
Translating Standard Process Models to BPEL?

Chun Ouyang, Marlon Dumas, Stephan Breutel, and Arthur H.M. ter Hofstede

Faculty of Information Technology
Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia
{c.ouyang,m.dumas,sw.breutel,a.terhofstede}@qut.edu.au

Abstract. Standardisation of languages in the field of business process
management has long been an elusive goal. Recently though, consensus
has built around one process implementation language, namely BPEL,
and two fundamentally similar process modelling notations, namely UML
Activity Diagram (UML AD) and BPMN. This paper presents a tech-
nique for generating BPEL code from process models expressed in a
core subset of BPMN and UML AD. This model-to-code translation is
a necessary ingredient to the emergence of model-driven business pro-
cess development environments based on these standards. The proposed
translation has been implemented as an open source tool.

1 Introduction

Over the past two decades, developments in the field of workflow and business
process management have been hindered by the lack of a lingua franca for de-
scribing business processes, whether at the design or at implementation stages
of the software lifecycle. Standardisation efforts during the 90s, led by the Work-
flow Management Coalition (WfMC), failed to be widely adopted for a number
of reasons [1]. Recently however, consolidation has led to a single language for
business process implementation: the Business Process Execution Language for
Web Services (BPEL) [3]. In parallel, two process modelling notations, namely
the Unified Modelling Language “Activity Diagram” (UML AD) [10] and the
Business Process Management Notation (BPMN) [12], have attained some level
of maturity and adoption.
There exist a number of business process execution engines that support

BPEL, either natively or through import and export functions. Similarly, a large
number of tools provide support for UML modelling, in particular using Activity
Diagram, while BPMN, despite being a recent proposal, is already supported by
about a dozen tools [5]. It appears however that support for translating models in
UML AD and BPMN into BPEL code has received little attention relative to the
amount of tools supporting these languages separately. Tools such as Telelogic’s
System Architect support the generation of BPEL code from BPMN diagrams
but only for a limited subset of BPMN. More generally, proposed mappings
from UML AD to BPEL [9] and from BPMN to BPEL [12] fail to address some
difficult issues as discussed below.
? Supported by an Australian Research Council (ARC) Discovery Grant (DP0451092).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10874702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Both BPMN and UML AD share a common set of core constructs and for
practical purposes, can be treated as variants of the same kernel language. This
kernel is essentially an extension of flow charts with parallel splits (fork nodes)
and synchronisation points (join nodes). As in flow charts, nodes in BPMN and
UML AD (version 2.0) can be linked in arbitrary topologies, making it possible
to write models with unstructured cycles. Meanwhile BPEL, which is essentially
an extension of structured programming languages, only supports structured
loops. Work in the field of structured programming [11,14] has shown that it is
possible to translate from unstructured to structured flow charts and from there
to generate code in structured programming languages including “sequence”,
“if-then-else”, and “while” constructs. It turns out however that after adding
forks and joins to the flow chart notation these results no longer hold [7].
This paper takes on the challenge of designing a technique for translating

BPMN and UML AD models with arbitrary topologies, which we term Standard
Process Models or SPMs, into BPEL code. We consider this translation as being
necessary to improve the connection between tools supporting process modelling
and tools supporting process execution, thus enabling model-driven approaches
to business process development based on standard and widely supported lan-
guages. The basic idea of the translation is to exploit an underused construct in
BPEL, namely event handlers. This is the only construct in BPEL that allows
one to capture processes with unbounded concurrency (i.e. processes with an
unbounded number of threads running concurrently) without having to break
down the process into several smaller ones, which may potentially lead to main-
tenance issues. Since some unstructured cycles in BPMN and UML AD may lead
to unbounded concurrency, we argue that using event handlers is the only way
to achieve a full translation from any SPM to a self-contained BPEL process. In
this respect, the proposed translation goes beyond those in [9] and [12] which
are essentially limited to structured models.
The rest of the paper is structured as follows. Sect. 2 gives an overview of

BPEL and SPMs (the chosen abstraction of BPMN and UML AD) and reviews
related work. Sect. 3 presents an initial approach to translate SPMs into BPEL.
This mapping is then illustrated through a case study in Sect. 4. Sect. 5 de-
scribes an improvement to the initial translation approach which leads to more
structured BPEL code. Finally, Sect. 6 concludes and outlines future work.

2 Background and Related Work

A Standard Process Model (SPM), also known as Standard Workflow Model [6],
is constructed from a set of process elements and transitions connecting process
elements. The process elements can be further divided into activities and con-
trol nodes which are AND-Split, XOR-Split, OR-Split, AND-Join and XOR-Join.
Splits have exactly one incoming transition and at least one outgoing transition,
and joins have exactly one outgoing transition and at least one incoming transi-
tion. For any split, each of its outgoing transitions has either an explicit guard
(i.e. boolean expression) or an implicit “true” guard if none is explicitly given.

