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1. Introduction

In this paper, the following problem is under consideration:

minimize
x∈Ω

f(x)

subject to ci(x) = 0, i = 1, . . . ,m
gj(x) ≤ 0, j = 1, . . . , p

(1)

where x is an n dimensional vector and Ω ⊂ Rn (Ω = {x ∈ Rn : l ≤ x ≤ u}),
f(x) is the objective function, c(x) = 0 are the equality constraints and
g(x) ≤ 0 are the inequality constraints. We aim at finding a solution with
the most extreme objective function value. This type of constrained global
minimization problem has many applications in engineering; for example, in
Robotics [33], Mechanical Engineering [1] and Materials Science [24]. There
is a variety of methods to solve a problem like (1). A common technique
in global optimization literature transforms the constrained problem into
an unconstrained one, by adding a penalty term to the objective function
that aims to penalize constraint violation and depends on a penalty param-
eter [5, 18]. The implementation of this technique is not easy, since the
selection of appropriate penalty parameters for the problem at hand is not
a straightforward issue. To overcome this difficulty, some authors proposed
the use of variable penalty schemes, e.g., dynamic scheme [17, 22, 25], self-
adaptive scheme [10, 19] or superiority of feasible over infeasible solutions
based scheme [7]. A comprehensive survey on constraint-handling techniques
can be found in [5]. Recently, some other constraint-handling techniques have
been implemented with stochastic algorithms. For instance, the filter simu-
lated annealing [15] that uses a filter-set based procedure, the gradient based
repair genetic algorithm [4] that derives information from the constraint set
for repairing infeasible solutions, the evolutionary algorithm [27] that uses a
multiobjective approach coupled with stochastic ranking to deal with con-
straints, the genetic algorithm with modified genetic operators to preserve the
feasibility that includes a stochastic application of a local search procedure
and a stopping rule based on asymptotic considerations [31], a hybrid particle
swarm optimization with a feasibility-based rule [13], a self-organizing mi-
grating genetic algorithm [9], and a flexible tolerance genetic algorithm [28].

The augmented Lagrangian is an interesting penalty function that avoids
the side-effects associated with ill-conditioning of simpler penalty and barrier
functions. Lewis and Torczon [21] proposed an augmented Lagrangian tech-
nique, where a pattern search algorithm is used to solve the unconstrained
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problem, based on the augmented Lagrangian function presented by Conn
et al. [6]. Although the inequality constraints are not considered in [6], we
extended the therein proposed augmented Lagrangian to the inequality con-
straints, following the ideas presented in [2, 11].

Hybridization of population based algorithms with either deterministic or
random local search have appeared in the literature, for instance, the memetic
particle swarm optimization algorithm by Petalas et al. [25], the particle
swarm optimization algorithm proposed by Zahara and Hu [32], the hybrid
evolutionary and gradient search by Tahk et al. [29], the heuristic pattern
search simulated annealing by Hedar and Fukushima [14], the genetic algo-
rithm used by Tsoulos [31], the hybridization of particle swarm and simulated
annealing proposed in [13], and the hybridization of the genetic algorithm
and the self-organizing migrating algorithm presented in [9]. However, to the
best of our knowledge, the hybridization of an augmented Lagrangian strat-
egy, genetic algorithms and local pattern search has not been attempted yet.
Thus, we propose a Hybrid Genetic Pattern Search Augmented Lagrangian
(HGPSAL) algorithm that hybridizes a genetic algorithm with a derivative-
free pattern search method to refine the best solution found by the genetic
search. Equality and inequality constraints of the problem are treated by
an augmented Lagrangian framework. This is also the first attempt to com-
bine the convergence theory from real analysis and stochastic convergence
from the probability theory to analyze some convergence properties of the
proposed hybrid algorithm.

This paper is organized as follows. Section 2 describes the HGPSAL al-
gorithm. It introduces the augmented Lagrangian technique for constraint-
handling and provides details concerning the genetic algorithm and the pat-
tern search method. The convergence to an ε-global minimizer is proved. In
Section 3 we present and analyze the experimental results on 13 constrained
test problems. Comparisons with other optimization algorithms are also in-
cluded in this section. Finally, we conclude the paper with a few remarks
and future work in Section 4.

2. Hybrid Genetic Pattern Search Augmented Lagrangian Algo-
rithm

So far, a paradigm based on a hybridization of augmented Lagrangians
with genetic algorithms has not been attempted. Based on the good results
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obtained by algorithms that rely on augmented Lagrangian penalties, a very
promising framework seems to emerge.

On the other hand, hybridization of global and local optimizers may pro-
vide a more effective trade-off between exploitation and exploration of the
search space. It is well-known that overall successful and efficient general
solvers do not exist. Moreover, stochastic population based algorithms like
genetic algorithms [12] are good at identifying promising areas of the search
space (exploration), but less good at fine-tuning approximations to the min-
imum (exploitation). Conversely, local search algorithms like pattern search
are good at improving approximations to the minimum. Thus, a promising
idea that may provide a reduction on the total number of function evaluations
is the combination of local and global optimization techniques.

2.1. Augmented Lagrangian technique

A list of notation used in this section follows.

