
 Eindhoven University of Technology

MASTER

BPMN 2 BPEL
research on mapping BPMN to BPEL

Blox, J.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/17c51d3b-0845-4f1b-8fd9-49c8af843739

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Industrial Engineering

BPMN 2 BPEL
research on mapping BPMN to BPEL

By
Jeroen Blox

Supervisors:

R. Eshuis (TU/e)
L. Mühlenberg (Logica)

J.C. van Gaalen (Logica)

Eindhoven, March 2009

BPMN2BPEL 2

Preface

This thesis is the final product of the graduation project I conducted at Log-
ica Nederland, as the final part of the Business Information Systems master
program at Eindhoven University of Technology. During my graduation period
I was positioned within the Working Tomorrow program, which is a program
enabling graduates to perform their graduation project on challenging and inno-
vative topics. The theoretical basis created during my study, could be combined
with the practical knowledge about the topic available at Logica.

In this preface, I would like to grasp the opportunity to express thanks to
a number of people. First of all, I would like to thank my supervisor from
Eindhoven University of Technology for his professional and critical approach
in assisting me during my master project. Our discussions were of great value
for both the research and this thesis. I also would like to thank Lambert
Mühlenberg and Jan-Cees van Gaalen for their support in guiding me in the
entire process, providing me with helpfull feedback and help me in defining two
case studies.

Of course, I also want to thank my colleague students at Logica for their help
in my project, but also for the pleasant time we had during and after office
hours. Finally, I would like to express my gratitude to my girlfriend Noor,
my family and friends for supporting me during my whole master project and
master program.

Jeroen Blox

Eindhoven, March 20, 2009

i

BPMN2BPEL

ii

BPMN2BPEL 2

Abstract

This thesis is the end result of a master project about automatic translation
from BPMN to BPEL. Both BPMN and BPEL are relatively new languages
which are still under development. In the last few years, a lot of research
has been done in the field of mapping BPMN to BPEL. Different strategies
and implementations have arisen, each with their own strengths and weak-
nesses. Three main categories can be stated: structured-based, link-based and
event-action based strategies. Combining these three main categories results
in implementations with a high level of readability and completeness. Existing
implementations try to be complete and therefore combine strategies from the
three categories, but often lack readability because of conflicting criteria.

We present a new approach for mapping BPMN to BPEL with both the read-
ability and completeness criteria in mind, but focus on the readability aspect.
The approach is based on an existing composition algorithm proposed by Eshuis
[EG09]. In this approach, BPMN models are analyzed and synchronization de-
pendencies are temporarily eliminated from the process. The remaining model
is preprocessed for finding structural properties and different concepts like im-
mediate dominator, loop header and follow sets are calculated. Together with
the structural properties, the synchronization links are processed by an algo-
rithm which creates a structured composition. Such a structured composition
represents a BPEL model and can be expressed in the official BPEL syntax.

Our approach is implemented in an Eclipse plugin and we evaluated our ap-
proach by doing two case studies and comparing the results with other imple-
mentations. We can conclude that our algorithm for finding synchronization
dependencies and the level of structure our generated BPEL models has, are
contributing to current strategies and implementations. Other implementations
translate unstructured components with the link-based or event-action based
strategies, while our approach eliminates synchronization dependencies and uses
the structured-based strategy. Different researchers agree that structured-based
translation results in more readable BPEL code.

Unstructured loops cannot be translated by our approach, while implementa-
tions like the BABEL-tool and the Eclipse plugin can handle these unstructured

iii

BPMN2BPEL

loops. Because our approach requires a well-formed business process diagram
as input model, we evaluated these well-formedness restrictions and conclude
that some of these restrictions can be relaxed since the preprocessing step of
the approach inserts dummy nodes when needed.

Also some ideas for future work are presented. The field of mapping BPMN to
BPEL is changing rapidly and more implementations arise. We are convinced
that future work will narrow the gap between the design of business processes
and the implementation of these processes.

iv

BPMN2BPEL 2 Contents

Contents

Preface i

Abstract iii

1 Introduction 1
1.1 Problem statement . 1
1.2 Approach . 2
1.3 Outline . 3

2 State-of-the-art: BPMN and BPEL 5
2.1 BPMN analyzed . 5

2.1.1 BPMN explained . 5
2.1.2 Evaluation of BPMN . 7

2.2 BPEL analyzed . 8
2.2.1 BPEL explained . 8
2.2.2 Evaluation of BPEL . 10

2.3 Research on BPMN to BPEL . 12
2.3.1 Differences between BPMN and BPEL 12
2.3.2 Current research on mapping BPMN to BPEL 14
2.3.3 Current implementations 18

2.4 Conclusions . 18

3 Mapping BPMN to BPEL 21
3.1 Business Process Diagram . 22
3.2 Synchronization dependencies . 24

3.2.1 Finding synchronization dependencies 25
3.2.2 The complaint handling process 29

3.3 Dominators, loop headers and follow sets 30
3.4 BPEL grammar . 31
3.5 The algorithm . 32

3.5.1 Adjustment of the algorithm 32
3.5.2 The complaint handling process 34

3.6 BPEL syntax . 35

4 An Eclipse plugin 39

v

BPMN2BPEL Contents

4.1 Creating BPMN models in Eclipse 39
4.2 Running the algorithm . 39
4.3 Plugin evaluation . 41

5 Case studies 45
5.1 Loan request for an insurance company 45

5.1.1 Manual translation . 47
5.1.2 Translating via the plugin 48

5.2 Total credit risk calculation . 51
5.2.1 Manual translation . 53
5.2.2 Translating via the plugin 54

5.3 Conclusion . 57

6 Evaluation of the mapping 59
6.1 Strengths & Weaknesses . 59
6.2 Relation with other strategies/implementations 60

6.2.1 Case study 1 . 62
6.2.2 Case study 2 . 63
6.2.3 Conclusion . 64

6.3 Evaluation of well-formed BPD restrictions 65
6.4 Future work . 69

7 Conclusions 71
7.1 Answers to the research questions 71

7.1.1 What is the state-of-the-art with respect to BPMN and
BPEL? . 71

7.1.2 How can BPMN be mapped to BPEL? 72
7.1.3 How can our translation be evaluated compared to exist-

ing translations? . 72
7.2 Threats to validity . 73
7.3 Future work . 74

A BPMN explained A-1

B BPEL explained A-5

C Existing BPMN 2 BPEL approaches A-9

D Business Process Diagram A-11

E Input model for other implementations A-13

vi

BPMN2BPEL 2 List of Figures

List of Figures

2.1 The basic elements used in BPMN[WAD+06b] 6
2.2 A complaint handling process, adapted from [ODHA08] 7
2.3 The complaint handling process in BPEL syntax 9
2.4 Transformation strategies by Mendling et al.[MLZ06] 15
2.5 The same model decomposed twice in a non-deterministic way

[VVK08] . 16
2.6 Translation of structured BPMN components to BPEL [OADH06] 17

3.1 BPD elements displayed in a class diagram 22
3.2 An incorrect synchronization link, which causes a deadlock . . . 24
3.3 Two parallel constructs in a sequence; SESE-regions are necessary. 26
3.4 Algorithm for finding synchronization dependencies 28
3.5 A complaint handling process, adapted from [ODHA08] 29
3.6 Algorithm for constructing structured compositions 33
3.7 Inserting unique FOLLOW node after current (l. 31 of Fig. 3.6) 34
3.8 Adding synchronization dependencies to the block structure . . . 34
3.9 The structured composition for the complaint handling process . 37

4.1 The BPMN modeling tool in Eclipse 40
4.2 Graphical flowchart how the plugin works 40
4.3 Example of an error message of Oracle’s BPEL Process Manager 42
4.4 Screenshot of the execution environment 43

5.1 Case study 1: Loan request for an insurance company 46
5.2 Structured composition of case study 1 49
5.3 Part of the BPEL syntax for case study 1 49
5.4 Structured composition tree of case study 1 50
5.5 Case study 2: total credit risk calculation 52
5.6 Structured composition of case study 2 55
5.7 Part of the BPEL syntax for case study 2 55
5.8 Structured composition tree of case study 2 56

6.1 Case study 1 translated with the Eclipse implementation [GB08] 62
6.2 Case study 1 translated with the BABEL-tool [OADH08] 63
6.3 Case study 1 translated with the Intalio-tool 63
6.4 Case study 2 translated with the Eclipse implementation [GB08] 64

vii

BPMN2BPEL 2 List of Tables

6.5 Case study 2 translated with the Intalio-tool 64
6.6 Start and end events with respectively an out- and indegree of

more than one. 67
6.7 Tasks and intermediate events that have an in- or outdegree of

more than one. 67
6.8 Gateways with an in- and outdegree of one can be transformed

to a task node. 68

A.1 The basic elements used in BPMN[WAD+06b] A-1

E.1 Case study 1 adjusted input model for the Eclipse implementationA-13
E.2 Case study 1 adjusted input model for the BABEL-tool A-13
E.3 Case study 2 adjusted input model for the Eclipse implementationA-14

List of Tables

2.1 Most common BPEL elements. 11
2.2 BPMN and BPEL compared with workflow patterns [WADH05,

WADH03] . 13
2.3 Evaluation of current approaches 20

3.1 before(g)- and after(g)-set for gateways of our example 29
3.2 Dominators, loop headers and follow sets 35
3.3 Structured composition to BPEL syntax 36

5.1 before(g)- and after(g)-set for gateways of case study 1 47
5.2 Dominators, loop headers and follow sets for case study 1 48
5.3 before(g)- and after(g)-set for gateways of case study 2 53
5.4 Dominators, loop headers and follow sets for case study 2 54

6.1 Evaluation of implementations 65
6.2 Evaluation of well-formed BPD restrictions 66

7.1 Evaluation of current approaches 72
7.2 Evaluation of implementations 73

C.1 Existing approaches for translating BPMN to BPEL A-9

viii

BPMN2BPEL 2

Chapter 1

Introduction

The business process modeling notation (BPMN) is a graph-oriented language
often used by domain analysts [WAD+06a] and supported by more than 50
tools [Web08d]. The business process execution language for web services (WS-
BPEL or BPEL in short) is a block-structured language, which is more focused
on software developers. BPEL is also supported by several execution platforms
of international players [Web08c] and therefore is the standard in process-based
service description languages. BPMN can be used to design and discuss business
processes with both process analysts and software engineers, while BPEL can
be used for implementation purposes. A mapping between both languages,
BPMN and BPEL, would narrow the gap between design and implementation
for both business analysts and software developers.

The thesis at hand is the result of my master project conducted at Logica
Nederland B.V. in Eindhoven. Logica is a leading IT and business services
company, employing 39,000 people across 36 countries. They enable business
transformation for their customers through the innovative use of technology.

In this chapter we will discuss the problem statement and the research questions
we answer in this thesis. The approach we followed during the master project
is explained and in the outline a description of further chapters is given.

1.1 Problem statement

Recently some research has been done in the field of transforming a BPMN-
model to structured BPEL-code [MLZ06, Whi05, OADH08, Web08a, ODHA08,
RM06]. Until now, no common agreed method exists and most implementa-
tions do not support unstructured BPMN-models. Only structured business
processes that meet a list of requirements specified by a tool, can be trans-
formed by these tools. Because implementations which support unstructured
business process often result in translations which are not readable by humans

1

BPMN2BPEL Introduction

[OADH08, ODHA08, MLZ06], research is necessary on this field. Completeness
and readability are two important requirements for a mapping between BPMN
and BPEL and will be used frequently in this thesis.

In association with Logica and Eindhoven University of Technology, we want to
investigate the state of the art in the field of translating BPMN to BPEL. By
analyzing current research in translating BPMN to BPEL and by evaluating
the specifications of both languages, the strengths and weaknesses of current
approaches can be identified. Next, we want to extend an existing algorithm
presented by Rik Eshuis [EG09] to make it suitable for mapping BPMN to
BPEL. Currently this existing algorithm is used for creating block structure
from dependency graphs according to composition theory. This algorithm will
be evaluated against the strengths and weaknesses discovered by analyzing the
state-of-the-art. Therefore, three main research question are formulated:

1. What is the state-of-the-art with respect to BPMN and BPEL?

2. How can BPMN be mapped to BPEL using the algorithm of [EG09]?

3. How can our translation be evaluated and compared to existing transla-
tions?

1.2 Approach

To answer the first research question, we first explain the concepts of BPMN
and BPEL. Then a literature research is conducted for both languages and the
strengths and weaknesses of each language are evaluated. Also the possibilities
and limitations of each language are analyzed, which is needed for judging cur-
rent translations. After describing both languages, current research in mapping
BPMN to BPEL is analyzed and an overview is made of different strategies and
implementations currently available. We summarize the constraints, strengths
and weaknesses of different strategies (and implementations) which are used to
develop our own algorithm.

The second research question is answered both by literature research and by
our own approach we present. An existing algorithm of Rik Eshuis [EG09] is
used to investigate the possibilities in mapping BPMN to BPEL. Adjustments
on the existing algorithm should result in a new approach which is suitable for
translation from BPMN to BPEL. Together with adjusting the algorithm, an
implementation in Eclipse is developed and the algorithm is evaluated during
the development. In this phase of the master project, we work according to the
idea of the spiral model of Barry Boehm [Boe88]. First basic models are mapped
correctly by the plugin, before we extend the algorithm with synchronization
dependencies and loops.

2

BPMN2BPEL Outline

An algorithm is developed for finding synchronization dependencies in single
entry, single exit-regions. The introduction of an algorithm for these synchro-
nization dependencies result in less unstructured components which have to be
translated. We also evaluate well-formedness restrictions on the input BPMN
model, to discuss the need of these restrictions.

For answering the third research question, we gather two different case studies
and use these to determine the performance of an algorithm or implementation.
After defining some requirements, our own algorithm and implementation is
compared to other existing implementations or strategies described by other
researchers.

1.3 Outline

This master thesis is structured to the presented approach.Chapter 2 contains a
critical analysis of BPMN and BPEL to answer the first research question. The
state-of-the-art with respect to BPMN and BPEL is given, but also a critical
analysis on research done in the field of mapping those languages, is conducted.

In chapter 3 our own solution for mapping BPMN to BPEL is presented. The
algorithm is based on an existing algorithm of Rik Eshuis. His algorithm is used
for creating structured block diagrams with dependency graphs as input model.
The algorithm is adjusted for our purpose and extended to trace synchronization
dependency relations in concurrency situations and translate them to BPEL
control links.

An implementation of our algorithm is discussed in chapter 4. We first de-
scribe the possibilities of modeling BPMN in Eclipse and then explain how
our algorithm is implemented as an Eclipse plugin. The plugin is evaluated
by comparing results with manual translations we have done according to the
same algorithm as implemented.

We also present two case studies in chapter 5, which are gathered from some
clients of Logica. Using these case studies we evaluate our own algorithm and
in chapter 6 we compare these results with results from other implementations
and strategies. In this way we are able to identify strengths and weaknesses of
our mapping and we can propose possible improvements for mapping BPMN to
BPEL. In chapter 6 we also discuss how the well-formedness restrictions which
are required by the presented approach can be relaxed.

3

BPMN2BPEL Introduction

4

BPMN2BPEL 2

Chapter 2

State-of-the-art: BPMN and
BPEL

In this chapter, both BPMN and BPEL are discussed and critically analyzed to
describe the state-of-the-art. Also a brief analysis of current research on map-
ping BPMN to BPEL is given. Based on the analysis, we develop requirements
and restrictions for our own algorithm presented in chapter 3.

2.1 BPMN analyzed

2.1.1 BPMN explained

In May 2004 the first version of the Business Process Modeling Notation was
proposed by the Business Process Modeling Initiative (BPMI) to provide a stan-
dard visual notation for business processes. The Object Management Group
(OMG) approved this first version in February 2006 as a final adopted spec-
ification [OMG08b]. The intention of BPMN was to create a notation which
could be used by both domain analysts and software developers. Also a map-
ping between the graph-oriented language and the executable language BPEL
should be possible when using BPMN. One of their goals is to eliminate the
gap between domain and technical analysts.

