21 research outputs found

    On max-clique for intersection graphs of sets and the hadwiger-debrunner numbers

    Get PDF
    Let HDd(p, q) denote the minimal size of a transversal that can always be guaranteed for a family of compact convex sets in Rd which satisfy the (p, q)-property (p β‰₯ q β‰₯ d + 1). In a celebrated proof of the Hadwiger-Debrunner conjecture, Alon and Kleitman proved that HDd(p, q) exists for all p β‰₯ q β‰₯ d + 1. Specifically, they prove that HDd(p, d + 1) is O(pd2+d). This paper has two parts. In the first part we present several improved bounds on HDd(p, q). In particular, we obtain the first near tight estimate of HDd(p, q) for an extended range of values of (p, q) since the 1957 Hadwiger-Debrunner theorem. In the second part we prove a (p, 2)-theorem for families in R2 with union complexity below a specific quadratic bound. Based on this, we introduce a polynomial time constant factor approximation algorithm for MAX-CLIQUE of intersection graphs of convex sets satisfying this property. It is not likely that our constant factor approximation can be improved to a PTAS as MAX-CLIQUE for intersection graphs of fat ellipses is known to be APX-HARD and fat ellipses have sub-quadratic union complexity. Copyright Β© by SIAM

    From a (p,2)-Theorem to a Tight (p,q)-Theorem

    Get PDF
    A family F of sets is said to satisfy the (p,q)-property if among any p sets of F some q have a non-empty intersection. The celebrated (p,q)-theorem of Alon and Kleitman asserts that any family of compact convex sets in R^d that satisfies the (p,q)-property for some q >= d+1, can be pierced by a fixed number (independent on the size of the family) f_d(p,q) of points. The minimum such piercing number is denoted by {HD}_d(p,q). Already in 1957, Hadwiger and Debrunner showed that whenever q > (d-1)/d p+1 the piercing number is {HD}_d(p,q)=p-q+1; no exact values of {HD}_d(p,q) were found ever since. While for an arbitrary family of compact convex sets in R^d, d >= 2, a (p,2)-property does not imply a bounded piercing number, such bounds were proved for numerous specific families. The best-studied among them is axis-parallel boxes in R^d, and specifically, axis-parallel rectangles in the plane. Wegner (1965) and (independently) Dol\u27nikov (1972) used a (p,2)-theorem for axis-parallel rectangles to show that {HD}_{rect}(p,q)=p-q+1 holds for all q>sqrt{2p}. These are the only values of q for which {HD}_{rect}(p,q) is known exactly. In this paper we present a general method which allows using a (p,2)-theorem as a bootstrapping to obtain a tight (p,q)-theorem, for families with Helly number 2, even without assuming that the sets in the family are convex or compact. To demonstrate the strength of this method, we show that {HD}_{d-box}(p,q)=p-q+1 holds for all q > c\u27 log^{d-1} p, and in particular, {HD}_{rect}(p,q)=p-q+1 holds for all q >= 7 log_2 p (compared to q >= sqrt{2p}, obtained by Wegner and Dol\u27nikov more than 40 years ago). In addition, for several classes of families, we present improved (p,2)-theorems, some of which can be used as a bootstrapping to obtain tight (p,q)-theorems. In particular, we show that any family F of compact convex sets in R^d with Helly number 2 admits a (p,2)-theorem with piercing number O(p^{2d-1}), and thus, satisfies {HD}_{F}(p,q)=p-q+1 for all q>cp^{1-1/(2d-1)}, for a universal constant c
    corecore