices p�+1, q�, such that
Φ�

� = Φ�
�+1p�+1, Ψ�

� = Φ�
� q� so that d�

� Φ� = (p�+1d�)
�Φ�+1 and c�� Ψ� = (q�c�)

�Φ�.
Similarly, there exist analogous matrices q̆� related to Ψ̆. The matrices q�, q̆� (but not
the p�) depend on the type of wavelet.

Below we give a modified version of the algorithm evalA, found in [KS14], such
that it can handle possible non-linear forms arising in our applications. With (v, u) ∈
span Ψ̆× spanΨ, we consider a(v, u) = a(v, u|supp v) to be local, i.e. a(v, u) = 0 when-
ever | suppu ∩ supp v| = 0, and linear in the first argument. The idea behind the
modification is to avoid splitting a(v, u) as a(v, u1) + a(v, u2) for some u1 + u2 = u
with | suppu1 ∩ suppu2| > 0. To avoid confusion we note that in applications the first
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argument is the test function, and the second argument is the trial function. A model
algorithm is as follows.

[�e, �f ] := eval(a)(�, Π̆, Λ̆,Π,Λ, �d,�c)

% Input: � ∈ N, Π̆,Π ⊂ T�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
% �d = (dT )T∈Π ⊂ Rn (n as in (5.4.1)), �c = (cλ)λ∈Λ ⊂ R.
% Output: With u := �d�Φ|Π + �c�Ψ|Λ,
% �e = a(Φ|Π̆, u), �f = a(Ψ̆|Λ̆, u).

if Π̆ �= ∅ then
Π̆B := Σ�(Λ) ∩ Π̆, Π̆A := Π̆ \ Π̆B

ΠB :=
(
Σ�(Λ̆) ∪ Π̆B

)
∩Π, ΠA := Π \ΠB

Π̆ := child(Π̆B) ∪ Σ�(Λ̆)
Π := child(ΠB) ∪ Σ�(Λ)

�d = �d|Π := p� �d|ΠB
+ q��c|Λ�

[�e, �f ] := eval(a)(�+ 1, Π̆, Λ̆�+1↑,Π,Λ�+1↑, �d,�c|Λ�+1↑)

�e =

[
�e|Π̆A

�e|Π̆B

]
:=

[
a(Φ|Π̆A

, �d�Φ|Π)
(p�� �e)|Π̆B

]

�f =

[
�f |Λ̆�

�f |Λ̆�+1↑

]
:=

[
(q̆�� �e)|Λ̆�

�f

]

endif

Remark 5.4.1. If, for some trees Λ, Λ̆, and �c ∈ �2(Λ), one seeks a(Ψ̆|Λ̆,�c�Ψ|Λ), then
with

�d := q0c|Λ0 , [�e, �f ] := eval(a)(1, T0, Λ̆1↑, T0,Λ1↑, �d,�c|Λ1↑),

(and u := �d�Φ|Π + �c|�Λ1↑
Ψ|Λ1↑), it holds that

a(Ψ̆|Λ̆,�c
�Ψ|Λ)

(
= a(Ψ̆|Λ̆, u) =

[
a(Ψ̆|Λ̆0

, u)

a(Ψ̆|Λ̆1,↑
, u)

])
=

[
(q̆�0 �e)|Λ̆0

�f

]
,

where we used a being linear in its first argument.

Theorem 5.4.2. A call of eval yields the output as specified, at the cost of O(#Π̆ +
#Λ̆ +#Π+#Λ) operations.

Proof. By its definition, #Π̆ � #Σ�(Λ̆) + #Π̆B � #Λ̆� + #Λ�. So after sufficiently
many steps, the current set Π̆ will be empty. For use later, we note that #Π �
#Λ� +#ΠB � #Λ� +#Λ̆� +#Π̆B � #Λ� +#Λ̆�.

For Π̆ = ∅, the call produces nothing, which is correct because Π̆ = ∅ implies Λ̆ = ∅.
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Now let Π̆ �= ∅. From Π̆A ∩ parent(Σ�(Λ)) = ∅, Λ being a tree, Σ(Λ) an element
tree, and a being local, one has

�e|Π̆A
= a(Φ|Π̆A

, u) = a(Φ|Π̆A
, �d�Φ|Π).

The definition of �d together with the property that Π ⊃ child(ΠB) ∪ Σ�(Λ) show
that

u := �d
�
Φ|Π + �c|�Λ�+1↑

Ψ|Λ�+1↑ = (�d|ΠB
)�Φ|ΠB

+ �c�Ψ|Λ = u− (�d|ΠA
)�Φ|ΠA

.

By the property of Λ̆ and Λ being trees and Σ(Λ̆), Σ(Λ) being element trees, we have
Π̆ ⊃ parent(Σ�+1(Λ̆)) and Π ⊃ parent(Σ�+1(Λ)) needed for the recursive call. By
induction, the recursive call yields �e = a(Φ|Π̆, u) and �f = a(Ψ̆|Λ̆�+1↑

, u) = a(Ψ̆|Λ̆�+1↑
, u)

where the latter equality follows from ΠA ∩ parent(Σ�(Λ̆)) = ∅, a being local, and Λ̆
being a tree and Σ(Λ̆) an element tree.

From child(Π̆B) ⊂ Π̆, we have

Φ|Π̆B
= (p�� Φ|Π̆)|Π̆B

.

By ΠA ∩ Π̆B = ∅, a being local, and linear in its first argument, we conclude that

�e|Π̆B
= a(Φ|Π̆B

, u) = a(Φ|Π̆B
, u) =

(
p�� �e

)
|Π̆B

.

From Σ�(Λ̆) ⊂ Π̆, a being local, and linear in its first argument, we have

Ψ̆|Λ̆�
= (q̆�� Φ|Π̆)|Λ̆�

.

By ΠA ∩ parent(Σ�(Λ̆)) = ∅, we conclude that

�f |Λ̆�
= a(Ψ̆|Λ̆�

, u) = a(Ψ̆|Λ̆�
, u) =

(
q̆�� �e

)
|Λ̆�

.

From the assumptions on the collections Φ, Ψ̆, and Ψ, and their consequences on
the sparsity of the matrices p�, q�, and q̆�, one easily infers that the total cost of the
evaluations of the statements in eval is O(#Π̆+#Λ̆�+#Π+#Λ�) plus the cost of the
recursive call. Using #Π̆ +#Π � #Λ̆� +#Λ� and induction, we conclude the second
statement of the theorem.

Example 5.4.3. We give an example to demonstrate the action of the modified routine.
The Figure 5.7 visualises the process of marking the supports of elements involved in
the evaluation of the matrix-vector product a(ΨΛ̆,�c

�ΨΛ) with a(·, ·) := 〈·, ·〉L2(Ω) and
n ∈ Z+, Ω = [0, 1], Ψ being the one dimensional Haar wavelets (see Sect. 5.2.1)
serving as a basis for L2(Ω), and Λ̆ and Λ two given sets of wavelet indices. The Haar
wavelets are preferred for convenience of presentation because of their non-overlapping
supports.
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Figure 5.7: A visualisation of supports of wavelets in Ψ̆|Λ̆ and Ψ|Λ, and the sets Π�,
Π̆�, for � = 0, · · · , 5, as produced by the application of eval in the case explained in
Example 5.4.3.

In the upper left and bottom right picture of Figure 5.7, the supports of wavelets
with indices in Λ̆ and Λ, respectively, are represented with black-and-white stripes,
and arranged in layers corresponding to different levels of the two trees. The center
of each wavelet support is pointed with an ’×’.

In the upper right and bottom left picture, with single black lines we mark the
intervals included in Π� and Π̆�, respectively, i.e. the sets Π and Π̆ in the arguments of
the �th recursive call of eval. Moreover, with a point ’•’ we draw the two ends of each
interval. Finally, we indicate in red line shading the intervals included in (ΠB)� ⊂ Π�

or (Π̆B)� ⊂ Π̆�.
A sequence of recursive calls of eval produces a single-scale representation of �c�ΨΛ

w.r.t. Pd(T (Λ)), by constructing appropriately the sets Π�, and applying accordingly
the single- to multi-scale transformations q� and the prolongation operators p�. Dur-
ing these calls, eval also creates Π̆�, an essential step for the efficient evaluation of
the L2-products between scaling functions. Note that Π̆6 = ∅, thus, the last recursive
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call is for � = 6. In order to compute 〈Ψ̆|Λ̆5
,�c�Ψ|Λ〉L2(Ω), we only have to com-

pute 〈Φ|(Π̆A)5
, (�d|Φ|Π5

)�Φ|Π5〉L2(Ω) for scaling functions supported on (Π̆A)5, i.e. in-
tervals in Π̆5 with no red shading (thus, the set Π̆5 itself), and subsequently apply
the single- to multi-scale transformation q̆�5 to the last result. Counting backwards in
�, for � = 4 we have (Π̆A)4 = Π̆4, therefore we calculate 〈Ψ̆|Λ̆4

,�c�Ψ|Λ〉L2(Ω) similarly.
Then for � = 3, we have 〈Ψ̆|Λ̆3

,�c�Ψ|Λ〉L2(Ω) = q̆�3 (〈Φ|(Π̆A)3
, (�d|Φ|Π3

)�Φ|Π3
〉L2(Ω) +

(p̆�3 〈Φ|Π̆4
, (�d|Φ|Π4

)�Φ|Π4
〉L2(Ω))|Φ|(Π̆B)3

), hence, there is no need to compute

〈Φ|(Π̆B)3
, �d�Φ|Π3〉L2(Ω). The calculation of 〈Ψ̆|Λ̆,�c�Ψ|Λ〉L2(Ω) is completed by repeat-

ing the last step analogously for � = 2, 1, 0.

5.4.2 A routine evalupp corresponding to a mapping between
scalar-valued functions.

In the same setting, where (v, u) ∈ span Ψ̆×spanΨ, we consider a(v, u) = a(v, u|supp v)
to be local and bilinear. To prepare for the application of tensor product operators,
we consider a splitting of the matrix A = [a(ψ̆λ, ψµ)](λ,µ)∈∨̆×∨ into an upper and
lower triangular part. We set U = [a(ψ̆λ, ψµ)]|λ|≤|µ|, L = [a(ψ̆λ, ψµ)]|λ|>|µ| such that
A = L+ U .

The next algorithm evalupp performs the application of U to a vector, with the
entries of both the input and output vector corresponding to a tree structured index
set, driven by the same principles underlying the routine eval.

[�e, �f ] := evalupp(a)(�, Π̆, Λ̆,Π,Λ, �d,�c)

% Input: � ∈ N, Π̆,Π ⊂ T�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
% �d = (dT )T∈Π ⊂ Rn (n as in (5.4.1)), �c = (cλ)λ∈Λ ⊂ R.
% Output: With u := �d�Φ|Π + �c�Ψ|Λ,
% �e = a(Φ|Π̆, u), �f = U |Λ̆×Λ�c.

if Π̆ �= ∅ then
Π̆B := Σ�(Λ) ∩ Π̆, Π̆A := Π̆ \ Π̆B

Π̆ := child(Π̆B) ∪ Σ�(Λ̆)
Π := Σ�(Λ)

�d = �d|Π := q��c|Λ�

[�e, �f ] := evalupp(a)(�+ 1, Π̆, Λ̆�+1↑,Π,Λ�+1↑, �d,�c|Λ�+1↑)

�e =

[
�e|Π̆A

�e|Π̆B

]
:=

[
a(Φ|Π̆A

, �d�Φ|Π)
a(Φ|Π̆B

, �d�Φ|Π) + (p�� �e)|Π̆B

]
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�f =

[
�f |Λ̆�

�f |Λ̆�+1↑

]
:=

[
(q̆�� �e)|Λ̆�

�f

]

endif

Remark 5.4.4. If, for some trees Λ, Λ̆, and �c ∈ �2(Λ), one seeks U |Λ̆×Λ�c, then with

�d := q0c|Λ0 , [�e, �f ] := evalupp(a)(1, T0, Λ̆1↑, T0,Λ1↑, �d,�c|Λ1↑),

(and u := �d�Φ|Π + �c|�Λ1↑
Ψ|Λ1↑), it holds that

U |Λ̆×Λ�c
(
=

[
a(Ψ̆|Λ̆0

, u)

U |Λ̆1↑×Λ1↑
�c|Λ1↑

])
=

[
(q̆�0 �e)|Λ̆0

�f

]
.

Theorem 5.4.5. A call of evalupp yields the output as specified, at the cost of
O(#Π̆ + #Λ̆ +#Π+#Λ) operations.

Proof. By its definition, #Π̆ � #Σ�(Λ̆) + #Π̆B � #Λ̆� + #Λ�. So after sufficiently
many steps, the current set Π̆ will be empty. For use later, we note that #Π �
#Λ� +#ΠB � #Λ� +#Λ̆� +#Π̆B � #Λ� +#Λ̆�.

For Π̆ = ∅, the call produces nothing, which is correct because Π̆ = ∅ implies Λ̆ = ∅.
Now let Π̆ �= ∅. From Π̆A ∩ parent(Σ�(Λ)) = ∅, Λ being a tree, Σ(Λ) being an

element tree, and a being local, one has

�e|Π̆A
= a(Φ|Π̆A

, u) = a(Φ|Π̆A
, �d�Φ|Π).

The definition of �d together with the property that Π ⊃ Σ�(Λ) show that

u := �d
�
Φ|Π + �c|�Λ�+1↑

Ψ|Λ�+1↑ = �c�Ψ|Λ = u− �d�Φ|Π.

By the property of Λ̆ and Λ being trees and Σ(Λ̆), Σ(Λ) being element trees, we have
Π̆ ⊃ parent(Σ�+1(Λ̆)) and Π ⊃ parent(Σ�+1(Λ)) needed for the recursive call. By in-
duction, this call yields �e = a(Φ|Π̆, u) and �f = U |Λ̆�+1↑×Λ�+1↑

�cΛ�+1↑ = (U |Λ̆×Λ�c)|Λ̆�+1↑
=

�f |Λ̆�+1↑
.

From child(Π̆B) ⊂ Π̆, we have

Φ|Π̆B
= (p�� Φ|Π̆)|Π̆B

.

We conclude that

�e|Π̆B
= a(Φ|Π̆B

, u) = a(Φ|Π̆B
, u) + a(Φ|Π̆B

, �d�Φ|Π) =
(
p�� �e

)
|Π̆B

+ a(Φ|Π̆B
, �d�Φ|Π).

From Σ�(Λ̆) ⊂ Π̆, we have

Ψ̆|Λ̆�
= (q̆�� Φ|Π̆)|Λ̆�

.
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We conclude that

�f |Λ̆�
= a(Ψ̆|Λ̆�

,�c�Ψ|Λ) = a(Ψ̆|Λ̆�
, u) =

(
q̆�� �e

)
|Λ̆�

.

From the assumptions on the collections Φ, Ψ̆, and Ψ, and their consequences on
the sparsity of the matrices p�, q�, and q̆�, one easily infers that the total cost of the
evaluations of the statements in evalupp is O(#Π̆ +#Λ̆� +#Π+#Λ�) plus the cost
of the recursive call. Using #Π̆ + #Π � #Λ̆� +#Λ� and induction, we conclude the
second statement of the theorem.

5.4.3 A routine evallow corresponding to a mapping between
scalar-valued functions.

What remains to be reported is a routine for the application of the lower triangular
part L = [a(ψ̆λ, ψµ)]|λ|>|µ| as defined in the previous section.

The algorithm evallow reads as follows.