2

Activities have at most one incoming transition and one outgoing transition,
and this implies that the use of implicit control nodes is not allowed. Activities
with no incoming transitions are initial activities, and those with no outgoing
transitions are final activities. Each SPM has exactly one initial activity and
one final activity. It can be described using a process modelling notation such as
BPMN or UML AD. In other words, SPMs can be seen as an abstraction of a
subset of BPMN and UML AD, wherein constructs corresponding to advanced
workflow patterns, e.g. deferred choice and cancellation [2], are not included.
BPEL [3] is essentially an extension of imperative programming languages

(e.g. Pascal, C) with constructs related to the implementation of web service-
oriented processes. A BPEL process definition relates a number of activities.
Activities are split into two categories: basic activities and structured activities.
Basic activities correspond to atomic actions such as: invoke, invoking an oper-
ation on some web service; receive, waiting for a message from a partner; reply ,
replying to a partner; assign, assigning a value to a variable; exit , terminating
the entire process instance; empty , doing nothing; and etc. Structured activities
impose behavioural and execution constraints on a set of activities contained
within them. These include: sequence, for defining an execution order; flow ,
for parallel routing; switch, for conditional routing; pick , for capturing a race
between timing and message receipt events; while, for structured looping; and
scope, for grouping activities into blocks to which event, fault and compensation
handlers (see below) may be attached.

Event , fault and compensation handlers are another family of control flow
constructs in BPEL. In particular, event handlers are the only construct in BPEL
that allows to have multiple simultaneously active instances within a single pro-
cess instance (initiated by a single case). An event handler is an event-action

rule associated with a scope. An event handler is enabled when its associated
scope is under execution and may execute concurrently with the main activity
of the scope. When an occurrence of the event associated with an enabled event
handler is registered (and this may be a message receipt or a timeout), the body
of the handler is executed. The completion of the scope as a whole is delayed
until all active event handlers have completed. Fault and compensation handlers
are designed for exception handling and are not used further in this paper.
SPMs can easily capture control-flow patterns, such as multi-merge and ar-

bitrary cycles, for which BPEL does not offer direct support [15]. It may also
have the facility for spawning multiple independent instances of activities within
the context of a single case, and so far there has been no solution for mapping
such a process to a single BPEL process. Hence, translating a process like one
of the above into BPEL is not trivial. Below, we discuss this in detail using as
an example the mapping from BPMN to BPEL proposed by White [12].
Figure 1 depicts four SPMs described using BPMN. The first three SPMs in

Fig. 1(a) to Fig. 1(c) show fundamental issues and limitations in the mapping
proposed in [12]. The SPM in Fig. 1(d) involves a livelock and will be mentioned
at the end of this section. Note that in BPMN parallel (forking/joining) gateways
correspond to AND-Splits/Joins, and data-based exclusive (decision/merge) gate-
ways correspond to XOR-Splits/Joins.

3

(a)
 (b)

(d)
(c)

Activity

Parallel Gateway

Data-based

Exclusive Gateway

BPMN Elements:

A
 B
 C
 D

A
 B
 C
 D

A
 D

A

B

C

D

Fig. 1. Four SPMs (described using BPMN) which contain (a) a multiple merge, (b)
arbitrary loops, (c) arbitrary loops with a facility spawning multiple independent in-
stances of activities without synchronization, and (d) a livelock.

In Fig. 1(a), an XOR-Join following an upstream AND-Split captures a multi-
merge pattern. In this process, activity D is executed twice: once when activity
B completes and another time when activity C completes. In White’s approach,
a parallel gateway is always mapped to a BPEL “flow” activity and a data-based
exclusive gateway to a “switch” activity [12]. This mapping assumes that for each
AND-split there is a corresponding AND-join and for each XOR-split a corre-
sponding XOR-join. However, in the scenario at hand, the outgoing branches of
the AND-split lead to an XOR-Join, thus making White’s mapping unapplicable.
In Fig. 1(b), there is a cycle with one entry point before activity B and

two exit points – one after activity B, the other after activity C. This scenario
cannot be mapped directly to a BPEL “while” activity as the “while” activity
only captures structured cycles (i.e. loops with one entry point and one exit
point). In [12], White considers only two types of cycles: structured loops and
interleaved loops. Interleaved loops are a particular form of unstructured loops
wherein two distinct loops can be identified which are not nested one inside the
other. The basic idea to map such interleaved loops is to separate the original
process into “one or more derived processes that are spawned from a main process
and will also spawn or call each other”. As a result, the original process will be
mapped onto multiple BPEL processes rather than a single BPEL process. The
synchronisation between the derived BPEL processes and the main process is
achieved through message exchange1. While this is an interesting translation, it
is not general enough: the scenario in Fig. 1(b) is neither a structured loop nor
an interleaved loop (as it is not possible to distinguish two distinct loops on it),
so its mapping is not covered by White’s approach.
Fig. 1(c) illustrates yet another scenario not covered by White’s approach.

This model differs from the one in Fig. 1(b) in that there is an AND-Split
(Fig. 1(c)) rather than an XOR-Split (Fig. 1(b)) between activities B and C.
Since this AND-Split is located in a loop and also has another branch leading to

1 A proposed extension to BPEL (http://www-128.ibm.com/developerworks/
webservices/library/specification/ws-bpelsubproc) includes constructs for
defining and invoking sub-processes. These constructs can be used to define multiple
inter-related BPEL processes in a single module. However, there are no near-term
plans of including these constructs in the BPEL standard. If these constructs were
included, they could be used as an alternative to event handlers in our mapping.