BPMN is designed to support the modeling of business processes and doesn’t
support the modeling of organizational structures, functional breakdowns, data
models, strategy and business rules. Within the modeling aspect for business
processes, three main types of process models can be defined [OMG08b]:

1. Private (internal) business processes

2. Abstract (public) processes

3. Collaboration (global) processes

5

BPMN2BPEL State-of-the-art: BPMN and BPEL

Private business processes describe a set of activities inside an organization.
These models will not be published in order to keep the process confidential.
When different parties want to collaborate and use the different private pro-
cesses, abstract processes need to be described first. Abstract processes are
used to describe that part of a process which is interacting with a third party.
Internal activities, which do not have a direct interface functionality, are left
outside the scope of these models for simplicity and reasons related to confi-
dentiality. Collaboration processes are abstract processes of different parties
modeled within one single model. A collaboration process describes a process
of interaction between multiple participants from an external view.

At this moment, a request for proposal is placed for a next version of the BPMN
specification. Currently the official released version is BPMN 1.1, while BPMN
2.0 is under development and available as a draft. The vision of BPMN 2.0 is to
have one single specification for notation, meta model and interchange format
[OMG08a]. Because BPMN 2.0 is still under development, we will use BPMN
1.1 in our further research.

BPMN is built from a standard set of elements to create the Business Pro-
cess Diagrams (BPD). These elements are basically the control flow elements
of BPMN. Swimlanes and artifacts are elements designed for representing data
and resource utilization. In Figure 2.1 the basic elements used in BPMN are
combined in one graphical overview. This overview is not a complete set of ele-
ments, e.g. there are some derivatives of event-elements like timer and message
events. Also an XOR-gateway can be modeled with or without a cross, both
are correct as long as they are used consistently. An explanation of the basic
elements can be found in Appendix A. In Figure 2.2 an example BPD is given
of a complaint handling process, which will be explained and used to explain
our translation in further sections.

Figure 2.1: The basic elements used in BPMN[WAD+06b]

6

BPMN2BPEL BPMN analyzed

Figure 2.2: A complaint handling process, adapted from [ODHA08]

2.1.2 Evaluation of BPMN

Recently some research has been done in the field of BPMN and several ad-
vantages and disadvantages of using BPMN as a modeling language have been
identified.

Different researchers identify a standard set of benefits when using BPMN as
a modeling language. The most important benefits are stated by Muehlen
[MH08], who mentioned the freedom and ease of use to read the BPMN models
for both business analysts and technical analysts. Muehlen uses two different
case studies to identify these benefits which are often stated in literature.
Also, because BPMN is implemented in more and more tools, more industry
reference models will be available. These reference models will help the end
user by creating and understanding models expressed in BPMN [MH08].
Ou-Yang et al. [OYL08] and Dijkman et al. [DDO08] are also listing these ben-
efits, but indicate that BPMN models should be checked for feasibility since the
freedom in modeling might cause problems. Deadlock situations and livelocks
could occur by improper modeling. They suggest a method to check a model
for liveness, reachability and consumed time to validate models and improve
them. This method is based on Petri nets, which have a high mathematical
proof strength. Dijkman et al. [DDO08] emphasize the need for formal analysis
on BPMN models, since problems in these models are among the most costly
and hardest to correct.

Some other drawbacks can be identified. Wohed et al. [WAD+06a] discuss all
known control flow patterns in the field of workflow patterns [Web08b] and con-
clude that not all known patterns are covered by BPMN. Most of the patterns
are possible to create in BPMN, but full support is not available. One of the
missing patterns is the milestone phenomenon, which ensures that a specific
activity can only start if a previous activity is completed. The reason for this
missing pattern can be found in the lack of explicit notion of a ”state”.

7

BPMN2BPEL State-of-the-art: BPMN and BPEL

Often, business analysts misuse elements of BPMN in order to increase the
readability of the BPMN model. Simulations will be false in case of misuse
and different BPMN dialects are arising, which is not what the developers of
BPMN intended [MH08]. The aspect of resources is thereby completely missing
in BPMN, according to the specifications [OMG08b], but the presence of pools
and lanes gives the impression of supporting resources.

Because of the freedom to misuse elements in BPMN and the high coverage of
workflow patterns, BPMN still has some issues. The benefits which make the
language easy to understand and easy to use, are also risks when the specifica-
tion lacks clearness.

2.2 BPEL analyzed

2.2.1 BPEL explained

OASIS (Organization for the Advancement of Structured Information Stan-
dards), the organization behind BPEL, is a consortium that drives development,
convergence and adoption of open standards. OASIS has developed several web
services standards since their foundation in 1993. Originally the following ba-
sic specifications formed the web services space: SOAP, WSDL and UDDI
[OAS07]. SOAP is a definition of an XML message protocol for basic service
interoperability. WSDL (Web Services Description Language) is a standard for
describing services. UDDI (Universal Description, Discovery and Integration),
developed by OASIS, basically provides the infrastructure which can publish
all services in a systematic way in order to discover web services. With UDDI,
web services can invoke other web services discovered via the infrastructure.

These specifications together provide the possibility to interact between web
services following a loosely coupled, platform independent model. However sys-
tem integration requires more than only simple interactions; a specification for
describing the communication between services is needed. The specification
needs to consider data-dependent behavior, exceptional conditions and their
consequences, and long-running interactions [OAS07]. WS-BPEL (Web Ser-
vices Business Process Execution Language), in short BPEL, describes the full
interaction possibilities between web services and the ordering of these web
services in a process. In our research, we consider version 2.0 of the BPEL
specification.

Within the BPEL specification two different ways of applying the BPEL con-
cepts can be found; the abstract and executable way. Abstract processes are
partially specified processes which are not intended to be executed. Executable
processes are intended to be executed and therefore need to be fully specified.

8

BPMN2BPEL BPEL analyzed

Figure 2.3: The complaint handling process in BPEL syntax

9

BPMN2BPEL State-of-the-art: BPMN and BPEL

The available concepts for executable processes are also available for abstract
processes, but abstract processes also have the possibility to hide some of the
required concrete operational details. Abstract processes have a descriptive role
and can give information about an executable process.

In Figure 2.3 the complaint handling example of Figure 2.2 is given in BPEL
code. BPEL syntax is structured and uses nesting. Each element can have
attributes and other nested child elements. The BPEL specification contains a
lot of elements, which can be used for specific purposes. A full list of BPEL
elements can be found in [OAS07]. The most common elements can be found in
Table 2.1 and are categorized into the following classes; basic activities, struc-
tured activities and partner links [OAS07]. Activities perform the process logic
in BPEL. A distinction is made between basic activities and structured activ-
ities. Basic activities describe elemental steps of the process behavior, while
structured activities describe the control-flow logic. Structured activities can
contain other activities. Partner links represent the interactions between differ-
ent services or business processes. A more detailed description of all elements
with respect to BPEL can be found in Appendix B.

2.2.2 Evaluation of BPEL

Different researchers investigated the BPEL standard and compared the lan-
guage with other web services languages.

Van der Aalst and Ter Hofstede [Web08b] created a list of 20 different work-
flow patterns. Wohed et al. [WADH06] compared these workflow patterns with
BPEL and created a coverage overview. This research concluded direct support
for most of the patterns is implemented. Four major patterns which are not
covered within BPEL directly are: Discriminator, Multi-Merge, Arbitrary Cy-
cles and Milestones. Milestones can be covered using a work-around, but since
this work-around is rather complex this implementation might be improved.
Because states are not supported by BPEL, variables must be introduced to
keep track of the state. In section 2.3.1 the coverage of both BPMN and BPEL
is discussed.

Another drawback of BPEL is the possible overlap of constructs, which results
in different implementations. Some notations deliver more readable output,
while other notations only result in correct output which is not comprehensible
for a human being. In Figure 2.4 different BPEL structures are displayed for
the same BPMN input model. A sequence of activities can be modeled within
the <sequence> concept for example, but can also be modeled using a <flow>
concept with control links for every relation. In the BPEL structure generated
by the event-condition-action-rules strategy the control flow logic is not visible
in the structure anymore and is therefore harder to understand.

10

BPMN2BPEL BPEL analyzed

Table 2.1: Most common BPEL elements.
Basic activities
Invoke Used to invoke Web Service operations.
Receive and Reply A (sub)process waits for a specific message and will

send a reply to the initiator of the process.
Assign The assign activity allows variables to be updated

during the process.
Throw and Rethrow For fault handling, both elements can explicitly

throw a fault to the faulthandler.
Wait When a business process needs a delay for a specific

time, the wait activity can be used.
Empty The empty activity does nothing, but can be used to

generate valid and readable BPEL-code.
Exit The exit activity immediately terminate all activities

in the process instance.

Structured activities
Sequence Activities which are executed one by one in a given

order, are placed in a sequence control activity.
If For conditional behavior.
While and repeatUntil Provide a repeated set of activities.
Pick Waits for an occurrence of one event and then ex-

ecutes the activities related to this event. Other
events where the Pick was listening to are neglected.

Flow Makes synchronization and concurrency possible.
ForEach ForEach makes it possible to process multiple

branches. Depending on the design of this activity,
the children of this activity can be executed sequen-
tial or in parallel.

Partner Links Describe cross enterprise business interactions
through Web Service interfaces. By describing the
partner links, also roles are assigned to different par-
ticipants.

The readability aspect is a criterion which is often discussed by describing
strategies for translating BPMN to BPEL. Most researchers, including [OADH08,
ODHA08, MLZ06], agree on the high readability of structure transformation
strategies compared to other strategies as we will see in the next section. The
definition of readability is however not given and an empirical study to support
the researchers assumptions cannot be found. We adapt the assumptions on
readability from the other researchers, but underline the need for an empirical
study in the near future.

11

BPMN2BPEL State-of-the-art: BPMN and BPEL

2.3 Research on BPMN to BPEL

In the past years, researchers tried to develop an algorithm for the transfor-
mation from BPMN to BPEL. Some strategies arose, but are also critically
reviewed by other researchers. In section 2.3.1 we first discuss the differences
between BPMN and BPEL. Then an evaluation of current research will be given
in section 2.3.2. In section 2.3.3 current implementations are discussed.

Both readability and completeness will be used as two main criteria for eval-
uating existing transformation strategies and implementations. Together with
other researchers, including [OADH08, ODHA08, MLZ06], we adopt the as-
sumption that more structure results in a higher readability. As indicated
before, we underline the need for an empirical study to confirm this assump-
tion. We define completeness as the set of requirements on the input model.
We also want to translate unstructured input models to corresponding BPEL
structure.

2.3.1 Differences between BPMN and BPEL

According to several researchers, including Recker et al. [RM06], there is a mis-
match between BPMN and BPEL. Three different reasons are given [RM06,
Web08a]. First the two standards are used in different phases in the life cycle
of a business process. BPMN is normally used in the design phase, where busi-
ness analysts design and discuss a business process with the use of graphical
notations. BPEL is used in the implementation phase, which is more related to
technical analysts and programmers who will use the language. The second rea-
son is the difference between business analysts and technical analysts who have
their own perspective of the two languages. Finally, BPMN is a graph oriented
notation and BPEL a block oriented language, which results in a conceptual
mismatch between both standards.

Having a conceptual mismatch can be a problem, but tools for mapping BPMN
to BPEL can narrow down the mismatch. Both process analysts and software
engineers have BPMN and BPEL models available, which can help in under-
standing models and will improve communication. The conceptual mismatch
as discussed by Recker et al. [RM06] might therefore be an extra reason for
researching mappings from BPMN to BPEL instead of a problem.

Recker et al. [RM06] compared BPMN and BPEL by listing the level of support
of the workflow patterns from [Web08b]. In Table 2.2 an overview is given. A
+ sign indicates direct support of the pattern by the language, a +/− indicates
indirect support and a − sign indicates that there is no support for the specific
pattern. The most important differences are the multiple merge, discriminator,
arbitrary cycles and MI with a priori Runtime Knowledge patterns. These

12

BPMN2BPEL Research on BPMN to BPEL

Table 2.2: BPMN and BPEL compared with workflow patterns [WADH05,
WADH03]

patterns are explained in an article by [WAD+06a]:

1. WCP8: Multiple merge - the ability to represent the unsynchronised con-
vergence of two or more distinct branches. If more than one branch is
active, the activity following the merge is started for every activation of
every incoming branch;

2. WCP9: Discriminator - the ability to depict the convergence of two or
more branches such that the first activation of an incoming branch results
in the subsequent activity being triggered and subsequent activations of
remaining incoming branches are ignored. It is a special case of N-out-of-
M pattern, where N is equal to one;

3. WCP10: Arbitrary cycles - the ability to represent loops that have mul-
tiple entry or exit points;

4. WCP14: MI with a priori runtime knowledge - the ability to initiate
multiple instances of an activity within a given process instance. The
number of instances varies but is known at runtime before the instances
must be created. Once all instances have completed, a subsequent activity
is initiated.

In BPMN these four patterns can be modeled, while in BPEL there is no support
for these patterns. The main reason for this is the lack of multiple threads in
BPEL and the awareness of states. The influence this difference in supporting
patterns has, depends on the purpose of the translation and the input model.
The patterns mentioned above, might never exist in BPMN models which are
used as input models. However, users should be aware of this restriction when
modeling in BPMN with the purpose of generating a BPEL model.

13

BPMN2BPEL State-of-the-art: BPMN and BPEL

2.3.2 Current research on mapping BPMN to BPEL

Mendling et al. [MLZ06] discuss five strategies for transforming BPMN to
BPEL. They even discuss some reversed transformation strategies, which might
be interesting for researchers investigating round-trip engineering. The five
strategies discussed are: element preservation, element minimization, structure
identification, structure maximization and event-condition-action-rules. We
will now briefly explain these strategies. In Figure 2.4 examples of these strate-
gies are given.

Element preservation - This strategy maps all process graph elements to
a flow, maps connectors to <empty> elements and maps arcs to <links>. The
advantage of this strategy is the ease of implementation and the one-to-one
correspondence between the nodes and original process graph. However, the
BPEL control flow includes more elements and the flow might be difficult to
understand. This strategy is only feasible if the process does not contains
loops. When readability is important, the strategy should not be applied to
large processes.

Element minimization - This strategy is an extension on the element preser-
vation strategy and eliminates the <empty> elements. This results in BPEL
code which is less intuitive then the first strategy, but still is in the spirit of a
BPEL flow. The strategy can be used when as few nodes as possible should be
generated, because of performance matters.

Structure identification - For processes which are structured, structure
identification is a good way to map BPMN to BPEL. The process is folded to one
single component while mapping. Different rules are described by Mendling et
al. which can be used directly for this purpose. The advantage is that all control
flow is translated to structured activities which results in readable BPEL code.
However, the relation with the original BPMN model might not be intuitive.

Structure maximization - The structure maximization strategy is an ex-
tension of the structure identification strategy and makes it possible to translate
also non-structured process graphs as long as they do not have arbitrary cy-
cles. The element-preservation or element-minimization strategy can be used
for those parts which can not be translated with the structure identification
strategy. A drawback of this strategy is that multiple strategies need to be
implemented.

Event-condition-action-rules - Another strategy based on the structure
identification strategy is the event-condition-action-rules strategy. Structured
parts of the process model are translated with the structure identification strat-
egy and other parts will be translated with the help of event handlers. These

14

BPMN2BPEL Research on BPMN to BPEL

Figure 2.4: Transformation strategies by Mendling et al.[MLZ06]

15

BPMN2BPEL State-of-the-art: BPMN and BPEL

event handlers are similar to goto-statements in software engineering. In Figure
2.4 an example of this strategy can be found; the event handler is not directly
connected to the control flow. The advantage of this strategy is that almost
any process graph, including those with unstructured loops, can be transformed.
The use of event handlers however makes the generated BPEL code less under-
standable because the control flow crosses the border of event handlers.