�f := evallow(a)(�, Λ̆,Π,Λ, �d,�c)

% Input: � ∈ N, Π ⊂ T�−1, �-trees Λ̆ ⊂ ∨̆�↑ and Λ ⊂ ∨�↑,
% �d = (dT )T∈Π ⊂ Rn (n as in (5.4.1)), �c = (cλ)λ∈Λ ⊂ R.
% Output: �f = a(Ψ̆|Λ̆,Φ|Π)�d+ L|Λ̆×Λ�c.

if Λ̆ �= ∅ then
ΠB := Σ�(Λ̆)) ∩Π
Π := child(ΠB) ∪ Σ�(Λ)

�e := a(Φ|child(ΠB),Φ|child(ΠB))p� �d|ΠB

�d := p� �d|ΠB
+ q��c|Λ�

�f =

[
�f |Λ̆�

�f |Λ̆�+1↑

]
:=

[
(q̆�� �e)|Λ̆�

evallow(a)(�+ 1, Λ̆�+1↑,Π,Λ�+1↑, �d,�c|Λ�+1↑)

]

endif

Remark 5.4.6. If, for some trees Λ, Λ̆, and �c ∈ �2(Λ), one seeks L|Λ̆×Λ�c, then with

�d := q0c|Λ0
, L|Λ̆×Λ�c = L|Λ̆1↑×Λ�c = evallow(a)(1, Λ̆1↑, T0,Λ1↑, �d,�c|Λ1↑).

Theorem 5.4.7. A call of evallow yields the output as specified, at the cost of
O(#Λ̆ + #Π+#Λ) operations.

Proof. For use later, we note that #Π � #Λ� + #ΠB � #Λ� + #Λ̆� + #Π̆B �
#Λ� +#Λ̆�.

For Λ̆ = ∅, the call produces nothing.
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Let Λ̆ �= ∅ and Π �= ∅. The recursive call is allowed by Π ⊃ Σ�(Λ) ⊃
parent(Σ�+1(Λ)), by Λ being a tree and Σ(Λ) being an element tree, and produces

�f |Λ̆�
= a(Ψ̆Λ̆�

,Φ|Π)�d = a(Ψ̆Λ̆�
,Φ|Π)�d|ΠB

= (q̆�� a(Φ|child(ΠB),Φchild(ΠB))p� �d|ΠB
)|Λ̆�

= (q̆�� �e)|Λ̆�

Using that Λ̆ is a tree,

f |Λ̆�+1↑
= a(Ψ̆|Λ̆�+1↑

,Φ|Π)�d+ L|Λ̆�+1↑×Λ�
�c|Λ�

+ L|Λ̆�+1↑×Λ�+1↑
�c|Λ�+1↑

= a(Ψ̆|Λ̆�+1↑
,Φ|Π)�d|ΠB

+ a(Ψ̆|Λ̆�+1↑
,Ψ|Λ�

)�c|Λ�
+ L|Λ̆�+1↑×Λ�+1↑

�c|Λ�+1↑

= a(Ψ̆|Λ̆�+1↑
,Φ|Π)�d+ L|Λ̆�+1↑×Λ�+1↑

�c|Λ�+1↑

= evallow(a)(�+ 1, Λ̆�+1↑,Π,Λ�+1↑, �d,�c|Λ�+1↑)

by induction.
By the assumptions on the collections Φ, Ψ̆, and Ψ, and their consequences on

the sparsity of the matrices p�, q�, and q̆�, one easily infers that the total cost of the
evaluations of the statements in evallow is O(#Λ̆� + #Π + #Λ�) plus the cost of
the recursive call. Using #Π � #Λ̆� + #Λ� and induction, we conclude the second
statement of the theorem.

5.4.4 The application of tensor product operators

We now consider tensor product wavelet collections

Ψ̆ := {ψ̆λ := ⊗iψ̆
(i)
λi

: λ ∈ ∨̆ :=
∏
i

∨̆i}, Ψ := {ψλ := ⊗iψ
(i)
λi

: λ ∈ ∨ :=
∏
i

∨i}.

Moreover, on span Ψ̆× spanΨ we consider the bilinear form,

a(⊗ivi,⊗iui) =
∏
i

ai(vi, ui)

with ai(·, ·) being local, bilinear forms so that the bi-infinite wavelet matrix represen-
tation of the associated tensor product operator is,

a(Ψ̆,Ψ) = ⊗iAi.

where Ai = ai(ψ̆i, ψi) and ψ̆i = {ψ̆(i)
λ : λ ∈ ∨̆i}, ψi = {ψ(i)

λ : λ ∈ ∨i}. A splitting of Ai

into Li + Ui is considered, where Ui := [(Ai)λ,µ]|λ|≤|µ|, Li := [(Ai)λ,µ]|λ|>|µ|, and will
reveal its use in Corollary 5.4.9.

For a subset � of a double index set �, let I�� denote the extension operator with
zeros of a vector supported on � to one on �, and with R�

� its (formal) adjoint, being
the restriction operator of a vector supported on � to one on �. Since the set � will
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always be clear from the context, we will refer to these operators simply by I� and
R�.

Then, focusing on the case i = 2, and for double-trees Λ̆,Λ ⊂ � the challenge lies
in the application of the following matrix in optimal complexity

a(Ψ̆|Λ̆,Ψ|Λ) = RΛ̆(A1 ⊗A2)IΛ.

If Λ̆,Λ correspond to full grid index sets, meaning they consist of all wavelets up
to some level �̆, � respectively, then it is easy to conclude that the product can be
achieved in O(#Λ̆+#Λ) operations [KS14].

Let us consider the case where Λ̆ = Λ = {λ ∈ � : maxi |λi| ≤ �}, i.e., Λ̆,Λ being
sparse grid index sets. Splitting the application of the tensor product operator into
unidirectional operations as

RΛ(A1 ⊗ Id)IΛ̃RΛ̃(Id⊗A2)IΛ (5.4.2)

one realises that the intermediate set Λ̃ can not be smaller than the full grid index
set, meaning that #Λ̃ �� #Λ. Hence, the operator given by (5.4.2) can not be applied
in optimal complexity.

Next we present an algorithm introduced in [KS14] that for double-trees Λ̆,Λ, so
in particular for sparse grid index sets, performs the matrix-vector application with
matrix a(Ψ̆|Λ̆,Ψ|Λ) in linear complexity. Following an idea introduced in [BZ96], the
key is to split A1 into a lower and an upper triangular matrix, and, for one of the two
resulting terms, to reverse the order of the tensor product operations.

In [KS14], the optimal evaluation of a(Ψ̆|Λ̆,Ψ|Λ) was generalised to the case that
Λ̆,Λ are index sets with a multi-tree structure. The following theorem describes
the fast evaluation scheme restricted to double-trees, therefore for completeness, we
include a proof with a sequence of conclusions.

Theorem 5.4.8. Let Λ̆ ⊂ ∨̆1 × ∨̆2, Λ ⊂ ∨1 × ∨2 be finite double-trees. Then

Σ :=
⋃

λ∈P1Λ

{λ} ×
{
Λ̆2,µ : µ ∈ P1Λ̆, |µ| = |λ|+ 1, |S(ψ̆(1)

µ ) ∩ S(ψ(1)
λ )| > 0

}
,

Θ :=
⋃

λ∈P2Λ

{µ ∈ P1Λ̆ : ∃γ ∈ Λ1,λ s.t. |γ| = |µ|, |S(ψ̆(1)
µ ) ∩ S(ψ(1)

γ )| > 0} × {λ},

are double-trees with #Σ � #Λ̆ and #Θ � #Λ, and

RΛ̆(A1 ⊗A2)IΛ =RΛ̆(L1 ⊗ Id)IΣRΣ(Id⊗A2)IΛ+

RΛ̆(Id⊗A2)IΘRΘ(U1 ⊗ Id)IΛ.
(5.4.3)

Before we give the proof of this theorem we discuss its implications. The application
of RΛ̆(L1⊗ Id)IΣ boils down to the application of RΛ̆1,µ

L1IΣ1,µ
for all µ ∈ P2Σ. Each

of these applications can be performed in O(#Λ̆1,µ + #Σ1,µ) operations by means
of a call of evallow(a1). Since ∪µ∈P2Σ#Σ1,µ = #Σ and ∪µ∈P2Σ#Λ̆1,µ ≤ #Λ̆, we
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conclude that the application of RΛ̆(L1 ⊗ Id)IΣ can be performed in O(#Λ̆ + #Σ)
operations.

Similarly, the applications of RΣ(Id⊗A2)IΛ, RΛ̆(Id⊗A2)IΘ, and RΘ(U1⊗Id)IΛ by
means of calls of eval(a2), eval(a2), and evalupp(a1), respectively, can be performed
in O(#Σ+#Λ), O(#Λ̆+#Θ), and O(#Θ+#Λ) operations.

From #Σ � #Λ̆ and #Θ � #Λ, and the expression of RΛ̆(A1 ⊗ A2)IΛ given by
the right hand side of (5.4.3), we conclude the following:

Corollary 5.4.9. Let Λ̆ ⊂ ∨̆1×∨̆2, Λ ⊂ ∨1×∨2 be finite double-trees, then RΛ̆(A1⊗
A2)IΛ can be applied in O(#Λ̆+#Λ) operations.

Proof of Thm. 5.4.8. We write

RΛ̆(A1 ⊗A2)IΛ =RΛ̆((L1 + U1)⊗A2)IΛ

=RΛ̆(L1 ⊗ Id)(Id⊗A2)IΛ+ (5.4.4)
RΛ̆(Id⊗A2)(U1 ⊗ Id)IΛ. (5.4.5)

Considering (5.4.4), the range of (Id⊗A2)IΛ consists of vectors whose entries with
first index outside P1Λ are zero. In view of the subsequent application of L1 ⊗ I,
furthermore only those indices (λ, γ) ∈ P1Λ × ∨̆2 of these vectors might be relevant
for which ∃(µ, γ) ∈ Λ̆ with |µ| > |λ| and |S(ψ̆(1)

µ )∩S(ψ(1)
λ )| > 0. Note that |S(ψ̆(1)

µ )∩
S(ψ(1)

λ )| = 0 implies | supp ψ̆(1)
µ ∩ suppψ

(1)
λ | = 0, and so a1(ψ̆

(1)
µ , ψ

(1)
λ ) = 0. If for given

(λ, γ) such a pair (µ, γ) exists for |µ| > |λ|, then such a pair exists for |µ| = |λ|+ 1 as
well, because Λ̆1,γ is a tree, and S(ψ̆(1)

µ′ ) ⊃ S(ψ̆(1)
µ ) for any ancestor µ′ of µ. In other

words, the condition |µ| > |λ| can be read as |µ| = |λ| + 1. The set of (λ, γ) that we
just described is given by the set Σ, and so we infer that

RΛ̆(L1 ⊗ Id)(Id⊗A2)IΛ = RΛ̆(L1 ⊗ Id)IΣRΣ(Id⊗A2)IΛ.

Now let (λ, γ) ∈ Σ. Using that P1Λ is a tree, and S(ψ(1)
λ ) ⊂ S(ψ(1)

λ′ ) for any
ancestor λ′ of λ, we infer that (λ′, γ) ∈ Σ. Using that for any µ ∈ P1Λ̆, Λ̆2,µ is a tree,
we infer that for any ancestor γ′ of γ, (λ, γ′) ∈ Σ, so that Σ is a double-tree.

For any µ ∈ ∨̆1, the number of λ ∈ ∨1 with |µ| = |λ|+1 and |S(ψ̆(1)
µ )∩S(ψ(1)

λ )| > 0

is uniformly bounded, from which we infer that #Σ �
∑

µ∈P1Λ̆
#Λ̆2,µ = #Λ̆.

Considering (5.4.5), the range of (U1⊗ Id)IΛ consists of vectors that can only have
non-zero entries for indices (µ, λ) ∈ ∨̆1 × P2Λ for which there exists a γ ∈ Λ1,λ with
|γ| ≥ |µ| and |S(ψ̆(1)

µ ) ∩ S(ψ(1)
γ )| > 0. Since Λ1,λ is a tree, and S(ψ(1)

γ′ ) ⊃ S(ψ(1)
γ ) for

any ancestor γ′ of γ, equivalently |γ| ≥ |µ| can be read as |γ| = |µ|. Furthermore, in
view of the subsequent application of RΛ̆(Id⊗A2), it suffices to consider those indices
(µ, λ) with µ ∈ P1Λ̆. The set of (µ, λ) that we just described is given by the set Θ,
and so we infer that

RΛ̆(Id⊗A2)(U1 ⊗ Id)IΛ = RΛ̆(Id⊗A2)IΘRΘ(U1 ⊗ Id)IΛ.
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Now let (µ, λ) ∈ Θ. If λ′ is an ancestor of λ, then from Λ2,γ being a tree for any
γ ∈ P1Λ, we have (µ, λ′) ∈ Θ. If µ′ is an ancestor of µ, then from P1Λ̆ being a tree,
and S(ψ̆(1)

µ′ ) ⊃ S(ψ̆(1)
µ ), we infer that (µ′, λ) ∈ Θ, and thus that Θ is a double-tree.

For any γ ∈ ∨1, the number of µ ∈ ∨̆1 with |µ| = |γ| and |S(ψ̆(1)
µ ) ∩ S(ψ(1)

γ )| > 0
is uniformly bounded, from which we infer that #Θ �

∑
λ∈P2Λ

#Λ1,λ = #Λ.

5.5 Data structures

In order to achieve optimal computational complexity, it is required to choose ap-
propriate data structures to host the data involved in calculations. Basic actions as
lookups, addition and deletion of data entries is often expected to be performed in
O(1) operations. This can be achieved by the so-called hashtables. To distribute and
control efficiently data information in a hashtable, special functions need to be found
in order to map data to the desired position. This is achieved by a suitable indexing
and a hash function.

In other circumstances, a level-wise ordering of the wavelets is needed to enable
probing through a list within a given level, or through consecutive ones, in O(#N)
operations, with N being the number of cells in the list. A level-wise ordered structure
is obtained by an array of linked lists. In addition, a similar structure may be used to
accommodate double-trees.

5.5.1 Hashtables and hash functions

Thinking, briefly, of finding a solution u ∈ X of a well-posed linear operator equation
A : X → Y ′ and with right hand side f ∈ Y ′, when X,Y are equipped with Riesz
wavelet bases the equation Au = f can be transformed in a well conditioned discrete �2-
problem. In this case the solution is identified by an �2-vector with wavelet coefficients.

A way to store vectors produced by wavelet discretisations when one needs to add,
delete and search for an entry in O(1) operations is using a hashtable. A hashtable
is made by allocating a finite array of memory slots and using a hash function h :
N0 → N0. The latter maps a natural number called the key, such as a wavelet index,
to an index corresponding to an array slot. When more than one entries hash to
the same position in the array, these could still be added and reached by creating a
chain (also called a linked list, see next Sect. 5.5.2) under the hashed position. This is
called a collision, a case whose occurrence we would like to control as much as possible
in our effort to distribute the keys evenly in the table. In consequence, a desired
hash function is the one that minimises collisions so that the complexity of the main
operations is maintained of O(1), i.e., the number of collisions under a slot is bounded
by a reasonably small constant.

Given an array (1, . . . , P − 1) where P is a prime number, a simple hash function
that maps any λ ∈ N0 to an array slot is

λ �→ λ mod P. (5.5.1)
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Assuming a consecutive numbering of the adaptively generated wavelets starting from
0, if the size of the table is large enough, that is P is equal to or greater than the total
number of wavelets #N then (5.5.1) is an injective mapping and one achieves a perfect
hashing. If #N > P , the selection of P being prime provides a better distribution
of the keys in the array buckets. In fact, for #N = nP with n ∈ N and an array of
nP −1 buckets, it is easily deduced that the number of collisions in each bucket would
be exactly n.

In practice though, we use a level-by-level numbering of the infinite wavelet col-
lection and use these indices as the keys to be hashed to the table. Although far
from the ideal case we described before, numerical experiments did not reveal an in-
tolerable performance and taking into account its simplicity and low computational
cost the function in (5.5.1) was the hash function of choice. In the case of tensor-
product wavelet approximation though, where one needs to hash pairs of indices, a
more sophisticated hash function is used which we describe in Sect. 5.5.4.

5.5.2 Level-wise linked lists

When a level-wise ordering is required, there is no need for a hashing technique. The
range of the allocated array now indicates levels of wavelets or partitions etc. As a
consequence, an entry finds its place by direct hashing, meaning a simple correspon-
dence to a level. The cells of a linked list then are pair-wise connected with pointers
pointing to the memory address of the next one. The pointer of the last cell in each
list, namely the tail, is fused by pointing to NULL.