4

activity D outside the loop, it provides a way for spawning multiple instances
ofD, all of which are independent of each other and no synchronisation is needed.
As a new instance of activity D will be created each time the cycle is taken, the
number of instances of D becomes unbounded. This captures the pattern of mul-
tiple instances without synchronisation [2]. Wohed et al. [15] proposes a solution
for capturing this pattern in BPEL. The basic idea is to define another process
containing activity D, and to invoke this “auxiliary” process multiple times thus
spawning multiple instances of D. Again, the original process will be mapped
onto multiple BPEL processes. In [12], White proposes a similar solution for
mapping a subclass of parallel multiple-instance loops (without synchronisation)
onto BPEL, which however does not cover the above scenario.
Sometimes, arbitrary cycles can be converted into structured cycles and these

structured cycles can then be mapped directly onto BPEL “while” activities.
However, not all non-structured cycles can be converted into structured ones
when AND-splits and AND-joins are involved. An analysis of possible conver-
sions and an identification of some situations where they are unapplicable can
be found in [7,8]. For example, in Fig. 1(b) it is possible to unfold the arbitrary
loops to structured ones, whereas in Fig. 1(c) the arbitrary cycles generate un-
bounded concurrency (i.e. they may spawn an unbounded number of concurrent
instances of an activity) and do not have an equivalent structured form.
In the sequel, we present a technique to translate any SPM into a single

BPEL process by exploiting the “event handler” construct in BPEL. The tech-
nique can be applied to any SPM so long as it does not involve a livelock (also
called divergence in the concurrency theory literature) such as the one shown in
Fig. 1(d). Livelocks can be detected using model-checking techniques and thus
such undesirable SPMs could be excluded during a pre-processing step.

3 From Standard Process Models to BPEL

This section presents an initial approach for translating SPMs to BPEL. The
translation focuses on control-flow perspective, and is conducted in three steps.
We first generate so-called precondition sets for all activities in an SPM. Each
precondition set is associated with an activity and encodes a possible way of
enabling the activity. Next, all the precondition sets with their associated activ-
ities, are transformed into a set of Event-Condition-Action (ECA) rules. Finally,
we translate this set of ECA rules into BPEL.

3.1 Translating Control-Flow Constructs into Precondition Sets

The term “precondition” is used to capture a conjunction of events and con-
ditions that lead to the execution of an activity in a process. Thus, for each
activity in an SPM, we can compute a precondition set that encapsulates all
possible ways of reaching that activity. Fig. 2 shows an algorithm2 for gener-
ating a set of precondition sets for all activities in an SPM. The algorithm is

2 This is a variant of an algorithm designed in the context of a method for flexible
execution of process-oriented applications [4].

5

AllPreCondSets(p: Process):
Al let {a1, ..., an} = Activities(p) in
Alllet return {PreCondSet(a1), ..., PreCondSet(an)}

PreCondSet(x: Element):
Pre if IncomingTrans(x) = ∅ /∗ initial element ∗/
Preif return {ProcessInstantiation(Process(x))}
Pre else let {t1, ..., tn} = IncomingTrans(x) in /∗ non-initial elements ∗/
Preelse let return PreCondSetTran(t1) ∪ ... ∪ PreCondSetTran(tn)

PreCondSetTran(t: Transition)
Pre let x = Source(t)
Prelet if ElementType(x) = “Activity”
Prelet if return {Completion(x)}
Prelet else if ElementType(x) ∈ {“AND-Split”,“XOR-Split”,“OR-Split”}
Prelet else if let c = Guard(t),
Prelet else if let {prc1, ..., prcn} = PreCondSet(x) in
Prelet else if let return {c ∧ prc1, ..., c ∧ prcn}
Prelet else if ElementType(x) = “XOR-Join”
Prelet else if let {t1, ..., tn} = IncomingTrans(x) in
Prelet else if let return PreCondSetTran(t1) ∪ ... ∪ PreCondSetTran(tn)
Prelet else if ElementType(x) = “AND-Join”
Prelet else if let {t1, ..., tn} = IncomingTrans(x),
Prelet else if let {< prc1,1, ..., prc1,n >, ..., < prcm,1, ..., prcm,n >} =
Prelet else if let PreCondSetTran(t1) × ... × PreCondSetTran(tn) in
Prelet else if let return {prc1,1 ∧ ... ∧ prc1,n, ..., prcm,1 ∧ ... ∧ prcm,n}

Fig. 2. Algorithm for deriving precondition sets from an SPM.

sketched using a functional programming notation. It defines three functions.
The first one, namely AllPreCondSets, generates the above set of precondition
sets for a process by relying on a second function named PreCondSet. This func-
tion takes as parameter a process element (i.e. an activity or a control node). If
the element is an initial activity, i.e. it has no predecessors, the function returns
a singleton set containing a process instantiation event, indicating that the cor-
responding activity will be executed when a new instance of the process must
be started. Otherwise, function PreCondSet generates a precondition set for each
of the non-initial elements in the process by relying on a third function named
PreCondSetTran. This third function produces the same type of output as Pre-

CondSet but takes as input a transition rather than an element in the process.
Before moving on, we introduce the following notations used in the algorithm.

– Activities(p) is the set of activities in process p (defined as an SPM).
– IncomingTrans(x) is the set of transitions whose target is element x.
– Process(x) is the process to which element x belongs.
– ProcessInstantiation(p) is the event signaling to start an instance of process p.
– Source(t) is the source element of transition t.
– ElementType(x) is the type of element x (e.g. “Activity”, “AND- Split”, etc.).
– Completion(x) is the event signaling that activity x has completed.
– Guard(t) is the guard (i.e. boolean expression) on transition t.