Ouyang et al. [OADH06] suggest a method for transformation with an event-
action rule-based algorithm. First a Business Process Diagram (BPD) is de-
composed into components. Well structured components are translated with
the structure identification strategy, see also Figure 2.6. Components which
cannot be translated with this strategy are transformed with the event-action
rule-based translation. Preconditions are defined which generate event-action
rules. These event-action rules can then be transformed to BPEL code.

In another research of Ouyang et al. [OADH08] the described method is slightly
adjusted. Petri nets are used to check the soundness and safeness of the BPD.
Also dependencies between activities are described as control links, before the
event-action rule-based strategy is executed. This will result in BPEL code
with a higher level of readability compared to the case of using events, because
control links are enclosed in the control flow within the generated BPEL code.
In another research article[ODHA08], a new phase in the transformation process
is proposed, where quasi-structured patterns are refined into well-structured
patterns.

Figure 2.5: The same model decomposed twice in a non-deterministic way
[VVK08]

The approach of [OADH08] is not the ideal approach, since the approach is
not deterministic. Multiple translations of the same input model can result
in different BPEL models. Multiple sequences can occur in sequence of each
other and result in different combinations as shown in Figure 2.5. Components
sequence2 and sequence3 differ from each other and result in different imple-
mentations. We don’t want an approach which is non-deterministic, because
this influences the readability of the translated BPMN model. Vanhatalo et al.

16

BPMN2BPEL Research on BPMN to BPEL

[VVK08] present the refined Process Structure Tree approach which disregards
non-maximal sequences in the process structure tree and find as much structure
as posible. Vanhatalo et al. prove that the presented decomposition is unique
and modular.

Figure 2.6: Translation of structured BPMN components to BPEL [OADH06]

White [Whi05] describes a strategy which is focused on the flow element of
BPEL. In that case BPMN is mapped to the graph structure of BPEL instead
of the block structure (sequence element). Therefore, the links are not only

17

BPMN2BPEL State-of-the-art: BPMN and BPEL

used for synchronization purposes, but also for other relations between activ-
ities. Mapping of unstructured processes might therefore be possible, but the
readability of the generated BPEL code is an issue.

2.3.3 Current implementations

Two open source BPMN2BPEL tools are currently available. BABEL1 is the
best known tool of both and is developed based on an article of Ouyang et al.
[OADH08]. However, this tool is not maintained anymore since there were too
many bugs, there was too little documentation and a non-deterministic single-
entry single-exit (SESE) decomposition approach was not implemented while it
was necessary [Dum09]. Vanhatalo et al. [VVK08] discuss the refined process
structure tree (PST) which is a decomposition approach that is unique and
modular. Adjusting the BABEL-tool to this PST-approach was not possible
according to M. Dumas [Dum09].

A new implementation based on the Process Structure Tree decomposition was
developed as an Eclipse plugin available on Google code2. This implementation
uses the SESE decomposition approach presented by [VVK08] to identify SESE
regions and determine process components with structure. These regions are
nested, such that they can be arranged to form a structure tree. Each leaf is then
translated by the tool to a corresponding BPEL construct. Garćıa-Bañuelos
[GB08], developer of the Eclipse plugin, explains how to identify patterns and
structure a BPMN model into SESE regions.

Both implementations are based on the idea of combining different strategies
for translating BPMN to BPEL. First structured components are identified
and translated, then all elements which can be translated by the link-based
approach are translated and finally the event-action based approach is applied.
The Eclipse plugin is not based on the BABEL-tool, but the website of the
BABEL-tool suggests otherwise. After a private conversation with the authors,
both tools seem to be independent from each other.

2.4 Conclusions

BPMN might become an industry standard soon, but still has some issues which
hopefully have been improved in BPMN 2.0. Due to the possible ambiguity of
models, misunderstanding can occur and models should be checked for feasibil-
ity. However, BPMN is a modeling notation which can be understood by both
business analysts and technical analysts. This results in better material for dis-
cussing business processes and will have a positive effect on implementations.

1BABEL: http://www.bpm.fit.qut.edu.au/projects/babel/tools/
2Google code: http://code.google.com/p/bpmn2bpel/

18

BPMN2BPEL Conclusions

BPEL is a well developed standard in the field of web service specifications. A
broad range of workflow patterns can be supported by BPEL. However, there
are multiple ways of implementing the same processes, which can result in
BPEL code which is hard to understand.

Different strategies for mapping BPMN to BPEL are explained in the previous
section. Each strategy has some benefits and drawbacks. Often completeness
and readability are the criteria to evaluate the quality of a strategy. Both should
be high for an optimal transformation strategy, but can be conflicting criteria.
At this moment combining strategies is the best way to create a complete and
readable model in BPEL.

One common problem of translating BPMN to BPEL is the improper modeling
of an input BPMN model. Since BPMN can contain infinite loops or deadlocks,
implementations can be generated when translating BPMN to BPEL which
cannot be executed. Therefore it would be important to check for soundness
and liveness in a BPMN model. Dijkman et al. [DDO08] propose an algorithm
for translating BPMN to Petri nets. With the help of Petri nets the soundness
and safeness can be checked in a formal way.

A main distinction between structured and unstructured components and pro-
cesses can be found in current approaches. Often, structured components are
mapped to associated BPEL constructs for improved readability. Unstructured
components are mapped to control links or event handlers. Both the con-
trol links and event handlers are found to be less readable compared to the
structured component translations [OADH08, ODHA08, MLZ06], but support
a broader range of input process models. Restrictions on the input process
model like requiring a well-formed business process diagram can be relaxed in
these less readable approaches. As said, combining strategies will probably lead
to a translation with the best readability and highest completeness.

Table C.1 in Appendix C, summarises the strengths, weaknesses, constraints
and completeness of existing approaches discussed earlier. This overview will
also be used for evaluating our own algorithm, which we will present in chapter
3. In table 2.3 we visualised the possibilities of different approaches with a
matrix. A ’+’ means that the mapping supports the component (or is found to
be readable or complete by literature), where a ’-’ means that the component
is not supported. A ’+/-’ indicates a partial support for a component.

19

BPMN2BPEL State-of-the-art: BPMN and BPEL

Table 2.3: Evaluation of current approaches

Component \Mapping A B C D E F G H
Readability - +/- - - + + - +/-
Completeness +/- + +/- +/- - +/- + +
Structured components + + + + + + + +
Structured loops - + - - + + + +
Unstructured components + + + + - + + +
Unstructured loops - + - - - - + +
Synchronization links + +/- + + - + +/- +/-

The following mappings are displayed in table 2.3.

A: Graph structure approach (White) [Whi05]

B: A combined approach (Ouyang et al.) [OADH08]

C: Element-preservation (Mendling et al.) [MLZ06]

D: Element-minimization (Mendling et al.) [MLZ06]

E: Structure-identification (Mendling et al.) [MLZ06]

F: Structure-maximization (Mendling et al.) [MLZ06]

G: Event-condition action-rules (Mendling et al.) [MLZ06]

H: Pattern identification and Classification (Garćıa-Bañuelos) [GB08]

20

BPMN2BPEL 2

Chapter 3

Mapping BPMN to BPEL

We have seen the differences in translations of BPMN to BPEL for business
processes. Structured and unstructured business processes are mapped accord-
ing to different aproaches. We assume that a combination of approaches will
lead to the translation with the highest level of completeness and readability.
Because both requirements are conflicting, we find readability more important
than completeness because this implies more structure in the generated BPEL
code. The implementation of Garćıa-Bañuelos [GB08] mentioned in section 2.3,
already combines structured and unstructured approaches. First the structured
components, which are identified using single entry single exit regions, are pro-
cessed. The resulting part of the process is then translated using control links.
We will compare this approach with a modified algorithm of Rik Eshuis [EG09],
which composes services into structured processes. The generated structured
process model can be translated to BPEL syntax according to the structured
identification strategy proposed by Mendling et al. [MLZ06].

We will start with using a well-formed Business Process Diagram (see section
3.1), but will evaluate these constraints during the development of the algo-
rithm. Starting with structured processes will match current research in the
field of BPMN to BPEL. While evaluating well-formed restrictions, we can dis-
cuss if the requirements for input processes can be relaxed and if input models
with less structure can be transformed. We also want to adjust the algorithm of
Eshuis with an algorithm for finding synchronization links. These synchroniza-
tion links can be mapped to the BPEL control links. The remaining process will
be structured which is possible due to the restrictions of a well-formed Business
Process Diagram. We focus only on the control flow aspect of BPMN models
and will not focus on data aspects. Our goal is to develop a mapping which
is able to translate BPMN models, that meet the well-formedness restrictions,
to valid BPEL syntax. Also we are interested in the added value the existing
algorithm of Eshuis can offer in the process of translating BPMN to BPEL.

21

BPMN2BPEL Mapping BPMN to BPEL

3.1 Business Process Diagram

BPMN uses Business Process Diagrams (BPDs) to describe business process.
BPDs are built of a core subset of BPMN elements and described by [OADH08,
ODHA08]. A BPD contains a set of objects O which can be partitioned into
disjoint sets of tasks T , events E and gateways G. Events can be partitioned
into disjoint sets of start events ES , intermediate events EI and end events EE .
The intermediate events can be partitioned further into a disjoint, complete
set of intermediate message events EIM and timer events EIT . Gateways can be
partitioned into disjoint sets of parallel fork gateways GF , parallel join gate-
ways GJ , data-based XOR decision gateways GD, event-based XOR decision
gateways GV , and XOR merge gateways GM. Relations between objects are
defined in the control flow relation F ⊆ O ×O.

A graphical representation can be found in the class diagram in Figure 3.1,
where the formal definition [OADH08, ODHA08] can be found in Appendix D.

Figure 3.1: BPD elements displayed in a class diagram

The relation F defines a directed graph with nodes(objects) and arcs(sequence
flows). However, the definition allows graphs which are unconnected, not having
start or end events, containing objects without input or output etc. Because
we only want a model without deadlocks and livelocks, we need to restrict the
definition to a well-formed BPD, before we can use an algorithm on the model.

A so called well-formed BPD is a BPD which meets specific requirements. The
remaining of this section is adapted from [OADH08, ODHA08]. All tasks and
events, represented by o, can only have an indegree, in(o), of at most one and

22

BPMN2BPEL Business Process Diagram

an outdegree, out(o), of at most one.

in(o) = {x | (x, y) ∈ F ∧ y = o}

out(o) = {y | (x, y) ∈ F ∧ x = o}

Start events and end events have an indegree and outdegree respectively of
zero. Gateways however, can have more incoming or outgoing relations. Fork
or decision gateways have an outdegree of more than 1, while join or merge
gateways have an indegree of more than 1. Also every object of the BPD must
be on a path from start till end event.

Definition 1. A core BPD is well-formed if relation F satisfies the following
requirements [OADH08, ODHA08]:

- ∀ s ∈ ES , in(s) = ∅ ∧ |out(s)| = 1, i.e. start events have an indegree of
zero and an outdegree of one,

- ∀ e ∈ EE , out(e) = ∅ ∧ |in(e)| = 1, i.e. end events have an outdegree of
zero and an indegree of one,

- ∀ x ∈ T ∪ EI , |in(x)| = 1 and |out(x)| = 1 , i.e. tasks and intermediate
events have an indegree of one and an outdegree of one,

- ∀ g ∈ GF ∪ GD ∪ GV , |in(g)| = 1 ∧ |out(g)| > 1, i.e. fork or decision
gateways have an indegree of one and an outdegree of more than one,

- ∀ g ∈ GJ ∪ GM, |out(g)| = 1 ∧ |in(g)| > 1, i.e. join or merge gateways
have an outdegree of one and an indegree of more than one,

- ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e. event-based XOR decision gateways
must be followed by intermediate events or receive tasks,

- ∀ g ∈ GD, ∃x ∈ out(g), Cond((g,x)) = ¬∧y∈out(g)\{x} Cond((g,y)), i.e.
(g,x) is the default flow among all the outgoing flows from g.

- ∀ x ∈ O, ∃(s,e) ∈ ES × EE , sF*x ∧ xF*e, i.e. every object is on a path
from a start event to an end event.

For developing a new algorithm which can translate BPMN models to BPEL
code, we will first focus only on well-formed BPDs. Later on, the constraints
of a well-formed BPD will be evaluated to see whether or not such a constraint
can be eliminated without any unintended effect on the result of our algorithm.

23

BPMN2BPEL Mapping BPMN to BPEL

3.2 Synchronization dependencies

In our algorithm, we want to support the presence of synchronization links.
If a task can only be executed after another task is finished and both tasks
are in a different branch of a concurrency situation, a synchronization link can
be identified. In all other situations synchronization links are not possible,
since otherwise deadlock situations could occur. For example, waiting for a
task in another branch of a deferred choice to be finished will never end, which
results in a deadlock situation. Figure 3.2 gives an example, where the filled
elements represent the flow which is already executed. The process can not
execute further, because task A is not and will never be executed. Of course,
translating a business process model which contains deadlocks make no sense,
because this results in improper BPEL code. However, the example in Figure
3.2 demonstrates that the synchronization link in this model is only correct if
all gateways are parallel gateways.

Figure 3.2: An incorrect synchronization link, which causes a deadlock

Because synchronization links in BPEL are modeled by the <link> components,
some other requirements have to be met, in order to meet the specification
constraints [OAS07]. It is not allowed that a synchronization link causes cyclic
behavior because then the synchronization source has the target activity as a
preceding activity. This implies that the scope of the synchronization link is
never a loop. Synchronization links are also not allowed to cross boundaries of
repeatable constructs like a loop. If a loop contains a synchronization link, the
scope will be restricted to the concurrency construct <flow>. This implies that
the synchronization link must be activated each execution of the loop instance.
A synchronization dependency in a BPMN model must therefore meet the fol-
lowing constraints:

- The synchronization source should not have the target as preceding activity.

- Boundaries of repeatable constructs should not be crossed.

24

BPMN2BPEL Synchronization dependencies

- Both the source and target of the dependency should be preceded by a
parallel split gateway.

The concept of Dead-Path-Elimination (DPE) is also an important issue for
synchronization dependencies, since the <link> source components must be
assigned a value before the targets can be processed and terminated in BPEL.
With DPE the activities which are not executed can be ’garbage collected’ by
assigning the value ’false’. The business process as a whole is then processed
and the process can be correctly terminated when necessary. The problem of
DPE is the risk of (unintended) side effects which can occur. Van Breugel et al.
[BK05] discuss these side effects and propose a modification for DPE to solve
these issues. The BPEL syntax offers a possibility to use DPE by setting the
value of the <process>-attribute suppressJoinFailure.

A synchronization link candidate can be easily marked, since this needs to be
a direct relation between a parallel fork gateway and a parallel join gateway.
Other modeling notations for synchronization links do no match the well-formed
BPD criteria as discussed earlier. Using multiple incoming or outgoing arcs on
a node for example is not allowed because of the restrictions of a well-formed
BPD. We develop a method to determine if a synchronization link candidate
really is a synchronization link. The reason for making a distinction between
normal control flow relations and synchronization relations is the way we process
both types further in our algorithm. Synchronization relations are not used for
determining the structure of the business process, but are only used in one of
the last phases of the mapping. We will add the synchronization dependencies
in the structured composition created in the algorithm.

3.2.1 Finding synchronization dependencies

Synchronization dependencies are modeled by a direct relation between a par-
allel split and a parallel join gateway. If there is no direct relation between two
of these gateways, there are no synchronization dependencies.