The main instance in our applications when arrays of linked-lists find their use is
for storing information about element trees, such as successive triangulations. In this
case, we wish to scroll through a complete set of elements and therefore looking for
an O(#elements) complexity. Unlike sequential search, insertion of a new entry in a
single level’s linked list is done by replacing the head of the list and shifting the chain
downwards which counts to O(1) time. Deleting individual entries is not preferred,
thus, deleting linked lists as a whole realises O(#elements) computational time.

5.5.3 The double tree structure

The application of tensor product operators raises the need for storing double trees.
In particular, fixing a wavelet index, in either direction, we would like to recover the
tree in the other one. Furthermore, for any fixed index µ we wish to store trees of the
form

Λi,µ := Pi(P¬i|Λ)−1{µ}

in the spirit of Definition 5.3.14.
For i ∈ {1, 2} we assign a consecutive natural number to each element of PiΛ during

the construction of the set and so create an index collection K = {0, . . . ,#PiΛ− 1}.
Then ∀µ ∈ P¬iΛ, the sets Pi(P¬i|Λ)−1{µ} are stored in an array of linked lists with
exact length being #P¬iΛ. The double-tree structure is depicted in Figure 5.8 when
N = #P¬iΛ.
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Figure 5.8: (i) For N = P it corresponds to the hashtable with chaining. (ii) In case
the array counts for levels of a tree, with N = max{�, � denoting levels} + 1 it reads
as an array of linked-lists (with direct hashing). (iii) The figure shows the double-tree
structure when N = #P¬iΛ.

5.5.4 On numbering tensor-product wavelets

Ideally, in order to minimise collisions, before hashing, the wavelets are numbered in
the order they are generated. This ordering is however unknown due to the adaptive
wavelet generation, so let us assume an ordering as if the solution would be infinitely
smooth.

In the tensor case, any wavelet is the tensor product of a temporal wavelet and a
spatial one. Let us number both the temporal wavelets and the spatial wavelets level-
by-level (starting from the coarsest one), and on each level in an arbitrarily chosen
order (a natural one would be lexicographical).

Now a tensor product wavelet is indexed by a pair (λ1, λ2) ∈ N2
0, where λ1 is the

number of the temporal wavelet, and λ2 is the number of the spatial wavelet.
For smooth functions, wavelets with indices (λ1, λ2) will be generated before (λ′

1, λ
′
2)

whenever |�λ|1 < |�λ′|1. In view of this property, what would be a suitable numbering,
i.e., a mapping h2 : N2

0 → N0, is one that satisfies h2(�λ) < h2(�λ
′) whenever |�λ|1 < |�λ′|1.

Instead of 2-tuples, let us consider n-tuples. Define

N(n, i) := #{λ ∈ Nn
0 : |�λ|1 = i}.

Then
i∑

j=0

N(n, j) =

i∑
j=0

N(n, i− j) = N(n+ 1, i)

and also

N(n, i) =

(
i+ n− 1

n− 1

)
.
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With h1(λ) := λ, for n > 1 we define

hn(�λ) :=

{
0 �λ = 0(|�λ|1−1+n

n

)
+ hn−1(λ1, . . . , λn−1) �λ �= 0

Note for n = 2,

h2(0, 0) = 0, h2(0, 1) = 1, h2(1, 0) = 2, h2(0, 2) = 3, h2(1, 1) = 4, h2(2, 0) = 5.

To prevent overflow, i.e., the creation of numerical values exceeding the range of the
hosting integer data class, we use that

((λ1 + λ2 + 1

2

)
+ λ1

)
modP =

(((λ1 + λ2 + 1)mod(2P )

2

)
+ λ1

)
modP =

(((λ1mod(2P ) + λ2mod(2P ) + 1)

2

)
+ λ1mod(2P )

)
modP

meaning that we never generate the number (λ1 + λ2 +1)(λ1 + λ2), or even not λ1 or
λ2.

5.6 An implementation of the elliptic case

The definitions, data structures and algorithms presented until this point are employed
to compose an adaptive wavelet solver, based on the awgm algorithm in Sect. 2.3,
and applied to the stationary PDE reformulated as a first order least squares problem
described in Sect. 2.5.1. This solver produced the numerical results shown in Sect. 2.6.
Here we give an overview of the main components and demonstrate custom routines
for an efficient implementation of the newly developed residual evaluation scheme.

5.6.1 The elliptic semi-linear problem

Recall the semi-linear elliptic PDE (2.6.1) with Dirichlet boundary conditions on the
L-shaped domain Ω = (0, 1)2 \ [ 12 , 1)

2,
{

−∆u+ u3 = f on Ω,
u = 0 on ∂Ω,

(5.6.1)

where, for simplicity, f = 1.

5.6.2 Spaces configuration

After the reformulation of (5.6.1) in Sect. 2.5.1 as a first order system least squares
problem, a sequence of choices are made to equip the corresponding function spaces
with Riesz wavelet bases.
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5.6. An implementation of the elliptic case

The space U = H1
0 (Ω) is equipped with the continuous piecewise quadratic

wavelets, constructed in Chapter 3 and visualised in Sect. 5.2.5, appropriately scaled
for being a basis for H1

0 (Ω). Then, V = V1 = H1
0 (Ω) is equipped with continuous

piecewise linear three-point hierarchical wavelets with zero boundary conditions, as
found in Sect. 5.2.4, scaled accordingly for being a basis for H1

0 (Ω). Finally, both
components of T = L2(Ω) × L2(Ω) are equipped with continuous piecewise linear
three-point hierarchical wavelets without boundary conditions, with a suitable scaling
for being a basis for L2(Ω).

5.6.3 Approximate Residual Scheme

At step (R) the awgm produces a finite residual approximation (cf. Sect. 2.3). Elab-
orating this, starting with an approximate solution the residual is approximated on
a sufficiently larger approximation space which then provides an a posteriori error
indicator. The procedure is described below.

For given trees
ΛU ⊂ ∨U , ΛT1 ⊂ ∨T1 , ΛT2 ⊂ ∨T2 ,

and approximations

ũ ∈ �2(Λ
U ), θ̃1 ∈ �2(Λ

T1), θ̃2 ∈ �2(Λ
T2).

one has to compute a sufficiently accurate approximation to

DQ([ũ�,θ̃�]�)=




〈∂1ΨU , ∂1ũ− θ̃1〉L2(Ω) + 〈∂2ΨU , ∂2ũ− θ̃2〉L2(Ω)

〈ΨT1 , θ̃1 − ∂1ũ〉L2(Ω)

〈ΨT2 , θ̃2 − ∂2ũ〉L2(Ω)






〈ΨU , DN(ũ)ΨV 〉L2(Ω)

〈ΨT1 , ∂1Ψ
V 〉L2(Ω)

〈ΨT2 , ∂2Ψ
V 〉L2(Ω)


〈ΨV1 , N(ũ)−f−div

�̃
θ
〉
L2(Ω)

,

with the nonlinear term being N(ũ) = ũ3 and thus DN(ũ) = 3ũ2.
The accuracy of this approximation depends on the size of the final and interme-

diate output sets on which each of the three main parts of DQ is evaluated. For the
purpose of these evaluations, we set the following enlarged wavelet trees as

Λ̄∗ := Λ∗(Σ(ΛU )⊕ Σ(ΛT1)⊕ Σ(ΛT2), k),

with ∗ ∈ {U ,V ,T1,T2}, as well as

¯̄Λ∗ := Λ∗(Σ(Λ̄V ), k),

with ∗ ∈ {U ,T1,T2}. Recall that such sets have been defined in (5.3.12) as well as a
sequence of steps to construct them is discussed in Sect. 5.3.3.
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As implied in the previous paragraph, we compute the approximate residual by
splitting it to three steps. First, in the routine called eval1 we perform the computation
of 



[
〈∂1ΨU , ∂1ũ− θ̃1〉L2(Ω) + 〈∂2ΨU , ∂2ũ− θ̃2〉L2(Ω)

] ∣∣∣
Λ̄U

〈ΨT1 , θ̃1 − ∂1ũ〉L2(Ω)|Λ̄T1

〈ΨT2 , θ̃2 − ∂2ũ〉L2(Ω)|Λ̄T2


 , (5.6.2)

followed by
ṽ :=

〈
ΨV1 , N(ũ)−f−div

�̃
θ
〉
L2(Ω)

|Λ̄V (5.6.3)

in eval2, and then, with ṽ := ṽ�ΨV , eval3 gives


〈ΨU , DN(ũ)ṽ〉L2(Ω)| ¯̄ΛU

〈ΨT1 , ∂1ṽ〉L2(Ω)| ¯̄ΛT1

〈ΨT2 , ∂2ṽ〉L2(Ω)| ¯̄ΛT2


 . (5.6.4)

The sum r̃ of the vectors produced in (5.6.2) and (5.6.4), which is supported on the
union of trees ¯̄ΛU , ¯̄ΛT1 , and ¯̄ΛT2 , is now the sufficiently accurate approximation of
the residual. The routines eval1, eval2, eval3 are given in Sect. 5.6.6.

5.6.4 Bulk chasing

As indicated in the second step (B) of the awgm algorithm in Sect. 2.3, we deter-
mine an admissible set of wavelets whose span gives the next approximation space.
After having computed the approximate residual r̃, its entries are used to guide the
refinement of the previous approximation space. This procedure is known as bulk
chasing.

In particular, one orders the entries of r̃ by their modulus or, as we do in practice,
apply an approximate bucket sort (details in [Ste09]). Subsequently, we collect the
largest in modulus in a set Σ such that, for some fixed parameter θ ∈ (0, 1), ‖r̃|Σ‖ ≥
θ‖r̃‖ holds. The latter condition is called the bulk criterion. Writing Σ = ΣU ∪ΣT1 ∪
ΣT2 , each of the three components are generally no trees, and should be expanded to
trees that contain ΛU , ΛT1 , or ΛT2 , respectively.

An algorithm TreeIt that completes sets to trees after bulk chasing is considered
below for Σ∗, where ∗ ∈ {U ,T1,T2}:

[Λ∗] := TreeIt(Σ∗,Λ∗)
% Input: tree Λ∗, unconstrained set Σ∗ with Σ∗ ∩ Λ∗ = ∅
% Output: smallest tree Λ∗ that includes both Σ∗ and the original tree Λ∗

while Σ∗ �= ∅ do
extract λ ∈ Σ∗

if λ �∈ Λ∗ then
Λ∗ := λ ∪ Λ∗

if |λ| > 0 then
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Σ∗ := parent(λ) ∪ Σ∗

endif
endif
Σ∗ := Σ∗ \ λ

endwhile

Remark 5.6.1. Note that this routine overwrites the original Λ∗ by a tree, being the
next Λ∗, which contains Σ∗ ∪ Λ∗.

5.6.5 Galerkin solve

The approximation of the solution to the arising Galerkin systems, in the third step
(G) of the awgm, is achieved by an (inexact) fixed point iteration as given in (2.3.2).
The, generally nonlinear, operator evaluations on subspaces are given by replacing
the sets Λ̄U , Λ̄T1 , Λ̄T2 in (5.6.2), and ¯̄ΛU , ¯̄ΛT1 , ¯̄ΛT2 in (5.6.4), by ΛU , ΛT1 , ΛT2 in
both instances. A near optimal value of the damping parameter ω for the fixed point
iteration was determined experimentally by a bisection strategy.

5.6.6 The routines eval1, eval2, and eval3

Based on the principles of eval presented in Sect. 5.4.1, we designed three algorithms
each of them computing one of the aforementioned pieces of the approximate residual.
They incorporate multiple simultaneous multi- to single-scale wavelet transformations
and their adjoints to perform several evaluations of L2-products, as dictated by each
of the three parts of DQ respectively. All the algorithms are recursive in their coarsest
level and they are shown numerically to have optimal computational complexity.

The first algorithm eval1, computing the quantity given in (5.6.2), is exhibited
below.

[�eU , �fU , �eT1 , �fT1 , �eT2 , �fT2 ] :=eval1(�, Π̆U , Λ̆U , Π̆T1 , Λ̆T1 , Π̆T2 , Λ̆T2 ,ΠU ,ΛU ,

ΠT1 ,ΛT1 ,ΠT2 ,ΛT2 , �dU ,�cU , �dT1 ,�cT1 , �dT2 ,�cT2)

% Input: � ∈ N, Π̆U , Π̆T1 , Π̆T2 ,ΠU ,ΠT1 ,ΠT2 ⊂ T�−1,
% �-trees Λ̆U ,ΛU ⊂ ∨U

�↑ , Λ̆T1 ,ΛT1 , Λ̆T2 ,ΛT2 ⊂ ∨T
�↑ ,

% % �dU = (dU
λ )λ∈ΠU ⊂ R6, �cU = (cU

λ )λ∈ΛU ⊂ R.
% �dT1 = (dT1

λ )λ∈ΠT1 ⊂ R6, �cT1 = (cT1

λ )λ∈ΛT1 ⊂ R.
% �dT2 = (dT2

λ )λ∈ΠT2 ⊂ R6, �cT2 = (cT2

λ )λ∈ΛT2 ⊂ R.
% Output: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ,
% θ̃1 := (�dT1)�Φ|ΠT1 + (�cT1)�ΨT |ΛT1 ,
% θ̃2 := (�dT2)�Φ|ΠT2 + (�cT2)�ΨT |ΛT2 ,
% �eU = 〈∇Φ|Π̆U ,∇ũ〉L2(Ω)2 −

∑2
i=1〈∂iΦ|Π̆U , θ̃i〉L2(Ω),

% �fU = 〈∇ΨU |Λ̆U ,∇ũ〉L2(Ω)2 −
∑2

i=1〈∂iΨU |Λ̆U , θ̃i〉L2(Ω),
% �eT1 = 〈Φ|Π̆T1 , θ̃1 − ∂1ũ〉L2(Ω),
% �fT1 = 〈ΨT |Λ̆T1 , θ̃1 − ∂1ũ〉L2(Ω),
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% �eT2 = 〈Φ|Π̆T2 , θ̃2 − ∂2ũ〉L2(Ω),
% �fT2 = 〈ΨT |Λ̆T2 , θ̃2 − ∂2ũ〉L2(Ω)

if Π̆U ∪ Π̆T1 ∪ Π̆T2 �= ∅ and ΠU ∪ΠT1 ∪ΠT2 �= ∅ then
Ğ := Σ�(Λ

U ) ∪ Σ�(Λ
T1) ∪ Σ�(Λ

T2),
Π̆U

B := Ğ ∩ Π̆U , Π̆U
A := Π̆U \ Π̆U

B

Π̆T1

B := Ğ ∩ Π̆T1 , Π̆U
A := Π̆T1 \ Π̆T1

B

Π̆T2

B := Ğ ∩ Π̆T2 , Π̆U
A := Π̆T2 \ Π̆T2

B

G := Σ�(Λ̆
U ) ∪ Σ�(Λ̆

T1) ∪ Σ�(Λ̆
T2) ∪ Π̆U

B ∪ Π̆T1

B ∪ Π̆T2

B ,
ΠU

B := G ∩ΠU , ΠU
A := ΠU \ΠU

B

ΠT1

B := G ∩ΠT1 , ΠU
A := ΠT1 \ΠT1

B

ΠT2

B := G ∩ΠT2 , ΠU
A := ΠT2 \ΠT2

B

Π̆
U

:= child(Π̆U
B ) ∪ Σ�(Λ̆

U )

Π̆
T1

:= child(Π̆T1

B ) ∪ Σ�(Λ̆
T1)

Π̆
T2

:= child(Π̆T2

B ) ∪ Σ�(Λ̆
T2)

ΠU := child(ΠU
B ) ∪ Σ�(Λ

U )

ΠT1 := child(ΠT1

B ) ∪ Σ�(Λ
T1)

ΠT2 := child(ΠT2

B ) ∪ Σ�(Λ
T2)