Notation. ‖.‖ represents the Euclidean norm, and the component i of vector
[v]+ is defined by max{0, vi} where v = (v1, . . . , vp)

T . We use ηj ↓ 0 to
indicate that the sequence {ηj} of non-negative decreasing numbers tends to
zero.

An augmented Lagrangian technique solves a sequence of very simple sub-
problems where the objective function penalizes all or some of the constraint
violation. This objective function is an augmented Lagrangian that depends
on a penalty parameter and the multiplier vectors, and works like penalty
functions. Using the ideas in [2, 6, 21], the herein implemented augmented
Lagrangian function is

Φ(x;λ, δ, µ) = f(x) + λT c(x) +
1

2µ
‖c(x)‖2 +

µ

2

(∥∥∥∥[δ +
g(x)

µ

]
+

∥∥∥∥2

− ‖δ‖2

)
where µ is a positive penalty parameter, λ = (λ1, . . . , λm)T , δ = (δ1, . . . , δp)

T

are the Lagrange multiplier vectors associated with the equality and inequal-
ity constraints respectively. Function Φ aims to penalize solutions that vi-
olate only the equality and inequality constraints. Note that we do not
include the simple bounds l ≤ x ≤ u in the augmented Lagrangian func-
tion. The solution method for solving the subproblems will ensure that the
bound constraints are always satisfied. Hence, the corresponding subproblem
is formulated as:

minimize
x∈Ω

Φ(x;λj, δj, µj) (2)
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where, for each set of fixed λj, δj and µj, the solution of subproblem (2)
provides an approximation to the solution of (1). Denote this approximation
by xj. Here the index j is the iteration counter of the outer iterative process.
To simplify the notation, we replace Φ(x;λj, δj, µj) by Φj(x) from here on.

An important issue related with the performance of augmented Lagrangian
algorithms is the choice of the penalty parameter. If the algorithm is strug-
gling to become feasible, it is convenient to decrease the penalty parameter.
However, very small values of µ can cause the algorithm to converge very
slowly. It is expected that as j → ∞ and µj → 0, the solutions of the sub-
problems (2) converge to the solution of (1). We refer to [2, 11] for details.
In practice, common safeguarded schemes maintain the sequence of penalty
parameters far away from zero so that solving the subproblem (2) is an easy
task.

To see when the equality and inequality constraints and the complemen-
tarity condition are satisfied, the following error function is used:

E(x, δ) = max

{
‖c(x)‖∞
1 + ‖x‖

,
‖[g(x)]+‖∞

1 + ‖δ‖
,
maxi δi|gi(x)|

1 + ‖δ‖

}
. (3)

Since in finite-dimensional space, infinity and Euclidean norms are equiva-
lent, the use of the infinity norm in (3) aims only to simplify the numerical
computations. The Lagrange multipliers λj and δj are estimated in this
iterative process using the first-order updating formulae

λ̄j+1
i = λji +

ci(x
j)

µj
, i = 1, . . . ,m (4)

and

δ̄j+1
i = max

{
0, δji +

gi(x
j)

µj

}
, i = 1, . . . , p (5)

where:

Definition 1. For all j ∈ N, and for i = 1, . . . ,m and l = 1, . . . , p, λj+1
i is

the projection of λ̄j+1
i on the interval [λmin, λmax] and δj+1

i is the projection
of δ̄j+1

i on the interval [0, δmax], where −∞ < λmin ≤ λmax < ∞ and 0 ≤
δmax <∞.

After the new approximation xj has been computed, the Lagrange multi-
plier vector δ associated with the inequality constraints is updated, in all it-
erations, since δj+1 is required in the error function (3) to measure constraint
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violation and complementarity. We note that the Lagrange multipliers λi,
i = 1, . . . ,m are updated only when feasibility and complementarity are at
a satisfactory level, herein defined by the condition

E(xj, δj+1) ≤ ηj (6)

for a positive tolerance ηj. It is required that {ηj} defines a decreasing
sequence of positive values converging to zero, as j → ∞. This is easily
achieved by ηj+1 = πηj for 0 < π < 1.

We consider that an iteration j failed to provide an approximation xj with
an appropriate level of feasibility and complementarity if condition (6) does
not hold. In this case, the penalty parameter is decreased using µj+1 = γµj

where 0 < γ < 1. When condition (6) holds, then the iteration is consid-
ered satisfactory. This condition says that the iterate xj is feasible and the
complementarity condition is satisfied within some tolerance ηj, and conse-
quently the algorithm maintains the penalty parameter value. We remark
that when (6) fails to hold infinitely many times, the sequence of penalty pa-
rameters tends to zero. To be able to define an algorithm where the sequence
{µj} does not reach zero, the following update is used instead:

µj+1 = max{µmin, γµ
j}, (7)

where µmin is a sufficiently small positive real value.
The traditional augmented Lagrangian methods are locally convergent

if the subproblems (2) are approximately solved, for instance within a pre-
defined tolerance εj, for sufficiently small values of the penalty parameter
[6, 21]. However, our approach aims at converging to a global solution of
problem (1). Thus, global optimization methods ought to be used when
solving the subproblems (2). The main differences between augmented La-
grangian algorithms are located on the framework used to find an approxi-
mation to a global minimizer of the augmented Lagrangian function subject
to the bound constraints. For example, Birgin et al. [3] proposed a global
optimization method based on the Rockafellar’s augmented Lagrangian func-
tion, where the αBB method is used to find the approximate global solutions
to the subproblems. We remark the following:

Remark 1. When finding the global minimum of a continuous objective func-
tion f(x) over a bounded space Ω ⊂ Rn, the point x̄ ∈ Ω is a solution to the
minimization problem if

f(x̄) ≤ min
y∈Ω

f(y) + ε, (8)
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where ε is the error bound which reflects the accuracy required for the solution.