6

The definition of PreCondSetTran operates based on the type of the source
of the transition, which may be an activity or a control node. If the transition’s
source is an “Activity”, a set is returned containing a single completion event
for the activity. Intuitively, this means the transition in question may be taken
when the activity has completed. Otherwise, if the source of the transition is a
control node, the algorithm keeps working backwards through the process model,
traversing other control nodes, until reaching activities. In the case of a transition
originating from one of the “Split” nodes (“AND-Split”, “XOR-Split”, or “OR-
Split”), which is generally labeled by a guard (or an implicit “true” guard if no
guard is explicitly given), this condition is added as a conjunct to all the elements
in the resulting precondition set. Finally, in the case of a transition originating
from a “XOR-Join” (resp. a “AND-Join”), the function is recursively called for
each of the transitions leading to this control node, and the resulting precondition
sets are combined to capture the fact that when any (all) of these transitions is
(are) taken, the corresponding XOR-Join (AND-Join) node may fire.

3.2 Translating Precondition Sets into ECA Rules

An ECA rule consists of three parts: event , which causes the rule to be triggered;
condition, which is checked when the rule is triggered, and action, which is
executed when the rule is triggered and its condition is true [13]. An ECA rule
can be written in the form of E[C]A: E is a single event or a conjunction of single
events (namely a composite event); C is a condition; A is a list of actions that can
be executed in sequence (denoted as a1;a2), in parallel (a1||a2), in conditional
branches (if-then-else), in loops (while), or in a combination of any of these
block-structured constructs. If an ECA rule allows the use of single events only,
it is called a simple ECA rule; otherwise, it is a composite ECA rule.
It is possible to translate a precondition into an ECA rule. To this end, we

use two auxiliary functions GetEvent and GetCond, which extract respectively
the events and conditions of a precondition. GetEvent takes as input a precon-
dition prc, and gives as output a composite event equal to the conjunction of
all the events appearing in prc (there is always at least one single event in prc).
GetCond takes prc as input and gives as output a condition equal to the conjunc-
tion of all the conditions appearing in prc (it returns a value of TRUE if there is
no condition in prc). A precondition prc for an activity a can be translated into
the following ECA rule:

GetEvent(prc) [GetCond(prc)] {do a; invoke Completion(a)}

In the general case, this leads to a composite ECA rule. However, BPEL
only supports simple ECA rules. To address this issue, when GetEvent(prc) is a
composite event, say e1 ∧ ... ∧ en, we translate the above rule into the following
simple ECA rule:

e1 [TRUE] {receive e2 || ... || receive en;

e1 [TRUE] if GetCond(prc)
e1 [TRUE] then do a; invoke Completion(a)

e1 [TRUE] else empty}

7

The rule specifies that when occurrences for all events e1 to en have been reg-
istered, the condition GetCond(prc) can be evaluated. If it evaluates to true,
activity a is executed; otherwise, no action is performed.
By applying the above transformation to each precondition in a precondition

set, we can translate a precondition set into a set of simple ECA rules. From
there, we can generate a set of ECA rules for a given SPM by performing the
union of the sets of ECA rules generated for each of the activities in the SPM.
However, some of these rules may end up competing for the same event, which
may lead to non-deterministic behaviour. For example, in the case of a Split node
preceded by activity a1 and followed by two activities a2 and a3, the precondition
sets for a2 and a3 will both contain event Completion(a1) and thus the resulting
rules will compete for this same event. To avoid this problem, before transforming
the precondition sets derived from an SPM into ECA rules, we rename the events
shared by more than one precondition to eliminate any overlap between events.
For example, the following set of precondition sets:

{{ProcessInstantiation(p)},
{{Completion(a1)∧c1},
{{Completion(a1)∧c2},
{{Completion(a3)},
{{Completion(a3), Completion(a1)∧c3},
{{Completion(a2), Completion(a4)∧c4, Completion(a4)∧c5∧Completion(a5)}}

can be renamed to:

{{ProcessInstantiation(p)},
{{Completion(a1)

(1)∧c1},
{{Completion(a1)

(2)∧c2},
{{Completion(a3)

(1)},
{{Completion(a3)

(2), Completion(a1)
(3)∧c3},

{{Completion(a2), Completion(a4)
(1)∧c4, Completion(a4)

(2)∧c5∧Completion(a5)}}

Because of this renaming process, we need to ensure that upon completion
of an activity a, one occurrence of each of the completion events associated
to a is produced. Coming back in the example above, instead of performing a
single action “invoke Completion(a1)” following the execution of activity a1,
we perform the following actions:

invoke Completion(a1)
(1) || invoke Completion(a1)

(2) || invoke Completion(a1)
(3)

3.3 Translating ECA Rules into BPEL

A simple ECA rule se[C]A can be realised by a BPEL event handler (onEvent)
sketched in Fig. 3(a). As soon as an occurrence of event se is registered, the
event handler starts with a switch activity in which condition C is evaluated. If
C evaluates to true, the activity A is carried out; otherwise, nothing can be done.
This event handler may be simplified if C is a boolean constant TRUE. In this
case, the switch activity with its conditional branches (drawn in shaded boxes)
can be omitted, and activity A is executed once the occurrence of event se is

8

registered. In more detail, Fig. 3(b) sketches a BPEL event handler capturing a
simple ECA rule which is transformed from a composite ECA rule as discussed
in Sect. 3.2. Since the rule has a condition TRUE, the event handler executes the
sequence of actions immediately upon registering the occurrence of event e1. This
sequence starts with a flow of receive activities waiting for occurrences of events
e2 to en, and a switch activity for conditional routings based on evaluation of the
condition given by function GetCond(prc). Similarly to Fig. 3(a), if GetCond(prc)
is a boolean constant TRUE, the switch activity can be omitted, and once the
occurrences of events e1 to en are registered, the event handler executes action a

and the activity for invoking a single occurrence of event Completion(a) (when
only a single occurrence of the event is needed).

 onEvent
se

 switch

 case
C
 otherwise

empty
do
A

(a)
 (b)

 onEvent
e
1

 flow
 "receiveEvent"

receive
e
2
 receive
e
n

.
.
.

 switch

 case
GetCond(
prc
)

invoke
Completion
(
a
)

do
a

otherwise

empty

(do
A
)

Fig. 3. Translating a simple ECA rule into a BPEL event handler.

