1,390 research outputs found

    Efficient data uncertainty management for health industrial internet of things using machine learning

    Full text link
    [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support.Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948114341

    Reuse of pervasive system architectures

    Get PDF
    Developers are often confronted with incompatible systems and lack a proper system abstraction that allows easy integration of various hardware and software components. To try solve these shortcomings, building blocks are identified at different levels of detail in today’s pervasive/communication systems and used in a conceptual reasoning framework allowing easy comparison and combination. The generality of the conceptual framework is validated by decomposing a selection of pervasive systems into models of these building blocks and integrating these models to create improved ones. Additionally, the required properties of pervasive systems on scalability, efficiency, degree of pervasiveness, and maintainability are analysed for a number of application areas. The pervasive systems are compared on these properties. Observations are made, and weak points in the analysed pervasive systems are identified. Furthermore, we provide a set of recommendations as a guideline towards flexible architectures that make pervasive systems usable in a variety of applications

    Providing security and fault tolerance in P2P connections between clouds for mHealth services

    Full text link
    [EN] The mobile health (mHealth) and electronic health (eHealth) systems are useful to maintain a correct administration of health information and services. However, it is mandatory to ensure a secure data transmission and in case of a node failure, the system should not fall down. This fact is important because several vital systems could depend on this infrastructure. On the other hand, a cloud does not have infinite computational and storage resources in its infrastructure or would not provide all type of services. For this reason, it is important to establish an interrelation between clouds using communication protocols in order to provide scalability, efficiency, higher service availability and flexibility which allow the use of services, computing and storage resources of other clouds. In this paper, we propose the architecture and its secure protocol that allows exchanging information, data, services, computing and storage resources between all interconnected mHealth clouds. The system is based on a hierarchic architecture of two layers composed by nodes with different roles. The routing algorithm used to establish the connectivity between the nodes is the shortest path first (SPF), but it can be easily changed by any other one. Our architecture is highly scalable and allows adding new nodes and mHealth clouds easily, while it tries to maintain the load of the cloud balanced. Our protocol design includes node discovery, authentication and fault tolerance. We show the protocol operation and the secure system design. Finally we provide the performance results in a controlled test bench.Lloret, J.; Sendra, S.; Jimenez, JM.; Parra-Boronat, L. (2016). Providing security and fault tolerance in P2P connections between clouds for mHealth services. Peer-to-Peer Networking and Applications. 9(5):876-893. doi:10.1007/s12083-015-0378-3S87689395The Fifty-eighth World Health Assembly, Resolutions and Decisions. Document: A58/21. Available at: http://www.who.int/healthacademy/media/WHA58-28-en.pdf . [Last access: Dec. 30, 2014]World Health organization. Topics of eHealth. In WHO website. Available at: http://www.who.int/topics/eHealth/en/ . [Last access: Dec. 30, 2014]Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805Promotional Material Digital health: working in partnership. Department of Health. UK. (2014) Available at: https://www.gov.uk/government/publications/digital-health-working-in-partnership/digital-health-working-in-partnerships#digital-health---harnessing-technology-for-patient-benefit . [Last access: Dec. 30, 2014]eHealth for a Healthier Europe!– opportunities for a better use of healthcare resources. Available at: https://joinup.ec.europa.eu/sites/default/files/files_epractice/sites/eHealth%20for%20a%20Healthier%20Europe %20-%20Opportunities%20for%20a%20better%20use%20of%20healthcare%20resources.pdf. [Last access: Dec. 30, 2014]Adibi S (2012) Link technologies and BlackBerry mobile health (mHealth) solutions: a review. IEEE Trans Inf Technol Biomed 16(4):586–597Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Lopes IM, Silva BM, Rodrigues JJ, Lloret J, Proenca ML (2011) A mobile health monitoring solution for weight control. In proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP 2011), Nanjing, pp 1–5Lopes IM, Silva BM, Rodrigues JJPC, Lloret J (2012) Performance evaluation of cooperation mechanisms for m-health applications. In proceedings of the 2012 I.E. Global Communications Conference (GLOBECOM 2012), AnaheimKyriacou EC, Pattichis CS, Pattichis MS (2009) An overview of recent health care support systems for eEmergency and mHealth applications. In proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Hilton Minneapolis, pp 1246–1249Nkosi MT, Mekuria F (2010) Cloud computing for enhanced mobile health applications. In proceedings of the 2010 I.E. Second International Conference on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, pp 629–633Sultan N (2014) Making use of cloud computing for healthcare provision: opportunities and challenges. Int J Inf Manag 34(2):177–184Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R (2012) An autonomic cloud environment for hosting ECG data analysis services. Futur Gener Comput Syst 28(1):147–154Xia H, Asif I, Zhao X (2013) Cloud-ECG for real time ECG monitoring and analysis. Comput Methods Prog Biomed 110(3):253–259Bourouis A, Feham M, Bouchachia A (2012) A new architecture of a ubiquitous health monitoring system: a prototype of cloud mobile health monitoring system. arXiv preprint. Reference: arXiv:1205.6910Chen KR, Lin YL, Huang MS (2011) A mobile biomedical device by novel antenna technology for cloud computing resource toward pervasive healthcare. In proceedings of the 11th International Conference on Bioinformatics and Bioengineering (BIBE 2011), Taichung, pp 133–136Lacuesta R, Lloret J, Sendra S, Peñalver L (2014), Spontaneous ad hoc mobile cloud computing network. Sci World J (Article ID 232419): 1–19Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges (Chapter 14). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 262–274. DOI: 10.4018/978-1-4666-4781-7.ch014Wan J, Zhang D, Zhao S, Yang LT, Lloret J (2014) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges and solutions. IEEE Commun Mag 52(8):106–113. doi: 10.1109/MCOM.2014.6871677Rodrigues JJPC, Zhou L, Mendes LDP, Lin K, Lloret J (2012) Distributed media-aware flow scheduling in cloud computing environment. Comput Commun 35(15):1819–1827Dutta R, Annappa B (2014) Protection of data in unsecured public cloud environment with open, vulnerable networks using threshold-based secret sharing. Netw Protoc Algoritm 6(1):58–75Modares H, Lloret J, Moravejosharieh A, Salleh R (2013) Security in mobile cloud computing (Chapter 5). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 79–91Mehmood A, Song H, Lloret J (2014) Multi-agent based framework for secure and reliable communication among open clouds. Netw Protoc Algoritm 6(4):60–76Mendes LDP, Rodrigues JJPC, Lloret J, Sendra S (2014) Cross-layer dynamic admission control for cloud-based multimedia sensor networks. IEEE Syst J 8(1):235–246Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2014) A full lifecycle privacy protection scheme for sensitive data in cloud computing. Peer-to-Peer Netw Appl 1–13Yang H, Kim H, Mtonga K (2014) An efficient privacy-preserving authentication scheme with adaptive key evolution in remote health monitoring system. Peer-to-Peer Netw Appl 1–11Silva BM, Rodrigues JJ, Canelo F, Lopes IM, Lloret J (2014) Towards a cooperative security system for mobile-health applications. Electron Commer Re 1–27Flynn D, Gregory P, Makki H, Gabbay M (2009) Expectations and experiences of eHealth in primary care: a qualitative practice-based investigation. Int J Med Inform 78(9):588–604Thampi SM (2010) Survey of search and replication schemes in unstructured P2P networks. Netw Protoc Algoritm 2(1):93–131Khan SM, Mallesh N, Nambiar A, Wright M (2010) The dynamics of salsa: a robust structured P2P system. Netw Protoc Algoritm 2(4):40–60Garcia M, Hammoumi M, Canovas A, Lloret J (2011) Controlling P2P file-sharing networks’ traffic. Netw Protoc Algoritm 3(4):54–92Lloret J, Garcia M, Tomas J, Rodrigues JJPC (2014) Architecture and protocol for InterCloud communication. Inf Sci 258:434–451Chowdhury CR (2014) A survey of cloud based health care system. Int J Innov Res Comput Commun Eng 2(8):5477–5481Ghosh R, Papapanagiotou I, Boloor KA (2014) Survey on research initiatives for healthcare clouds. Cloud Computing Applications for Quality Health Care Delivery. IGI Global 1–18Donahue S (2010) Can cloud computing help fix health care? Cloudbook J 1(6):1–6Deng M, Petkovic M, Nalin M, Baroni IA (2011) Home healthcare system in the cloud--addressing security and privacy challenges. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 549–556Wang X, Gui Q, Liu B, Chen Y, Jin Z (2013) Leveraging mobile cloud for telemedicine: a performance study in medical monitoring. In proceedings of the 39th Annual Northeast Bioengineering Conference (NEBEC 2013), Syracuse, pp 49–50Alamri A (2012) Cloud-based e-health multimedia framework for heterogeneous network. In proceedings of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012), Melbourne, pp 447–452Constantinescu L, Kim J, Feng DD (2012) Sparkmed: a framework for dynamic integration of multimedia medical data into distributed m-health systems. IEEE Trans Inf Technol Biomed 16(1):40–52Botts N, Thoms B, Noamani A, Horan TA (2010) Cloud computing architectures for the underserved: public health cyberinfrastructures through a network of healthatms. In proceedings of the 43rd Hawaii International Conference on System Sciences (HICSS 2010), Honolulu, pp 1–10Fan L, Buchanan W, Thummler C, Lo O, Khedim A, Uthmani O, Lawson A, Bell D (2011) DACAR platform for eHealth services cloud. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 219–226Ruiz-Zafra A, Benghazi K, Noguera M, Garrido JL (2013) Zappa: An Open Mobile Platform to Build Cloud-Based m-Health Systems. In proceedings of the 4th International Symposium on Ambient Intelligence (ISAmI 2013), Salamanca, pp 87–94Nijon S, Dickerson RF, Asare P, Li Q, Hong D, Stankovic JA, Hu P, Shen G, Jiang X (2013) Auditeur: a mobile-cloud service platform for acoustic event detection on smartphones. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, Taipei, pp 403–416Lloret J, Diaz JR, Boronat F, Jiménez JM (2006) A fault-tolerant P2P-based protocol for logical networks interconnection. In proceedings of the International Conference on Networking and Services (ICNS’06), Silicon ValleyLloret J, Palau C, Boronat F, Tomas J (2008) Improving networks using group-based topologies. Comput Commun 31(14):3438–3450Lloret J, Boronat Segui F, Palau C, Esteve M (2005) Two levels SPF-based system to interconnect partially decentralized P2P file sharing networks. In proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services.(ICAS-ICNS 2005), Papeete, p 39Cramer C, Kutzner K, Fuhrmann T (2004) Bootstrapping locality-aware P2P networkS. In proceedings of the 12th IEEE International Conference on Networks (ICON 2004), Singapore, pp 357–361FIPS 180-1 - Secure Hash Standard, SHA-1. National Institute of Standards and Technology. http://www.itl.nist.gov/fipspubs/fip180-1.htm [Last access: Dec. 30, 2014]Eastlake D., Jones P., US Secure Hash Algorithm 1 (SHA1),(2001). In IETF website, Available at: http://www.ietf.org/rfc/rfc3174.txt [Last access: March 20, 2015]Lacuesta R, Lloret J, Garcia M, Peñalver L (2011) Two secure and energy-saving spontaneous Ad-Hoc protocol for wireless mesh client networks. J Netw Comput Appl 3(2):492–50