The herein proposed technique for solving (2) uses a stochastic popula-
tion based algorithm, known as genetic algorithm, followed by a local search
procedure to refine the best solution found thus far. The general form for
the bound constrained algorithm to solve subproblems (2) is presented in
Algorithm 1.

Algorithm 1 Hybrid Genetic Pattern Search Bound Constrained Algorithm

Require: xj−1 ∈ Ω;
1: Find yj ← GA(xj−1), using the genetic algorithm presented in Subsec-

tion 2.3.1;
2: Find xj ← HJ(yj), using the Hooke and Jeeves version of the pattern

search algorithm described in Subsection 2.3.2;
3: return xj.

Since the genetic algorithm is a population based method, yj is the point
with best fitness found by the algorithm. Details concerning each step of the
algorithm are presented in Subsection 2.3. Issues related with convergence
properties of a genetic algorithm to a global optimum are summarized below.

Since the solutions of the subproblems (2) are obtained by a stochastic
method that generates a population of points at each iteration, each point
is considered a stochastic vector. The analysis of the convergence properties
of our algorithm relies on convergence theory known from elementary real
analysis as well as on the stochastic convergence from the probability theory.

The following definition characterizes the stochastic convergence of a ge-
netic algorithm:

Definition 2. Let fk
best = min{f(x(i))k : i = 1, . . . , s} be a sequence of

random variables representing the best fitness within a population of size s,
at iteration k. A genetic algorithm converges to the global minimum of a
continuous function f(x) over a bounded space Ω ⊂ Rn if and only if

lim
k→∞

(
Prob[fk

best = f ∗]
)

= 1 (9)

where f ∗ = miny∈Ω f(y) [26].

The general hybrid genetic pattern search augmented Lagrangian algo-
rithm for solving problem (1) is presented in Algorithm 2.
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Algorithm 2 HGPSAL Algorithm

Require: λmin < λmax, δmax > 0, 0 < γ < 1, µmin � 1, η∗ � 1, ε∗ � 1,
λ1
i ∈ [λmin, λmax], i = 1, . . . ,m, δ1

i ∈ [0, δmax], i = 1, . . . , p, µ1 > 0, η1 > 0,
0 < π < 1, 0 < τ < 1, jmax > 0;

1: Compute ε1;
2: Randomly generate x0 ∈ Ω; Set j = 1;
3: while the stopping criterion is not met do
4: Find an εj-global minimizer xj of subproblem (2) using Algorithm 1

so that
Φ(xj;λj, δj, µj) ≤ Φ(x;λj, δj, µj) + εj (10)

for all x ∈ Ω;

5: Update δj+1
i = max

{
0,min

{
δji +

gi(x
j)

µj
, δmax

}}
, i = 1, . . . , p;

6: if E(xj, δj+1) ≤ ηj then

7: Update λj+1
i = λji + max

{
λmin,min

{
ci(x

j)

µj
, λmax

}}
, i = 1, . . . ,m;

8: Set µj+1 = µj;
9: else

10: Set λj+1
i = λji ;

11: Update µj+1 = max {µmin, γµ
j};

12: end if
13: Update ηj+1 = πηj; Compute εj+1;
14: Set j = j + 1;
15: end while

The stopping criterion is also based on the error function E(x, δ) and
on the tolerance ε. For sufficiently small positive values η∗ and ε∗, if the
algorithm finds a pair (xj, δj+1) for which

E(xj, δj+1) ≤ η∗ and εj+1 ≤ ε∗ (11)

then the algorithm stops; otherwise, the algorithm runs until a maximum of
(outer) iterations, jmax, is reached. The tolerance ε varies with the Lagrange
multipliers and penalty parameter values according to

εj = max
{
ε∗, τ

(
1 + ‖λj‖+ ‖δj‖+ (µj)−1

)−1
}
, 0 < τ < 1.

Note that a decreasing sequence of µ values will yield a decreasing sequence
of ε values forcing more and more accurate solutions to the subproblems (2)
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as proposed in [21]. As shown in the HGPSAL algorithm, the Lagrange
multiplier estimates are obtained by safeguarded first-order updates aiming
to maintain the multiplier vectors bounded throughout the process.

2.2. Convergence to an ε∗-global minimizer

Here we aim at providing a convergence analysis of the Hybrid Genetic
Pattern Search Augmented Lagrangian algorithm. At each outer iteration
j, an εj-global minimizer of the subproblem (2) is obtained, where εj → ε∗.
The convergence analysis of Algorithm 2 has some similarities with that of
the global augmented Lagrangian method presented in [3].

