660 research outputs found

    Translating standard process models to BPEL

    Get PDF
    Standardisation of languages in the field of business process management has long been an elusive goal. Recently though, consensus has built around one process implementation language, namely BPEL, and two fundamentally similar process modelling notations, namely UML Activity Diagram (UML AD) and BPMN. This paper presents a technique for generating BPEL code from process models expressed in a core subset of BPMN and UML AD. This model-to-code translation is a necessary ingredient to the emergence of model-driven business process development environments based on these standards. The proposed translation has been implemented as an open source tool

    Reasoning on the usage control security policies over data artifact business process models

    Get PDF
    The inclusion of security aspects in organizations is a crucial aspect to ensure compliance with both internal and external regulations. Business process models are a well-known mechanism to describe and automate the activities of the organizations, which should include security policies to ensure the correct performance of the daily activities. Frequently, these security policies involve complex data which cannot be represented using the standard Business Process Model Notation (BPMN). In this paper, we propose the enrichment of the BPMN with a UML class diagram to describe the data model, that is also combined with security policies defined using the UCONABC framework annotated within the business process model. The integration of the business process model, the data model, and the security policies provides a context where more complex reasoning can be applied about the satisfiability of the security policies in accordance with the business process and data models. To do so, wetransform the original models, including security policies, into the BAUML framework (an artifact-centric approach to business process modelling). Once this is done, it is possible to ensure that there are no inherent errors in the model (verification) and that it fulfils the business requirements (validation), thus ensuring that the business process and the security policies are compatible and that they are aligned with the business security requirements.This work has been supported by Project PID2020-112540RB-C44 funded by MCIN/AEI/ 10.13039/501100011033, Project TIN2017-87610-R funded by MCIN/AEI/10.13039/501100011033 and FEDER “Una manera de hacer Europa”, Project 2017-SGR-1749 by the Generalitat de Catalunya, Projects COPERNICA (P20 01224) and METAMORFOSIS by the Junta de Andalucía.Peer ReviewedPostprint (published version

    Automatic business process model extension to repair constraint violations

    Get PDF
    Consider an artifact-centric business process model, containing both a data model and a process model. When executing the process, it may happen that some of the data constraints from the data model are violated. Bearing this in mind, we propose an approach to automatically generate an extension to the original business process model that, when executed after a constraint violation, repairs the contents of the data leaving it in a new consistent state.Peer ReviewedPostprint (author's final draft

    The Proposal for Modeling Methodology for Enterprise Content Management (ECM) Systems: Modeling Tools Selection

    Get PDF
    Content management is one of the strategic directions of the ICT development in modern enterprises. This trend is spurred by the increasing amount of data, information, and explicit knowledge (that is content) whose characteristic features are lack of structure and multimediality. A dynamically growing market of ECM platforms, defined as the set of components and technologies used for managing content in any given area of the company, has emerged. Researchers focusing on ECM agree that the current aspect of content management is much more recognizable in the business practice rather than the theoretical and methodological ECM toolkit as a separate discipline of IS. This chapter presents the main elements of the author’s methodology of modeling the enterprise that is preparing for the ECM platform implementation. The working name of this methodology is enterprise content management modeling method (ECM3). The modeling methodology is understood as a set of assumptions and perspectives of building the enterprise model, analytical tools to create it, and stages of the completion of the analytical process. The chapter presents the assumptions of methodology, selected analytical tools as well as practical examples from the actual ECM implementation

    A metamodel to integrate business processes time perspective in BPMN 2.0

    Get PDF
    Context: Business Process Management (BPM) is becoming a strategic advantage for organizations tostreamline their operations. Most business experts are betting for OMG Business Process Model and No- tation (BPMN) as de-facto standard (ISO/IEC 19510:2013) and selected technology to model processes. Thetemporal dimension underlies in any kind of process however, technicians need to shape this perspectivethat must also coexist with task control flow aspects, as well as resource and case perspectives. BPMNpoorly gathers temporary rules. This is why there are contributions that extend the standard to coversuch dimension. BPMN is mainly an imperative language. There are research contributions showing timeconstraints in BPMN, such as (i) BPMN patterns to express each rule with a combination of artifacts, thusthese approaches increase the use of imperative BPMN style, and (ii) new decorators to capture timerules semantics giving clearer and simpler comprehensible specifications. Nevertheless, these extensionscannot yet be found in the present standard.Objective: To define a time rule taxonomy easily found in most business processes and look for an ap- proach that applies each rule with current BPMN 2.0 standard in a declarative way.Method: A model-driven approach is used to propose a BPMN metamodel extension to address time- perspective.Results: We look at a declarative approach where new time specifications may overlie the main controlflow of a BPMN process. This proposal is totally supported with current BPMN standard, giving a BPMNmetamodel extension with OCL constraints. We also use AQUA-WS as a software project case study whichis planned and managed with MS Project. We illustrate business process extraction from project plans.Conclusion: This paper suggests to handle business temporal rules with current BPMN standard, alongwith other business perspectives like resources and cases. This approach can be applied to reverse engi- neering processes from legacy databases.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015- 71938-RED