Based on the above, we now translate the set of simple ECA rules derived
from the original SPM into a BPEL process. We first introduce some notations.
Given a process p, {a1, ..., an} is the set of activities in p, and the function
InitialActivity(p) returns the initial activity of p. Let m+1 be the total number
of ECA rules derived from process p, {se1, ..., sem} ⊆ {Completion(a1), ...,
Completion(an)} is the set of (single) events for triggering each of these ECA rules
except the one associated with the initial activity. The ECA rule for execution
of the initial activity is triggered upon occurrence of the process instantiation
event (ProcessInstantiation(p)). The SPM of process p can be translated into the
BPEL process sketched in Fig. 4. The main activity of this process is a sequence
of three actions which corresponds to the ECA rule associated with the initial
activity of p. Then each of the other (m) ECA rules are mapped onto totally m

event handlers within the process. The whole process completes after its main
activity and all active event handlers have completed.

BPEL Process

onEvent
se
m

.
.
.

receive
ProcessInstantiation
(
p
)

do
InitialActivity
(
p
)

invoke

Completion
(
InitialActivity
(
p
))

onEvent
se
1

.

.

.

.
.
.

.
.
.

 mainActivity

partnerLink
i

(between

process & itself)

partnerLinks

.

.

.

Fig. 4. A BPEL process derived from the set of ECA rules of an SPM.

9

The completion events Completion(a1) to Completion(an) are produced by
performing a BPEL invoke action via a local partner link between process p and
itself. A local partner link which allows a process to send a message to itself, can
be defined as:

<partnerLink name="local" partnerLinkType="localLT"

myRole="localService"/>

</partnerLink>

where the corresponding partner link type can be defined as:

<partnerLinkType name="localLT">

<role name="localService" portType="localPT"/>

</partnerLinkType>

In a BPEL invoke activity, one needs to specify, in addition to a partner link, a
port type and an operation which are defined in a WSDL description. Accord-
ingly, we define a single port type “localPT” and as many operations in this port
type as there are completion events in the generated set of ECA rules. In the case
of the example in Sect. 3.2, the operations over “localPT” for three completion
events of activity a1 can be defined as: “completion a1 1”, “completion a1 2”
and “completion a1 3”. These operations serve only to signal the completion of
activities and do not carry any data. Their definition is thus trivial. For example,
the production of event Completion(a1)

(1) is captured in BPEL as follows:

<invoke partnerLink="local" portType="localPT"
operation="completion a1 1"/>

Likewise, completion events are consumed by event handlers and receive ac-
tivities, referring to the local partner link, port type and the operations described
above. For example, the event handler corresponding to event Completion(a1)

(1)

can be defined as follows:

<onEvent partnerLink="local" portType="localPT"
operation="completion a1 1"/>

We have implemented the above approach in a tool called SPM2BPEL, which
supports automated translation from SPMs into BPEL. It is available under an
open-source license at http://www.bpm.fit.qut.edu.au/projects/babel/tools.

4 Case Study

Consider the process for handling complaints shown in Fig. 5. It is described us-
ing BPMN. First the complaint is registered (activity register), then in parallel a
questionnaire is sent to the complainant (send questionnaire) and the complaint
is processed (process complaint). In the upper parallel path, the questionnaire
is processed (process questionnaire) after it is returned from the complainant
(receive questionnaire). In the lower parallel path, the complaint is evaluated
(evaluate). Based on the evaluation result, the processing is either done or con-
tinues to activity check processing. If the check result is not ok, the complaint
requires re-processing. After the complaint has been successfully processed, the

10

register

 send

questionnaire

 receive

questionnaire

 process

questionnaire

archive

a
1

a
2
 a
3
 a
4

a
9

evaluate

check

processing

OK

NOK

process

complaint

DONE

NEED

CHECK

a
5
 a
6

a
7

notify

result

a
8

Fig. 5. A complaint handling process described using BPMN.

complainant is notified of the result. Finally, activity archive is executed. Note
that the labels DONE, NEED-CHECK, OK and NOK on the outgoing transitions
of each XOR-Split, are abstract representations of guards on these transitions.
Following the algorithm presented in Sect. 3, we now translate the above

process into a BPEL process with event handlers. For simplicity, we assign each
activity an activity identifier (placed above an activity rectangle in Fig. 5), and
use these identifiers to refer to activities in the following translation.

Step 1: Generating Precondition Sets. Let p denote the process in Fig. 5, then
Activity(p)={a1, ..., a9}. The precondition sets for each of these activities are:

PreCondSet(a1) = {ProcessInstantiation(p)}
PreCondSet(a2) = {Completion(a1)}
PreCondSet(a3) = {Completion(a2)}
PreCondSet(a4) = {Completion(a3)}
PreCondSet(a5) = {Completion(a1), Completion(a7)∧NOK}
PreCondSet(a6) = {Completion(a5)}
PreCondSet(a7) = {Completion(a6)∧NEED-CHECK}
PreCondSet(a8) = {Completion(a6)∧DONE, Completion(a7)∧OK}

PreCondSet(a9) = {Completion(a4)∧Completion(a8)}

Step 2: Generating ECA Rules. The completion events for activities a1, a6 and
a7, each appears twice in the above precondition sets. Thus, it is necessary to
rename these events. After the renaming process, all the precondition sets for
process p can be translated into the set of simple ECA rules listed below, where
“for ai” is a shortened form of “for execution of activity ai”.