We now state the assumptions that are needed to show convergence to
an ε∗-global minimum for the HGPSAL algorithm. Let {xj} be the sequence
generated by the algorithm.

Assumption A 1. A global minimizer z of the problem (1) exists.

Assumption A 2. The sequence {xj} generated by the Algorithm 2 is well
defined and there exists a set of indices N ⊆ N so that limj∈N x

j = x∗.

Assumption A 3. The functions f : Rn → R, c : Rn → Rm and g : Rn →
Rp are continuous in a neighborhood of x∗.

Since the set Ω is compact and Φ(x;λj, δj, µj) is continuous, an εj-global
minimizer of subproblem (2), xj, necessarily exists. The above Definition 1
together with updates (4) and (5) define safeguarded first-order Lagrange
multiplier estimates. The Lagrange multiplier vectors at x∗ are herein rep-
resented by λ∗ and δ∗ and we will assume the following:

Assumption A 4. For all i = 1, . . . ,m and l = 1, . . . , p, λ∗i ∈ [λmin, λmax]
and δ∗l ∈ [0, δmax].

We now investigate the properties of the limit points of sequences gener-
ated by the Algorithm 2.

Theorem 1. Assume that the Assumptions A 1 through A 4 hold. Then
every limit point x∗ of the sequence {xj} generated by the Algorithm 2 is
feasible.

Proof. Since xj ∈ Ω and Ω is closed then x∗ ∈ Ω. We now consider two cases:
(a) when {µj} is bounded; (b) when µj → 0.
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In case (a), there exists an index jf such that µj = µjf = µ̄ for all j ≥ jf .
This means that for all j ≥ jf , (6) holds. The fact that ηj ↓ 0 implies that
‖c(xj)‖ → 0, as well as ‖[g(xj)]+‖ → 0 and δji |gi(xj)| → 0, for all i = 1, . . . , p,
and we conclude that the limit point is feasible.

The proof in case (b) is by contradiction. We assume that x∗ is not
feasible and that a global minimizer z exists in Ω (the same for all j) such
that ‖c(z)‖ = ‖[g(z)]+‖ = 0. Thus

‖c(x∗)‖2 + ‖[g(x∗)]+‖2 > ‖c(z)‖2 + ‖[g(z)]+‖2

and since c and g are continuous, λj and δj are bounded, µj → 0, and there
exists a constant K > 0 and a set of indices N ⊂ N such that limj∈N x

j = x∗,
then for a large enough j ∈ N we have

c(xj)T c(xj) + ‖[g(xj)]+‖2 − ‖δj‖2 > c(z)T c(z) + ‖[g(z)]+‖2 − ‖δj‖2 +K

and

c(xj)T
(
λj +

c(xj)

2µj

)
+
µj

2

(∥∥∥∥[g(xj)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)

> c(z)T
(
λj +

c(z)

2µj

)
+
µj

2

(∥∥∥∥[g(z)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
+K.

We also have

f(xj) + c(xj)T
(
λj +

c(xj)

2µj

)
+
µj

2

(∥∥∥∥[g(xj)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)

> f(z) + c(z)T
(
λj +

c(z)

2µj

)
+
µj

2

(∥∥∥∥[g(z)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
+ εj

where for large enough j ∈ N , K + f(xj)− f(z) > εj, implying that

Φ(xj;λj, δj, µj) > Φ(z;λj, δj, µj) + εj,

which contradicts the definition of xj in (10).

We now prove that a sequence of iterates generated by the algorithm
converges to an ε∗-global minimizer of the problem (1).
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Theorem 2. Assume that the Assumptions A 1 through A 4 hold. Then
every limit point x∗ of a sequence {xj} generated by Algorithm 2 is an ε∗-
global minimizer of the problem (1).

Proof. Again, we consider the two cases: (a) when {µj} is bounded; (b) when
µj → 0. Let N ⊂ N be the set of indices such that limj∈N x

j = x∗.
First, we consider case (a). By the definition of xj in the Algorithm 2,

and since µj = µjf = µ̄ for all j ≥ jf , we have:

f(xj) + c(xj)T
(
λj +

c(xj)

2µ̄

)
+
µ̄

2

(∥∥∥∥[g(xj)

µ̄
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)

≤ f(z) + c(z)T
(
λj +

c(z)

2µ̄

)
+
µ̄

2

(∥∥∥∥[g(z)

µ̄
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
+ εj

where z ∈ Ω is a global minimizer of problem (1). Since c(z) = 0, g(z) ≤ 0,
and δj, µ̄ > 0 for all j ≥ jf , we get∥∥∥∥[g(z)

µ̄
+ δj

]
+

∥∥∥∥2

≤ ‖δj‖2

and then

f(xj) + c(xj)T
(
λj +

c(xj)

2µ̄

)
+
µ̄

2

(∥∥∥∥[g(xj)

µ̄
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
≤ f(z) + εj.