    Development of Transformations from Business Process Models to Implementations by Reuse

    Get PDF
    This paper presents an approach for developing transformations from business process models to implementations that facilitates reuse. A transformation is developed as a composition of three smaller tasks: pattern recognition, pattern realization and activity transformation. The approach allows one to reuse the definition and implementation of pattern recognition and pattern realization in the development of transformations targeting different business process modeling and implementation languages. In order to decouple pattern recognition and pattern realization, the approach includes a pattern language to represent the output of the pattern recognition task, which forms the input of the pattern realization task

    BPMN 2 BPEL:research on mapping BPMN to BPEL

    Get PDF

    Developing BP-driven web application through the use of MDE techniques

    Full text link
    Model driven engineering (MDE) is a suitable approach for performing the construction of software systems (in particular in the Web application domain). There are different types of Web applications depending on their purpose (i.e., document-centric, interactive, transactional, workflow/business process-based, collaborative, etc). This work focusses on business process-based Web applications in order to be able to understand business processes in a broad sense, from the lightweight business processes already addressed by existing proposals to long-running asynchronous processes. This work presents a MDE method for the construction of systems of this type. The method has been designed in two steps following the MDE principles. In the first step, the system is represented by means of models in a technology-independent manner. These models capture the different aspects of Web-based systems (these aspects refer to behaviour, structure, navigation, and presentation issues). In the second step, the model transformations (both model-to- model and model-to-text) are applied in order to obtain the final system in terms of a specific technology. In addition, a set ofEclipse-based tools has been developed to provide automation in the application of the proposed method in order to validate the proposal.Torres Bosch, MV.; Giner Blasco, P.; Pelechano Ferragud, V. (2012). Developing BP-driven web application through the use of MDE techniques. Software and Systems Modeling. 11(4):609-631. doi:10.1007/s10270-010-0177-5S609631114Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language for Web services version 1.1 (May 2003)Barna, P., Frasincar, F., Houben, G.J.: A workow-driven design of Web information systems. In: Wolber, D., Calder, N., Brooks, C., Ginige, A. (eds.) ICWE, ACM, pp. 321–328Bakshi, K., Karger, D.R.: Semantic Web applications. In: Proceedings of the ISWC 2005 Workshop on End User Semantic Web Interaction (November 2005)Brambilla M., Ceri S., Fraternali P., Manolescu I.: Process modeling in Web applications. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006)Brambilla, M., Preciado, J.C., Trigueros, M.L., Sánchez-Figueroa F.: Business process-based conceptual design of rich internet applications. In: ICWE, pp. 155–161 (2008)Brambilla, M., Butti, S., Fraternali, P.: Webratio bpm: a tool for designing and deploying business processes on the Web. In: ICWE, pp. 415–429 (2010)Business process modeling notation (BPMN). OMG final adopted specification. dtc/06-02-01 (February 2006)Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (Webml): a modeling language for designing Web sites. In: Proceedings of the 9th international World Wide Web conference on Computer networks : the international journal of computer and telecommunications networking, Amsterdam, The Netherlands, pp. 137–157. North-Holland Publishing Co., The Netherlands (2000)Davis J.: Open Source SOA. Manning Publications Co, Greenwich (2009)Distante, D.: Reengineering legacy applications and Web transactions: an extended version of the UWA transaction design model. Ph.D. thesis, University of Lecce, Italy (2004)Distante D., Rossi G., Canfora G., Tilley S.R.: A comprehensive design model for integrating business processes in Web applications. Int. J. Web Eng. Technol. 