First the set of tasks and events which precede a gateway and the set of tasks
and events which follow a gateway are captured for both parallel fork gateways
and join gateways. This result in two sets of objects for a gateway g ∈ GF ∪GJ ,
the before(g) and after(g)-set. The before(g)-set contains all tasks and events
which are always executed before the gateway can be visited. The after(g)-set
contains all tasks and events which are always executed after the gateway is
visited. The union of both sets describes the whole branch from entry node to
exit node in form of tasks and events. The set branch(g) represent this union
and is defined as before(g) ∪ after(g).

During the evaluation of our algorithm, a lot of models adapted from literature
were used to evaluate our algorithm for finding synchronization dependencies.

25

BPMN2BPEL Mapping BPMN to BPEL

Figure 3.3: Two parallel constructs in a sequence; SESE-regions are necessary.

Also two case studies described in chapter 5 were used and show the need for
single entry, single exit (SESE) regions. The algorithm we propose worked fine
as long as there were no two parallel constructs in a sequence of each other. To
support these situations, which we modeled in Figure 3.3, we have done some
finetuning in the algorithm and added the restriction that the gateways we are
evaluating are in the same SESE-region. A SESE-region, or component, can
be defined in the following definition[OADH06]. To facilitate the definitions,
Ouyang et al. specified an auxiliary function over a domain of singletons, i.e.,
if X = {x}, then elt(X) = x.

Definition 2. Let BPD = (O,F , Cond) be a well-formed core BPD. C =
(Oc,Fc, Condc) is a component(SESE-region) of BPD if and only if:

• Oc ⊆ O\(ES ∪ EE),

• | (∪x∈Oc in(x))\Oc |= 1, i.e. there is a single entry point outside the
component, which can be denoted as entry(C) = elt((∪x∈Oc in(x))\Oc),

• | (∪x∈Oc out(x))\Oc |= 1, i.e. there is a single exit point outside the
component, which can be denoted as exit(C) = elt((∪x∈Oc out(x))\Oc),

• there exists a unique source object ic ∈ Oc and a unique sink object oc ∈ Oc

and ic 6= oc, such that entry(C) ∈ in(ic) and exit(C) ∈ out(oc),

• Fc = F ∩ (Oc×Oc),

• Condc = Cond(Fc), i.e. the Cond function where the domain is restricted
to Fc.

The before(g), after(g) and branch(g)-sets can be defined as:

before(g) = {x | x ∈ Oc ∧ entry(C)F*x ∧ xFc*g}

after(g) = {y | y ∈ Oc ∧ gF*y ∧ yFc*exit(C)}

branch(g) = before(g) ∪ after(g) ∪ {g}

26

BPMN2BPEL Synchronization dependencies

For each parallel fork gateway f ∈ GF , beginning with the one with the smallest
before(f)-set, a matching parallel join gateway j ∈ GJ will be found when both
sets contain the same elements, so branch(f) = branch(j) or, if there is no join
gateway with the same set as the fork gateway, one of the sets is a subset of the
other (branch(f) ⊆ branch(j) or branch(f) ⊇ branch(j)). A relation between
a matching fork and join gateway is not a synchronization link and the join
gateway is removed from the set which is used to determine synchronization
links. The algorithm in Figure 3.4 shows this approach and orders the set
of gateways using a while-construct [Esh05], where the smallest and largest
gateways are taken for the fork and join gateway respectively. This while-
construct will be terminated when all gateways are processed. By introducing
the ordering, the algorithm can be executed more efficiently because matching
gateways are found earlier. A join gateway j, which can not be matched to
any fork gateway f and where a direct relation between the fork gateway f and
the join gateway j exists, can be marked as target of the synchronization link.
The source of the synchronization link will be the fork gateway f of the direct
relation.

All synchronization links will be stored in the set FS ⊆ F and will be pro-
cessed different from other relations in the next step. We will now first explain
the algorithm for finding synchronization and use an example of a complaint
handling process, which is presented in the next section.

The algorithm for finding synchronization links is listed in figure 3.4. It re-
quires as input a set GF of parallel fork gateways which will be ordered by
the algorithm in ascending order of the before(g)-set size as explained before.
Also a set GJ of parallel join gateways, which will be ordered in descending
order of the before(g)-set size, is required. The algorithm looks for matching
branch(g)-sets first and in case there is no matching, also for subsets of the fork
and join gateway-branch(g)-sets. Matching gateways are skipped when further
processing the algorithm. In case there is no match between a fork gateway f
and a join gateway j, a synchronization link will be identified when a direct
relation between both gateways can be found in F .

After introducing the before(g), after(g) and branch(g)-sets we can explain
the need for SESE-regions once more, since in Figure 3.3 all gateways which
are not part of the synchronization dependency have the same branch(g)-set.
Because of the ordering in our algorithm, the two outer gateways are matched
which is not the situation modeled. When the algorithm is executed within a
SESE-region, this problem situation can not occur.

Alternatives for the presented algorithm for finding synchronization dependen-
cies are asking the user for clearness or process the whole component which
contain a synchronization dependency as an unstructured component. Because

27

BPMN2BPEL Mapping BPMN to BPEL

1: procedure FindingSynchronization((GF , GJ ,F))
2: links := ∅
3: if ∃ (f, j) ∈ F | f ∈ GF ∧ j ∈ GJ then
4: forktovisit := GF

5: while forktovisit 6= ∅ do
6: f := the gateway with the smallest before(g)-set of forktovisit
7: SearchSubsets = true
8: jointovisit := GJ

9: while jointovisit 6= ∅ do
10: j := the gateway with the largest before(g)-set of jointovisit
11: if branch(f) = branch(j) then
12: GJ := GJ\{j}
13: SearchSubsets = false
14: break;
15: end if
16: jointovisit := jointovisit\j
17: end while
18: if SearchSubsets = true then
19: while jointovisit 6= ∅ do
20: j := the gateway with the largest before(g)-set of jointovisit
21: if branch(f) ⊇ branch(j) ∧(f, j) 6∈ F then
22: GJ := GJ\{j}
23: break;
24: else if branch(f) ⊆ branch(j) ∧(f, j) 6∈ F then
25: GJ := GJ\{j}
26: break;
27: else if (f, j) ∈ F then
28: links := links ∪ {(f, j)}
29: end if
30: jointovisit := jointovisit\j
31: end while
32: end if
33: forktovisit := forktovisit\f
34: end while
35: end if
36: return links
37: end procedure

Figure 3.4: Algorithm for finding synchronization dependencies

28

BPMN2BPEL Synchronization dependencies

we want to create an approach which requires as little user input as necessary,
the second alternative is the only interesting one. [GB08] use this second al-
ternative and processes the whole (un)structured component which has a syn-
chronization dependency as an unstructured component. This results in less
readable BPEL code, since all relations within this unstructured component
are translated as links.

3.2.2 The complaint handling process

We haven chosen the complaint handling process model [ODHA08] to explain
our algorithm by an example. The process contains concurrency, exclusive
choice, events, a synchronization link and a repeatable construct in terms of a
loop. The process therefore has different constructs, but does not violate the
constraints for a well-formed BPD.

Figure 3.5: A complaint handling process, adapted from [ODHA08]

First, for every parallel fork and join gateway, the before(g)-set and after(g)-
set will be calculated, which results in table 3.1. The set GF of parallel fork
gateways is ordered in ascending order of the before(g)-set size and is therefore
equal to GF = {fork1, fork2}. The set GJ of parallel join gateways is ordered in
descending order of the before(g)-set size and is equal to GJ = {join2, join1}.

Table 3.1: before(g)- and after(g)-set for gateways of our example
Gateway: before(g)-set after(g)-set
fork1 − t2, e1, t3, e2, t4, t5, t6, t7

fork2 t2, e1, t3, e2 t4, t6, t7

join1 t2, e1, t3, e2, t5 t6, t7

join2 t2, e1, t3, e2, t4, t5, t6, t7 −

29

BPMN2BPEL Mapping BPMN to BPEL

There exists a direct relation between a parallel fork and join gateway which
satisfies the condition on line 3 of the algorithm. Node fork1 is taken and
will be matched to join2 by the algorithm because of matching branch(g)-
sets. Node fork2 will then be processed and can not be matched to an equal
branch(g)-set of a remaining join-gateway. Also branch(fork2) is not a subset
of branch(join1) and vice versa. Since the relation between fork2 and join1 is
indeed a direct relation, it is marked as a synchronization link.

3.3 Dominators, loop headers and follow sets

Since synchronization links will be processed different from other relations in
this step, we first need to define an adjusted Business Process Diagram. This
adjusted BPD is cleared from synchronization links and gateways might have
been replaced by dummy nodes. The new set of relations FN is the set of
relations excluding the elements in the synchronization links set FS , so FN =
F\FS . Some gateways might transform into gateways with only one incoming
and one outgoing arc, which conflicts with the definition of a well-formed BPD.
By replacing these gateways with dummy tasks, the resulting BPD will be
well-formed again.

For finding structure in BPDs, some concepts like dominators, loop headers
and follow-sets have been introduced. We adapted this section from Eshuis et
al. [EG09]. Follow-sets can be calculated based on the dominators and loop
headers. The result is a description of the structured properties of the BPD.
As we will see later on, these concepts can be used in our algorithm.

The concept of dominator is used to identify nesting structure and is taken
from [EG09]. Let p be a node in O, q be a node in O and start be a node in
ES . Node p dominates node q if every path from start to q passes through p
and this path is free of synchronization links:

p, q ∈ O, start ∈ ES , startFN *p ∧ pFN *q, i.e. every path from start to q
passes through p.

Every node except the start node has at least one dominator. Node p is the
immediate dominator of node q if every dominator of q other than p also dom-
inates p. Let DOM(p) denote the immediate dominator of p. A node p can
only have one DOM(p) and therefore DOM(p) is unique for p [ASU86].

Next, loops need to be identified and loop headers need to be determined. A
loop is identified with the help of back edges. A back edge is an edge (x, y) in
FN where y dominates x. The natural loop of a back edge can be computed,
which is the set of nodes that can reach x without going through y, plus y.

30

BPMN2BPEL BPEL grammar

Node y is the header of the natural loop, which is defined as HEAD(n) = y.
A node that is target of some back edge is called a loop node. If a node is not
a loop node, it’s HEAD(n) is undefined.

When we both determined the dominators and loop headers of a BPD, we
can calculate the follow-sets. A follow-set of p contains all the nodes that are
immediately after p, at the same level of nesting, in the structured composition.

Definition 3. The follow-set of p, FOLLOW (P), can be calculated with the
following rules:

For a fork node p, so p ∈ GF ∪ GD ∪ GV , let

FOLLOW (p) = { q | q ∈ GJ ∪ GM∧ p = DOM(q) ∧ HEAD(p) = HEAD(q) }

For a loop node p, so some back edge enters p, define

FOLLOW (p) = { q | DOM(q) is in a natural loop headed by p }

For each other node p, define

FOLLOW (p) = { q | HEAD(p) = HEAD(q) ∧ p = DOM(q) }

3.4 BPEL grammar

When we determined the synchronization links, dominators, loop headers and
follow sets, the necessary input for the algorithm is gathered. The algorithm
will result in a description of the BPEL process in the grammar presented
below. To keep the algorithm readable and comprehensible we haven chosen
for this grammar, adapted from Eshuis [EG09], instead of direct BPEL code to
output. We also investigated a grammar based on process algebra presented by
[BK05], but due to the restriction of the binary grammar we have chosen not
to use this. In the end, a mapping between our grammar and the BPEL syntax
can be used to generate BPEL code.

Let T be a set of tasks, ranged over by t, let E be a set of events, ranged over
by e and let D be a set of dummy objects, ranged over by d. The language of
structured processes, ranged over by P , is generated by the following grammar:

P ::= seq | and{seq, seq, .., seq, linkset} | xor{grdBseq, grdBseq, .., grdBseq}
| repeat seq until grd | atomic

atomic ::= t | e | d

seq ::= < P,P, .., P >

grd ::= in(atomic) | grd ∨ grd | true

31

BPMN2BPEL Mapping BPMN to BPEL

linkset ::= {link(atomic, atomic), ..,link(atomic, atomic)}

The expression < P,P, .., P > indicates that the elements in the list are ex-
ecuted one by one, according to the order specified in the list. Expression
and{seq, seq, .., seq, linkset} specifies that the elements in the set are executed
in parallel and the branches can have multiple synchronization dependencies
which are defined in linkset. Expression xor{grdBseq, grdBseq, .., grdBseq}
specifies that exactly one of the guarded expressions in the set is executed,
while repeat seq until grd specifies that expression seq is executed until con-
dition grd holds. The guard in(atomic) is true if atomic was done previously.
The linkset can contain multiple synchronization dependencies, which can be
defined as link(atomic, atomic). This indicates a synchronization dependency
between two atomic elements, where the first element is the source of the syn-
chronization link and the second element is the target. The target can only be
processed when the link is activated by the source element. Both atomic ele-
ments of a link-construct should be within the same scope, which is the lowest
common ancestor and-construct.

3.5 The algorithm

3.5.1 Adjustment of the algorithm

The structured composition algorithm adapted from Eshuis et al. [EG09] is
listed in Figure 3.6. The algorithm is slightly adjusted to fit to the input pa-
rameters of a well-formed BPD and to add synchronization links in the scope
of and-constructs. It requires as input a set O of objects, a set FN of relations,
a set FS of synchronization links, a partial function grd that maps relations to
guard expressions, and the node current that is to be processed. The algorithm
needs a well-formed BPD as input as explained earlier. For each fork a subse-
quent join of the same type needs to be present. It is also possible that one fork
belongs to multiple joins or one join belongs to multiple forks, as long as they
have the same type. All loops need a single entry gateway gentry ∈ GM and a
single exit gateway gexit ∈ GD ∪GV . Finally, it is required that parallelism does
not cross the border of loops, because such behaviour cannot be expressed in
structured processes.

The algorithm for finding synchronization links should be executed before this
structured composition algorithm. This structured composition algorithm re-
turns a sequential block that starts with current and is based on the BPEL
grammar presented before. Further explanation of the algorithm is given in
[EG09].

The procedure for adding a synchronization link is given in Figure 3.8. This
procedure is called from the algorithm of Eshuis and requires a set of objects

32

BPMN2BPEL The algorithm

1: procedure StructuredComposition((O,FN ,FS , grd, current))
2: if current ∈ GF ∪ GD ∪ GV then
3: children := ∅
4: for n ∈ post(current) do
5: if n not in any FOLLOW set then
6: Cn := StructuredComposition(O,FN ,FS , grd, n)
7: else
8: Cn :=< dummycurrent,n >
9: end if

10: if current ∈ GD ∪ GV then
11: Cn := grd(current, n)BCn

12: end if
13: children := children ∪ {Cn}
14: end for
15: if current ∈ GD ∪ GV then
16: Pcomp := xor children
17: else
18: Cn := AddingSynchronization(children,FS)
19: children := children ∪ {Cn}
20: Pcomp := and children
21: end if
22: P :=< Pcomp >
23: else if current is loop node with successor node x and FOLLOW node n then
24: Px := StructuredComposition(O,FN ,FS , grd, x)
25: P :=< repeat Px until in(dummycurrent,n) >
26: else
27: P :=< current >
28: end if
29: if FOLLOW (current) 6= ∅ then
30: if |FOLLOW (current)| > 1 then
31: insert unique FOLLOW node after current
32: end if
33: next := the unique node following current
34: Q := StructuredComposition(O,FN ,FS , grd, next)
35: P := P_Q
36: end if
37: return P
38: end procedure

Figure 3.6: Algorithm for constructing structured compositions

in an and-construct (children) and a set of synchronization links which are not
placed in the process description. If all synchronization links are already placed
into the process description, an empty set remains and the procedure is skipped.
Otherwise the children set is analyzed and the fork and join gateways can be
found. If both gateways are in the children set, the link should be placed in
this scope.