Now, letN1 ⊂ N be a set of indices such that limj∈N1 λ
j = λ∗ and limj∈N1 δ

j =
δ∗. Taking limits for j ∈ N1 and also using limj∈N1 ε

j = ε∗, we obtain:

f(x∗) +
µ̄

2

(∥∥∥∥[g(x∗)

µ̄
+ δ∗

]
+

∥∥∥∥2

− ‖δ∗‖2

)
≤ f(z) + ε∗.

Since x∗ is feasible, either gi(x
∗) = 0 and δ∗i > 0, or gi(x

∗) < 0 and δ∗i = 0,
for each i, and therefore

f(x∗) ≤ f(z) + ε∗

which proves the claim that x∗ is an ε∗-global minimizer, since z is a global
minimizer.
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For case (b), we have

f(xj) + c(xj)T
(
λj +

c(xj)

2µj

)
+
µj

2

(∥∥∥∥[g(xj)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)

≤ f(z) + c(z)T
(
λj +

c(z)

2µj

)
+
µj

2

(∥∥∥∥[g(z)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
+ εj

for all j ∈ N. Since z is feasible, and using an argument similar to that used
in case (a), we get:

f(xj) + c(xj)T
(
λj +

c(xj)

2µj

)
+
µj

2

(∥∥∥∥[g(xj)

µj
+ δj

]
+

∥∥∥∥2

− ‖δj‖2

)
≤ f(z) + εj.

Now, taking limits for j ∈ N , and using the convergence of xj, c(xj) → 0,
and the fact that limµj = 0, we obtain the desired result

f(x∗) ≤ f(z) + ε∗.

2.3. Global optimization of the subproblems

An εj-global minimum of subproblem (2) can be obtained by applying the
Hooke and Jeeves pattern search method to enhance a genetic algorithm with
elitism. We remark that the implementation of elitism in a genetic algorithm,
maintaining the best fitness over the entire iterative process, is a crucial issue
related with the stochastic convergence properties of the algorithm. The goal
is to guarantee that the probability of converging to a globally optimal point
approaches one as k → ∞, so that condition (9) is fulfilled [26]. As an
immediate consequence, an approximation to the global minimum of the
augmented Lagrangian may be obtained with a pre-defined accuracy. The
solution may be further improved applying a local pattern search, namely
the Hooke and Jeeves algorithm, to that solution.

2.3.1. Genetic Algorithm

A Genetic Algorithm (GA) is a population based algorithm that uses
techniques inspired by evolutionary biology such as inheritance, mutation,
selection, and crossover [12]. Thus, unlike conventional algorithms, GAs start
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from a population of points P of size s. In spite of the traditional binary
representation used by GAs, our implementation uses a real representation
since we are dealing with continuous problems. Therefore, each point of the
population z(l), for l = 1, . . . s, is an n dimensional vector.

A fitness function is defined as evaluation function in order to compare the
points of the population and to apply a stochastic selection that guarantees
that better points are more likely to be selected. The fitness function, Φj(x),
corresponds to the objective function of the subproblem (2). A tournament
selection was considered, i.e., tournaments are played between two points
and the best point (with the lowest fitness value) is chosen for the pool.

New points in the search space are generated by the application of genetic
operators (crossover and mutation) to the selected points from population.
Elitism was implemented by maintaining, during the search, a given number,
e, of the best points in the population.

Crossover combines two points in order to generate new ones. A Sim-
ulated Binary Crossover (SBX) [8] that simulates the working principle of
single-point crossover operator for binary strings was implemented. Two
points, z(1) and z(2), are randomly selected from the pool and, with proba-
bility pc, two new points, w(1) and w(2) are generated according to

w
(1)
i = 0.5

(
(1 + βi)z

(1)
i + (1− βi)z(2)

i

)
w

(2)
i = 0.5

(
(1− βi)z(1)

i + (1 + βi)z
(2)
i

)
for i = 1, . . . , n. The values of βi are obtained from the following distribution:

βi =

 (2ri)
1

ηc+1 if ri ≤ 0.5(
1

2(1−ri)

) 1
ηc+1

if ri > 0.5

where ri ∼ U(0, 1) and ηc > 0 is an external parameter of the distribution.
This procedure is repeated until the number of generated points equals the
number of points in the pool.

A Polynomial Mutation is applied, with a probability pm, to the points
produced by the crossover operator. Mutation introduces diversity in the
population since crossover, exclusively, could not assure the exploration of
new regions of the search space. This operator guarantees that the probabil-
ity of creating a new point t(l) closer to the previous one w(l) (l = 1, . . . , s) is
larger than the probability of creating one away from it. It can be expressed
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by:
t
(l)
i = w

(l)
i + (ui − li)ιi

for i = 1, . . . , n. The values of ιi are given by:

ιi =

{
(2ri)

1
ηm+1 − 1 if ri < 0.5

1− (2(1− ri))
1

ηm+1 if ri ≥ 0.5

where ri ∼ U(0, 1) and ηm > 0 is an external parameter of the distribution.
The GA proceeds as the following algorithm.