3(1), 43–72 (2007)Duhl, J.: Rich internet applications. Technical report, IDC (November 2003)Fons, J.: OOWS: A model driven method for the development of web applications. Ph.D. thesis, Universidad Politécnica de Valencia (2008)Fons, J., Pelechano, V., Pastor, O., Valderas, P., Torres, V.: Applying the OOWS model-driven approach for developing web applications. The internet movie database case study. In: Web Engineering: Modelling and Implementing Web Applications. Human–Computer Interaction Series, pp. 65–108. Springer, London (2008)Fowler, M.: Inversion of control containers and the dependency injection pattern. http://martinfowler.com/articles/injection.html (January 2004)Gershenfeld N., Krikorian R., Cohen D.: The internet of things. Sci Am 291(4), 76–81 (2004)Giner P., Cetina C., Fons J., Pelechano V.: Developing mobile business processes for the internet of things. IEEE Pervasive Comput. 9, 18–26 (2010)Gómez J., Cachero C., Pastor O.: Extending a conceptual modelling approach to Web application design. In: Wangler, B., Bergman, L. (eds) CAiSE. Lecture Notes in Computer Science, vol. 1789, pp. 79–93. Springer, London (2000)Goth G.: The task-based interface: not your father’s desktop. IEEE Software 26(6), 88–91 (2009)Holmes, T., Tran, H., Zdun, U., Dustdar, S.: Modeling human aspects of business processes—a view-based, model-driven approach. In: ECMDA-FA, pp. 246–261 (2008)Kappel, G., Pröll, B., Reich, S., Retschitzegger, W. (eds): Web Engineering—The Discipline of Systematic Development of Web Applications. Wiley, England (2006)Koch, N.: Software Engineering for Adaptive Hypermedia Systems: Reference Model, Modeling Techniques and Development Process. Ph.D. thesis, Ludwig-Maximilians-University Munich, Germany (2001)Koch N., Kraus A., Cachero C., Meliá S.: Integration of business processes in Web application models. J. Web Eng. 3(1), 22–49 (2004)Limbourg, Q., Vanderdonckt, J.: Usixml: a user interface description language supporting multiple levels of independence. In: ICWE Workshops, pp. 325–338 (2004)Linaje M., Preciado J.C., Sánchez-Figueroa F.: Engineering rich internet application user interfaces over legacy Web models. IEEE Internet Comput. 11(6), 53–59 (2007)Link, S., Hoyer, P., Schuster, T., Abeck, S.: Model-driven development of human tasks for workflows. In: ICSEA ‘08: Proceedings of the 2008 third international conference on software engineering advances, Washington, DC, USA, pp. 329–335. IEEE Computer Society, Washington, DC (2008)Marcos, E., Cáceres, P., Castro, V. D.: An approach for navigation model construction from the use cases model. In: CAiSE Forum. Held in conjunction with the 16th Conference On Advanced Information Systems Engineering (June 2004)Pietschmann, S., Voigt, M., Meissner, K.: Adaptive rich user interfaces for human interaction in business processes. In: Proceedings of the 10th International Conference on Web Information Systems Engineering (WISE 2009), WISE, pp. 351–364. Springer LNCS (October 2009)Schwabe D., Rossi G.: An object oriented approach to Web-based applications design. Theor. Pract. Object Syst. 4(4), 207–225 (1998)Schmid H.A., Rossi G.: Modeling and designing processes in e-commerce applications. IEEE Internet Comput. 8(1), 19–27 (2004)Schwinger W., Retschitzegger W., Schauerhuber A., Kappel G., Wimmer M., Pröll B., Cachero C., Casteleyn S., Troyer O.D., Fraternali P., Garrigós I., Garzotto F., Ginige A., Houben G.J., Koch N., Moreno N., Pastor O., Paolini P., Pelechano V., Rossi G., Schwabe D., Tisi M., Vallecillo A., van der Sluijs K., Zhang G.: A survey on Web modeling approaches for ubiquitous Web applications. IJWIS 4(3), 234–305 (2008)Sousa K.S., Mendona H., Vanderdonckt J.: A model-driven approach to align business processes with user interfaces. J. UCS 14(19), 3236–3249 (2008)Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S.: Model-driven approach for managing human interface design life cycle. In: MoDELS, pp. 226–240 (2007)Tedre M.: What should be automated?. Interactions 15(5), 47–49 (2008)Torres, V., Giner, P., Bonet, B., Pelechano, V.: Adapting BPMN to Public Administration. In: Proceedings BPMN 2010 Springer’s Lecture Notes in Business Information Processing (LNBIP). Postdam, Germany (to appear)Troyer, O.D., Casteleyn, S.: Modeling complex processes for Web applications using wsdm. In: Proceedings of the Third International Workshop on Web-Oriented Software Technologies (held in conjunction with ICWE2003), IWWOST2003 (2003

    Standardized software solution for guidance of clinical workflows

    Get PDF
    corecore