For a1: ProcessInstantiation(p)[TRUE]
For a1: {do a1; invoke Completion(a1)

(1) || invoke Completion(a1)
(2)}

For a2: Completion(a1)
(1)[TRUE]{do a2; invoke Completion(a2)}

For a3: Completion(a2)[TRUE]{do a3; invoke Completion(a3)}
For a4: Completion(a3)[TRUE]{do a4; invoke Completion(a4)}
For a5: Completion(a1)

(2)[TRUE]{do a5; invoke Completion(a5)}
For a5: Completion(a7)

(1)[NOK]{do a5; invoke Completion(a5)}
For a6: Completion(a5)[TRUE]
For a6: {do a6; invoke Completion(a6)

(1) || invoke Completion(a6)
(2)}

For a7: Completion(a6)
(1)[NEED-CHECK]

For a7: {do a7; invoke Completion(a7)
(1) || invoke Completion(a7)

(2)}
For a8: Completion(a6)

(2)[DONE]{do a8; invoke Completion(a8)}
For a8: Completion(a7)

(2)[OK]{do a8; invoke Completion(a8)}
For a9: Completion(a4)[TRUE]{receive Completion(a8);

For a9: Completion(a4)[TRUE]{do a9; invoke Completion(a9)}

11

Step 3: Deriving the BPEL Process. The above ECA rules can be translated into
a BPEL process of which the XML code is sketched in Fig. 6. The rule for execu-
tion of activity a1 is mapped to the last sequence activity, i.e. the main activity
of the process, and the rest of the rules are mapped to event handlers. All the
events are identified in an abstract way. Intuitively, the arrival of a complaint
from a client will initiate a new instance of the process, and thus can be treated
as a process instantiation event. The production and consumption of each com-
pletion event can be defined in a similar way as that of event Completion(a1)

(1)

described in Sect. 3.3. The receive activity waiting for the process instantiation
event, is the “start activity” of the process and thus has the createInstance
attribute set to yes. Also, we would like to elaborate all the activities in the
original process to obtain a list of detailed code for the resulting BPEL pro-
cess. For example, activity “register” (a1) or “archive” (a9) may be mapped to a
BPEL assign activity for recording the relevant information into variables, and
activity “sendQuestionnaire” (a2) corresponds to an invoke activity for sending
the questionnaire to the client. This elaboration procedure is however not the
focus of our approach, and thus is not presented here. The interested reader may
refer to the testing example of SPM2BPEL (on the tool’s website) for a complete
list of the BPEL code generated from the complaint handling process in Fig. 5.

<process name="complaintHandling">
<partnerLinks>

<partnerLink name="local" partnerLinkType="localLT" ... />
...

</partnerLinks>

<variables> ... </variables>

<eventHandlers>
<onEvent Completion(a1)

(1)/>
<sequence>

<invoke name="sendQuestionnaire" ... /> <!--do a2-->
<invoke Completion(a2)/>

</sequence>
</onEvent>
...
<onEvent Completion(a4)/>

<sequence>
<receive Completion(a8)/>
<assign name="archive"> ... </assign> <!--do a9-->
<invoke Completion(a9)/>

</sequence>
</onEvent>

</eventHandlers>

<sequence>
<receive ProcessInstantiation(p) createInstance="yes"/>
<assign name="register"> ... </assign> <!--do a1-->
<flow>

<invoke Completion(a1)
(1)/>

<invoke Completion(a1)
(2)/>

</flow>
</sequence>

</process>

Fig. 6. An abstract view of the BPEL code for complaint handling process in Fig. 5.

12

5 Improving the Translation Approach

The previous approach in Sect. 3 treats each activity of an SPM as a single unit
for translation. This can be improved by taking advantage of structured activities
defined in BPEL. For example, in the complaint handling process in Fig. 5, three
activities a2, a3 and a4 can be directly mapped onto a “sequence” activity. Hence,
if we cluster them into one activity block as a single unit for translation, the
complexity of translation can be reduced with less precondition sets, less ECA
rules and less event handlers, and the resulting BPEL process will become more
compact. However, it is not always the case that a number of activities clustered
into an activity block can be directly mapped onto a structured activity in BPEL.
Coming back in the example in Fig. 5, the process elements on the lower parallel
path constitute an unstructured workflow which cannot be mapped directly onto
a structured activity (e.g. a “while” activity).
To improve our approach further, we would like to transform unstructured

activity blocks to structured ones which can then be mapped onto structured
activities. Workflows that do not contain parallelism have similar semantics as
elementary flow charts that are commonly used for procedural program specifi-
cation. Work in the field of structured programming [11] has shown that any un-
structured flow chart can be transformed to a structured one and from there one
can generate code in structured programming languages including “sequence”,
“if-then-else”, and “while” constructs. Based on this, we propose to cluster
those connected process elements except AND-Splits and AND-Joins into an
activity block. Since each activity block will later be treated as a single unit
for translation, it cannot have more than one entry point nor more than one
exit point. Below, we define Clusterable Activity Blocks based on the concept
of Weakly Connected Component (from MathWorld http://mathworld.wolfram.

com/WeaklyConnectedComponent.html).

