6,327 research outputs found

    Design optimization applied in structural dynamics

    Get PDF
    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process requires a long computation time. Therefore the Backpropagation Neural Networks (NNs) are introduced as a so called surrogate model for the FE model. Optimization techniques mentioned in this study cover the Genetic Algorithm (GA) and the Sequential Quadratic Programming (SQP) methods. For the applications of the introduced techniques, a multisegment cantilever beam problem under the constraints of its first and second natural frequency has been selected and solved using four different approaches

    A hybrid genetic pattern search augmented Lagrangian method for constrained global optimization

    Get PDF
    Hybridization of genetic algorithms with local search approaches can enhance their performance in global optimization. Genetic algorithms, as most population based algorithms, require a considerable number of function evaluations. This may be an important drawback when the functions involved in the problem are computationally expensive as it occurs in most real world problems. Thus, in order to reduce the total number of function evaluations, local and global techniques may be combined. Moreover, the hybridization may provide a more effective trade-off between exploitation and exploration of the search space. In this study, we propose a new hybrid genetic algorithm based on a local pattern search that relies on an augmented Lagrangian function for constraint-handling. The local search strategy is used to improve the best approximation found by the genetic algorithm. Convergence to an ε\varepsilon-global minimizer is proved. Numerical results and comparisons with other stochastic algorithms using a set of benchmark constrained problems are provided.FEDER COMPETEFundação para a Ciência e a Tecnologia (FCT

    Handling convexity-like constraints in variational problems

    Full text link
    We provide a general framework to construct finite dimensional approximations of the space of convex functions, which also applies to the space of c-convex functions and to the space of support functions of convex bodies. We give estimates of the distance between the approximation space and the admissible set. This framework applies to the approximation of convex functions by piecewise linear functions on a mesh of the domain and by other finite-dimensional spaces such as tensor-product splines. We show how these discretizations are well suited for the numerical solution of problems of calculus of variations under convexity constraints. Our implementation relies on proximal algorithms, and can be easily parallelized, thus making it applicable to large scale problems in dimension two and three. We illustrate the versatility and the efficiency of our approach on the numerical solution of three problems in calculus of variation : 3D denoising, the principal agent problem, and optimization within the class of convex bodies.Comment: 23 page

    VND-based Local Search Operator for Equality Constraint Problems in PSO Algorithm

    Get PDF
    This paper presents a hybrid PSO algorithm with a VND-based operator for handling equality constraint problems in continuous optimization. The VND operator can be defined both as a local search and a kind of elitism operator for equality constraint problems playing the role of “fixing” the best estimates of the feasible set. Experiments performed on benchmark problems suggest that the VND operator can enhance both the convergence speed and the accuracy of the final result

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    On Challenging Techniques for Constrained Global Optimization

    Get PDF
    This chapter aims to address the challenging and demanding issue of solving a continuous nonlinear constrained global optimization problem. We propose four stochastic methods that rely on a population of points to diversify the search for a global solution: genetic algorithm, differential evolution, artificial fish swarm algorithm and electromagnetism-like mechanism. The performance of different variants of these algorithms is analyzed using a benchmark set of problems. Three different strategies to handle the equality and inequality constraints of the problem are addressed. An augmented Lagrangian-based technique, the tournament selection based on feasibility and dominance rules, and a strategy based on ranking objective and constraint violation are presented and tested. Numerical experiments are reported showing the effectiveness of our suggestions. Two well-known engineering design problems are successfully solved by the proposed methods. © Springer-Verlag Berlin Heidelberg 2013.Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology), Portugal for the financial support under fellowship grant: C2007-UMINHO-ALGORITMI-04. The other authors acknowledge FEDER COMPETE, Programa Operacional Fatores de Competitividade (Operational Programme Thematic Factors of Competitiveness) and FCT for the financial support under project grant: FCOMP-01-0124-FEDER-022674info:eu-repo/semantics/publishedVersio
    corecore