�d
U

:= p� �d
U |ΠU

B
+ qU

� �cU |ΛU
�

�d
T1

:= p� �d
T1 |

Π
T1
B

+ qT
� �cT1 |

Λ
T1
�

�d
T2

:= p� �d
T2 |

Π
T2
B

+ qT
� �cT2 |

Λ
T2
�

[�eU , �f
U
, �eT1 , �f

T1

, �eT2 , �f
T2

] :=eval1(�+ 1, Π̆
U
, Λ̆U

�+1↑, Π̆
T1

, Λ̆T1

�+1↑, Π̆
T2

, Λ̆T2

�+1↑,

ΠU ,ΛU
�+1↑,Π

T1 ,ΛT1

�+1↑,Π
T2 ,ΛT2

�+1↑,
�d
U
,�cU |ΛU

�+1↑
, �d

T1

,�cT1 |
Λ

T1
�+1↑

, �d
T2

,�cT2 |
Λ

T2
�+1↑

)

�eU =

[
�eU |Π̆U

A

�eU |Π̆U
B

]
:=

[
〈∇Φ|Π̆U

A
,∇Φ|ΠU 〉L2(Ω)2

�dU −
∑2

i=1〈∂iΦ|Π̆U
A
,Φ|ΠTi 〉L2(Ω)

�dTi

(p�� �e
U )|Π̆U

B

]

�fU =

[
�fU |Λ̆U

�

�fU |Λ̆U
�+1↑

]
:=

[
(qU

� )��eU )|Λ̆U
�

�f
U

]

�eT1 =

[
�eT1 |

Π̆
T1
A

�eT1 |
Π̆

T1
B

]
:=

[
〈Φ|

Π̆
T1
A

,Φ|ΠT1 〉L2(Ω)
�dT1 − 〈Φ|

Π̆
T1
A

, ∂1Φ|ΠU 〉L2(Ω)
�dU

(p�� �e
T1)|

Π̆
T1
B

]

�fT1 =



�fT1 |

Λ̆
T1
�

�fT1 |
Λ̆

T1
�+1↑


 :=

[
(qT

� )��eT1)|
Λ̆

T1
�

�f
T1

]
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�eT2 =

[
�eT2 |

Π̆
T2
A

�eT2 |
Π̆

T2
B

]
:=

[
〈Φ|

Π̆
T2
A

,Φ|ΠT2 〉L2(Ω)
�dT2 − 〈Φ|

Π̆
T2
A

, ∂2Φ|ΠU 〉L2(Ω)
�dU

(p�� �e
T2)|

Π̆
T2
B

]

�fT2 =




�fT2 |
Λ̆

T2
�

�fT2 |
Λ̆

T2
�+1↑


 :=

[
(qT

� )��eT2)|
Λ̆

T2
�

�f
T2

]

endif

The next algorithm eval2 which calculates the part in (5.6.3) is as follows.

[�e, �f ] :=eval2(�, Π̆V , Λ̆V ,ΠU ,ΛU ,ΠT1 ,ΛT1 ,ΠT2 ,ΛT2 , �dU ,�cU , �dT1 ,�cT1 , �dT2 ,�cT2)

% Input: f ∈ L2(Ω), � ∈ N, Π̆V ,ΠU ,ΠT1 ,ΠT2 ⊂ T�−1,
% �-trees Λ̆V ⊂ ∨V

�↑,Λ
U ⊂ ∨U

�↑ , ΛT1 ,ΛT2 ⊂ ∨T
�↑ ,

% �dU = (dU
λ )λ∈ΠU ⊂ R6, �cU = (cU

λ )λ∈ΛU ⊂ R.
% �dT1 = (dT1

λ )λ∈ΠT1 ⊂ R6, �cT1 = (cT1

λ )λ∈ΛT1 ⊂ R.
% �dT2 = (dT2

λ )λ∈ΠT2 ⊂ R6, �cT2 = (cT2

λ )λ∈ΛT2 ⊂ R.
% Output: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ,
% θ̃1 := (�dT1)�Φ|ΠT1 + (�cT1)�ΨT |ΛT1 ,
% θ̃2 := (�dT2)�Φ|ΠT2 + (�cT2)�ΨT |ΛT2 ,
% �eV = 〈Φ|Π̆V , N(ũ)− f −

∑2
i=1 ∂iθ̃i〉L2(Ω),

% �fV = 〈ΨV |Λ̆V , N(ũ)− f −
∑2

i=1 ∂iθ̃i〉L2(Ω).

if Π̆V �= ∅ then
Ğ := Σ�(Λ

U ) ∪ Σ�(Λ
T1) ∪ Σ�(Λ

T2),
Π̆V

B := Π̆V ∩ Ğ, Π̆V
A := Π̆V \ Π̆V

B

G := Σ�(Λ̆
V ) ∪ Π̆V

B ,
ΠU

B := ΠU ∩G, ΠU
A := ΠU \ΠU

B

ΠT1

B := ΠT1 ∩G, ΠT1

A := ΠT1 \ΠT1

B

ΠT2

B := ΠT2 ∩G, ΠT2

A := ΠT2 \ΠT2

B

Π̆
V

:= child(Π̆V
B ) ∪ Σ�(Λ̆

V )

ΠU := child(ΠU
B ) ∪ Σ�(Λ

U )

ΠT1 := child(ΠT1

B ) ∪ Σ�(Λ
T1)

ΠT2 := child(ΠT2

B ) ∪ Σ�(Λ
T2)

�d
U

:=
(
p� �d

U |ΠU
B

+ qU
� �cU |ΛU

�

)
|ΠU

�d
T1

:=
(
p� �d

T1 |
Π

T1
B

+ qT
� �cT1 |

Λ
T1
�

)
|ΠT1

�d
T2

:=
(
p� �d

T2 |
Π

T2
B

+ qT
� �cT2 |

Λ
T2
�

)
|ΠT2
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[�eV , �f
V
] :=eval2(�+ 1, Π̆

V
,Λ̆V

�+1↑,Π
U ,ΛU

�+1↑,Π
T1 ,ΛT1

�+1↑,Π
T2 ,ΛT2

�+1↑,
�d
U
,�cU |ΛU

�+1↑
, �d

T1

,�cT1 |
Λ

T1
�+1↑

, �d
T2

,�cT2 |
Λ

T2
�+1↑

)

�eV =

[
�eV |Π̆V

A

�eV |Π̆V
B

]
:=



[〈
ΦT , N((dU

T )�ΦT )− f |T −
∑2

i=1(d
Ti

T )�∂iΦT

〉
L2(T )

]
T∈Π̆V

A

(p�� �e
V )|Π̆V

B




�fV =

[
�fV |Λ̆V

�

�fV |Λ̆V
�+1↑

]
:=

[
(qV

� )��eV )|Λ̆V
�

�f
V

]

endif

The series of algorithms is completed by eval3 that computes the third part of
the residual as given in (5.6.4).

[�eU , �fU , �eT1 , �fT1 , �eT2 , �fT2 ] :=eval3(�, Π̆U , Λ̆U , Π̆T1 , Λ̆T1 ,Π̆T2 , Λ̆T2 ,ΠU ,ΛU ,
ΠV ,ΛV , �dU ,�cU , �dV ,�cV )

% Input: � ∈ N, Π̆U , Π̆T1 , Π̆T2 ,ΠU ,ΠV ⊂ T�−1,
% �-trees Λ̆U ,ΛU ⊂ ∨U

�↑ , Λ̆T1 , Λ̆T2 ⊂ ∨T
�↑ , Λ

V ⊂ ∨V
�↑

% �dU = (dU
λ )λ∈ΠU ⊂ R6, �cU = (cU

λ )λ∈ΛU ⊂ R.
% �dV = (dV

λ )λ∈ΠV ⊂ R6, �cV = (cV
λ )λ∈ΛV ⊂ R.

% Output: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ,
% ṽ := (�dV )�Φ|ΠV + (�cV )�ΨV |ΛV ,
% �eU = 〈Φ|Π̆U , DN(ũ)ṽ〉L2(Ω),
% �fU = 〈ΨU |Λ̆U , DN(ũ)ṽ〉L2(Ω),
% �eT1 = 〈Φ|Π̆T1 , ∂1ṽ〉L2(Ω),
% �fT1 = 〈ΨT |Λ̆T1 , ∂1ṽ〉L2(Ω),
% �eT2 = 〈Φ|Π̆T2 , ∂2ṽ〉L2(Ω),
% �fT2 = 〈ΨT |Λ̆T2 , ∂2ṽ〉L2(Ω)

if Π̆U ∪ Π̆T1 ∪ Π̆T2 �= ∅ and ΠU ∪ΠV �= ∅ then
Ğ := Σ�(Λ

U ) ∪ Σ�(Λ
V ),

Π̆U
B := Π̆U ∩ Ğ, Π̆U

A := Π̆U \ Π̆U
B

Π̆T1

B := Π̆T1 ∩ Ğ, Π̆T1

A := Π̆T1 \ Π̆T1

B

Π̆T2

B := Π̆T2 ∩ Ğ, Π̆T2

A := Π̆T2 \ Π̆T2

B

G := Σ�(Λ̆
U ) ∪ Σ�(Λ̆

T1) ∪ Σ�(Λ̆
T2) ∪ Π̆U

B ∪ Π̆T1

B ∪ Π̆T2

B ,
ΠU

B := ΠU ∩G, ΠU
A := ΠU \ΠU

B

ΠV
B := ΠV ∩G, ΠV

A := ΠV \ΠV
B

Π̆
U

:= child(Π̆U
B ) ∪ Σ�(Λ̆

U )

Π̆
T1

:= child(Π̆T1

B ) ∪ Σ�(Λ̆
T1)

Π̆
T2

:= child(Π̆T2

B ) ∪ Σ�(Λ̆
T2)
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ΠU := child(ΠU
B ) ∪ Σ�(Λ

U )

ΠV := child(ΠV
B ) ∪ Σ�(Λ

V )

�d
U

:=
(
p� �d

U |ΠU
B

+ qU
� �cU |ΛU

�

)
|ΠU

�d
V

:=
(
p� �d

V |ΠV
B
+ qV

� �c
V |ΛV

�

)
|ΠV

[�eU , �f
U
, �eT1 , �f

T1

, �eT2 , �f
T2

] :=eval3(�+ 1, Π̆
U
, Λ̆U

�+1↑, Π̆
T1

, Λ̆T1

�+1↑, Π̆
T2

, Λ̆T2

�+1↑,

ΠU ,ΛU
�+1↑,Π

V ,ΛV
�+1↑,

�d
U
,�cU |ΛU

�+1↑
, �d

V
,�cV |ΛV

�+1↑
)

�eU =

[
�eU |Π̆U

A

�eU |Π̆U
B

]
:=



[〈
ΦT , DN((dU

T )�ΦT )(d
V
T )�ΦT

〉
L2(T )

]
T∈Π̆U

A

(p�� �e
U )|Π̆U

B




�fU =

[
�fU |Λ̆U

�

�fU |Λ̆U
�+1↑

]
:=

[
(qU

� )��eU )|Λ̆U
�

�f
U

]

�eT1 =

[
�eT1 |

Π̆
T1
A

�eT1 |
Π̆

T1
B

]
:=

[
〈Φ|

Π̆
T1
A

, ∂1Φ|ΠV 〉L2(Ω)
�dV

(p�� �e
T1)|

Π̆
T1
B

]

�fT1 =



�fT1 |

Λ̆
T1
�

�fT1 |
Λ̆

T1
�+1↑


 :=

[
(qT

� )��eT1)|
Λ̆

T1
�

�f
T1

]

�eT2 =

[
�eT2 |

Π̆
T2
A

�eT2 |
Π̆

T2
B

]
:=

[
〈Φ|

Π̆
T2
A

, ∂2Φ|ΠV 〉L2(Ω)
�dV

(p�� �e
T2)|

Π̆
T2
B

]

�fT2 =




�fT2 |
Λ̆

T2
�

�fT2 |
Λ̆

T2
�+1↑


 :=

[
(qT

� )��eT2)|
Λ̆

T2
�

�f
T2

]

endif

5.6.7 A possible implementation of eval1, eval2, and eval3

At this point we propose a possible implementation by using pseudocode to interpret
the algorithms eval1, eval2, and eval3 in a structured body of commands oriented,
but not bounded, to an implementation in the C programming language. We first give
some information that apply to all the algorithms implemented.

To begin with, we consider an initial triangulation of the L-shaped domain Ω
and store it in a linked list of data cells (see Figure 5.8) at level 0. Gradually, any
new triangulation is added in a linked list in subsequent slots. The level of any
triangulation agrees with the level of a wavelet with respect to which the latter are
piecewise polynomials of their specified degree (cf. Remark 5.3.6). For instance, a
triangulation on level �, contains triangles of mesh size h = 2−�−1 and relates to the
support of quadratic wavelets on the same level. On the other hand, the coarsest level
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5. On the awgm implementation

of piecewise linear wavelets is level 1 since no linear scaling functions appear on the
initial triangulation in view of the Dirichlet boundary conditions.

Data cells in triangulations contain information about the position of triangles in
Ω. A stable way to store the position of a triangle T is the following: we keep record of
the vertices �w1, �w2, �w3 of its ancestor in the initial triangulation by storing a pointer
ancestor pointing to a place where these positions are stored. For each vertex �vi of T
we find the barycentric coordinates (σ

(i)
1 , σ

(i)
2 , σ

(i)
3 ) of �vi w.r.t. (�w1, �w2, �w3), meaning

that �vi =
∑3

j=1 σ
(i)
j �wj . These barycentric coordinates are of the form �m(i)h, being

in our case �m(i)2−�−1, where � is the level of T , and �m(i) ∈ N3
0. The vector of �m(i)’s

is then placed in a record, erasing any potential rounding error. Additionally, if you
split a triangle into 4, their barycentric coordinates w.r.t. (�w1, �w2, �w3) read as

(2�m(1), �m(1) + �m(2), �m(1) + �m(3))2−�−1

(�m(1) + �m(2), 2�m(2), �m(2) + �m(3))2−�−1

(�m(1) + �m(2), �m(2) + �m(3), 2�m(3))2−�−1

(�m(1) + �m(2), �m(2) + �m(3), �m(1) + �m(3))2−�−1.

Triangulations are made of Lagrange triangular elements of at most order two and
they form the support for the single-scale representation of any relevant function. For
a more convenient implementation we take discontinuous scaling functions. For T ∈ T,
ΦT will denote the nodal basis of P2(T ), Φ := (ΦT )T∈T, and Φ� := (ΦT ){T∈T : |T |=�}.
Coefficients corresponding to scaling functions in such a representation are stored in
vectors at each triangle T , with the length of these vectors being equal to the dimension
of P2(T ), given by (5.4.1), and counts to 6.

Wavelets on the lowest level � = 0 are usually called scaling functions. To avoid
confusion with the aforementioned discontinuous scaling functions, from now on we
abandon this terminology and call also the wavelets on the lowest level ‘wavelets’.

At last, as described in Sect. 5.5.1, all coefficient vectors w.r.t. wavelet bases are
stored in hash-tables using the hash function defined in (5.5.1).

5.6.7.1 An implementation of eval1

Recall that the expression of the approximate residual includes several instances of
L2-products. Any object which corresponds to the left argument of the product is
denoted with a ‘˘’ on top of its notation and any right one is left plain.

To accommodate transitions to single scale representation of the involved functions
at both sides, we create sets of triangles associated to the left or right arguments under
the notations Π̆ or Π, respectively. We store Π∪Π̆ as a set U of triangles, implemented
as a linked list.

Remark 5.6.2. It would be easier to implement two separate collections Π and Π̆. In
view of the definition of ΠB however, which involves the intersection Π∩ Π̆B , we need
the possibility to check whether a triangle is in a set, in O(1) operations. To be able
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to do this without having to store Π and Π̆ in hash tables, we benefit from the use of
boolean flags indicating membership of a triangle in different sets.

Then a triangle T is a record with data:
• booleans inΠ̆U , inΠ̆T1 , inΠ̆T2 ; inΠU , inΠT1 , inΠT2 ; inΠ̆U

B , inΠ̆T1

B , inΠ̆T2

B ;
inΠU

B , inΠT1

B , inΠT2

B

• the position of the triangle

• �dU , �dT1 , �dT2 , �eU , �eT1 , �eT2 ∈ R6 1.