33

BPMN2BPEL Mapping BPMN to BPEL

1: f := a fresh node not in O
2: O := O ∪ {f}
3: Efollows := { (x, y)|(x, y) ∈ FN ∧ x ∈ O ∧ y ∈ FOLLOW (current) }
4: Enew := { (x, f), (f, y)|(x, y) ∈ Efollows }
5: E := (FN \ Efollows) ∪ Enew

6: if current ∈ GD ∪ GV then
7: grd := grd ∪ {(f, y) 7→ formulaPreCondition(y)|(x, y) ∈ Efollows}
8: end if

Figure 3.7: Inserting unique FOLLOW node after current (l. 31 of Fig. 3.6)

Because this procedure is first called at the deepest level of nesting of an and-
construct, the scope of the link is always as narrow as possible.

1: procedure AddingSynchronization((children,FS))
2: if (FS = ∅) then
3: return ∅
4: else
5: linkset := ∅
6: for (f, j) ∈ FS do
7: if f ∈ children ∧ j ∈ children then
8: FS := FS\(f, j)
9: linkset := linkset ∪ {link(f, j)}

10: end if
11: end for
12: return linkset
13: end if
14: end procedure

Figure 3.8: Adding synchronization dependencies to the block structure

3.5.2 The complaint handling process

To illustrate the algorithm as a whole, we will further process the translation of
the BPMN model presented in 3.2.2. First the set of dominators, loop headers
and follow sets is determined and is given in table 3.2. Note that we use the set
FN of relations instead of F , since we do not want to process synchronization
links at this moment. We can see that each last node of a specific level of
nesting has an empty FOLLOW (n)-set, all other nodes have one element in
the FOLLOW (n)-set. A loop can be identified between the nodes xor3 and
xor4.

With these concepts, the algorithm can be executed and results in a structured
composition. In Figure 3.9 we show this structured composition. In total, two
dummy nodes have been added to support the loop in the structured model.
Also the synchronization link detected earlier is added to the structured com-

34

BPMN2BPEL BPEL syntax

Table 3.2: Dominators, loop headers and follow sets
Node n DOM(n) HEAD(n) FOLLOW (n)
start - - t1

t1 start - fork1

fork1 t1 - join2

t2 fork1 - xor1

xor1 t2 - xor2

e1 xor1 - t3

t3 e1 - -
e2 xor1 - -
xor2 xor1 - fork2

fork2 xor2 - t4

t4 fork2 -
t5 fork1 - join1

join1 t5 - xor3

xor3 join1 - t6

t6 xor3 xor3 t7

t7 t6 xor3 xor4

xor4 t7 xor3 -
join2 fork1 - t8

t8 join2 - end
end t8 - -

position again. We see the synchronization link with source fork2 and target
join1 in the scope of the and-construct.

3.6 BPEL syntax

The generated structured composition represent a business process in BPEL,
but has a different notation than the BPEL syntax presented before. Therefore
a last translation step is needed. Each element of the structured composition
can be translated to BPEL syntax. For example a SEQ-node can be translated
to a <sequence> element, an AND-node can be translated to a <flow> element
etc. In Table 3.3 the constructs used in the structured composition are mapped
to the constructs of the BPEL syntax. In the last column, the extra information
which is needed for a valid BPEL syntax is stated. This information cannot be
gathered from the BPMN model directly and should be entered manually by
an end-user.

In other literature research, mapping a deferred choice is often done by using
the <switch> construct. Since this construct is deprecated in the BPEL 2.0
specification, we use the <if> construct instead. In Table 3.3 we also see two

35

BPMN2BPEL Mapping BPMN to BPEL

possible implementations for the XOR-construct. If a race condition occurs be-
tween multiple events, the choice of the event is modeled by a <pick> construct.
When choice is not made based on events but on data, the <if> construct will
be used.

Table 3.3: Structured composition to BPEL syntax
Structured
composition BPEL construct Information needed
task <invoke> partnerLink, portType,

operation
SEQ <sequence>
AND <flow>
XOR <if>, <condition> Condition

<elseif>, <condition> Condition
<else>
<pick>

LOOP <repeatUntil> Condition
LINK <links>, <link> Name

<sources>, <source> linkName
<targets>, <target> linkName

36

BPMN2BPEL BPEL syntax

Figure 3.9: The structured composition for the complaint handling process

37

BPMN2BPEL Mapping BPMN to BPEL

38

BPMN2BPEL 2

Chapter 4

An Eclipse plugin

The algorithm presented in chapter 3 is implemented as a plugin in the Eclipse
development environment. We have chosen for this open source environment
because there already exists an implementation for translating BPMN to BPEL
by [GB08] and within Eclipse it is possible to model processes according to the
BPMN standard.

4.1 Creating BPMN models in Eclipse

Before the translation from BPMN to BPEL can be developed, first a tool
should be available for modeling business processes in the BPMN standard.
We have chosen for the plugin available for Eclipse because we are going to de-
velop the translation process also in Eclipse. For modeling business processes
according to the BPMN standard, the ‘STP BPMN modeler’ is needed. This
modeler can be installed by installing the Eclipse plugins for ‘Graphical Edi-
tors and Frameworks’, ‘Models and Model Development’ and the ‘STP BPMN
modeler’.

In Eclipse, a BPMN model can be drawn by selecting the needed constructs
and connect them with arrows. In Figure 4.1 an example of a BPMN model
drawn in Eclipse is given. However, the plugin does not check the model for
correctness. A user can create an incorrect or incomplete model which can not
be translated by the algorithm. This restriction of the plugin should be taken
into account while creating models. The user must check the constraints of a
well-formed BPD, which we mentioned before, by himself.

4.2 Running the algorithm

The algorithm discussed in chapter 3 is implemented by extending an existing
implementation by Eshuis. His implementation requires a dependency graph

39

BPMN2BPEL An Eclipse plugin

Figure 4.1: The BPMN modeling tool in Eclipse

represented by nodes and edges as input model and translates this to a struc-
tured composition. In Figure 4.2 the plugin is described in a flow chart. The
implementation follows the algorithm presented in [EG09] but has still some
functionalities unimplemented like loop constructs. The existing implemen-
tation generates a structured tree and eventually an ESML export. In our
implementation, we will adjust both functionalities to BPEL generation.

Figure 4.2: Graphical flowchart how the plugin works

First the input requirement should be adjusted to require a BPMN model as
input instead of a dependency graph. The BPMN model should be analyzed
and expressed in terms of nodes and edges. In this way, the BPMN model can
be seen as an extended type of a dependency graph. Therefore the current
implementation can be reused and only needs some adjustments which will be

40

BPMN2BPEL Plugin evaluation

discussed later. To prevent loosing information about the BPMN model, extra
information is added to the concept of a node. A node can have different types
like a task, a parallel fork gateway etc.

A new algorithm which is implemented is the algorithm to find synchronization
dependencies. We presented this algorithm in Figure 3.4. The algorithm is
implemented as a function and searches for synchronization dependencies. If
synchronization dependencies are found, these edges are moved to a temporary
variable. These edges are used again when the algorithm of Eshuis has been
executed and the structured process composition is generated.

Some functionalities are improved in the implementation. Loops for example
were not covered in the way the algorithm of Eshuis described, but were parsed
as sequences. We adjusted the implementation such that loops with one entry
and one exit point are implemented according to the algorithm of Eshuis. A
dummy node is inserted and the loop is repeated until the dummy node is
executed. Some minor bugs we encountered during the adjustment are fixed and
the implementation is extended with the algorithm for finding synchronization
dependencies. User input in the implementation is not necessary anymore,
since the function ’ask for feedback by unclearness’ can be replaced with the
information available from the input model.

The structured composition, which is one of the generated results of the Eclipse
plugin, is also exported in BPEL syntax. This BPEL syntax can be used by
Oracle’s BPEL Process Manager, which will be discussed later. To ensure valid
BPEL syntax, adding extra information is necessary. WSDL data needs to be
added for defining namespaces, partnerlinks, porttypes and possible variables.
Currently, this information is hardcoded in the implementation.

The Eclipse plugin can be executed by running it from the commandline or
running the program via Eclipse. The initial goal was to adjust the interface
of the BPMN modeling tool such that the plugin is directly executed. Because
of unforeseen problems we are not able to solve this issue. However, when
running the plugin via commandline with the filename of the BPMN model as
argument, the plugin works fine. This small workaround is acceptable for our
master project.

4.3 Plugin evaluation

Development of the plugin was done according to the spiral model of Barry
Boehm [Boe88]. First basic BPMN models must be mapped correctly to a
BPEL process, then the algorithm for finding synchronization dependencies was

41

BPMN2BPEL An Eclipse plugin

implemented and finally some adjustments regarding loops and multiple gate-
ways were implemented. Each iteration, the plugin was tested with both case
studies we present in chapter 5. Testing with two real world business processes
showed us some flaws in the plugin which we didn’t identify with examples from
literature. Loops with an exit gateway with more than two outgoing arcs for
example, where not processed correctly by the plugin. At this time, we have one
known problem at hand, where the structured composition cannot be created
according to the algorithm, because multiple decision gateways belong to one
or more merge gateways. Case study 2 has such a situation and is discussed in
section 5.2.1.

The generated BPEL syntax is validated with help of the Oracle BPEL Process
Manager. This tool validates the BPEL syntax and offers a process manager in-
terface to simulate the modeled processes and check whether the BPEL process
represent the BPMN model in the right way.

Figure 4.3: Example of an error message of Oracle’s BPEL Process Manager

To validate the BPEL syntax, we use the developer prompt of Oracle’s BPEL
Process manager. By loading the generated BPEL syntax into this developer
prompt, the process is built and can be executed with the Process Manager.
By building the process, the syntax is validated according to the BPEL spec-
ification. In some cases, user input is necessary to judge an error message of

42

BPMN2BPEL Plugin evaluation

the validation done, because Oracle uses BPEL 1.1 for validating the syntax
and we use BPEL 2.0 in our master project. In Figure 4.3 an example of the
error reporting of BPEL Process Manager is given. When the generated BPEL
syntax is validated by the Process Manager, we can conclude that our generated
process has a correct syntax. Simulation in the process manager is necessary for
concluding if the generated process is indeed representing the original process
as described in the BPMN model. In Figure 4.4 a screenshot of the execution
environment is given.

Figure 4.4: Screenshot of the execution environment

43

BPMN2BPEL An Eclipse plugin

44

BPMN2BPEL 2

Chapter 5

Case studies

In this chapter, we discuss two case studies which are gathered at Logica. We
will describe the case studies, translate them from BPMN to BPEL manually
according to the algorithm presented in chapter 3 and finally compare these
results with the results of the developed plugin (chapter 4).

Both case studies are based on real business processes of financial companies in
the Netherlands. For reasons of confidentiality we are not mentioning the names
of these companies. In both situations, the software architecture used within the
company has a high number of orchestration-layers. Each component invokes
other services and uses the response for further processing. Such situations
match the purpose of BPEL and the case studies are therefore quite useful for
evaluating our algorithm.

5.1 Loan request for an insurance company

Our first case study represents a loan request of a customer via a direct or
intermediate channel. Both channels use the same underlying process. After
the request is received and saved in the database, the request is judged via an
online interface. This interface can respond with three different cases. The
request can be accepted, declined or refered.

When a request needs to be refered, it can be due to a fraud suspicion, synonyms
misunderstanding or technical error. Depending on the reason, an activity is
started to solve this issue or check for more information. With this information,
the loan request can again be judged via the online interface.

If a loan request is accepted, the process will inform the customer and wait
for an acceptation. The accepted offer is processed further in concurrency; the
contract is prepared while documents are gathered. When all documents are
gathered and processed, the contract is finished and the loan is provided.

45

BPMN2BPEL Case studies

F
ig

ur
e

5.
1:

C
as

e
st

ud
y

1:
L

oa
n

re
qu

es
t

fo
r

an
in

su
ra

nc
e

co
m

pa
ny

46

BPMN2BPEL Loan request for an insurance company

5.1.1 Manual translation

In this paragraph we manually translate the case study described above, ac-
cording to the presented approach, to a structured composition representing
the BPEL process. First the algorithm for finding synchronization dependen-
cies is executed. After this, the adjusted algorithm of Eshuis is executed and
the structured composition is presented. We compare the result of the manual
translation according to the presented approach, with our ideal result in mind.
The result of this manual translation is also used to compare with the result of
the implementation described in chapter 4.

Before the algorithm for finding synchronization dependencies is executed, we
first determine if a direct relation between a parallel fork gateway and a par-
allel join gateway exists. If not, the algorithm can be skipped because of the
restriction we presented in section 3.2. In Table 5.1 the before(g)-sets and
after(g)-sets are given for the parallel gateways.

Table 5.1: before(g)- and after(g)-set for gateways of case study 1
Gateway: before(g)-set after(g)-set
ps1 - j, pm1, k, l, m2, m, ps2, pm2

ps2 ps1, l, m2, m pm1, k, pm2

pm1 ps1, j, l,m2, m, ps2 k, pm2

pm2 ps1, j, pm1, k, l, m2, m, ps2 -

With the sets in Table 5.1 we can execute the algorithm for finding synchroniza-
tion dependencies. We see that ps1 matches to pm2 and that no match exists
between ps2 and pm1. Because a direct relation between those two gateways
exists, we can identify the relation (ps2, pm1) as a synchronization link.

Next we calculate the concepts of dominators, loop headers and follow sets. In
Table 5.2 the result of these calculations are summarized.

The algorithm delivers us a structured description of the process in the BPEL
grammar we formalised in section 3.4. The process can be described as:

P =< s, a,repeat Px until in (xsdum
1), xor{o, < g, h, m1, i, and{< j, pm1, k >, <

l,m2, m, ps2 >, {link(ps2, pm1)}}, pm2, n >}, xm3, e >

Px =< b, xor{xsdum
1 , < c, xor{d, e, f}, xm2 >} >

This process is visualised in the structured composition in Figure 5.2. The
structured composition matches the ideal translation we have in mind, except

47

BPMN2BPEL Case studies

Table 5.2: Dominators, loop headers and follow sets for case study 1
Object (O) DOM(O) HEAD(O) FOLLOW (O)
s − − a
a s − xm1

xm1 a Loopheader xsdum
1

b xm1 xm1 xs1

xs1 b xm1 c
c xs1 xm1 xs2

xs2 c xm1 xm2

d xs2 xm1 −
e xs2 xm1 −
f xs2 xm1 −
xm2 xs2 xm1 xm1

g xsdum
1 − h

h g − m1

m1 h − i
i m1 − ps1

ps1 i − pm2

j ps1 − pm1

pm1 j − k
k pm1 − −
l ps1 − m2

m2 l − m
m m2 − ps2

ps2 m − −
pm2 ps1 − n
n pm2 − −
o xsdum

1 − −
xm3 xsdum

1 − e
e xm3 − −

for the merge-gateways. These gateways are not needed in the structured com-
position, because they do not represent an activity. For Figure 5.2, the nodes
xm2, pm2 and xm3 can be removed.

5.1.2 Translating via the plugin

When we translate the same case study with the plugin we developed, a struc-
tured composition tree given in Figure 5.4 is generated. This tree is similar
to the graphical structured composition of the manual composition, except for
some elements which represent the join or merge gateways. Some of these tasks
are eliminated in the plugin, since they do not represent a real activity. There
is some future work in removing these gateways, since not all gateways are re-

48

BPMN2BPEL Loan request for an insurance company

Figure 5.2: Structured composition of case study 1

moved yet by the plugin and in the manual translation these gateways remains
in the structured composition.

Figure 5.3: Part of the BPEL syntax for case study 1

The plugin is also able to export the structured composition tree to BPEL
syntax as specified in the official BPEL specification. This generated code can
be directly imported into Oracle BPEL Process Manager for example. In Figure
5.3 a preview of the BPEL syntax is given.

