163 research outputs found

    Wake up Radio Architecture for Wireless Sensor Networks Using an Ultra Low Power FPGA

    Get PDF
    In this paper an implementation of a Wake up Radio(WuR) with addressing capabilities based on an ultra low power FPGA for ultra low energy Wireless Sensor Networks (WSNs) is proposed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the traditional approaches based on ASICs or microcontrollers, for communication frame decoding and communication data control

    Transmission Delay of Multi-hop Heterogeneous Networks for Medical Applications

    Full text link
    Nowadays, with increase in ageing population, Health care market keeps growing. There is a need for monitoring of Health issues. Body Area Network consists of wireless sensors attached on or inside human body for monitoring vital Health related problems e.g, Electro Cardiogram (ECG), ElectroEncephalogram (EEG), ElectronyStagmography(ENG) etc. Data is recorded by sensors and is sent towards Health care center. Due to life threatening situations, timely sending of data is essential. For data to reach Health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to Health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. After ZigBee there are three available networks, through which data is sent. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to Health care center. Main aim of this paper is to calculate delay of each link in each path over multihop wireless channel.Comment: BioSPAN with 7th IEEE International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA 2012), Victoria, Canada, 201

    Ultra Low Power FPGA-Based Architecture for Wake-up Radio in Wireless Sensor Networks

    Get PDF
    In this paper the capabilities of ultra low power FPGAs to implement Wake-up Radios (WuR) for ultra low energy Wireless Sensor Networks (WSNs) are analyzed. The main goal is to evaluate the utilization of very low power configurable devices to take advantage of their speed, flexibility and low power consumption instead of the more common approaches based on ASICs or microcontrollers. In this context, energy efficiency is a key aspect, considering that usually the instant power consumption is considered a figure of merit, more than the total energy consumed by the application

    Design, Implementation, and Performance Evaluation of a Flexible Low-Latency Nanowatt Wake-Up Radio Receiver

    Get PDF
    Wireless sensor networks (WSNs) have received significant attention in recent years and have found a wide range of applications, including structural and environmental monitoring, mobile health, home automation, Internet of Things, and others. As these systems are generally battery operated, major research efforts focus on reducing power consumption, especially for communication, as the radio transceiver is one of the most power-hungry components of a WSN. Moreover, with the advent of energy-neutral systems, the emphasis has shifted toward research in microwatt (or even nanowatt) communication protocols or systems. A significant number of wake-up radio receiver (WUR) architectures have been proposed to reduce the communication power of WSN nodes. In this work, we present an optimized ultra-low power (nanowatt) wake-up receiver for use in WSNs, designed with low-cost off-the-shelf components. The wake-up receiver achieves power consumption of 152 nW (with-32 dBm sensitivity), sensitivity up to-55 dBm (with maximum power of 1,2 μW), latency from 8 μs, tunable frequency, and short commands communication. In addition, a low power solution, which includes addressing capability directly in the wake-up receiver, is proposed. Experimental results and simulations demonstrate low power consumption, functionality, and benefits of the design optimization compared with other solutions, as well as the benefits of addressing false positive (FP) outcomes reduction

    A Low Cost Platform for Sensor Network Applications and Educational Purposes

    Get PDF
    In this paper we describe the design, key features and results obtained from the development of a generic platform usable for sensor network applications operational in the ISM band. The goal was to create an open source low cost platform suitable for use in educational environment. The platform should allow students to easily grasp the fundamentals of wireless sensor networks so special attention was paid to basic concepts related to their functioning. Two versions of this platform were designed, the first one being a proof of concept and the second one more adequate to field test and measurements. Practical aspects of implementation such as network protocol, power consumption, processing speed, media access are discussed

    Ultra-Low Power Wake Up Receiver For Medical Implant Communications Service Transceiver

    Get PDF
    This thesis explores the specific requirements and challenges for the design of a dedicated wake-up receiver for medical implant communication services equipped with a novel “uncertain-IF†architecture combined with a high – Q filtering MEMS resonator and a free running CMOS ring oscillator as the RF LO. The receiver prototype, implements an IBM 0.18μm mixed-signal 7ML RF CMOS technology and achieves a sensitivity of -62 dBm at 404MHz while consuming \u3c100 μW from a 1 V supply