• set of 4 pointers children
At initialisation of any triangle, we set the booleans as false, and the vectors as

zero (or do the latter only when the vectors are generated). Moreover, we initialise in
the hash tables �fU , �fT1 , �fT2 as �0.

Then, a call of eval1 performs as follows.

eval1(�, U, Λ̆U , Λ̆T1 , Λ̆T2 ,ΛU ,ΛT1 ,ΛT2)
% Input: � ∈ N, U ⊂ T�−1 is a set of triangles (records).
% For T ∈ U , if T.inΠ∗=true, then T ∈ Π∗, and T.�d∗ = d∗T ∈ R6,
% if T.inΠ̆∗=true, then T ∈ Π̆∗ (∗ ∈ {U ,T1,T2}).
% Λ̆∗,Λ∗ ⊂ ∨∗ are trees stored as hash-tables but only their parts in ∨∗

�↑ are touched.
% Λ∗ ∩ ∨∗

�↑ contains �c∗.
% At termination: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ∩∨U

�↑
,

% θ̃1 := (�dT1)�Φ|ΠT1 + (�cT1)�ΨT |ΛT1∩∨T
�↑

,
% θ̃2 := (�dT2)�Φ|ΠT2 + (�cT2)�ΨT |ΛT2∩∨T

�↑
,

% �eU := 〈∇Φ,∇ũ〉L2(Ω)2 −
∑2

i=1〈∂iΦ, θ̃i〉L2(Ω),
% �fU := 〈∇ΨU ,∇ũ〉L2(Ω)2 −

∑2
i=1〈∂iΨU , θ̃i〉L2(Ω),

% �eT1 := 〈Φ, θ̃1 − ∂1ũ〉L2(Ω),
% �fT1 := 〈ΨT , θ̃1 − ∂1ũ〉L2(Ω),
% �eT2 := 〈Φ, θ̃2 − ∂2ũ〉L2(Ω),
% �fT2 := 〈ΨT , θ̃2 − ∂2ũ〉L2(Ω),
% for T.inΠ̆∗=true it will hold that T.�e∗ = �e∗|T ,
% and Λ̆∗ ∩ ∨∗

�↑ will contain �f∗|Λ̆∗∩∨∗
�↑

.

Run over the T ∈ U until you have found at least one T with T.inΠ̆∗=true
for some ∗ ∈ {U ,T1,T2}, and one T ′ (possibly T = T ′) with T ′.inΠ∗=true
for some ∗ ∈ {U ,T1,T2}. If you don’t succeed, then stop because
apparently ΠU ∪ΠT1 ∪ΠT2 or Π̆U ∪ Π̆T1 ∪ Π̆T2 is empty.

for T ∈ U do
for ∗ ∈ {U ,T1,T2} do

for λ ∈ Λ∗
� with |T ∩ S(ψ∗

λ)| > 0 do % i.e. T ∈ parent(Σ�(Λ
∗))

1or include only pointers to such vectors, and create them only when T.inΠU , T.inΠT1 , or
T.inΠT2 is true, or when T.inΠ̆U , T.inΠ̆T1 , or T.inΠ̆T2 respectively is true
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for T ′ ∈ child(T ) do
if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ∗:=true
if |T ′ ∩ S(ψ∗

λ)| > 0 % i.e. T ′ ∈ Σ�(Λ
∗)

then T ′.�d∗ := T ′.�d∗ + (q∗��c
∗
λ)|T ′

endif
endfor
boolean beenset:=false
for + ∈ {U ,T1,T2} do

if T.inΠ̆+

then T.inΠ̆+
B :=true, beenset:=true

endif
endfor
if beenset then % T ∈ Π̆U

B ∪ Π̆T1

B ∪ Π̆T2

B

for + ∈ {U ,T1,T2} do
if T.inΠ+

then T.inΠ+
B :=true

endif
endfor

endif
endfor

endfor

% ∀∗ ∈ {U ,T1,T2}, Π̆∗
B ∩ T has been set,

% Π∗ ∩ child(T ) = Σ�(Λ
∗) ∩ child(T ),

% Π∗
B = Π∗ ∩ (Π̆U ∪ Π̆T1 ∪ Π̆T2) ∩ T ,

% and �d
∗
|child(T )∩Σ�(Λ∗) = (q∗��c

∗|Λ∗
�
)|child(T )∩Σ�(Λ∗).

for ∗ ∈ {U ,T1,T2} do
for λ ∈ Λ̆∗

� with |T ∩ S(ψ̆∗
λ)| > 0 do % i.e. T ∈ parent(Σ�(Λ̆

∗))
for T ′ ∈ child(T ) do

if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆∗:=true

endfor
for + ∈ {U ,T1,T2} do

if T.inΠ+

then T.inΠ+
B :=true
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endif
endfor

endfor
endfor

% ∀∗ ∈ {U ,T1,T2}, Π∗
B ∩ T has been set,

% and Π̆
∗
∩ child(T ) = Σ�(Λ̆

∗) ∩ child(T ).

for ∗ ∈ {U ,T1,T2} do
if T.inΠ̆∗

B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆∗:=true

endfor
endif

endfor

% ∀∗ ∈ {U ,T1,T2}, Π̆
∗
∩ child(T ) has been set

for ∗ ∈ {U ,T1,T2} do
if T.inΠ∗

B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ∗:=true
T ′.�d∗ := T ′.�d∗ + (p�T.�d

∗)|T ′

endfor
endif

endfor

% ∀∗ ∈ {U ,T1,T2}, Π∗ ∩ children(T ) and �d
∗
|child(T ) have been set.

endfor % end of the loop over T ∈ U

eval1(�+ 1, U, Λ̆U , Λ̆T1 , Λ̆T2 ,ΛU ,ΛT1 ,ΛT2)

for T ∈ U with T.inΠ̆U = true do
if T.inΠ̆U

B
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then T.�eU :=
∑

T ′∈{T.children} p
�
� T

′.�eU

else if T.inΠU

then T.�eU := 〈∇ΦT ,∇ΦT 〉L2(T )2T.�d
U

endif
if T.inΠT1

then T.�eU := T.�eU − 〈∂1ΦT ,ΦT 〉L2(T )T.�d
T1

endif
if T.inΠT2

then T.�eU := T.�eU − 〈∂2ΦT ,ΦT 〉L2(T )T.�d
T2

endif
endif
for λ ∈ Λ̆U

� with |T ∩ S(ψU
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆U =true do
fU
λ := fU

λ + (qU
� )�T ′.�eU

endfor
endfor

endfor

for T ∈ U with T.inΠ̆T1 = true do
if T.inΠ̆T1

B

then T.�eT1 :=
∑

T ′∈{T.children} p
�
� T

′.�eT1

else if T.inΠT1

then T.�eT1 := 〈ΦT ,ΦT 〉L2(T )T.�d
T1

endif
if T.inΠU

then T.�eT1 := T.�eT1 − 〈ΦT , ∂1ΦT 〉L2(T )T.�d
U

endif
endif
for λ ∈ Λ̆T1

� with |T ∩ S(ψT
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆T1=true do
fT1

λ := fT1

λ + (qT
� )�T ′.�eT1

endfor
endfor

endfor

for T ∈ U with T.inΠ̆T2 = true do
if T.inΠ̆T2

B

then T.�eT2 :=
∑

T ′∈{T.children} p
�
� T

′.�eT2

else if T.inΠT2

then T.�eT2 := 〈ΦT ,ΦT 〉L2(T )T.�d
T2

endif
if T.inΠU
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then T.�eT2 := T.�eT2 − 〈ΦT , ∂2ΦT 〉L2(T )T.�d
U

endif
endif
for λ ∈ Λ̆T2

� with |T ∩ S(ψT
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆T2=true do
fT2

λ := fT2

λ + (qT
� )�T ′.�eT2

endfor
endfor

endfor

After the execution, the set U can be deleted.

5.6.7.2 An implementation of eval2

The next implementation to consider is that of eval2 where the main patterns of our
practice will be identical. Again, a triangle set U contains Π̆ ∪ Π and it is used in a
similar fashion as in eval1.

The contents of a triangle T are adapted to the current needs and the record
consists of:

• booleans inΠ̆; inΠU , inΠT1 , inΠT2 ; inΠ̆B ; inΠU
B , inΠT1

B , inΠT2

B

• the position of the triangle

• �dU , �dT1 , �dT2 , �eV ∈ R6 2

• set of 4 pointers children
At initialisation of any triangle, we set the booleans as false, and the vectors

as zero (or the latter is done only when the vectors are generated). In addition we
initialise in the hash tables �fV as �0.

A call of eval2 is executed in the following manner.

eval2(�, U, Λ̆V ,ΛU ,ΛT1 ,ΛT2)
% Input: � ∈ N, U ⊂ T�−1 is a set of triangles (records).
% For T ∈ U , if T.inΠ∗=true, then T ∈ Π∗, and T.�d∗ = d∗T ∈ R6 (∗ ∈ {U ,T1,T2}),
% if T.inΠ̆V =true, then T ∈ Π̆V

% Λ̆V ⊂ ∨V ,Λ∗ ⊂ ∨∗ are trees stored as hash-tables
% but only their parts in ∨V

�↑, ∨∗
�↑ are touched.

% Λ∗ ∩ ∨∗
�↑ contains �c∗.

% At termination: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ∩∨U
�↑

,
% θ̃1 := (�dT1)�Φ|ΠT1 + (�cT1)�ΨT |ΛT1∩∨T

�↑
,

% θ̃2 := (�dT2)�Φ|ΠT2 + (�cT2)�ΨT |ΛT2∩∨T
�↑

,
% �eV := 〈Φ, N(ũ)− f −

∑2
i=1 ∂iθ̃i〉L2(Ω),

2or include only pointers to such vectors, and create then only when T.inΠU , T.inΠT1 , or
T.inΠT2 , respectively, is true, or, when T.inΠ̆V is true
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% �fV := 〈ΨV , N(ũ)− f −
∑2

i=1 ∂iθ̃i〉L2(Ω).
% for T.inΠ̆V =true it will hold that T.�eV = �eV |T ,
% and Λ̆V ∩ ∨V

�↑ will contain �fV |Λ̆V ∩∨V
�↑

.

Run over the T ∈ U until you have found at least one T with T.inΠ̆V =true.
If you don’t succeed, then stop because apparently Π̆V is empty.

for T ∈ U do
for ∗ ∈ {U ,T1,T2} do

for λ ∈ Λ∗
� with |T ∩ S(ψ∗

λ)| > 0 do % i.e. T ∈ parent(Σ�(Λ
∗))

for T ′ ∈ child(T ) do
if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ∗:=true
if |T ′ ∩ S(ψ∗

λ)| > 0 % i.e. T ′ ∈ Σ�(Λ
∗)

then T ′.�d∗ := T ′.�d∗ + (q∗��c
∗
λ)|T ′

endif
endfor
if T.inΠ̆V

then T.inΠ̆V
B :=true

for + ∈ {U ,T1,T2} do
if T.inΠ+

then T.inΠ+
B :=true

endif
endfor

endif
endfor

endfor

% Π̆V
B ∩ T has been set; ∀∗ ∈ {U ,T1,T2},

% Π∗ ∩ child(T ) = Σ�(Λ
∗) ∩ child(T ),

% Π∗
B = Π∗ ∩ Π̆V ∩ T , and �d

∗
|child(T )∩Σ�(Λ∗) = (q∗��c

∗|Λ∗
�
)|child(T )∩Σ�(Λ∗).

for λ ∈ Λ̆V
� with |T ∩ S(ψ̆V

λ )| > 0 do % i.e. T ∈ parent(Σ�(Λ̆
V ))

for T ′ ∈ child(T ) do % i.e. T ′ ∈ Σ�(Λ̆
V )

if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆V :=true

endfor
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for ∗ ∈ {U ,T1,T2} do
if T.inΠ∗

then T.inΠ∗
B :=true

endif
endfor

endfor

% ∀∗ ∈ {U ,T1,T2}, Π∗
B ∩ T has been set,

% and Π̆
V
∩ child(T ) = Σ�(Λ̆

V ) ∩ child(T ).

if T.inΠ̆V
B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆V :=true

endfor
endif

% Π̆
V
∩ child(T ) has been set

for ∗ ∈ {U ,T1,T2} do
if T.inΠ∗

B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ∗:=true
T ′.�d∗ := T ′.�d∗ + (p�T.�d

∗)|T ′

endfor
endif

endfor

% ∀∗ ∈ {U ,T1,T2}, Π∗ ∩ child(T ) and �d
∗
|child(T ) have been set.

endfor % end of the loop over T ∈ U

eval2(�+ 1, U, Λ̆V ,ΛU ,ΛT1 ,ΛT2)

for T ∈ U with T.inΠ̆V = true do
if T.inΠ̆V

B
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then T.�eV :=
∑

T ′∈{T.children} p
�
� T

′.�eV

else T.�eV := −〈ΦT , f〉L2(T ) % this f is the rhs (so not �fV )
if T.inΠU

then T.�eV := T.�eV + 〈ΦT , N((T.�dU )�ΦT )〉L2(T )

endif
if T.inΠT1

then T.�eV := T.�eV − 〈ΦT , ∂1ΦT 〉L2(T )T.�d
T1

endif
if T.inΠT2

then T.�eV := T.�eV − 〈ΦT , ∂2ΦT 〉L2(T )T.�d
T2

endif
endif
for λ ∈ Λ̆V

� with |T ∩ S(ψV
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆V =true do
fV
λ := fV

λ + (qV
� )�T ′.�eV

endfor
endfor

endfor

Similarly, U is of no use at this end and can be released from memory.

Remark 5.6.3. After having performed the multi- to single-scale transformations to
the term

〈
ΨV1 , N(ũ)− f − div

�̃
θ
〉
L2(Ω)

, one has to compute

〈ΦT , N((T.�dU )�ΦT )− f + T.�dT1∂1ΦT + T.�dT2∂2ΦT 〉L2(T ).

This product could either be calculated term-by-term or as a whole. After testing both
approaches with no sign of numerical instability, we chose the first option for reasons of
speed. The products 〈ΦT , ∂iΦT 〉L2(Ω) are 6× 6 matrices which are simply given as an
input. The term 〈ΦT , N((T.�dU )�ΦT )〉L2(T ) is viewed as the integral of a polynomial of
degree 8 which we calculate exactly using a 16-point rule found in [ZCL09]. Regarding
the term 〈ΦT , f〉L2(T ), when f = 1, it is precomputed and inserted compactly in a
coefficient vector. To test our code, different polynomial right hand sides were used
which, however, did not exceed degree 6. Thus, the same integration rule was used to
calculate the resulting integrals.

5.6.7.3 An implementation of eval3

The last routine receives as an input the result of eval2, namely the vector �fV and
the strategy that is applied is similar. In this case, a triangle T is a record with the
following information:

• booleans inΠ̆U , inΠ̆T1 , inΠ̆T2 ; inΠU , inΠV ; inΠ̆U
B , inΠ̆T1

B , inΠ̆T2

B ; inΠU
B ,

inΠV
B ,
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• the position of the triangle

• �dU , �dV , �eU , �eT1 , �eT2 ∈ R6 3

• set of 4 pointers children

At initialisation of any triangle, we set the booleans as false, and the vectors as
zero (or the latter is done only when the vectors are generated). In the hash tables
the coefficient vectors �fU , �fT1 , �fT2 are initialised as �0.

The body of eval3 is organised and executed according to the pseudocode given
below.

eval3(�, U, Λ̆U , Λ̆T1 , Λ̆T2 ,ΛU ,ΛV )
% Input: � ∈ N, U ⊂ T�−1 is a set of triangles (records).
% For T ∈ U , if T.inΠ+=true, then T ∈ Π+, and T.�d+ = �d+T ∈ R6 (+ ∈ {U ,V }),
% if T.inΠ̆∗=true, then T ∈ Π̆∗ (∗ ∈ {U ,T1,T2}).
% Λ̆∗,Λ+ ⊂ ∨+ are trees stored as hash-tables
% but only their parts in ∨∗

�↑, ∨
+
�↑ are touched.