49

BPMN2BPEL Case studies

Figure 5.4: Structured composition tree of case study 1

50

BPMN2BPEL Total credit risk calculation

5.2 Total credit risk calculation

Our second case study represents the process of a total credit risk calculation.
The process is adapted from an insurance company which is a client of Logica.
The process represents an orchestration layer between the end-user applications
and functional services which are implemented in the software architecture of
the company. In Figure 5.5 the BPMN model of this orchestration layer is
given.

A request for a credit risk calculation is done by a customer or an insurance
agency. After this request, some activities are invoked in sequence. First the
internal activity 48A.1 is invoked and the policy restrictions are checked by
another invocation. A quick financial check is then executed. The result of this
check is evaluated to determine if all necessary information is obtained. If not,
an extended check is performed and evaluated again. This loop continues until
all necessary information is obtained.

The complete set of information is then evaluated and the process determines
the risk on fraud. In case of a high risk on fraud, the process returns an error
to the initiator of the process. In other cases, the orchestration layer invokes
more internal activities and then performs a credit check. Both the service
‘AutoBKR’ and ‘SynonymsBKR’ are invoked in parallel. The results of both
services are combined and interpreted when both services are finished. Internal
activity 48A.5 evaluates this interpretation and decides if more checks need to
be executed or a result can already be given to internal activity 48A.10.

In case more checks need to be executed, a scenario is determined and handled
concurrently by two other processes. The credit score and the max loan capacity
are calculated. After calculating the credit score, a score card needs to be
decided, but this can only be done when the max loan capacity is also known.
Therefore a synchronization link is introduced in the model. The result is
determined for the scenario and the process might be terminated because of
an error message, or the total results are calculated and processed as either
an error or a positive result. The positive result will be processed further by
internal activity 48A.10 and will be returned to the initiator of the process.

51

BPMN2BPEL Case studies

F
ig

ur
e

5.
5:

C
as

e
st

ud
y

2:
to

ta
l

cr
ed

it
ri

sk
ca

lc
ul

at
io

n

52

BPMN2BPEL Total credit risk calculation

5.2.1 Manual translation

In this paragraph we manually translate the case study described above to a
structured composition representing the BPEL process. First the algorithm for
finding synchronization dependencies is executed. After this, the adjusted algo-
rithm of Eshuis is executed and the structured composition is presented. Again
we compare the result of the manual translation according to the presented ap-
proach, with our ideal result in mind. The result of this manual translation is
also used to compare with the result of the implementation described in chapter
4.

Before the algorithm for finding synchronization dependencies is executed, we
first determine if a direct relation between a parallel fork gateway and a par-
allel join gateway exists. If not, the algorithm can be skipped because of the
restriction we presented in section 3.2. In Table 5.3 the before(g)-sets and
after(g)-sets are given for the parallel gateways.

Table 5.3: before(g)- and after(g)-set for gateways of case study 2
Gateway: before(g)-set after(g)-set
ps1 - i, j, pm1

ps2 - o, pm2, p, q, ps3, pm3

ps3 ps2, q pm2, p, pm3

pm1 ps1, i, j -
pm2 ps2, o, q, ps3 p, pm3

pm3 ps2, o, pm2, p, q, ps3 -

With the sets in Table 5.3 we can execute the algorithm for finding synchro-
nization dependencies. We see that ps1 matches to pm1, ps2 matches to pm3

and that no match exists between ps3 and pm2. Because a direct relation be-
tween those two gateways exists, we can identify the relation (ps3, pm2) as a
synchronization link.
Next we calculate the concepts of dominators, loop headers and follow sets. In
Table 5.4 the result of these calculations are summarized. The algorithm deliv-
ers a structured description of the process in the BPEL grammar we formalised
in section 3.4. The process can be described as:

P =< s, a, b, c,repeat Px until in (xsdum
1), f, xor{Py, xsdum

2 }, xm2, y, xm4, e >

Px =< d, xor{e, xsdum
1 } >

Py =< g, h, and{i, j}, pm1, k, l, xor{Pz}, xm3, w >
Pz =< xsdum

3 , < m, n, and{< o, pm2, p >, < q, ps3 >, {link(ps3, pm2)}}, pm3, r, s,
xor{xsdum

4 , < t, u, v, xor{xsdum1
5 , xsdum2

5 } >} >>

53

BPMN2BPEL Case studies

Table 5.4: Dominators, loop headers and follow sets for case study 2
Obj. DOM HEAD FOLLOW Obj. DOM HEAD FOLLOW
(O) (O) (O) (O) (O) (O) (O) (O)
s - a ps2 n pm3

a s b o ps2 pm2

b a c pm2 o p
c b xm1 p pm2 −
xm1 c loopnode f q ps2 ps3

d xm1 xm1 xs1 ps3 q −
xs1 d xm1 − pm3 ps2 r
e xs1 xm1 − r pm3 s
f xs1 xs2 s r xs4

xs2 f xm2; xm4 xs4 s −
g xs2 h t xs4 u
h g ps1 u t v
ps1 h pm1 v u xs5

i ps1 − xs5 v −
j ps1 − xm2 xs2 y
pm1 ps1 k xm3 xs3 w
k pm1 l w xm3 −
l k xs3 y xm2 −
xs3 l xm3 xm4 xs2 e
m xs3 n e xm4 −
n m ps2

This process is visualised in the structured composition in Figure 5.6. The
structured composition matches the ideal translation we have in mind globally,
except for the merge-gateways. The merge-gateways are not needed in the
structured composition, because they do not represent an activity. For Figure
5.6, the nodes pm1, pm3, xm2, xm3 and xm4 can be removed.

5.2.2 Translating via the plugin

Translating the second case study via the plugin was more difficult than for the
first case study. Problems occured when processing the xm2 decision gateway.
Both the algorithm and the plugin must be improved at this point, which we
suggest as future work. In Figure 5.8 the structured composition which is
currently the result of the mapping is given. This result should be improved
on two aspects. First the synchronization dependency algorithm must only be
executed within one SESE-region and finally decision and merge gateways must
be investigated and improved.

54

BPMN2BPEL Total credit risk calculation

Figure 5.6: Structured composition of case study 2

Figure 5.7: Part of the BPEL syntax for case study 2

The plugin is also able to export the structured composition tree to BPEL syn-
tax as specified in the official BPEL specification. This generated code matches
the generated structured composition and therefore has the same problems as

55

BPMN2BPEL Case studies

Figure 5.8: Structured composition tree of case study 2

56

BPMN2BPEL Conclusion

the translation to the structured composition. In Figure 5.7 a part of the BPEL
syntax is given.

5.3 Conclusion

The purpose of introducing two case studies is the evaluation of both our al-
gorithm and the implementation in Eclipse. The first case study was known
at forehand and is used during the development of the mapping discussed in
chapter 3. The second case study is used after we described the mapping, but
resulted in some adjustments to our algorithm. An example of such an adjust-
ment is the extension of the algorithm for finding synchronization dependencies
with so called SESE-regions.

We also discovered that our implementation currently has some differences with
the algorithm in the field of multiple subsequent decision and merge gateways.
A manual translation of the case study results in a corresponding BPEL model,
but a translation via the plugin has some issues as described in the section of
case study 2.

We can conclude that our algorithm can generate BPEL models from input
BPMN models which satisfy the restrictions of a well-formed BPD. In chapter
6 we evaluate these restrictions and will see that some of the restrictions can
be relaxed.

57

BPMN2BPEL Case studies

58

BPMN2BPEL 2

Chapter 6

Evaluation of the mapping

In this chapter, we will evaluate our own mapping presented in chapter 3. We
will discuss the strengths and weaknesses of the presented mapping and also
the relation with other strategies and implementations. Because our algorithm
uses a well-formed BPD as inputmodel, we will evaluate the restrictions of a
well-formed BPD to investigate if we can also process more unstructured input
models. In the last section of this chapter, we will propose some future work
for our own algorithm based on the evaluation done.

We wanted to extend an existing algorithm presented by Rik Eshuis to make it
suitable for mapping BPMN to BPEL. In chapter 2 we discussed different strate-
gies and concluded that combining the strengths of different approaches would
result in the best mapping. The developed algorithm works with structured
components, but can also identify relations as synchronization dependencies.
Control links, which are the main constructs of other strategies, are used only
when this is most appropriate. The existing algorithm presented by Rik Eshuis
is adjusted to make it suitable for mapping most BPMN models to BPEL and
implemented as a plugin for Eclipse.

6.1 Strengths & Weaknesses

In chapter 2 we evaluated different strategies and mentioned some strengths
and weaknesses of each approach. In section 6.2 we will compare our approach
with these strategies. Before we can compare our own approach with these
strategies, we will discuss the main strengths and weaknesses of our approach
presented in chapter 3.

Our approach supports input models with non-structured components, except
for arbitrary cycles. Not only structured input models can be processed, but
also unstructured models which satisfy the well-formedness restrictions of a
BPD can be processed. The approach can deal with all parallel gateways and

59

BPMN2BPEL Evaluation of the mapping

decision gateways with arbitrary topology, however the implemented Eclipse
plugin still has some problems with these situations. The generated BPEL
model is comprehensible and readable because it is largely structure based. The
generated BPEL is extended with synchronization dependencies, which are also
comprehensible as long as they are only used for synchronization purposes.

Our approach consists of different steps like preprocessing, calculating concepts
as the immediate dominator, the original algorithm and the mapping to the
BPEL syntax. These different steps make it more difficult to implement the
approach in a plugin for example. The plugin which we developed during our
master project has still some issues. Trivial models are mapped correctly, but
complex models can result in some errors. Manual translation does not have
these problems and results in a correct BPEL model.

Another important issue is the presence of merge gateways. In the original
algorithm of Rik Eshuis, no separate merge gateways exist, since these are
combined with normal tasks. As a result, these merge gateways are processed
as tasks in our approach and cause unnecessary ’empty’ BPEL constructs. The
implementation can easily be adjusted to filter these merge gateways, but the
algorithm should also be adjusted.

6.2 Relation with other strategies/implementations

First, we want to compare our own approach with the strategies mentioned in
chapter 2. Our own approach scores better on readability than the link-based
or event-based approaches. Since the structured components are translated to
their subsequent BPEL constructs, the generated BPEL model can be main-
tained a lot easier. Also the concept of a repeatable construct like a loop is
not supported in pure link-based strategies. Structure-based and event-based
strategies do cover this construct. Our implementation also support loops with
a single entry and a single exit point. Compared with structure-based strate-
gies, our approach requires input models with less constraints and supports
unstructured models.

We also want to compare our approach and implementation with the two
opensource implementations mentioned in chapter 2, the BABEL-tool and the
BPMN 2 BPEL Eclipse plugin. The BABEL-tool is not maintained anymore,
but is an implementation often discussed in literature. The Eclipse plugin is
a newly developed implementation, based on the global ideas of the BABEL-
tool, but improved with SESE-regions. Both existing implementations and our
own implementation generate BPEL models with a high level of readability,
since they all identify structured blocks first. All implementations support

60

BPMN2BPEL Relation with other strategies/implementations

the presence of loops, but our own implementation only supports structured
loops with one entry and one exit point. The BABEL-tool and Eclipse plugin
translate unstructured loops via the event-action based approach, which is not
implemented in our mapping. An advantage of our approach compared to the
existing implementations is the algorithm for finding synchronization dependen-
cies. Structured components which contain a synchronization dependency are
mapped as structured components in our own algorithm. In other implementa-
tions, this structured component is translated as an unstructured component,
which results in less readable output.

Also a short evaluation is done on a commercial tool available from Intalio
1. We are interested which strategy is used in this commercial tool and how
synchronization links, (un)structured loops and multiple gateways are handled.
Unfortunately, we are not able to investigate the underlying source code or
extended documentation since both are not available. By modeling some mod-
els from literature and both case studies we discovered some strengths and
weaknesses from the tool and can conclude that the implementation is focused
mainly on structure identification. Because the modeling tool already checks
the model on valid BPMN and restrictions set by the tool, all models which
can be created within the tool can also be translated. The validation function-
ality of the tool is therefore it’s main strength. Together with the possibility to
generate correct WSDL information and the ’on the fly’ translation of models,
the tool has some great strengths. However, there are some general issues and
restrictions with the tool. Both structured and unstructured loops can not be
modeled and translated by the tool. Only tasks which represent one activity
which is executed more than once can be modeled, but backward edges are not
allowed. Synchronization links are also not processed correctly and are parsed
as different flows of a parallel construct. The problem this solution has, is the
fact that one task occurs several times in the generated BPEL code. The com-
mercial tool has some nice benefits on validation and WSDL information, but
has some significant restrictions in creating and translating models.

Next, we will evaluate the existing implementations by translating both case
studies described in chapter 5. In this chapter, we already translated the pro-
cess manually and via our own developed implementation. Both our own imple-
mentation and the BPMN2BPEL Eclipse plugin use a BPMN model created in
Eclipse as input model. The BABEL-tool has another input format for describ-
ing a process. The commercial tool of Intalio is based on Eclipse, but has it’s
own environment to create the models. Both case studies need to be available
in both formats, so both case studies can be translated by all implementations.
We will now discuss both case studies in separate sections.

1Intalio Designer: http://bpms.intalio.com/tutorials/intalio-bpms-designer-5.0-modeling-
tutorial-beginner.html

61

BPMN2BPEL Evaluation of the mapping

6.2.1 Case study 1

Case study 1 is translated in chapter 5 by our own algorithm and implementa-
tion and matches the original input model as expected. It was not needed to
adjust the input model for a correct translation. Both other implementations
have some problems with translating our input model. First, the Eclipse plugin
has some problems with the intermediate events in the original case study and
only worked after we splitted our first decision gateway manually. The synchro-
nization dependency is supported, but the whole parallel flow is translated as
an unstructured component, which result in less readable code. Also the map-
ping uses empty constructs instead of invoke constructs. In Figure 6.1 a part
of the generated BPEL syntax is given for the Eclipse plugin. The resulting
process matches the adjusted input model, which we included in Appendix E.

Figure 6.1: Case study 1 translated with the Eclipse implementation [GB08]

The BABEL-tool can also translate the input model, but also needs some slight
adjustments. The synchronization dependency is not supported by the imple-
mentation and a different result is created depending on the implicit gateway
which is added. If the implicit gateway is added to the input model, readable
BPEL syntax is generated as displayed in Figure 6.2. However, if the implicit
gateway is not added, the whole process after this gateway is translated via tha
action-based approach and results in less readable output. The input model
used for the translation via the BABEL-tool is also included in Appendix E.

Intalio Designer, the commercial tool, can translate the input model only if we
remove the looping situation. Also the synchronization dependency is processed
in an unwanted manner and result in double occurance of task ’contract gener-
ation’. In Figure 6.3 part of the generated BPEL code is given. In our opinion,
the use of structured components could have been done in a smarter way which
would have resulted in more readable and comprehensible BPEL code.

62

BPMN2BPEL Relation with other strategies/implementations

Figure 6.2: Case study 1 translated with the BABEL-tool [OADH08]

Figure 6.3: Case study 1 translated with the Intalio-tool

6.2.2 Case study 2

Case study 2 is also translated by our own algorithm and implementation but
still has some problems left with multiple merge gateways. Both other imple-
mentations have also some problems with translating our input model. First,
the Eclipse plugin has some problems with the multiple decision and merge
gateways. We removed one merge gateway and one split gateway and added a
dummy node between two remaining gateways which were connected directly.
The synchronization dependency is supported again, but the whole parralel
flow is translated as an unstructured component, which results in less read-
able code. In Figure 6.4 a part of the generated BPEL syntax is given for the
Eclipse plugin. The resulting process matches the adjusted input model, which
we included in Appendix E.

The BABEL-tool has also problems with our original input model and with
the adjusted input model used for the Eclipse plugin. Even after removing the
synchronization dependencies as we did for case study 1, the model could not

63

BPMN2BPEL Evaluation of the mapping

Figure 6.4: Case study 2 translated with the Eclipse implementation [GB08]

be translated. By debugging the input model, we found that the cause of the
problem can be found in the parallel flow construct.

