115 research outputs found

    Massive MIMO for Dependable Communication

    Get PDF
    Cellular communication is constantly evolving; currently 5G systems are being deployed and research towards 6G is ongoing. Three use cases have been discussed as enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low-latency communication (URLLC). To fulfill the requirements of these use cases, new technologies are needed and one enabler is massive multiple-input multiple-output (MIMO). By increasing the number of antennas at the base station side, data rates can be increased, more users can be served simultaneously, and there is a potential to improve reliability. In addition, it is possible to achieve better coverage, improved energy efficiency, and low-complex user devices. The performance of any wireless system is limited by the underlying channels. Massive MIMO channels have shown several beneficial properties: the array gain stemming from the combining of the signals from the many antennas, improved user separation due to favourable propagation -- where the user channels become pair-wise orthogonal -- and the channel hardening effect, where the variations of channel gain decreases as the number of antennas increases. Previous theoretical works have commonly assumed independent and identically distributed (i.i.d.) complex Gaussian channels. However, in the first studies on massive MIMO channels, it was shown that common outdoor and indoor environments are not that rich in scattering, but that the channels are rather spatially correlated. To enable the above use cases, investigations are needed for the targeted environments. This thesis focuses on the benefits of deploying massive MIMO systems to achieve dependable communication in a number of scenarios related to the use cases. The first main area is the study of an industrial environment and aims at characterizing and modeling massive MIMO channels to assess the possibility of achieving the requirements of URLLC in a factory context. For example, a unique fully distributed array is deployed with the aim to further exploit spatial diversity. The other main area concerns massive MIMO at sub-GHz, a previously unexplored area. The channel characteristics when deploying a physically very large array for IoT networks are explored. To conclude, massive MIMO can indeed bring great advantages when trying to achieve dependable communication. Although channels in regular indoor environments are not i.i.d. complex Gaussian, the model can be justified in rich scattering industrial environments. Due to massive MIMO, the small-scale fading effects are reduced and when deploying a distributed array also the large-scale fading effects are reduced. In the Internet-of-Things (IoT) scenario, the channel is not as rich scattering. In this use case one can benefit from the array gain to extend coverage and improved energy efficiency, and diversity is gained due to the physically large array

    Whitepaper on New Localization Methods for 5G Wireless Systems and the Internet-of-Things

    Get PDF

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Ray-Tracing Wireless Channel Modeling and Verification in CoMP Systems

    Get PDF
    corecore