    IoT protocols, architectures, and applications

    Get PDF
    The proliferation of embedded systems, wireless technologies, and Internet protocols have made it possible for the Internet-of-things (IoT) to bridge the gap between the physical and the virtual world and thereby enabling monitoring and control of the physical environment by data processing systems. IoT refers to the inter-networking of everyday objects that are equipped with sensing, computing, and communication capabilities. These networks can collaborate to autonomously solve a variety of tasks. Due to the very diverse set of applications and application requirements, there is no single communication technology that is able to provide cost-effective and close to optimal performance in all scenarios. In this chapter, we report on research carried out on a selected number of IoT topics: low-power wide-area networks, in particular, LoRa and narrow-band IoT (NB-IoT); IP version 6 over IEEE 802.15.4 time-slotted channel hopping (6TiSCH); vehicular antenna design, integration, and processing; security aspects for vehicular networks; energy efficiency and harvesting for IoT systems; and software-defined networking/network functions virtualization for (SDN/NFV) IoT

    Millimeter-Scale and Energy-Efficient RF Wireless System

    Full text link
    This dissertation focuses on energy-efficient RF wireless system with millimeter-scale dimension, expanding the potential use cases of millimeter-scale computing devices. It is challenging to develop RF wireless system in such constrained space. First, millimeter-sized antennae are electrically-small, resulting in low antenna efficiency. Second, their energy source is very limited due to the small battery and/or energy harvester. Third, it is required to eliminate most or all off-chip devices to further reduce system dimension. In this dissertation, these challenges are explored and analyzed, and new methods are proposed to solve them. Three prototype RF systems were implemented for demonstration and verification. The first prototype is a 10 cubic-mm inductive-coupled radio system that can be implanted through a syringe, aimed at healthcare applications with constrained space. The second prototype is a 3x3x3 mm far-field 915MHz radio system with 20-meter NLOS range in indoor environment. The third prototype is a low-power BLE transmitter using 3.5x3.5 mm planar loop antenna, enabling millimeter-scale sensors to connect with ubiquitous IoT BLE-compliant devices. The work presented in this dissertation improves use cases of millimeter-scale computers by presenting new methods for improving energy efficiency of wireless radio system with extremely small dimensions. The impact is significant in the age of IoT when everything will be connected in daily life.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147686/1/yaoshi_1.pd

    Wireless distance estimation with low-power standard components in wireless sensor nodes

    Full text link
    In the context of increasing use of moving wireless sensor nodes the interest in localizing these nodes in their application environment is strongly rising. For many applications, it is necessary to know the exact position of the nodes in two- or three-dimensional space. Commonly used nodes use state-of-the-art transceivers like the CC430 from Texas Instruments with integrated signal strength measurement for this purpose. This has the disadvantage, that the signal strength measurement is strongly dependent on the orientation of the node through the antennas inhomogeneous radiation pattern as well as it has a small accuracy on long ranges. Also, the nodes overall attenuation and output power has to be calibrated and interference and multipath effects appear in closed environments. Another possibility to trilaterate the position of a sensor node is the time of flight measurement. This has the advantage, that the position can also be estimated on long ranges, where signal strength methods give only poor accuracy. In this paper we present an investigation of the suitability of the state-of-the-art transceiver CC430 for a system based on time of flight methods and give an overview of the optimal settings under various circumstances for the in-field application. For this investigation, the systematic and statistical errors in the time of flight measurements with the CC430 have been investigated under a multitude of parameters. Our basic system does not use any additional components but only the given standard hardware, which can be found on the Texas Instruments evaluation board for a CC430. Thus, it can be implemented on already existent sensor node networks by a simple software upgrade.Comment: 8 pages, Proceedings of the 14th Mechatronics Forum International Conference, Mechatronics 201

    Analyzing Delay in Wireless Multi-hop Heterogeneous Body Area Networks

    Full text link
    With increase in ageing population, health care market keeps growing. There is a need for monitoring of health issues. Wireless Body Area Network (WBAN) consists of wireless sensors attached on or inside human body for monitoring vital health related problems e.g, Electro Cardiogram (ECG), Electro Encephalogram (EEG), ElectronyStagmography (ENG) etc. Due to life threatening situations, timely sending of data is essential. For data to reach health care center, there must be a proper way of sending data through reliable connection and with minimum delay. In this paper transmission delay of different paths, through which data is sent from sensor to health care center over heterogeneous multi-hop wireless channel is analyzed. Data of medical related diseases is sent through three different paths. In all three paths, data from sensors first reaches ZigBee, which is the common link in all three paths. Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunication System (UMTS) are connected with ZigBee. Each network (WLAN, WiMAX, UMTS) is setup according to environmental conditions, suitability of device and availability of structure for that device. Data from these networks is sent to IP-Cloud, which is further connected to health care center. Delay of data reaching each device is calculated and represented graphically. Main aim of this paper is to calculate delay of each link in each path over multi-hop wireless channel.Comment: arXiv admin note: substantial text overlap with arXiv:1208.240
    corecore