% Λ+ ∩ ∨+
�↑ contains �c+.

% At termination: With ũ := (�dU )�Φ|ΠU + (�cU )�ΨU |ΛU ∩∨U
�↑

,
% ṽ1 := (�dV )�Φ|ΠV + (�cV )�ΨV |ΛV ∩∨V

�↑
,

% �eU := 〈Φ, DN(ũ)ṽ〉L2(Ω),
% �fU := 〈ΨU , DN(ũ)ṽ〉L2(Ω),
% �eT1 := 〈Φ, ∂1ṽ〉L2(Ω),
% �fT1 := 〈ΨT , ∂1ṽ〉L2(Ω),
% �eT2 := 〈Φ, ∂2ṽ〉L2(Ω),
% �fT2 := 〈ΨT , ∂2ṽ〉L2(Ω)

% for T.inΠ̆∗=true it will hold that T.�e∗ = �e∗|T ,
% and Λ̆∗ ∩ ∨∗

�↑ will contain �f∗|Λ̆∗∩∨∗
�↑

.

Run over the T ∈ U until you have found at least one T with T.inΠ̆∗=true
for some ∗ ∈ {U ,T1,T2}, and one T ′ (possibly T = T ′) with T ′.inΠ+=true
for some + ∈ {U ,V }. If you don’t succeed, then stop because
apparently ΠU ∪ΠV or Π̆U ∪ Π̆T1 ∪ Π̆T2 is empty.

for T ∈ U do
for + ∈ {U ,V } do

for λ ∈ Λ+
� with |T ∩ S(ψ+

λ )| > 0 do % i.e. T ∈ parent(Σ�(Λ
+))

for T ′ ∈ child(T ) do
if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

3or include only pointers to such vectors, and create then only when T.inΠU or T.inΠV is true,
or, when T.inΠ̆U , T.inΠ̆T1 , or T.inΠ̆T2 , respectively, is true
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endif
T ′.inΠ+:=true
if |T ′ ∩ S(ψ+

λ )| > 0 % i.e. T ′ ∈ Σ�(Λ
+)

then T ′.�d+ := T ′.�d+ + (q+� �c
+
λ )|T ′

endif
endfor
boolean beenset:=false
for ∗ ∈ {U ,T1,T2} do

if T.inΠ̆∗

then T.inΠ̆∗
B :=true, beenset:=true

endif
endfor
if beenset then % T ∈ Π̆U

B ∪ Π̆T1

B ∪ Π̆T2

B

for − ∈ {U ,V } do
if T.inΠ−

then T.inΠ−
B :=true

endif
endfor

endif
endfor

endfor

% ∀∗ ∈ {U ,T1,T2}, ∀+ ∈ {U ,V }, Π̆∗
B ∩ T has been set,

% Π+ ∩ child(T ) = Σ�(Λ
+) ∩ child(T ),

% Π+
B = Π+ ∩ (Π̆U ∪ Π̆T1 ∪ Π̆T2) ∩ T ,

% and �d
+
|child(T )∩Σ�(Λ+) = (q+� �c

+|Λ+
�
)|child(T )∩Σ�(Λ+).

for ∗ ∈ {U ,T1,T2} do
for λ ∈ Λ̆∗

� with |T ∩ S(ψ̆∗
λ)| > 0 do % i.e. T ∈ parent(Σ�(Λ̆

∗))
for T ′ ∈ child(T ) do

if T ′ �∈ {T.children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆∗:=true

endfor
for + ∈ {U ,V } do

if T.inΠ+

then T.inΠ+
B :=true

endif
endfor

endfor
endfor
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% ∀+ ∈ {U ,V }, Π+
B ∩ T has been set,

% and ∀∗ ∈ {U ,T1,T2}, Π̆
∗
∩ child(T ) = Σ�(Λ̆

∗) ∩ child(T ).

for ∗ ∈ {U ,T1,T2} do
if T.inΠ̆∗

B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ̆∗:=true

endfor
endif

endfor

% ∀∗ ∈ {U ,T1,T2}, Π̆
∗
∩ child(T ) has been set

for + ∈ {U ,V } do
if T.inΠ+

B

then for T ′ ∈ child(T ) do
if T ′ �∈ {T .children}
then create T ′ ∈ U

{T.children}:={T.children} ∪ &T ′

endif
T ′.inΠ+:=true
T ′.�d+ := T ′.�d+ + (p�T.�d

+)|T ′

endfor
endif

endfor

% ∀+ ∈ {U ,V }, Π+ ∩ child(T ) and �d
+
|child(T ) have been set.

endfor % end of the loop over T ∈ U

eval3(�+ 1, U, Λ̆U , Λ̆T1 , Λ̆T2 ,ΛU ,ΛV )

for T ∈ U with T.inΠ̆U = true do
if T.inΠ̆U

B

then T.�eU :=
∑

T ′∈{T.children} p
�
� T

′.�eU

else if T.inΠU and T.inΠV

then T.�eU := 〈ΦT , DN((T.�dU )�ΦT )(T.�d
V )�ΦT 〉L2(T )
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endif
endif
for λ ∈ Λ̆U

� with |T ∩ S(ψU
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆U =true do
fU
λ := fU

λ + (qU
� )�T ′.�eU

endfor
endfor

endfor

for T ∈ U with T.inΠ̆T1 = true do
if T.inΠ̆T1

B

then T.�eT1 :=
∑

T ′∈{T.children} p
�
� T

′.�eT1

else if T.inΠV

then T.�eT1 := 〈ΦT , ∂1ΦT 〉L2(T )T.�d
V

endif
endif
for λ ∈ Λ̆T1

� with |T ∩ S(ψT
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆T1=true do
fT1

λ := fT1

λ + (qT
� )�T ′.�eT1

endfor
endfor

endfor

for T ∈ U with T.inΠ̆T2 = true do
if T.inΠ̆T2

B

then T.�eT2 :=
∑

T ′∈{T.children} p
�
� T

′.�eT2

else if T.inΠV

then T.�eT2 := 〈ΦT , ∂2ΦT 〉L2(T )T.�d
V

endif
endif
for λ ∈ Λ̆T2

� with |T ∩ S(ψT
λ )| > 0 do

for T ′ ∈ {T.children} with T ′.inΠ̆T2=true do
fT2

λ := fT2

λ + (qT
� )�T ′.�eT2

endfor
endfor

endfor

As previously, the set U can now be deleted.

Remark 5.6.4. The calculation of 〈ΦT , DN((T.�dU )�ΦT )(T.�d
V )�ΦT 〉L2(T ) is done us-

ing the 16-point, 8th degree rule reported in Remark 5.6.3.
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5.7 An implementation of the parabolic case

In Sect. 5.3 we gave the definitions of a wavelet and an element tree, and then the
definition of a multi-dimensional version of a tree, in particular a double tree. Subse-
quently, the algorithm growDbltree that constructs the k-neighborhood of a double
tree was given. Furthermore, in Sect. 5.4.4 we presented a fast-evaluation procedure
for applying tensor product operators in linear complexity. In Sect. 5.5.3 we described
a special data structure to store a double tree and in Sect. 5.5.4 we gave an efficient
way to number tensor product wavelet indices and to apply a hash function. Here,
we employ all the aforementioned parts to apply the awgm to a parabolic evolu-
tion problem. The numerical results produced by this implementation were given in
Sect. 4.5.

5.7.1 First order least squares problem

The partial differential equation considered here is the heat equation given below,
i.e. the equation (4.2.1) with A = Id and N = 0, on the L-shaped domain Ω =
(0, 1) \ [ 12 , 1)

2 and I = (0, 1)




∂u
∂t −�u = g I× Ω

u = 0 I× ∂Ω
u(0, ·) = h Ω

For our convenience we take g = 1, and we will consider three different initial condi-
tions, namely, h = 0, h = 1 and h(x, y) = 50x(x− 1)(x− 1

2 )y(y − 1)(y − 1
2 ).

Introducing the new variable �p = ∇u, a first order formulation reads as



∂u
∂t − div �p = g I× Ω
�p−∇u = 0 I× Ω

u = 0 I× ∂Ω
u(0, ·) = h Ω

Then with U := L2(I;H
1
0 (Ω)) ∩ H1(I;H−1(Ω)), T1 = T2 = L2(I;L2(Ω)), and

V := L2(I;H
1
0 (Ω)) one seeks (u, p1, p2) ∈ U × T1 × T2 that minimizes the least

squares functional

Q(u, p1, p2) :=
1
2

(∥∥v �→
∫

I

∫

Ω

(∂u
∂t

− g
)
v +

∑
i=1,2

pi∂iv dx dt
∥∥2

V ′ +
∑
i=1,2

‖pi − ∂iu‖2Ti

+ ‖u(0, ·)− h‖2L2(Ω)

)
,

by solving DQ(u, p1, p2) = 0. The details of the current formulation were given in
Sect. 4.2. A representation of DQ in wavelet coordinates follows in the next section.
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5.7.2 Representation in wavelet coordinates

Letting ΨU , ΨTi be Riesz bases for U and Ti, we write the solution to DQ(u, p1, p2) =
0 as u = u�ΨU , pi = p�

i Ψ
Ti . With ΨV being a Riesz basis for V , we replace ‖·‖V ′ by

the equivalent �2-norm of the sequence of applications of the functional to all elements
from ΨV .

Then, taking ΨTi ⊂ L2(I;H
1(Ω)), DQ(u, p1, p2) = 0 if and only if

DQ([u�, p�
1 , p

�
2 ]

�) =



〈∂Ψ
U

∂t ,ΨV 〉L2(I×Ω)

〈ΨT1 , ∂1Ψ
V 〉L2(I×Ω)

〈ΨT2 , ∂2Ψ
V 〉L2(I×Ω)


 〈ΨV ,

∂u

∂t
− g −

∑
i=1,2

∂ipi
〉
L2(I×Ω)

+



〈ΨU (0, ·), u(0, ·)− h〉L2(Ω)

0
0


+



〈−∇ΨU , �p−∇u〉L2(I×Ω)n

〈ΨT1 , p1 − ∂1u〉L2(I×Ω)

〈ΨT2 , p2 − ∂2u〉L2(I×Ω)


 = 0

(5.7.1)

We will solve equation (5.7.1) with the adaptive wavelet scheme given in Algorithm
4.3.1.

5.7.3 Tensor bases

The Riesz bases for the Bochner spaces on which we formulated the FOSLS functional,
consist of tensor product wavelets. Below we describe the composition of these tensor
product bases.

For ∗ ∈ {U ,T1,T2,V }, let

Θ∗ = {θ∗λ : λ ∈ �∗}

be collections of ‘temporal’ wavelets on I, such that

ΘT1 , ΘT2 , ΘV are Riesz bases for L2(I).

We assume that ΘU ⊂ H1
0 (I), and that

ΘU

‖ΘU ‖L2(I)
,

ΘU

‖ΘU ‖H1
0 (I)

are Riesz bases for L2(I), H
1
0 (I),

respectively. Here with ΘU /‖ΘU ‖L2(I), and similarly for other normalisations or
collections, we mean the collection {θU

λ /‖θU
λ ‖L2(I) : λ ∈ �U }.

Similarly, with ∗ ∈ {U ,T1,T2,V }, let

Σ∗ = {σ∗
µ : µ ∈ �∗}

be collections of ‘spatial’ wavelets on Ω, such that,

ΣV is a Riesz basis for H1
0 (Ω),
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ΣT1 , ΣT2 ⊂ H1(Ω) are Riesz bases for L2(Ω),

and with ΣU ⊂ H1
0 (Ω),

ΣU

‖ΣU ‖H−1(Ω)
,

ΣU

‖ΣU ‖H1
0 (Ω)

are Riesz bases for H−1(Ω), H1
0 (Ω), (5.7.2)

respectively.
Under above assumptions, we have that

ΨV := ΘV ⊗ ΣV , ΨTi := ΘTi ⊗ ΣTi , ΨU :=
ΘU ⊗ ΣU

‖ΘU ⊗ ΣU ‖U

are Riesz bases for V , Ti, and U , respectively. In addition, we have

‖θU
λ ⊗ σU

µ ‖U =
√
‖θU

λ ‖2L2(I)
‖∇σU

µ ‖2L2(Ω)n + ‖(θU
λ )′‖2L2(I)

‖σU
µ ‖2H−1(Ω)

�

√√√√‖θU
λ ‖2L2(I)

‖∇σU
µ ‖2L2(Ω)n + ‖(θU

λ )′‖2L2(I)

‖σU
µ ‖4L2(Ω)

‖∇σU
µ ‖2L2(Ω)n

=: Dλ,µ

(5.7.3)

by an application of the relation ‖σU
µ ‖2L2(Ω) � ‖σU

µ ‖H−1(Ω)‖∇σU
µ ‖L2(Ω)n (stated in

the proof of Lemma 4.4.17).
In order to obtain a Riesz basis for U , we can use the latter computable nor-

malization in (5.7.3) instead of ‖θU
λ ⊗ σU

µ ‖U . Moreover, Dλ,µ can be replaced by a
uniform equivalent quantity. For instance, if ΘU , ΨU are scaled s.t. ‖θU

λ ‖L2(I) � 1 �
‖∇σU

µ ‖L2(Ω)n , then one can take

Dλ,µ :=
√

1 + ‖(θU
λ )′‖2L2(I)

‖σU
µ ‖4L2(Ω) (5.7.4)

Thus, with D as in (5.7.3), or in (5.7.4) under specified scaling for ΘU and ΣU , we
have that

ΨU = {D−1
λ,µθ

U
λ ⊗ σU

µ : (λ, µ) ∈ �U ×�U }
is a Riesz basis for U .

As described in Sect. 4.5, we performed numerical experiments to approximate the
condition numbers of square blocks of the matrix DQ w.r.t. to subsequent wavelet sets
for approximations of u and pi produced by the application of the awgm on (5.7.1).
We tested both scalings in (5.7.3) and (5.7.4) and found nearly indistinguishable re-
sults. Therefore, in favour of a more convenient implementation and computational
performance we preferred the scaling given in (5.7.4).

5.7.4 Wavelet bases selection

At this point, we specify the wavelet bases involved in the representation of DQ, in
the spatial and the temporal dimension respectively. The tensor product wavelet bases
are then composed as described in the previous section.

Below we record the wavelet bases in use in the spatial dimension:
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5. On the awgm implementation

• For ΣU we take the continuous piecewise quadratic wavelet basis, zero at ∂Ω.
Properly scaled, it gives a Riesz basis for both H1

0 (Ω) and H−1(Ω) as required.

• For ΣTi we take the continuous piecewise linear three-point wavelet basis, without
boundary conditions, (approximately) normalized in ‖ · ‖L2(Ω).

• For ΣV we take the continuous piecewise linear three-point wavelet basis, zero
at ∂Ω, (approximately) normalized in ‖∇ · ‖L2(Ω)n .

The wavelet bases in the temporal dimension are as follows:

• For ΘU we take continuous piecewise linear wavelets without boundary condi-
tions (see Figure 5.3), (approximately) normalized in L2(I).

• For both ΘV and ΘTi we use L2(I)-orthonormal discontinuous piecewise linear
wavelets (see Figure 5.2).

5.7.5 Approximate Residual evaluation

Given double-trees ΛU ⊂ ∨U , ΛTi ⊂ ∨Ti , and approximations w ∈ �2(ΛU ), qi ∈
�2(ΛTi), the approximate evaluation of DQ([w�,q�

1 ,q
�
2 ])) at step (R) of the awgm,

is built in the following steps, where k ∈ N0 is a sufficiently large constant. With
w := w�ΨU and qi := q�

i Ψ
Ti

(t1) We approximate

r 1
2
:= 〈ΨV ,

∂w

∂t
− g −

∑
i=1,2

∂iqi
〉
L2(I×Ω)

by r̃ 1
2
:= r 1

2
|ΛV , where ΛV := ΛV (ΛU , k) ∪ΛV (ΛT1

, k) ∪ΛV (ΛT2
, k).