Definition 1. A Weakly Connected Component (WCC) is a maximal subgraph
of a directed graph such that for every pair of vertices u, v in the subgraph, there

is an undirected path from u to v and a directed path from v to u.

Definition 2. A Clusterable Activity Block (CAB) is a WCC that has at most

one entry point and one exit point in an SPM. It is made up of activities, con-

trol nodes except AND-Splits and AND-Joins, and transitions connecting these

process elements, such that: ∀x ∈ Elements(CAB),

– ElementType(x) ∈ {Activity, XOR-Split, OR-Split, XOR-Join};
– let Ti =

⋃
x∈Elements(CAB) IncomingTrans(x), |Ti\Transitions(CAB)| 6 1; and

– let To =
⋃

x∈Elements(CAB) OutgoingTrans(x), |To\Transitions(CAB)| 6 1.

Before translating an SPM into BPEL, we pre-process the model by clustering
all the original activities into CABs. We start with an arbitrary unclustered ac-
tivity in the process, then move backwards and forwards from that activity with-
out traversing AND-Splits/Joins (i.e. stop when reaching an AND-Split/Join),
and finally cluster all the traversed elements and transitions into a single CAB.
This procedure is repeated until no unclustered activities are left in the process.

13

Next, we replace the “Activity” elements with “CAB” elements in the previ-
ous algorithm defined in Sect. 3, and apply this updated algorithm to the above
pre-processed model. Finally, we map each CAB onto BPEL activities. This may
also include transformation from unstructured to structured workflow before the
mapping. Note that in the worst case a CAB contains only a single activity.

Example. We apply the improved approach to the translation of the complaint
handling process in Fig. 5. Fig. 7 depicts a pre-processed model for this process
where the previous nine activities with four XOR-Splits/Joins are clustered into
four CABs. CAB1, which contains just the initial activity a1, is the initial item,
and CAB4, which consists of only the final activity a9, is the final item.

notify

result

register

 send

 questionnaire

 receive

 questionnaire

 process

 questionnaire

evaluate

check

processing

archive

OK

NOK

process

complaint

DONE

NEED

CHECK

a
1

a
2
 a
3
 a
4

a
5
 a
6

a
7

a
9

CAB
3

CAB
2

CAB
1
 CAB
4

a
8

Fig. 7. Pre-processed complaint handling process in Fig. 5.

The precondition sets for each of the four CABs in Fig. 7 are:

PreCondSet(CAB1) = {ProcessInstantiation(p)}

PreCondSet(CAB2) = {Completion(CAB1)}

PreCondSet(CAB3) = {Completion(CAB1)}

PreCondSet(CAB4) = {Completion(CAB2)∧Completion(CAB3)}

The set of simple ECA rules derived from these precondition sets are:

For CAB1: ProcessInstantiation(p)[TRUE]

For CAB1: {do CAB1; invoke Completion(CAB1)
(1) || invoke Completion(CAB1)

(2)}

For CAB2: Completion(CAB1)
(1)[TRUE]{do CAB2; invoke Completion(CAB2)}

For CAB3: Completion(CAB1)
(2)[TRUE]{do CAB3; invoke Completion(CAB3)}

For CAB4: Completion(CAB2)[TRUE]{receive Completion(CAB3);

For CAB4: Completion(CAB4)[TRUE]{do CAB4; invoke Completion(CAB4)}

The above ECA rules, except the first one for execution of the initial item
CAB1, can be translated into three event handlers. As a comparison, our previous
approach yields ten event handlers for the same process.
Finally, the improved approach requires an additional step of mapping CABs

onto structured activities in BPEL. This does not apply to CAB1 and CAB4

as both contain a single activity. As mentioned before, CAB2 can be directly
mapped onto a sequence activity. CAB3 exhibits an unstructured workflow which
can be transformed into an equivalent structured form shown in Fig. 8. The
transformation is done by introducing an auxiliary boolean variable (Q) to carry
the evaluation result of the guard represented by OK (∼Q for NOK). Three new
activities a10, a11 and a12 are also added to assign appropriate values to Q. The

14

resulting workflow in Fig. 8 has a structured loop which can be directly mapped
onto a while activity. Each loop starts if Q has a value of false, otherwise the
loop will be exit. The main activity of the loop is a sequence of a5, a6 and
a conditional choice between two branches – one for the guard represented by
DONE, the other for NEED-CHECK.

evaluate

check

processing

Q

~Q

process

complaint

DONE

NEED

CHECK

a
5
 a
6

a
7

assign

(Q:=false)

a
10

assign

(Q:=OK)

a
12

assign

(Q:=true)

a
11

notify

result

a
8

Fig. 8. A structured form of the original unstructured workflow in CAB3.

Fig. 9 sketches the XML code of the abstract BPEL process for the com-
plaint handling process shown in Fig. 5, which is generated under the above
improved translation approach. It can be observed that within the event han-
dlers corresponding to activity blocks CAB2 CAB3 are more structured BPEL
activities. For example, CAB3 is mapped to a complex structured activity where
“sequence”, “while” and “switch” constructs are nested within each other.