Algorithm 3 Genetic Algorithm

Require: xj−1 (current approximation), e (number of best points in the
population), s (population size), pc (crossover probability), pm (mutation
probability), kmax > 0;

1: Set z(1) = xj−1 and randomly generate z(l) ∈ Ω, for l = 2, . . . , s (Initial-
ization of P );

2: Set k = 0;
3: while the stopping criterion is not met do
4: Compute Φj(z(l)), for l = 1, . . . , s (Fitness Evaluation);
5: Select by tournaments s− e points from P (Selection);
6: Apply SBX crossover with probability pc (Crossover);
7: Apply polynomial mutation with probability pm (Mutation);
8: Replace the worst s− e points of P (Elitism);
9: Set yj = zkbest;

10: Set k = k + 1;
11: end while
12: return yj.

To guarantee that the Algorithm 3 converges to an εj-global minimizer
of the augmented Lagrangian, the stopping criterion relies on the condition:

Φj(zkbest)− Φ(z̄) ≤ εj (12)

where Φj(zkbest) is the fitness value of the best point in population (zkbest), at
iteration k, and in a practical context Φ(z̄) is the smallest functional value
considering all the algorithms that found a feasible point. However, if it
happens that the previous criterion is not satisfied in kmax iterations, the
algorithm is terminated and the best point in the population is returned.
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2.3.2. The Hooke and Jeeves Pattern Search

A pattern search method is a derivative-free method that performs, at
each iteration k, a series of exploratory moves around a current approxima-
tion, zk, in order to find a new approximation zk+1 = zk + ∆ksk, with a
lower fitness value. We use k for the iteration counter of this inner itera-
tive process. For k = 0, the initial approximation to begin the search is
z0 = yj (see Algorithm 1). The scalar ∆k represents the step length and the
vector sk determines the direction of the step. The exploratory moves to pro-
duce ∆ksk and the updating of ∆k and sk define a particular pattern search
method and their choices are crucial to the success of the algorithm. When
Φj(zk+1) < Φj(zk) then the iteration is considered successful; otherwise it is
unsuccessful. When an iteration is successful, the step length is not modified,
while in an unsuccessful iteration ∆k is reduced. See for example [20, 30].

In our algorithm, ∆ksk is computed by the Hooke and Jeeves (HJ) search
method [16]. This algorithm differs from the traditional coordinate search
since it performs two types of moves: the exploratory move and the pat-
tern move. An exploratory move is a coordinate search - a search along the
coordinate axes - around a selected approximation, using a step length ∆k.
A pattern move is a promising direction that is defined by zk − zk−1 when
the previous iteration was successful and zk was accepted as the new ap-
proximation. A new trial approximation is then defined as zk + (zk − zk−1)
and an exploratory move is then carried out around this trial point. If this
search is successful, the new approximation is accepted as zk+1. We refer
to [16, 20] for details. This HJ iterative procedure terminates, providing a
new approximation xj to the problem (1), xj ← zk+1, when the following
stopping condition is satisfied, ∆k ≤ εj. However, if this condition can not
be satisfied in kmax iterations, then the procedure is stopped with the last
available approximation.

2.3.3. Forcing feasibility

The inner iterative process must return an approximate solution that sat-
isfies the bound constraints (recall (2)). While using the genetic algorithm
and the Hooke and Jeeves version of the pattern search, any computed solu-
tion x that does not satisfy the bounds is projected onto the set Ω component
by component (for all i, . . . , n) as follows:

xi =


li if xi < li
xi if li ≤ xi ≤ ui
ui if xi > ui

.
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Table 1: Test problems.
Prob. Type of f(x) n p m nact fglobal
g01 min quadratic 13 9 0 6 -15.00000
g02 max nonlinear 20 2 0 1 0.803619
g03 max polynomial 10 0 1 1 1.000000
g04 min quadratic 5 6 0 2 -30665.54
g05 min cubic 4 2 3 3 5126.498
g06 min cubic 2 2 0 2 -6961.814
g07 min quadratic 10 8 0 6 24.30621
g08 max nonlinear 2 2 0 0 0.095825
g09 min polynomial 7 4 0 2 680.6301
g10 min linear 8 6 0 6 7049.248
g11 min quadratic 2 0 1 1 0.750000
g12 max quadratic 3 1 0 0 1.000000
g13 min nonlinear 5 0 3 3 0.053945

3. Numerical results

The HGPSAL algorithm is coded in the MatLab programming language
so that the problems also coded in MatLab could be easily read and solved.
The numerical results were obtained with a PC Intel Core i3 CPU M350 @
2.27GHz with 4GB of memory.

3.1. Test Problems

In this study, to evaluate the performance of the HGPSAL algorithm, 13
benchmark problems were considered. This set contains difficult constrained
optimization problems with very distinct properties [18, 23]. The characteris-
tics of the problems are summarized in Table 1 that lists the type of objective
function, the number of decision variables (n), the number of inequality con-
straints (p), the number of equality constraints (m), the number of active
constraints at the optimum (nact) and the known optimal value (fglobal).

3.2. Algorithm parameters

All parameters of the HGPSAL algorithm were kept constant for all prob-
lems. No effort was made in finding the best parameter setting for each prob-
lem. Table 2 shows the parameters of the augmented Lagrangian used in all
experiments. In Table 3 the genetic algorithm parameters are listed. The
maximum number of iterations kmax for Hooke and Jeeves pattern search was
set on 200 iterations.
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Table 2: Augmented Lagrangian parameters.