Intalio Designer can correctly translate the BPMN model, except for the loop
construct and the synchronization dependencies. No problems occur with the
multiple subsequent decision and merge gateways. The only serious issue which
we already mentioned is the occurrence of the same task in the generated BPEL
more than once. In Figure 6.5 a preview of the generated BPEL is given.

Figure 6.5: Case study 2 translated with the Intalio-tool

6.2.3 Conclusion

In Table 6.1 we summarize the evaluation in a table with the same components
as the tabel presented in section 2.4. The BABEL-tool is not maintained any-
more and the Eclipse plugin is a new implementation based on [GB08] which
deals with the deterministic issues from the BABEL-tool discussed in chapter
2. However, the Eclipse plugin should use a synchronization dependency al-

64

BPMN2BPEL Evaluation of well-formed BPD restrictions

gorithm for generating more readble BPEL-code. Our own implementation is
very strong in finding synchronization dependencies and can contribute to ex-
isting implementations on this part. Our own implementation does not support
unstructured loops and can not generate BPEL via the action-based approach.

We also evaluated a commercial tool and observed the lack of identifying syn-
chronization dependencies. Intalio Designer parsed parallel fork gateways as
flow-constructs, even if the gateway represent a synchronization dependency.
In this solution, activities occur more than once in the generated BPEL model.
Our algorithm can therefore also trigger improvements in commercial tools.

Table 6.1: Evaluation of implementations
Component \ Impl. BABEL Eclipse plugin Intalio Own

[OADH08] [GB08] approach
Readability + +/- +/- +
Structured components + + + +
Structured loops + + - +
Unstructured loops + + - -
Synchronization links - +/- - +

6.3 Evaluation of well-formed BPD restrictions

BPMN models which are used as input for our mapping between BPMN and
BPEL must satisfy the well-formedness constraints of a Business Proces Dia-
gram. In Definition 1 these eight restrictions are given. Our proposed mapping
is developed based on these restrictions and models which do not satisfy all
well-formedness restrictions might not be processed in a correct manner.

One of the goals of our mapping was to develop an approach which can also
handle unstructured input models. Models which satisfy all well-formedness
constraints cannot be called unstructured anymore. Therefore we want to dis-
cuss all eight restrictions and eliminate these restrictions when possible. We
will also discuss some workarounds to make an unstructured inputmodel more
structured in a way that it can be processed by our mapping.

We will now discuss all eight restrictions which we summarized in Table 6.2. A
’+’ indicates that the restriction can easily be relaxed because the algorithm
already deals with it and/or the user can easily adjust the input model. A
’+/-’ indicates possibilities to relax the restriction in some way, but it is not
possible to remove the restriction completely. A ’-’ represent the fact that the
restriction can not be relaxed.

65

BPMN2BPEL Evaluation of the mapping

Table 6.2: Evaluation of well-formed BPD restrictions

Supported Possible by
Restriction: by algorithm (user)input
1. Start events have an indegree of zero +/- +/-

and an outdegree of one
2. End events have an outdegree of zero +/- +/-

and an indegree of one
3. Tasks and intermediate events have an + +

indegree of one and an outdegree of one
4. Fork or decision gateways have an indegree +/- +

of one and an outdegree of more than one
5. Join or merge gateways have an outdegree +/- +

of one and an indegree of more than one
6. Event-based XOR decision gateways must - -

be followed by intermediate events or
receive tasks

7. There must be a default flow for a - +
data-based decision gateway

8. Every object is on a path from a - -
start event to an end event

1. Start events have an indegree of zero and an outdegree of one.
This restriction consists of two different parts. First the restriction that a start
event has an indegree of zero can not be eliminated. If the start event has one or
more incoming edges, there must be another event which can start the process.
The start event with one or more incoming edges is then an intermediate event
instead of the real start event. The second part of the restriction however,
can be made more flexible. A dummy gateway can be inserted to facilitate an
outdegree of more than one. If a dummy node is inserted, there should be an
extra check to be sure that for each fork gateway in the model, a subsequent
join gateway of the same type must be present. In Figure 6.6 this situation is
modeled. The preprocessing steps presented in [EG09] will insert dummy nodes
and check for subsequent gateways.

2. End events have an outdegree of zero and an indegree of one.
The second restriction has also two different parts. For the first part, end
events must have an outdegree of zero, the same explanation as discussed in
the previous restriction results in the conclusion that end events must always
have an outdegree of zero. The second restriction can be relaxed with the
use of dummy gateways as discussed earlier. For each dummy join gateway, a
subsequent fork gateway of the same type must be present. In Figure 6.6 this
situation is modeled. The preprocessing steps presented in [EG09] will insert

66

BPMN2BPEL Evaluation of well-formed BPD restrictions

Figure 6.6: Start and end events with respectively an out- and indegree of more
than one.

dummy nodes and check for subsequent gateways.

Figure 6.7: Tasks and intermediate events that have an in- or outdegree of more
than one.

3. Tasks and intermediate events have an indegree of one and an
outdegree of one.
The algorithm of Eshuis[EG09] is developed for dependency graphs. Depen-
dency graphs can be seen as a network of nodes and edges, where a node can
represent a task and edges represent relations between tasks. Nodes can have
multiple incoming or outgoing edges, but are preprocessed by inserting loop
and fork nodes. These loop and fork nodes must be dummy services and are
not allowed to represent tasks or intermediate events. Therefore, having tasks
or intermediate events with an indegree or outdegree of more than one should
be no problem, but dummy nodes must be inserted before the execution of the
algorithm. This restrictions can be eliminated by the preprocessing step. In
Figure 6.7 this situation is modeled. Note that tasks or intermediate events
must have at least one incoming and one outgoing relation, it is not allowed to
have an indegree or outdegree of zero.

4. Fork or decision gateways have an indegree of one and an outde-
gree of more than one.
Fork or decision gateways should indeed have an outdegree of more than one,
otherwise it would not be a fork or decision gateway but a normal node. If
gateways modeled with an indegree of one and an outdegree of one are found
in a process, the algorithm can further process these gateways as normal nodes
(see Figure 6.8). Because the algorithms presented do check if a gateway is a
fork or decision gateway, the gateway should be replaced by a task for correct

67

BPMN2BPEL Evaluation of the mapping

processing. Fork or decision gateways which have an indegree of more than one
can be processed as normal fork or decision gateways, because merge and join
gateways are processed as normal tasks in the algorithm. For finding synchro-
nization dependencies, fork gateways which have an indegree of more than one
should also be processed as join gateways. Replacing gateways with an inde-
gree and outdegree of exactly one with task nodes can only be done manually
in the input model. Handling fork or decision gateways with an indegree and
outdegree of more than one can be automatically processed by the algorithm.

Figure 6.8: Gateways with an in- and outdegree of one can be transformed to
a task node.

5. Join or merge gateways have an outdegree of one and an indegree
of more than one.
Restriction 5 can be evaluated as restriction 4, the restriction can be made more
flexible by transforming the gateway as task node or by process the gateway as
a fork or decision gateway. Fork or decision gateways have a different processing
in the algorithm, while join or merge gateways do not.

6. Event-based XOR decision gateways must be followed by inter-
mediate events or receive tasks.
Event-based XOR decision gateways must indeed be followed by intermediate
events or receive tasks. If not, the decision gateway is data-based and must
be modeled by a data-based gateway instead of an event-based gateway. The
input model must be corrected if this restriction is not satisfied.

7. There must be a default flow for a data-based decision gateway.
According to the BPEL syntax, a default flow is not necessary for a data-based
decision gateway. However, there must be at least one flow which is followed
when a decision gateway is processed. If the modeller can ensure at least one
flow is followed, no default flow need to be specified. This restriction cannot
be eliminated from the algorithms perspective, but can be eliminated when the
user is sure one flow is followed as default.

8. Every object is on a path from a start event to an end event.
We want our input model to be safe and sound because every object must be
processed in a correct manner. Objects are related to each other and with the
help of immediate dominators, loop headers and follow sets the whole input
model is processed. Every object must be reachable from the start event to be

68

BPMN2BPEL Future work

able to calculate these concepts. Also every object must be on a path to an
end event, to prevent deadlock situations. Therefore this restriction cannot be
released.

As we can see, most restrictions can be relaxed by introducing some prepro-
cessing steps. Inserting dummy nodes and possibly transforming gateways to
tasks or other gateways make some restrictions more flexible. Because calcula-
tions are based on models which are well-formed, we need the introduction of
these preprocessing steps, since these steps transform an unstructured process
model to a well-formed BPD. The modeller only must ensure at least one flow
is followed in case of a data-based decision gateway.

6.4 Future work

In this chapter we evaluated our mapping presented in chapter 3. We have seen
that some well-formed BPD restrictions can be relaxed and there is still some
work left in the field of unstructured loops. The event-condition action-rules
based approach presented by Mendling et al. might be implemented to be able
to handle unstructured loops. Both the BABEL-tool and Eclipse plugin have
such an approach implemented. The problem we currently encounter in the
implementation (not in the algorithm) regarding multiple decision and merge
gateways should also be investigated further for a stable implementation.

Another possible extension to the implementation is the data perspective. In
our research, we left this aspect out of scope, since the data object in BPMN is
currently only a representation of an object. There are no rules about the data
itself.

69

BPMN2BPEL Evaluation of the mapping

70

BPMN2BPEL 2

Chapter 7

Conclusions

In this final chapter we summarize our findings by answering the research ques-
tions defined in the introduction of this thesis. After doing this we cover some
general threats to the validity of the conclusions and give some suggestions for
future work.

7.1 Answers to the research questions

In this section we will answer the research questions using the conclusions and
answers given in the other chapters of this thesis. The first research question
can be answered using the results from the literature research, while the other
two research questions can be answered using the results of our own mapping
and the evaluation of the mapping by discussing the case studies.

7.1.1 What is the state-of-the-art with respect to BPMN and
BPEL?

We have seen that both BPMN and BPEL are relatively new languages which
are still under development. In our research we focused on BPMN 1.1 and
BPEL 2.0, which means that some examples from literature are not relevant
anymore because they use BPEL 1.0 constructs which are deprecated. New
features and possibilities that BPMN 2.0 will bring us, are not used because
they are still in a draft status.

In the last few years, a lot of research has been done in the field of map-
ping BPMN to BPEL. Different strategies and implementations arose, each
with its own strengths and weaknesses. Three main categories can be stated:
structured-based, link-based and event-action based strategies. We can con-
clude that combining these three main categories will result in implementations
with the highest level of readability and completeness. In table 7.1 an overview
of the evaluation of different strategies can be found.

71

BPMN2BPEL Conclusions

Table 7.1: Evaluation of current approaches
Component \Mapping A B C D E F G H
Readability - +/- - - + + - +/-
Completeness +/- + +/- +/- - +/- + +
Structured components + + + + + + + +
Structured loops - + - - + + + +
Unstructured components + + + + - + + +
Unstructured loops - + - - - - + +
Synchronization links + +/- + + - + +/- +/-

The following mappings are displayed in table 2.3.
A: Graph structure approach (White) [Whi05]
B: A combined approach (Ouyang et al.) [OADH08]
C: Element-preservation (Mendling et al.) [MLZ06]
D: Element-minimization (Mendling et al.) [MLZ06]
E: Structure-identification (Mendling et al.) [MLZ06]
F: Structure-maximization (Mendling et al.) [MLZ06]
G: Event-condition action-rules (Mendling et al.) [MLZ06]
H: Pattern identification and Classification (Garćıa-Bañuelos) [GB08]

7.1.2 How can BPMN be mapped to BPEL?

By answering the first research question, we have seen different strategies and
implementations which can map BPMN to BPEL. Translations are done accord-
ing to a specific strategy and each has its restrictions, strengths and weaknesses.
We have investigated if a mapping from BPMN to BPEL is also possible based
on the algorithm of Eshuis, which translates dependency graphs to structured
compositions. We adjusted the algorithm in a way that BPMN models are
translated to nodes and edges. Then a new algorithm for finding synchroniza-
tion dependencies is executed and the resulting model will be used for calcu-
lating dominators, loop headers and follow sets. These concepts can be used in
the algorithm which creates a structured composition. This composition can
be mapped to BPEL constructs and will result in BPEL code.

The approach we presented needs a well-formed BPD as input model and will
execute some preprocessing steps. These preprocessing steps can relax some
well-formed BPD restrictions. In chapter 6 we evaluated these restrictions and
discussed which restrictions can be relaxed.

7.1.3 How can our translation be evaluated compared to exist-
ing translations?

Compared to other implementations and strategies, our own mapping is not
able to process input models which contain unstructured loops. A loop must

72

BPMN2BPEL Threats to validity

have one single entry and one single exit point. Implementations and strate-
gies which can process unstructured loops use event-action based strategies for
the translation. Our own mapping is not able to handle these event-action
based strategies. Our own implementation can find synchronization depen-
dencies and eliminate these synchronization links temporarily. In this way,
unstructured components, which are completely processed via the link-based
approach by other implementations, are processed as structured components
by our own mapping. In chapter 6 we discussed all benefits and drawbacks of
our mapping compared to existing mappings. We can conclude that our own
approach can be improved by learning from other implementations, but other
implementations can also learn from our approach and improve their processing
of synchronization dependencies.

In table 7.2 our implementation is compared to BABEL and the existing Eclipse
plugin based on the same criteria used in the evaluation of current strategies
and approaches.

Table 7.2: Evaluation of implementations
Component BABEL Eclipse plugin Own implementation

[OADH08] [GB08]
Readability + +/- +
Completeness + + +/-
Structured components + + +
Structured loops + + +
Unstructured components + + +/-
Unstructured loops + + -
Synchronization links +/- +/- +

Because still no common agreed method exist in translating BPMN to BPEL,
we can only do a suggestion which combines the strengths of the implementa-
tions evaluated earlier. We think that combining our approach with the existing
Eclipse plugin will result in a stable and decent mapping. However, both im-
plementations are still under development and need some refinement first.

7.2 Threats to validity

Some threats can be identified which can influence the validity of the conclusions
drawn. Therefore we mention the following threats:

• There might be some bugs or uncompleted implementations which we used
for evaluating purposes. The Eclipse plugin for example is developed in
2008 and is still under construction. It is possible that our case studies
cannot be processed correctly due to these incompleteness.

73

BPMN2BPEL Conclusions

• Both case studies are from the financial sector. Other case studies from
other sectors might introduce new situations which cause problems that
are not covered yet by either the algorithm or the implementation. For
both case studies, we tried to find a real business processes which cover
as many workflow patterns [Web08b] as possible.

7.3 Future work

We see some needs and possibilities for future work, as discussed in chapter 6
and extended here:

• Currently there are some problems in the implementation regarding mul-
tiple decision and merge gateways. These issues must be resolved for
further usage of the developed plugin.

• Some functionalities within the plugin need to be reimplemented. Due to
the medium level of JAVA knowledge available, some functions might have
been implemented in a less efficient way. Performance of the translation
in terms of speed and complexity was not in the scope of the project,
since the plugin was not the main goal of the master project.

• The well-formed BPD restrictions which are described in chapter 6 and
which can be relaxed, might be implemented in the plugin.

• The data perspective is not implemented yet. Research to the possibili-
ties of translating the data perspective from BPMN to BPEL might be
interesting.

• Round-trip-engineering will need automated translations between BPMN
to BPEL and vice versa. Research into translating BPEL to BPMN might
therefore be an interesting subject. When both translations become more
mature, we are convinced that the gap between process design and im-
plementation will narrow down.

74

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Industrial Engineering

BPMN 2 BPEL
Appendix

By
Jeroen Blox

Supervisors:

R. Eshuis (TU/e)
L. Mühlenberg (Logica)

J.C. van Gaalen (Logica)

Eindhoven, February 2009

BPMN2BPEL 2

Appendix A

BPMN explained

Events

An event is something that ”happens” during the business process and has a
relation with the environment or other parties. Events affect the flow of the
process and can have a cause(trigger) or an impact(result). There are different
types of events: Start, Intermediate and End.