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Bringing pervasive embedded networks to the service cloud: a lightweight middleware approach

    Get PDF
    The emergence of novel pervasive networks that consist of tiny embedded nodes have reduced the gap between real and virtual worlds. This paradigm has opened the Service Cloud to a variety of wireless devices especially those with sensorial and actuating capabilities. Those pervasive networks contribute to build new context-aware applications that interpret the state of the physical world at real-time. However, traditional Service-Oriented Architectures (SOA), which are widely used in the current Internet are unsuitable for such resource-constraint devices since they are too heavy. In this research paper, an internetworking approach is proposed in order to address that important issue. The main part of our proposal is the Knowledge-Aware and Service-Oriented (KASO) Middleware that has been designed for pervasive embedded networks. KASO Middleware implements a diversity of mechanisms, services and protocols which enable developers and business processing designers to deploy, expose, discover, compose, and orchestrate real-world services (i.e. services running on sensor/actuator devices). Moreover, KASO Middleware implements endpoints to offer those services to the Cloud in a REST manner. Our internetworking approach has been validated through a real healthcare telemonitoring system deployed in a sanatorium. The validation tests show that KASO Middleware successfully brings pervasive embedded networks to the Service Cloud

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Toward energy and resource efficient Internet-of-Things: a design principle combining computation, communications and protocols

    Get PDF
    Advances in future computing and communications to support IoT are becoming more important as the need to better utilize resources and make them energy-efficient grows. As a result, it is predicted that intelligent devices and networks, including WSNs, will become the new interfaces to support future IoT applications. However, many open challenges remain, which are mostly due to the resource constraints imposed by various hardware platforms and complex characteristics of applications wishing to make use of IoT systems. Thus, it becomes critically important to study how the current approaches incorporating both computing and communications in this area can be improved, and at the same time better understand the opportunities for the research community to utilize the proposed approaches. To this end, this article presents an overview of our latest research results in sensor edge computing and lightweight communication protocols as well as their potential applications

    Smart system for children's chronic illness monitoring

    Full text link
    [EN] Sick children need a continuous monitoring, but this involves high costs for the government and for the parents. The use of information and communication technologies (ICT) jointly with artificial intelligence and smart devices can reduce these costs, help the children and assist their parents. This paper presents a smart architecture for children's chronic illness monitoring that will let the caregivers (parents, teachers and doctors) to remotely monitor the health of the children based on the sensors embedded in the smartphones and smart wearable devices. The proposed architecture includes a smart algorithm developed to intelligently detect if a parameter has exceeded a threshold, thus it may imply an emergency or not. To check the correct operation of this system, we have developed a small wearable device that is able to measure the heart rate and the body temperature. We have designed a secure mechanism to stablish a Bluetooth connection with the smartphone. In addition, the system is able to perform the data fusion in both the information packetizing process, which contributes to improve the protocol performance, and in the measured values combination, where it is used a stochastic approach. As a result, our system can fusion data from different sensors in real-time and detect automatically strange situations for sending a warning to the caregivers. Finally, the consumed bandwidth and battery autonomy of the developed device have been measured.This work has been partially supported by the "Ministerio de EducaciOn, Cultura y Deporte", through the "Ayudas para contratos predoctorales de Formacion del Profesorado Universitario FPU (Convocatoria 2014)". Grant number FPU14/02953.Sendra, S.; Parra-Boronat, L.; Lloret, J.; Tomás Gironés, J. (2018). Smart system for children's chronic illness monitoring. Information Fusion. 40:76-86. https://doi.org/10.1016/j.inffus.2017.06.002S76864
    • …
    corecore