λmin λmax δmax µ1 µmin γ ε∗ η∗ λ1i , δ
1
i ,∀i η1 jmax π τ

−1012 1012 1012 1 10−12 0.5 10−12 10−6 0 1 300 0.5 0.5

Table 3: Genetic Algorithm parameters.
kmax s e pc ηc pm ηm
200 20 2 0.9 20 1/n 20

3.3. Discussion

Due to the stochastic nature of the Algorithm 2 each problem was run 30
times. We then report the best of the 30 best solutions, ’Best’, the worst of
the 30 best solutions, ’Worst’, the average of the 30 best solutions, ’Average’,
the standard deviation of the function values, ’St.Dev.’ and the average
number of function evaluations after the 30 runs, ’Avg.Eval.’.

The most unbiased measure to assess and compare the performance of
stochastic algorithms is the average value of the obtained results over all
the runs, since it provides the central tendency of the results. A number
of runs of the order herein used ensures statistically significance since it is
considered sufficiently large and the statistical distribution of the average
value asymptotically converges to a normal distribution.

Table 4 shows the results of the test problems in terms of the best, the
worst, the average, the standard deviation of the objective value of the solu-
tions and the average number of function evaluations. We report the solutions
obtained by HGPSAL, as well as those obtained by the filter simulated an-
nealing (FSA) [15], the gradient based repair genetic algorithm (GRGA) [4],
the evolutionary algorithm (EA) [27], the genetic algorithm (GAT) [31], the
hybrid particle swarm optimization algorithm (HPSO) [13] and the self-
organizing migrating genetic algorithm (C-SOMGA) [9]. These stochastic
algorithms use different approaches to handle constraints: FSA uses a filter-
set based procedure and simulated annealing; GRGA derives information
from the constraint set for repairing infeasible solutions and searches using
a genetic algorithm; EA uses a multiobjective approach to deal with con-
straints and an evolutionary algorithm based on evolution strategies; GAT
incorporates modified genetic operators to preserve feasibility; HPSO uses a
feasibility-based rule and C-SOMGA uses a penalty free constraint handling
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selection. It should be noted that HGPSAL is being compared with other
algorithms which use different constraint-handling techniques. Solutions to
problems g12 and g13 by GRGA are not given in [4] and therefore they were
not included in the table. The solutions found by GAT for the set of problems
in [31] are only for the problems g01, g02, g03, g08 and g11, and the worst
objective function values are not available. The results presented in [13] of
HPSO are only for problems g04, g08 and g12. As to C-SOMGA [9], the
available solutions are for problems g01, g02, g08, g11 and g12. We remark
that the listed values in [9] are only the average value and the standard
deviation of the objective function.

Table 4: Comparison results of test problems using HGPSAL, FSA, GRGA, EA, HPSO and C-SOMGA.

Prob Optimal Algorithm Best Worst Average St.Dev. Avg.Eval.
g01 -15.00000 HGPSAL -15.00000 -14.99993 -14.99998 0.00003 87927

FSA -14.99911 -14.97998 -14.99331 0.00481 205748
GRGA -15.00000 -15.00000 -15.00000 0.00000 95512

EA -15.00000 -15.00000 -15.00000 0.00000 122000
GAT -15.0000 -14.9999 0.00008 21833

C-SOMGA -14.99225 0.00304 150000
g02 0.803619 HGPSAL 0.61133 0.52666 0.556323 0.02501 227247

FSA 0.754912 0.271311 0.371708 0.09802 227832
GRGA 0.801119 0.745329 0.785746 0.01370 331972

EA 0.803619 0.609330 0.753209 0.03700 349600
GAT 0.79466 0.7555 0.02710 483870

C-SOMGA 0.77542 0.02739 150000
g03 1.000000 HGPSAL 1.000000 1.000000 1.000000 0.00000 113890

FSA 1.000000 0.991519 0.999187 0.00165 314938
GRGA 0.999980 0.999790 0.999920 0.00006 399804

EA 1.000000 1.000000 1.000000 0.00000 339600
GAT 1.0125 1.0124 0.00003 15240

g04 -30665.54 HGPSAL -30665.54 -30665.54 -30665.54 0.00000 106602
FSA -30665.54 -30664.54 -30665.47 0.17322 86154

GRGA -30665.54 -30665.54 -30665.54 0.00000 26981
EA -30665.54 -30665.54 -30665.54 0.00000 66400

HPSO -30665.539 -30665.539 -30665.539 0.00000 81000
g05 5126.498 HGPSAL 5126.498 5126.498 5126.498 0.00000 199439

FSA 5126.498 5126.498 5126.498 0.00000 47661
GRGA 5126.498 5126.498 5126.498 0.00000 39459

EA 5126.498 5126.498 5126.498 0.00000 62000
g06 -6961.814 HGPSAL -6961.814 -6961.809 -6961.814 0.00127 77547

FSA -6961.814 -6961.814 -6961.814 0.00000 44538
GRGA -6961.814 -6961.814 -6961.814 0.00000 13577

EA -6961.814 -6961.814 -6961.814 0.00000 56000
g07 24.30621 HGPSAL 24.30621 24.30621 24.30621 0.00000 81060

FSA 24.31057 24.64440 24.37953 0.07164 404501
GRGA 24.32940 24.83520 24.47190 0.12900 428314

EA 24.30621 24.63500 24.33700 0.04100 350000
g08 0.095825 HGPSAL 0.095825 0.095825 0.095825 0.00000 39381

FSA 0.095825 0.095825 0.095825 0.00000 56476
GRGA 0.095825 0.095825 0.095825 0.00000 6217
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Table 4: (continued)