Start event A start event indicates when a process will start
and can not have any incoming arcs.

Intermediate event An intermediate event occurs somewhere between
the start and end event and does not start or ter-
minate a process. Examples are message events or
timer events.

End event An end event will terminate the process and there-
fore can not have any outgoing arcs.

Figure A.1: The basic elements used in BPMN[WAD+06b]

A-1

BPMN2BPEL BPMN explained

Activities

Activities are tasks or (sub)processes within a company which represent a spe-
cific amount of work which has to be done. These activities can be atomic(tasks)
or non-atomic. Processes and sub-processes are defined in more detail, while
tasks can not be broken down into finer activities.

Gateways

Gateways are used to create a control flow other then the standard sequence
flow. Branching, forking, merging and joining of paths becomes possible with
the introduction of gateways. For specific functions of a gateway, different
markings have been designed.

Exclusive decision Exclusive decisions can be based on data or events.
The outcome of the decision is not known at design
time.

Inclusive decision Inclusive decision making is a decision based on a
condition, which is known at design time.

Complex decision Decision situations which can not be placed under
other gateways.

Parallel gateway Parallel forking and joining will handle activities
which can be executed concurrently. Joining after
a forking is necessary to ensure the safeness of the
model.

Connectivity objects

Within the connectivity objects a differentiation can be made between normal
sequence flow, message flow and association. Normal sequence flows show the
order in which activities will be executed in a process, message flows show the
direction of messages between participants in the process and associations link
information and flow objects.

Swimlanes

Swimlanes are divided in lanes and pools. Pools indicate the different subpro-
cesses and participants within a larger process, where lanes can organize and
categorize activities.

A-2

BPMN2BPEL

Artifacts

Three different artifacts can be identified in the BPMN specification. Data
objects provide information about the requirements for executing activities and
about what they produce, but do not have any direct effect on the sequence
or message flow [OMG08b]. Groups are used for documentation and display
purposes only, they also do not affect the flow. Text annotations are also only
meant for additional information to the reader of the BPMN-models.

A-3

BPMN2BPEL BPMN explained

A-4

BPMN2BPEL 2

Appendix B

BPEL explained

The BPEL specification contains a lot of elements, which can be used for specific
purposes. A full list of BPEL elements can be found in [OAS07]. The most
common elements can be categorized into the following classes; basic activities,
structured activities and partner links [OAS07].

Basic activities

Activities perform the process logic in BPEL. A distinction is made between
basic activities and structured activities. Basic activities describe elemental
steps of the process behavior, while structured activities describe the control-
flow logic. Structured activities can contain other activities.

Invoke - The invoke activity is used to invoke Web Service operations. These
operations can be other web services, or can be activities which need to be
executed by human people.

Receive and Reply - Business processes provide services to their part-
ners through inbound message activities and corresponding reply activities. A
(sub)process waits for a specific message, executes its activities and will send a
reply to the original initiator of the process. Multiple initiations can take place
at the same time.

Assign - The assign activity allows variables to be updated during the pro-
cess.

Throw and Rethrow - For fault handling in BPEL, both the <throw> and
<rethrow> activities can explicitly throw a fault to the faulthandler. The
rethrow activity can throw the original fault message again to a fault handler
after catching the fault.

A-5

BPMN2BPEL BPEL explained

Wait - When a business process needs a delay for a specific time, the wait
activity can be used. With the <for> or <until> element, a fixed duration or
a fixed deadline can be specified.

Empty - The empty activity does nothing, but can be used to generate valid
and readable BPEL-code.

Exit - The exit activity immediately terminates all activities in the process
instance.

All activities can have two standard containers; <sources> and <targets>,
with elements <source> and <target>. They are used to establish synchro-
nization relationships through links.

Structured activities

Structured activities describe the control-flow logic of a business process. The
order in which activities are executed is determined with these class of activities.

Sequence - Activities which are executed one by one in a given order, are
placed in a sequence control activity. The sequence activity completes when
the last activity of the sequence is completed.

If - For conditional behavior, the <if> activity can be used. With the elements
<elseif>, <else> and <condition> a conditional behavior can be described.
Other (basic) activities will be placed in the different containers.

While and repeatUntil - The <while> activity provides a repeated set of
activities and at the beginning of each cycle, the <condition> element must
be evaluated successfully to true. Therefore it is possible that the <while>
iteration is not visited. The <repeatUntil> activity evaluates the condition
after executing it’s content and is always executed at least once.

Pick - The <pick> activity waits for an occurrence of one event and then
executes the activities related to this event. Other events where the <pick>
activity was listening to are neglected. Only one event can be processed with
this activity.

Flow - The <flow> activity makes synchronization and concurrency possi-
ble. Different groups of activities are initiated at the same moment. With
the <link> elements, synchronization links can be identified and used with the
<source> and <target> elements.

A-6

BPMN2BPEL

ForEach - ForEach makes it possible to process multiple branches. Depend-
ing on the design of this activity, the children of this activity can be executed
sequential or in parallel.

Partner Links

Partner links describe cross enterprise business interactions through Web Ser-
vice interfaces. By describing the partner links, also roles are assigned to dif-
ferent participants.

A-7

BPMN2BPEL BPEL explained

A-8

BPMN2BPEL 2

Appendix C

Existing BPMN 2 BPEL
approaches

Table C.1: Existing approaches for translating BPMN to BPEL

Graph structure approach [Whi05]
Strength The graph structure, which is used in BPMN models, is maintained.
Weakness Generated BPEL might be hard to understand. Approach is not explained in

detail, but is only loosely described.
Constr. Global process, namespace and variable information is needed, since a BPMN-

model normally does not contain this information.
Compl. In his paper, White does not support al concepts. However it can be assumed

that a high level of completeness can be obtained as long the restrictions of the
<link>-constructs are satisfied.

The BPMN to BPEL way [OADH08, ODHA08]
Strength Arbitrary cycles are supported by using an event-based translation. The authors

discuss semantics and correctness in a concise and unambigious manner by in-
troducing Petri nets. The approach can deal with all parallel gateways and xor
gateways with arbitrary topology. Generated BPEL-code is readable, because
block-structured components are mapped before flow-based translation is used.

Weakness The approach uses events for unstructured (sub)processes, which results in less
readable and comprehensible BPEL-code. Because of the combination of three
approaches, implementation might be more difficult.

Constr. The BPMN model must satisfy the well-formed BPD-constraints. The BPMN
model must be checked on deadlocks and multiple instances are not possible. For
translation using control links, these links may not result in cycles, may not have
event-based gateways and must be safe and sound.

Compl. Any component can be translated, first well structured components are mapped,
then the link-based and event-based approaches are used for resulting compo-
nents.

Element-preservation strategy [MLZ06]
Strength Easy to implement and both BPEL and the original process graph are graph-

based and easy to compare.
Weakness Very difficult to understand because of the high number of elements and control

links.
Constr. The process graph must be acyclic.
Compl. Not all models can be translated using this approach, because of the restrictions

in the flow-based approach.
Element-minimization strategy [MLZ06]

Strength In the spirit of the BPEL flow, which is graph-based. Also a good strategy when
performance matters, since only really necessary elements are included.

Weakness By removing elements, it becomes less intuitive to identify correspondences.

A-9

BPMN2BPEL Existing BPMN 2 BPEL approaches

Constr. The process graph must be acyclic.
Compl. Not all models can be translated using this approach, because of the restrictions

in the flow-based approach.
Structure-identification strategy [MLZ06]

Strength Whole process graph translated to structured activities, which results in best
understanding of the generated BPEL-code.

Weakness The relation with the process graph might be less intuitive, since BPEL now is
block-structured.

Constr. The process graph must be structured, since every component must be mapped
to structured activities.

Compl. Structured processes can be translated, unstructured processes not.
Structure-maximization strategy [MLZ06]

Strength This approach also support unstructured processes, as long as loops can be re-
duced by the structure-identification part.

Weakness Two different implementations are needed.
Constr. Only cycles with a single entry and a single exit point are allowed in unstructured

processes.
Compl. Almost any process can be translated, except for arbitrary cycles.

Event-condition action-rules strategy [MLZ06]
Strength Any process graph can be translated, even unstructured loops.
Weakness BPEL-code is difficult to understand and it is not clear how the approach behaves

with semantic problems.
Constr. No specific constraints on input model.
Compl. Any process can be translated.

The Petri nets approach [AL08]
Strength Petri Nets have a strong theoretical foundation. Assuming the input Petri Net is

sound and safe, it can be guaranteed that a correct BPEL is generated.
Weakness BPMN should first be mapped to Petri Nets.
Constr. The input net should be safe and sound, it should have only one source, one sink

and every node is on a path from source to sink.
Compl. The mapping between BPMN and Petri Nets is missing.

A-10

BPMN2BPEL 2

Appendix D

Business Process Diagram

In this appendix, we present the formal definition of a Business Process Diagram
(BPD) adapted from Ouyang et al. [OADH08, ODHA08]. In section 3.1 we
introduced the concept of BPD in order to define a well-formed BPD. A well-
formed BPD will be used as input model for the algorithms presented, unless
stated otherwise.

Definition 4. A core BPD is a tuple BPD = (O, T , E ,G, T R, ES , EI , EE , EIM,
EIT , EET ,GF ,GJ ,GD,GM,GV ,F , Cond) where:

- O is a set of objects which can be partitioned into disjoint sets of tasks T ,
events E and gateways G,

- T R ⊆ T is a set of receive tasks,

- E can be partitioned into disjoint sets of start events ES , intermediate
events EI and end events EE ,

- EI can be partitioned into disjoint sets of intermediate message events
EIM and timer events EIT ,

- EET ⊆ EE is a set of end terminate events,

- G can be partitioned into disjoint sets of parallel fork gateways GF , parallel
join gateways GJ , data-based XOR decision gateways GD, event-based
XOR decision gateways GV , and XOR merge gateways GM,

- F ⊆ O ×O is the control flow relation,

- Cond: F ∩ (GD × O) 7→ C is a function mapping sequence flows ema-
nating from data-based XOR decision gateways to the set of all possible
conditions.

A-11

BPMN2BPEL Business Process Diagram

A-12

BPMN2BPEL 2

Appendix E

Input model for other
implementations

Figure E.1: Case study 1 adjusted input model for the Eclipse implementation

Figure E.2: Case study 1 adjusted input model for the BABEL-tool

A-13

BPMN2BPEL Input model for other implementations

Figure E.3: Case study 2 adjusted input model for the Eclipse implementation

A-14

BPMN2BPEL 2 Bibliography

Bibliography

[AL08] W.M.P. van der Aalst and K.B. Lassen. Translating unstructured
workflow process to readable BPEL: Theory and implementation.
Information and Software Technology, Volume 50 , Issue 3:131–
159, 2008.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison Wesley, 1986.

[BK05] F. van Breugel and M. Koshkina. Dead-path-elimination in
BPEL4WS. Fifth International Conference on Application of Con-
currency to System Design, 2005.

[Boe88] B.W. Boehm. A spiral model of software development and en-
hancement. Computer, 21(5):61–72, May 1988.

[DDO08] R.M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analysis
of business process models in bpmn. Information and Software
Technology, 50(12):1281–1294, 2008.

[Dum09] M. Dumas. Private conversation. 2009.

[EG09] R. Eshuis and P.W.P.J. Grefen. Composing services into struc-
tured processes. International Journal of Cooperative Information
Systems, to be appear, 2009.

[Esh05] R. Eshuis. Statecharting petri nets. BETA Working Paper Series
WP 153, 2005.

[GB08] L. Garćıa-Bañuelos. Pattern identification and classification in the
translation from bpmn to bpel. In OTM Conferences (1), pages
436–444, 2008.

[MH08] M. zur Muehlen and D.T. Ho. Service process innovation: A case
study of BPMN in practice. Hawaii International Conference on
System Sciences, Proceedings of the 41st Annual:372–372, 2008.

A-15

BPMN2BPEL Bibliography

[MLZ06] J. Mendling, K.B. Lassen, and U. Zdun. On the transformation
of control flow between block-oriented and graph-oriented process
modeling languages. Int. J. Business Process Integration and Man-
agement, 2006.

[OADH06] C. Ouyang, W.M.P van der Aalst, M. Dumas, and A.H.M. ter
Hofstede. From BPMN process models to BPEL web services.
Proceedings of the 4th International Conference on Web Services,
IEEE Computer Society:pages 285–292, 2006.

[OADH08] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede. From business process models to process-oriented soft-
ware systems: The BPMN to BPEL way. ACM Transactions on
Software Engineering and Methodology, 2008.

[OAS07] OASIS. Web Services Business Process Execution Language Ver-
sion 2.0. OASIS Standard, 2007.

[ODHA08] C. Ouyang, M. Dumas, A.H.M. ter Hofstede, and W.M.P. van
der Aalst. Pattern-based translation of BPMN process models
to BPEL web services. International Journal of Web Services
Research, 5(1):42–62, 2008.

[OMG08a] OMG. Business Process Model and Notation (BPMN) Specifica-
tion 2.0. 2008.

[OMG08b] OMG. Business Process Modeling Notation, V1.1. 2008.

[OYL08] C. Ou-Yang and Y. D. Lin. BPMN-based business process model
feasibility analysis: a petri net approach. International Journal of
Production Research, 46:3763 – 3781, 2008.

[RM06] J. Recker and J. Mendling. On the translation between BPMN
and BPEL: Conceptual mismatch between process modeling lan-
guages. Proceedings 18th International Conference on Advanced
Information Systems Engineering, pages 521–532, 2006.

[VVK08] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process struc-
ture tree. BPM, pages 100–115, 2008.

[WAD+06a] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede,
and N. Russell. On the suitability of BPMN for business process
modelling. Lecture notes in computer science, ISSN 0302-9743,
2006.

[WAD+06b] P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede,
and N. Russell. Pattern-based analysis of BPMN - an extensive
evaluation of the control-flow, the data and the resource perspec-
tives. BPM Center Report, BPM-06-17, 2006.

A-16

BPMN2BPEL Bibliography

[WADH03] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hof-
stede. Analysis of web services composition languages: The case of
bpel4ws. In Song, I.Y., Liddle, S.W., Ling, T.W., Scheuermann,
P., eds.: Conceptual Modeling - ER2003, 2813:200–215, 2003.

[WADH05] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede. Pattern-based analysis of bpmn - an extensive evaluation
of the control-flow, the data and the resource perspectives. BPM
Center Report, BPM-05-26, 2005.

[WADH06] P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter
Hofstede. Analysis of web services composition languages: The
case of BPEL4WS. Proceedings 22nd International Conference on
Conceptual Modeling (ER), pages 200–215, 2006.

[Web08a] Website. Transforming BPMN into BPEL: Why and
How. http://www.oracle.com/technology/pub/articles/dikmans-
bpm.html?rrsid=rss, 12 September 2008.

[Web08b] Website. Workflow patterns. http://www.workflowpatterns.com/,
25 September 2008.

[Web08c] Website. BPEL Implementations. http://www.oasis-open.org/-
news/oasis-news-2007-04-12.php, 29 September 2008.

[Web08d] Website. BPMN Implementations. http://www.bpmn.org-
/BPMN Supporters.htm, 29 September 2008.

[Whi05] S.A. White. Using BPMN to model a BPEL process. IBM white
paper, 2005.

A-17

	Preface
	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter 1
Introduction
	Chapter 2 State-of-the-art: BPMN andBPEL

	Chapter 3 Mapping BPMN to BPEL

	Chapter 4 An Eclipse plugin
	Chapter 5 Case studies

	Chapter 6 Evaluation of the mapping
	Chapter 7 Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Bibliography