(t2) With r̃ 1
2
:= r̃�1

2

ΨV , we approximate

r1 :=




〈∂Ψ
U

∂t , r̃ 1
2
〉L2(I×Ω)

〈ΨT1 , ∂1r̃ 1
2
〉L2(I×Ω)

〈ΨT2 , ∂2r̃ 1
2
〉L2(I×Ω)




by r̃1 = r̃1(k) := r1|ΛU (ΛV ,k)∪ΛT1 (ΛV ,k)∪ΛT2 (ΛV ,k).

(t3) We approximate

r3 :=



〈−∇ΨU , �q −∇w〉L2(I×Ω)n

〈ΨT1 , q1 − ∂1w〉L2(I×Ω)

〈ΨT2 , q2 − ∂2w〉L2(I×Ω)




by r̃3 = r̃3(k) := r3|Λ̄, where Λ̄ is defined as

Λ̄ :=
(
ΛU (ΛU , k) ∪ΛU (ΛT1

, k) ∪ΛU (ΛT2
, k)

)
∪
(
ΛT1(ΛU , k) ∪ΛT1(ΛT1

, k)
)
∪(

ΛT2(ΛU , k) ∪ΛT2(ΛT2 , k)
)
.
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5.7. An implementation of the parabolic case

(t4) With Λ↓ := ∪{λ∈(Λ∩∨U )1 : θU
λ (0)�=0}(Λ ∩ ∨U )2(λ), we approximate

r 3
2
:=

〈
ΣU , w(0, ·)− h

〉
L2(Ω)

by r̃ 3
2
= r̃ 3

2
(k) := r 3

2
|
ΛΣU (T (Λ↓),k)

.

(t5) Finally we approximate r2 := Er̃ 3
2

by r̃2 := Ekr̃ 3
2
, where E and Ek (for k ∈ N0)

are defined on �2(�U ) by

(Ev)λ,µ := D−1
λ,µθ

U
λ (0)vµ, ((λ, µ) ∈ ∨U ),

and (Ekv)λ,µ =

{
(Ev)λ,µ when

∣∣|λ| − 2|µ|
∣∣ ≤ k,

0 otherwise.

after which the whole approximation is r̃1 + r̃2 + r̃3.
Note that, expanding each expression in steps (t1)-(t4) w.r.t. the tensor product

structure of the wavelet bases, we compute accordingly

r̃ 1
2
=RΛV

(
− 〈ΨV , g〉L2(I×Ω) + 〈ΘV ,

∂

∂t
ΘU 〉L2(I) ⊗ 〈ΣV ,ΣU 〉L2(Ω)IΛU D−1w

)
−

RΛV

( ∑
i=1,2

〈ΘV ,ΘTi〉L2(I) ⊗ 〈ΣV , ∂iΣ
Ti〉L2(Ω)IΛTi

qi

)
,

followed by

r̃1 =



D−1RΛU (ΛV ,k)〈dΘ

U

dt ,ΘV 〉L2(I) ⊗ 〈ΣU ,ΣV 〉L2(Ω)IΛV r̃ 1
2

RΛT1 (ΛV ,k)〈ΘT1 ,ΘV 〉L2(I) ⊗ 〈ΣT1 , ∂1Σ
V 〉L2(Ω)IΛV r̃ 1

2

RΛT2 (ΛV ,k)〈ΘT2 ,ΘV 〉L2(I) ⊗ 〈ΣT2 , ∂2Σ
V 〉L2(Ω)IΛV r̃ 1

2


 ,

subsequently at (t3)

r̃3 =




−D−1RΛU (ΛU ,k)∪ΛU (ΛT1
,k)∪ΛU (ΛT2

,k)

(
〈ΘU ,ΘT1〉L2(I) ⊗ 〈∂1Σ

U ,ΣT1〉L2(Ω)IΛT1
q1

+〈ΘU ,ΘT2〉L2(I) ⊗ 〈∂2Σ
U ,ΣT2〉L2(Ω)IΛT2

q2

−〈ΘU ,ΘU 〉L2(Ω)n ⊗ 〈∇ΣU ,∇ΣU 〉L2(Ω)nIΛU D−1w
)

RΛT1 (ΛU ,k)∪ΛT1 (ΛT1
,k)

(
〈ΘT1 ,ΘT1〉L2(I) ⊗ 〈ΣT1 ,ΣT1〉L2(Ω)IΛT1

q1

−〈ΘT1 ,ΘU 〉L2(I) ⊗ 〈ΣT1 , ∂1Σ
U 〉L2(Ω)IΛU D−1w

)

RΛT2 (ΛU ,k)∪ΛT2 (ΛT2
,k)

(
〈ΘT2 ,ΘT2〉L2(I) ⊗ 〈ΣT2 ,ΣT2〉L2(Ω)IΛT2

q2

−〈ΘT2 ,ΘU 〉L2(I) ⊗ 〈ΣT2 , ∂2Σ
U 〉L2(Ω)IΛU D−1w

)




,

and then in the intermediate step (t4), we have

r̃ 3
2
= R

ΛΣU (T (Λ↓),k)
〈ΣU , (IΛ↓z)

�ΣU − h〉L2(Ω)

where zµ =
∑

λ∈�U
D−1

λ,µwλµθ
U
λ (0). The output of the latter is the input for the

computation of r̃2 described on the last step (t5).
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Remark 5.7.1. For the computation of r̃1, numerical experiments showed that it is
sufficient to approximate this quantity on smaller sets, and thus one could replace

RΛU (ΛV ,k), RΛT1 (ΛV ,k), RΛT2 (ΛV ,k),

by

RΛU (ΛU ,k)∪ΛU (ΛT1 ,k)∪ΛU (ΛT2 ,k), RΛT1 (ΛU ,k)∪ΛT1 (ΛT1 ,k)∪ΛT1 (ΛT2 ,k),

RΛT2 (ΛU ,k)∪ΛT2 (ΛT1 ,k)∪ΛT2 (ΛT2 ,k),

respectively.

Each of the tensor products of matrices included in the previous steps is evaluated
according to the procedure described in Theorem 5.4.8. The intermediate sets Θ and
Σ involved in these evaluations are determined efficiently exploiting the properties
of the double tree data structure (see Sect. 5.5.3). Moreover, the enlarged double
trees specified as the input and output sets of the different parts of the residual are
determined by appropriate applications of growDbltree.

Note that with the current selection of the bases for ΘV and ΘTi , 〈ΘV ,ΘTi〉L2(I) in
r̃ 1

2
, 〈ΘTi ,ΘV 〉L2(I) in r̃1, and 〈ΘTi ,ΘTi〉L2(I) in r̃3 are identity matrices, which allows

for a much more efficient evaluation of the corresponding tensor product operations.
In this case, in (5.4.3), L1 = 0, so the first term on the right-hand side vanishes. The
second term is just RΛV (I⊗A2)IΛU . Hence, in addition there is no need to determine
the intermediate double trees Θ (not to be confused with the bases Θ∗) and Σ.

5.7.6 Bulk chasing

As in the elliptic case, at step (B) of the awgm we perform bulk chasing on the entries
of r̃. The principles of this procedure do not differ from those applied on the elliptic
case and thus we refer to Sect. 5.6.4 for details. However, for the parabolic problem
we can not prove that the new admissible set Λi+1 is optimal w.r.t. to the condition
stated in the algorithm. Nevertheless, numerical experiments validated the use of the
same procedure (for details, see the last paragraph of Sect. 4.4).

5.7.7 Galerkin solve

At step (G), we approximate the Galerkin matrices using steps (t1)-(t5) computing

• r1|ΛU ∪ΛT1
∪ΛT2

instead of r1|ΛU (ΛV ,k)∪ΛT1 (ΛV ,k)∪ΛT2 (ΛV ,k)

• r3|ΛU ∪ΛT1
∪ΛT2

instead of r3|Λ̄, with Λ̄ as defined in (t3).

• r 3
2
|Λ↓ instead of r 3

2
|
ΛΣU (T (Λ↓),k)

, and consequently r2|Λ↓

in order to retrieve an square system of equations. Subsequently, we solve the resulting
Galerkin systems by a conjugate gradient (CG) routine.

154



Bibliography

[Alp93] B.K. Alpert. A class of bases in L2 for the sparse representation of integral
operators. SIAM J. Math. Anal., 24:246–262, 1993.

[And14] R. Andreev. Space-time discretization of the heat equation. Numer. Al-
gorithms, 67(4):713–731, 2014.

[BD04] P. Binev and R. DeVore. Fast computation in adaptive tree approximation.
Numer. Math., 97(2):193 – 217, 2004.

[BG04] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269,
2004.

[BG09] P. B. Bochev and M. D. Gunzburger. Least-squares finite element methods,
volume 166 of Applied Mathematical Sciences. Springer, New York, 2009.

[BJ89] I. Babuška and T. Janik. The h-p version of the finite element method
for parabolic equations. I. The p-version in time. Numer. Methods Partial
Differential Equations, 5(4):363–399, 1989.

[BJ90] I. Babuška and T. Janik. The h-p version of the finite element method for
parabolic equations. II. The h-p version in time. Numer. Methods Partial
Differential Equations, 6(4):343–369, 1990.

[BLP97] J. H. Bramble, R. D. Lazarov, and J. E. Pasciak. A least-squares approach
based on a discrete minus one inner product for first order systems. Math.
Comp., 66(219):935–955, 1997.

[BS11] M. Badiale and E. Serra. Semilinear elliptic equations for beginners. Uni-
versitext. Springer, London, 2011. Existence results via the variational
approach.

[BU08] K. Bittner and K. Urban. Adaptive wavelet methods using semiorthogonal
spline wavelets: sparse evaluation of nonlinear functions. Appl. Comput.
Harmon. Anal., 24(1):94–119, 2008.

155



[BZ96] R. Balder and Ch. Zenger. The solution of multidimensional real
Helmholtz equations on sparse grids. SIAM J. Sci. Comput., 17(3):631–
646, 1996.

[CDD01] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods for
elliptic operator equations – Convergence rates. Math. Comp, 70:27–75,
2001.

[CDD02] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet methods II -
Beyond the elliptic case. Found. Comput. Math., 2(3):203–245, 2002.

[CDD03a] A. Cohen, W. Dahmen, and R. DeVore. Adaptive wavelet schemes for
nonlinear variational problems. SIAM J. Numer. Anal., 41:1785–1823,
2003.

[CDD03b] A. Cohen, W. Dahmen, and R. DeVore. Sparse evaluation of compositions
of functions using multiscale expansions. SIAM J. Math. Anal., 35(2):279–
303 (electronic), 2003.

[CDDD01] A. Cohen, W. Dahmen, I. Daubechies, and R. DeVore. Tree approxima-
tion and optimal encoding. Appl. Comput. Harmon. Anal., 11(2):192–226,
2001.

[CDFS13] N.G. Chegini, S. Dahlke, U. Friedrich, and R.P. Stevenson. Piecewise ten-
sor product wavelet bases by extensions and approximation rates. Math.
Comp., 82:2157–2190, 2013.

[CDN12] A. Cohen, R. DeVore, and R. H. Nochetto. Convergence rates of AFEM
with H−1 data. Found. Comput. Math., 12(5):671–718, 2012.

[CLMM94] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick. First-
order system least squares for second-order partial differential equations.
I. SIAM J. Numer. Anal., 31(6):1785–1799, 1994.

[CMM95] Z. Cai, T. A. Manteuffel, and S. F. McCormick. First-order system
least squares for velocity-vorticity-pressure form of the Stokes equations,
with application to linear elasticity. Electron. Trans. Numer. Anal.,
3(Dec.):150–159 (electronic), 1995.

[CMM97a] Z. Cai, T. A. Manteuffel, and S. F. McCormick. First-order system least
squares for second-order partial differential equations. II. SIAM J. Numer.
Anal., 34(2):425–454, 1997.

[CMM97b] Z. Cai, T. A. Manteuffel, and S. F. McCormick. First-order system least
squares for the Stokes equations, with application to linear elasticity.
SIAM J. Numer. Anal., 34(5):1727–1741, 1997.

156



[CP15] C. Carstensen and E.-J. Park. Convergence and Optimality of Adaptive
Least Squares Finite Element Methods. SIAM J. Numer. Anal., 53(1):43–
62, 2015.

[CS11] N.G. Chegini and R.P. Stevenson. Adaptive wavelets schemes for parabolic
problems: Sparse matrices and numerical results. SIAM J. Numer. Anal.,
49(1):182–212, 2011.

[CS15] N.G. Chegini and R.P. Stevenson. An adaptive wavelet method for semi-
linear first order system least squares. Comput. Math. Appl., August 2015.
DOI: 10.1515/cmam-2015-0023.

[CTU99] C. Canuto, A. Tabacco, and K. Urban. The wavelet element method part
I: Construction and analysis. Appl. Comput. Harmon. Anal., 6:1–52, 1999.

[Dah96] W. Dahmen. Stability of multiscale transformations. J. Fourier Anal.
Appl., 2(4):341–362, 1996.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta
Numer., 6:55–228, 1997.

[DFW16] W. Dörfler, S. Findeisen, and Ch. Wieners. Space-time discontinuous
Galerkin discretizations for linear first-order hyperbolic evolution systems.
Comput. Methods Appl. Math., 16(3):409–428, 2016.

[DHS07] W. Dahmen, H. Harbrecht, and R. Schneider. Adaptive methods for
boundary integral equations - complexity and convergence estimates.
Math. Comp., 76:1243–1274, 2007.

[DKS02] W. Dahmen, A. Kunoth, and R. Schneider. Wavelet least squares methods
for boundary value problems. SIAM J. Numer. Anal., 39(6):1985–2013,
2002.

[DL92] R. Dautray and J.-L. Lions. Mathematical analysis and numerical methods
for science and technology. Vol. 5. Springer-Verlag, Berlin, 1992. Evolu-
tion problems I.

[DS99a] W. Dahmen and R. Schneider. Composite wavelet bases for operator
equations. Math. Comp., 68:1533–1567, 1999.

[DS99b] W. Dahmen and R. Schneider. Wavelets on manifolds I: Construction and
domain decomposition. SIAM J. Math. Anal., 31:184–230, 1999.

[DS99c] W. Dahmen and R.P. Stevenson. Element-by-element construction of
wavelets satisfying stability and moment conditions. SIAM J. Numer.
Anal., 37(1):319–352, 1999.

[DS10] M. Dauge and R.P. Stevenson. Sparse tensor product wavelet approxima-
tion of singular functions. SIAM J. Math. Anal., 42(5):2203–2228, 2010.

157



[DSX00] W. Dahmen, R. Schneider, and Y. Xu. Nonlinear functionals of wavelet
expansions—adaptive reconstruction and fast evaluation. Numer. Math.,
86(1):49–101, 2000.

[ECD16] T. Ellis, J. Chan, and L. Demkowicz. Robust DPG methods for transient
convection-diffusion. In Building bridges: connections and challenges in
modern approaches to numerical partial differential equations, volume 114
of Lect. Notes Comput. Sci. Eng., pages 179–203. Springer, [Cham], 2016.

[FQ00] M. S. Floater and E. G. Quak. Linear independence and stability of
piecewise linear prewavelets on arbitrary triangulations. SIAM J. Numer.
Anal., 38(1):58–79, 2000.

[Gan08] T. Gantumur. An optimal adaptive wavelet method for nonsymmetric and
indefinite elliptic problems. J. Comput. Appl. Math., 211(1):90–102, 2008.

[GHS07] T. Gantumur, H. Harbrecht, and R.P. Stevenson. An optimal adaptive
wavelet method without coarsening of the iterands. Math. Comp., 76:615–
629, 2007.

[GK11] M.D. Gunzburger and A. Kunoth. Space-time adaptive wavelet methods
for control problems constrained by parabolic evolution equations. SIAM
J. Contr. Optim., 49(3):1150–1170, 2011.

[GN16] M.J. Gander and M. Neumüller. Analysis of a new space-time paral-
lel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput.,
38(4):A2173–A2208, 2016.