Prob Optimal Algorithm Best Worst Average St.Dev. Avg.Eval.
EA 0.095825 0.095825 0.095825 0.00000 49600

GAT 0.09582 0.09582 0.00000 3147
HPSO 0.095825 0.095825 0.095825 0.00000 81000

C-SOMGA 0.08816 0.01657 150000
g09 680.6301 HGPSAL 680.6301 680.6301 680.6301 0.00000 56564

FSA 680.6301 680.6983 680.6364 0.01452 324569
GRGA 680.6303 680.6538 680.6381 0.00661 388453

EA 680.6301 680.6301 680.6301 0.00000 310000
g10 7049.248 HGPSAL 7049.247 7049.248 7049.248 0.00050 150676

FSA 7059.864 9398.649 7059.321 542.342 243520
GRGA 7049.261 7051.686 7049.566 0.57000 572629

EA 7049.404 7258.540 7082.227 42.0000 344000
g11 0.750000 HGPSAL 0.750000 0.750000 0.750000 0.00000 17948

FSA 0.749900 0.749900 0.749900 0.00000 23722
GRGA 0.750000 0.750000 0.750000 0.00000 7215

EA 0.750000 0.750000 0.750000 0.00000 46400
GAT 0.7500 0.75003 0.00001 4651

C-SOMGA 0.82519 0.09761 150000
g12 1.000000 HGPSAL 1.000000 1.000000 1.000000 0.00000 61344

FSA 1.000000 1.000000 1.000000 0.00000 59355
EA 1.000000 1.000000 1.000000 0.00000 20400

HPSO 1.000000 1.000000 1.000000 0.00000 81000
C-SOMGA 0.88794 0.21215 150000

g13 0.053945 HGPSAL 0.053950 0.438851 0.349041 0.16558 31269
FSA 0.053950 0.438851 0.297720 0.18865 120268
EA 0.053942 0.438804 0.111671 0.14000 109200

After analyzing the results, it can be observed that HGPSAL consistently
found the global optimal solutions in all problems. For problem g02, HG-
PSAL did not find any good approximation to the optimum. We remark
that this is a very difficult nonconvex problem. For problem g13, HGPSAL
obtained good approximations to the optimum in seven of the 30 runs. The
small values of standard deviations obtained by HGPSAL in the majority of
the problems highlight the consistency of the algorithm. In terms of compu-
tational effort (average number of function evaluations), the conclusions are
the following. In ten of the 13 problems, HGPSAL requires the smallest, or
one of the smallest, effort between all methods in comparison, while in the
remaining three problems, HGPSAL requires the biggest effort.

In Figure 1 we can analyze the exploration-exploitation trade-off when
using the proposed hybridization scheme. The HGPSAL is compared with
both the GA and the HJ methods alone. We note that HJ is a determin-
istic method that can be trapped in a local optimum. In general, the final
solution is heavily dependent on the provided initial approximation. Four
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Figure 1: Boxplots of best function values to compare HGPSAL, GA and HJ

example problems were selected from the previous set (g01, g02, g09, g13).
Based on the boxplots of the best function values, over the 30 runs, we can
observe that the GA gives the least accurate solutions. GA is good in finding
the promising area of the search (exploration), but is not effective in fine-
tuning the approximation to the minimum (exploitation). We note that the
HJ method may also give a set of different solutions due to the randomly
generated initial approximations of the algorithm.

On the other hand, we can see in problem g02 (a non-convex problem)
that the Hooke & Jeeves method totally misses the global maximum, and in
problem g13 it misses the global minimum in almost all runs. This highlights
the advantage of our hybridization scheme over using GA or HJ alone.

4. Conclusions and Future Work

In this paper, we developed and proposed a hybrid algorithm for con-
strained global optimization that combines the augmented Lagrangian tech-
nique for handling the equality and inequality constraints with a genetic
algorithm as global optimizer and a pattern search as local optimizer. A
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convergence analysis of the algorithm is also provided. The sequence of iter-
ates generated by the algorithm converges to an ε-global minimizer.

Numerical results for a set of test problems seem to show that hybridiza-
tion provides a more effective trade-off between exploitation and exploration
of the search space. Moreover, the numerical results validate and stress the
advantages of using the augmented Lagrangian technique for handling con-
straints.

In general, HGPSAL exhibited a good performance in terms of accuracy
and precision of the obtained optimal approximations. The algorithm has
shown to be competitive and efficient when compared with the others.

As future work, we intend to perform comparisons with other stochastic
approaches and solve other benchmark problems, to improve the integration
of GA and HJ (e.g., using hill climbing strategies) and to tune the parameters
of the algorithm.
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