36 research outputs found

    Characterisation of propagation in 60 GHz radio channels (invited)

    Get PDF
    Narrowband as well as wideband measurements have been performed in various indoor and outdoor environments in order to enable the development of reliable prediction models for 60 GHz radio channels. In addition, results of deterministic modelling on the basis of geometric ray-tracing have been compared with measurement results, showing that simple ray-tracing can be used to estimate both the narrowband and wideband characteristics of a 60 GHz radio channel. This paper reviews the measurement and modelling activities performed by various research institute

    Characterisation of Propagation in 60 GHz Radio Channels,"

    Get PDF
    Narrowband as well as wideband measurements ha,ve been performed in various indoor and outdoor environments in order t o enable the development of reliable prediction models for 60 GHz radio channels. In addition, results of deterministic modelling on the basis of geometric raytracing have been compared with measurement results, showing that simple ray-tracing can be used t o estimate both the narrowband and wideband characteristics of a 60 GHz radio channel. This paper reviews the measurement and modelling activities performed by various research i nst it Utes

    Statistical millimeter wave channel modelling for 5G and beyond

    Get PDF
    Millimetre wave (mmWave) wireless communication is one of the most promising technologies for the fifth generation (5G) wireless communication networks and beyond. The very broad bandwidth and directional propagation are the two features of mmWave channels. In order to develop the channel models properly reflecting the characteristics of mmWave channels, the in-depth studies of mmWave channels addressing those two features are required. In this thesis, three mmWave channel models and one beam alignment scheme are proposed related to those two features. First, for studying the very broad bandwidth feature of mmWave channels, we introduce an averaged power delay profile (APDP) method to estimate the frequency stationarity regions (FSRs) of channels. The frequency non-stationary (FnS) properties of channels are found in the data analysis. A FnS model is proposed to model the FnS channels in both the sub-6 GHz and mmWave frequency bands and cluster evolution in the frequency domain is utilised in the implementation of FnS model. Second, for studying the directional propagation feature of mmWave channels, we develop an angular APDP (A-APDP) method to study the planar angular stationarity regions (ASRs) of directional channels (DCs). Three typical directional channel impulse responses (D-CIRs) are found in the data analysis and light-of-sight (LOS), non-LOS (NLOS), and outage classes are used to classify those DCs. A modified Saleh-Valenzuela (SV) model is proposed to model the DCs. The angular domain cluster evolution is utilised to ensure the consistency of DCs. Third, we further extend the A-APDP method to study the spherical-ASRs of DCs. We model the directional mmWave channels by three-state Markov chain that consists of LOS, NLOS, and outage states and we use stationary model, non-stationary model, and “null” to describe the channels in each Markov state according to the estimated ASRs. Then, we propose to use joint channel models to simulate the instantaneous directional mmWave channels based on the limiting distribution of Markov chain. Finally, the directional propagated mmWave channels when the Tx and Rx in motion is addressed. A double Gaussian beams (DGBs) scheme for mobile-to-mobile (M2M) mmWave communications is proposed. The connection ratios of directional mmWave channels in each Markov state are studied

    Unlocking the Potential of 5G and Beyond Networks to Support Massive Access of Ground and Air Devices

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordFlying devices, e.g., Unmanned Aerial Vehicles (UAV) and High Altitude Platforms (HAP) are showing great potentials to revolutionise human society with unprecedented efficiency and convenience. 5G and beyond (5GB) networks have been considered as an important infrastructure for supporting flying devices to accomplish mission-critical applications. However, most of the existing research on 5GB networks mainly focuses on technology evolution to support ground devices, paying insufficient attention to the emerging large-scale deployment of flying devices. To fill the gap, this study aims to identify the differences when 5GB networks are used to provide massive access services for the ground devices and their counterpart flying in the air and analyse in which aspects that 5GB should be enhanced to serve flying devices. In detail, a holistic 5GB architecture is presented to support both ground and flying devices. Then, the unique features of flying devices are analysed with a focus on the challenges they bring to 5GB systems. Facing these challenges, we thoroughly investigate the advantages and disadvantages of 5GB key technologies. Furthermore, a case study is presented to demonstrate that flying devices not only create new issues for 5GB design, but also bring new opportunities for 5GB to enhance their service capabilities.European Union Horizon 2020National Natural Science Foundation of Chin

    A robust 60 GHz wireless network with parallel relaying

    Get PDF

    Propagation and bit error rate measurements in the millimetre wave band about 60GHz

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX85246 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Radio propagation for the next generation mobile communication system

    Get PDF

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit präsentiert eine empirische Untersuchung der Wellenausbreitung für drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfügbaren Bandbreiten in diesen hohen Frequenzbändern erlauben die Verwendung hoher instantaner Bandbreiten zur Erfüllung der wesentlichen Anforderungen zukünftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender Trägerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer räumlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? Darüber hinaus erhöhen größere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich für Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen für diese Frequenzen widergespiegelt werden müssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-Bändern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte für die Ein- und Multibandkanalmodellierung innerhalb mehrerer Säulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten räumlichen Kanalmodellen eingeführt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    Channel Characterization and Modeling for Future Wireless Communication Systems

    Get PDF
    corecore