[GO95] M. Griebel and P. Oswald. Tensor product type subspace splittings
and multilevel iterative methods for anisotropic problems. Adv. Comput.
Math., 4(1–2):171–206, 1995.

[GO07] M. Griebel and D. Oeltz. A sparse grid space-time discretization scheme
for parabolic problems. Computing, 81(1):1–34, 2007.

[GR79] V. Girault and P.A. Raviart. An analysis of a mixed finite element method
for the Navier-Stokes equations. Numer. Math., 33:235–271, 1979.

[HM00] D. Hong and Y.A. Mu. Construction of prewavelets with minimum support
over triangulations. In Wavelet analysis and multiresolutionFOswa meth-
ods, proceedings Urbana-Champaign, IL, 1999, Lecture Notes in Pure and
Appl. Math. 212, pages 145–165, Marcel Dekker, Inc., New York, 2000.

[KO95] U. Kotyczka and P. Oswald. Piecewise linear prewavelets of small support.
In C.K. Chui and L.L. Schumaker, editors, Approximation Theory VIII.
World Scientific Publishing Co. Inc., 1995.

158



[KS14] S. Kestler and R.P. Stevenson. Fast evaluation of system matrices w.r.t.
multi-tree collections of tensor product refinable basis functions. J. Com-
put. Appl. Math., 260:103–116, 2014.

[KSU16] S. Kestler, K. Steih, and K. Urban. An efficient space-time adaptive
wavelet Galerkin method for time-periodic parabolic partial differential
equations. Math. Comp., 85(299):1309–1333, 2016.

[Liu06] S.-T. Liu. Quadratic stable wavelet bases on general meshes. Appl. Com-
put. Harmon. Anal., 20(3):313–325, 2006.

[LMN16] U. Langer, S.E. Moore, and M. Neumüller. Space-time isogeometric analy-
sis of parabolic evolution problems. Comput. Methods Appl. Mech. Engrg.,
306:342–363, 2016.

[LO96] R. Lorentz and P. Oswald. Multilevel finite element Riesz bases in Sobolev
spaces. In P. Bjørstad, M. Espedal, and Keyes D., editors, Proc. 9th. Symp.
on Domain Decomposition Methods. John Wiley & Sons, 1996.

[MS02] M. Majidi and G. Starke. Least-squares Galerkin methods for parabolic
problems. II. The fully discrete case and adaptive algorithms. SIAM J.
Numer. Anal., 39(5):1648–1666, 2001/02.

[MS01] M. Majidi and G. Starke. Least-squares Galerkin methods for parabolic
problems. I. Semidiscretization in time. SIAM J. Numer. Anal.,
39(4):1302–1323, 2001.

[MST14] M. Messner, M. Schanz, and J. Tausch. A fast Galerkin method for
parabolic space-time boundary integral equations. J. Comput. Phys.,
258:15–30, 2014.

[Nit06] P.-A. Nitsche. Best N -term approximation spaces for tensor product
wavelet bases. Constr. Approx., 24(1):49–70, 2006.

[NS09] H. Nguyen and R.P. Stevenson. Finite element wavelets with improved
quantitative properties. J. Comput. Appl. Math., 230(2):706–727, 2009.

[PR94] J. Pousin and J. Rappaz. Consistency, stability, a priori and a posteriori
errors for Petrov-Galerkin methods applied to nonlinear problems. Numer.
Math., 69(2):213–231, 1994.

[SS09] Ch. Schwab and R.P. Stevenson. A space-time adaptive wavelet method
for parabolic evolution problems. Math. Comp., 78:1293–1318, 2009.

[SS17] Ch. Schwab and R.P. Stevenson. Fractional space-time variational formu-
lations of (Navier)-Stokes equations. SIAM J. Math. Anal., 49(4):2442–
2467, 2017.

159



[Ste96] R.P. Stevenson. The frequency decomposition multi-level method: A ro-
bust additive hierarchical basis preconditioner. Math. Comp., 65(215):983–
997, July 1996.

[Ste98a] R.P. Stevenson. Piecewise linear (pre-)wavelets on non-uniform meshes. In
Multigrid methods V (Stuttgart, 1996), volume 3 of Lect. Notes Comput.
Sci. Eng., pages 306–319. Springer, Berlin, 1998.

[Ste98b] R.P. Stevenson. Stable three-point wavelet bases on general meshes. Nu-
mer. Math., 80:131–158, 1998.

[Ste03] R.P. Stevenson. Locally supported, piecewise polynomial biorthogonal
wavelets on non-uniform meshes. Constr. Approx., 19(4):477–508, 2003.

[Ste04] R.P. Stevenson. On the compressibility of operators in wavelet coordinates.
SIAM J. Math. Anal., 35(5):1110–1132, 2004.

[Ste09] R.P. Stevenson. Adaptive wavelet methods for solving operator equations:
An overview. In R.A. DeVore and A. Kunoth, editors, Multiscale, Nonlin-
ear and Adaptive Approximation: Dedicated to Wolfgang Dahmen on the
Occasion of his 60th Birthday, pages 543–598. Springer, Berlin, 2009.

[Ste13] R.P. Stevenson. First order system least squares with inhomogeneous
boundary conditions. IMA. J. Numer. Anal., 2013.

[Ste14] R.P. Stevenson. Adaptive wavelet methods for linear and nonlinear least-
squares problems. Found. Comput. Math., 14(2):237–283, 2014.

[Ste15] O. Steinbach. Space-Time Finite Element Methods for Parabolic Prob-
lems. Comput. Methods Appl. Math., 15(4):551–566, 2015.

[SU09] W. Sickel and T. Ullrich. Tensor products of Sobolev-Besov spaces and ap-
plications to approximation from the hyperbolic cross. J. Approx. Theory,
161:748–786, 2009.

[Tem97] R. Temam. Infinite-dimensional dynamical systems in mechanics and
physics, volume 68 of Applied Mathematical Sciences. Springer-Verlag,
New York, second edition, 1997.

[Urb09] K. Urban. Wavelet Methods for Elliptic Partial Differential Equations.
Oxford University Press, 2009.

[Vor09] J. Vorloeper. Adaptive Wavelet Methoden für Operator Gleichungen,
Quantitative Analyse und Softwarekonzepte. PhD thesis, RTWH Aachen,
2009. VDI Verlag GmbH, Düsseldorf, ISBN 978-3-18-342720-8.

[VW96] P.S. Vassilevski and J. Wang. Stabilizing the hierarchical basis by approx-
imate wavelets, I: Theory. Num. Lin. Alg. with Appl., 1:1–23, 1996.

160



[XZ03] Y. Xu and Q. Zou. Adaptive wavelet methods for elliptic operator equa-
tions with nonlinear terms. Adv. Comput. Math., 19(1-3):99–146, 2003.
Challenges in computational mathematics (Pohang, 2001).

[XZ05] Y. Xu and Q. Zou. Tree wavelet approximations with applications. Sci.
China Ser. A, 48(5):680–702, 2005.

[ZCL09] X. Zhang, T. Cui, and H. Liu. A set of symmetric quadrature rules on
triagles and tetrahedra. J. Comp. Math., 27(1):89–96, 2009.

161





Summary

Optimal Adaptive Wavelet Methods for solving First Order System Least

Squares.

The efficient numerical approximation of the solution of a partial differential equa-
tion (PDE) requires the use of an approximation space with a local resolution that
is adjusted to the local smoothness of the solution. Since a priori this solution is
unknown, such a space has to be created adaptively by means of a loop in which
increasingly more accurate approximations to the solution are built. Two instances
of such adaptive solution methods are adaptive finite element methods (afem) and
adaptive wavelet-Galerkin methods (awgm). It is fair to say that the latter methods
are more cumbersome to implement, but on the other hand their use is not restricted
to essentially elliptic PDEs.

Any well-posed operator equation on a Hilbert space equipped with a Riesz basis
has an equivalent formulation as an bi-infinite matrix-vector equation. Given a finite
Λ ⊂ N, and having computed a (quasi-) best approximation to the solution by a vector
supported on Λ, the norm of the residual vector of this approximation is proportional to
the norm of its error. By adding those indices of the residual vector that correspond to
its largest entries to the set Λ an extended set is created, and the loop can be repeated.

Generally the aforementioned residual vector has infinite support, and therefore
has to be approximated. This residual vector is the difference of the infinite load vec-
tor and the bi-infinite stiffness matrix applied to the current approximation vector.
The standard approach is to approximate both terms separately, the second one using
the nonlinear approximate matrix-vector multiplication routine, known as the apply-
routine. In contrast to their difference, being the residual vector, the aforementioned
terms do not tend to zero when the iteration proceeds. Therefore, in order to approx-
imate the residual within some fixed relative tolerance, they have to be approximated
within a relative tolerance that gets increasingly smaller.

In order to improve the quantitative properties of the adaptive wavelet method,
Chapter 2 of this thesis is devoted to an approach to approximate the residual vector
without splitting it. In order to do so, it is needed to be able to represent both
parts of the residual in a common dictionary. In the standard setting of a PDE of
2nd order and continuous piecewise polynomial wavelets, the operator applied to a
wavelet is a distribution, and the splitting cannot be avoided. Therefore, we consider
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a reformulation of such a PDE as a first order system by introducing the flux as a
separate unknown. We show that any well-posed semi-linear PDE of 2nd order allows
a reformulation as a well-posed first order system least squares (FOSLS) problem. For
such system we design an alternative, more efficient approximate residual evaluation
scheme that, in case of a linear PDE, depends linearly on the current approximation.

In Chapter 4 we apply this machinery to parabolic evolutionary PDEs in a si-
multaneously space-time variational formulation. In the recent years, one witnesses
a growing interest in such formulations as an alternative for the usual time marching
schemes that are inherently sequential, and that are not suited to efficiently approxi-
mating singularities that are local in both space and time. The arising Hilbert spaces
in this setting are (intersections of) Bochner spaces that are most naturally equipped
with Riesz bases that are tensor products of temporal and spatial wavelet bases. These
tensor product wavelet bases require a modified, more complicated routine for the ap-
proximate residual evaluation, since one cannot affort a transformation to a locally
single representation. On the other hand, they give the major advantage of an effec-
tive dimension reduction known from sparse-grid methods in a non-adaptive setting.
We will be able to solve the whole time evolution at a complexity equal to that of
solving one stationary problem.

For running the awgm, wavelet bases are needed for the generally non-square do-
mains on which the equations are posed. Several constructions of continuous piecewise
linear wavelets on general polygonal or polyhedral domains are known. Because of our
FOSLS formulation, we need in addition a wavelet Riesz basis consisting of piecewise
quadratics. Such bases are constructed in Chapter 3.

Finally, in Chapter 5 details are provided on several aspects of the implementation
of the various routines that we have developed.
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Samenvatting

Optimale Adaptieve Wavelet Methoden voor het vinden van een kleinste

kwadraten oplossing van eerste orde stelsels.

Het efficiënt numeriek benaderen van de oplossing van een partiële differentiaal verge-
lijking (PDV) vereist een benaderingsruimte met een lokale resolutie welke aangepast
is aan de lokale gladheid van de oplossing. Aangezien deze oplossing a priori onbekend
is, moet een dergelijke ruimte adaptief gemaakt worden met behulp van een iteratie
waarin benaderingen worden gecreëerd met toenemende nauwkeurigheid. Voorbeel-
den van dergelijke adaptieve oplossingsmethoden zijn de adaptieve eindige elementen
methode en de adaptieve wavelet-Galerkin methode. De tweede methode is ingewik-
kelder te implementeren, maar heeft aan de andere kant het voordeel dat deze tevens
toegepast kan worden op niet-elliptische PDV’s.

Iedere goed-gestelde operatorvergelijking op een Hilbert ruimte welke uitgerust is
met een Riesz basis, heeft een equivalente formulering als een oneindig matrix-vector
probleem. Voor een gegeven eindige Λ ⊂ N, en een (quasi-) beste benadering van de
oplossing door een vector met drager in Λ, is de norm van de residu vector equivalent
aan de norm van de fout. Door het toevoegen aan Λ van die indices van de residu
vector welke corresponderen met de grootste elementen, verkrijgt men een uitbreiding
van Λ waarmee de iteratie herhaald kan worden.

In het algemeen heeft voornoemde residu vector een oneindige drager, en moet
deze daarom benaderd worden. Deze vector is het verschil van de oneindige rechterlid
vector en de vector welke het resultaat is van de toepassing van de oneindige stijfheids-
matrix op de huidige benaderingsvector. De gebruikelijke aanpak is om beide termen
afzonderlijk te benaderen, de tweede m.b.v. de niet-lineaire benaderende matrix-vector
vermenigvuldigingsroutine, welke bekend staat als de apply-routine. In tegenstelling
tot hun verschil, nl. de residu vector, convergeren beide voornoemde termen niet
naar nul bij een klimmend aantal iteraties. Als gevolg hiervan moeten ze beide met
een steeds kleinere relatieve tolerantie benaderd worden om ervoor te zorgen dat het
residu met een vaste relatieve tolerantie benaderd wordt.

Om de kwantitatieve eigenschappen van de adaptieve wavelet methode te verbe-
teren, is hoofdstuk 2 van dit proefschrift gewijd aan een aanpak om de residu vector
te benaderen zonder deze te splitsen. Om dit te kunnen doen is het nodig om beide
delen van het residu te representeren in een gemeenschappelijk systeem. Voor het
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standaard geval van een PDV van tweede orde en continue stuksgewijze polynomiale
wavelets, resulteert de toepassing van de operator op een wavelet in een distributie,
in welk geval de splitsing niet vermeden kan worden. Om deze reden zullen we een
dergelijke PDV schrijven als een stelsel van PDV’s van eerste orde door de gradiënt
van de oplossing te introduceren als een aparte onbekende. We tonen aan dat iedere
goed-gestelde semi-lineaire PDV van tweede orde geschreven kan worden als een goed
gesteld kleinste kwadraten probleem voor een stelsel van PDV’s van eerste orde. Voor
een dergelijk systeem ontwikkelen we een alternatieve, efficiëntere residu benadering
welke, voor een lineaire PDV, lineair afhangt van de huidige benaderende oplossing.

In hoofdstuk 4 passen we deze methodologie toe op parabolische tijdsafhankelijke
PDV’s in een tegelijkertijd ruimte-tijd variationele formulering. Gedurende de laatste
jaren is er een toenemende belangstelling voor dergelijke formuleringen als een alter-
natief voor de gebruikelijke tijdsevolutie schema’s, welke inherent sequentieel zijn, en
niet geschikt voor het benaderen van singulariteiten die lokaal zijn in tijd en plaats. De
relevante Hilbert ruimten voor deze problemen zijn (doorsneden van) Bochner ruim-
ten welke canoniek uitgerust worden met Riesz bases, welke tensor producten zijn
van wavelet bases in tijd en ruimte. Deze tensor product wavelet bases vereisen een
gecompliceerdere routine voor de benadering van het residu, aangezien in dit geval
een transformatie naar een lokale enkele schaal basis te kostbaar is. Aan de andere
kant geven deze bases het belangrijke voordeel van een effectieve dimensie reductie,
welke bekend is van de niet-adaptieve ‘sparse-grid’ methoden. We zullen in staat zijn
het hele tijdsevolutie probleem op te lossen met een aantal operaties dat van dezelfde
orde is als het aantal operaties waarmee het corresponderende stationaire probleem
opgelost kan worden.

Voor het toepassen van de adaptieve wavelet methode zijn wavelet bases nodig
op de in het algemeen niet-vierkante domein waarop de PDV geformuleerd is. Ver-
schillende constructies zijn beschikbaar van stuksgewijze lineaire wavelets op algemene
polygonen en polyeders. Vanwege onze formulering van de PDV als een eerste orde
stelsel hebben we daarnaast ook een wavelet basis nodig bestaande uit stuksgewijze
kwadratische functies. Dergelijke bases worden geconstrueerd in hoofdstuk 3.

Tenslotte worden in hoofdstuk 5 details gepresenteerd over aspecten van de imple-
mentatie van de verschillende routines welke we ontwikkeld hebben.
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