6 Conclusions

Capturing workflow patterns such as multi-merge, arbitrary cycles and multi-
ple instances in BPEL is problematic. On the other hand, these patterns can
be directly captured in standard process modelling notations (i.e. BPMN and
UML AD). This mismatch hinders the definition of automated translations from
process models to process implementations when using these standards. This
paper has presented a technique to translate models captured in a core subset of
BPMN or UML AD into BPEL. The technique exploits an interesting and often
underused BPEL construct, namely “event handler”.
To the best of our knowledge, this is the first attempt at tackling the above

patterns in a systematic translation from BPMN or UML AD to BPEL. The
proposal has been validated through the implementation of a tool (SPM2BPEL)
that automatically translates Standard Process Models into BPEL code. The
paper also sketched possible improvements to the technique by clustering activ-
ities into activity blocks that can be mapped onto BPEL structured activities,
thereby reducing the number of event handlers in the resulting BPEL process.
Ongoing work aims at designing and implementing an algorithm for the im-

proved translation technique. We then plan to extend the technique to cover
other workflow patterns, e.g. deferred choice and cancellation. Since the de-
ferred choice pattern captures a race condition between events, the translation
algorithm presented in this paper, which excludes the notion of race condition,
will need to be revisited. Investigating the expressive power of the BPEL “pick”
and “fault handler” constructs, which allow one to capture race conditions and
cancellation in structured settings, may provide a foundation for designing this
extended translation.

15

<process name="complaintHandling">
<partnerLinks>

<partnerLink name="local" partnerLinkType="localLT" ... />
...

</partnerLinks>

<variables> ... </variables>

<eventHandlers>
<onEvent Completion(CAB1)

(1)/>
<sequence>

<sequence> <!--do CAB2-->
<invoke name="sendQuestionnaire" ... /> <!--do a2-->
...

</sequence>
<invoke Completion(CAB2)/>

</sequence>
</onEvent>

<onEvent Completion(CAB1)
(2)/>

<sequence>
<sequence> <!--do CAB3-->

<assign name="a10"> ... </assign>
<while>

<condition> NOK </condition> <!-- ∼OK /∼Q/false -->
<sequence> ... </sequence> <!--do a5 & a6-->
<switch>

<case>
<condition> DONE </condition>
<assign name="a11"> ... </assign>

</case>
<otherwise> <!--NEED-CHECK -->

<sequence> ... </sequence> <!--do a7 & a12-->
</otherwise>

</switch>
</while>
<assign name="a8"> ... </assign>

</sequence>
<invoke Completion(CAB3)/>

</sequence>
</onEvent>

<onEvent Completion(CAB2)/>
<sequence>

<receive Completion(CAB3)/>
<assign name="archive"> ... </assign> <!--doCAB4/a9-->
<invoke Completion(CAB4)/>

</sequence>
</onEvent>

</eventHandlers>

<sequence>
<receive ProcessInstantiation(p) createInstance="yes"/>
<assign name="register"> ... </assign> <!--do CAB1/a1-->
<flow>

<invoke Completion(CAB1)
(1)/>

<invoke Completion(CAB1)
(2)/>

</flow>
</sequence>

</process>

Fig. 9. An abstract view of the BPEL code for complaint handling process in Fig. 5
as generated using the improved translation approach.

16

References

1. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, 2003.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

3. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Liu,
S. Thatte, P. Yendluri, and A. Yiu, editors. Web Services Business Process Exe-
cution Language Version 2.0. Working Draft. WS-BPEL TC OASIS, May 2005.
URL: http://www.oasis-open.org/committees/download.php/12791/.

4. M. Dumas, T. Fjellheim, S. Milliner, and J. Vayssiére. Event-based coordination
of process-oriented composite applications. In Proceedings of the International
Conference on Business Process Management (BPM2005), volume 3649 of Lecture
Notes in Computer Science, pages 236–251, Nancy, France, 2005. Springer-Verlag.

5. P. Harmon. Standardizing business process notation. URL: http://www.bptrends.
com, November 2005.

6. B. Kiepuszewski, A.H.M. ter Hofstede, and W.M.P. van der Aalst. Fundamentals
of control flow in workflows. Acta Informatica, 39(3):143–209, 2003.

7. B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In Proceedings of 12th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE 2000), volume 1789 of Lecture Notes in Com-
puter Science, pages 431–445, London, UK, 2000. Springer-Verlag.

8. R. Liu and A. Kumar. An analysis and taxonomy of unstructured workflows.
In Proceedings of the International Conference on Business Process Management
(BPM2005), volume 3649 of Lecture Notes in Computer Science, pages 268–284,
Nancy, France, 2005. Springer-Verlag.

9. K. Mantell. From UML to BPEL. URL: http://www.ibm.com/developerworks/
webservices/library/ws-uml2bpel, September 2005.

10. OMG. Unified Modeling Language: Superstructure. UML Superstructure Specifi-
cation v2.0, formal/05-07-04. OMG, August 2005. URL: http://www.omg.org/
cgi-bin/doc?formal/05-07-04.

11. G. Oulsnam. Unravelling unstructured programs. Computer Journal, 25(3):379–
387, 1982.

12. S. A. White. Business Process Modeling Notation (BPMN) Version 1.0. Business
Process Management Initiative, BPMI.org, May 2004.

13. J. Widom and S. Ceri, editors. Active Database Systems : Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann Publishers, San Francisco, CA,
USA, 1996.

14. M. H. Williams. Generating structured flow diagrams: the nature of unstructured-
ness. Computer Journal, 20(1):45–50, 1977.

15. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. Analysis
of Web services composition languages: The case of BPEL4WS. In Proceedings of
22nd International Conference on Conceptual Modeling (ER 2003), volume 2813
of Lecture Notes in Computer Science, pages 200–215. Springer-Verlag, 2003.

17

