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ABSTRACT 

This thesis describes the propagation and bit error rate measurements that 

have been conducted at 60GHz. The outdoor propagation measurements have been 

conducted in different environments to study the envelope fading distribution, the 

propagation power law with distance, and the obstruction and diffraction effects. 

Indoor propagation measurements have also been conducted in different areas within 

a reinforced concrete building. They include the envelope fading distribution, the 

propagation power law with distance, signal coverage measurements, and diffraction 

measurements. Also within buildings, bit error rate measurements were conducted 

using non-coherent FSK modulation at 240 and 480kbit/sec. 

The results indicate that for a usable signal level outdoors, a line-of-sight 

path is required between the transmitter and receiver. This is because the reflection 

and diffraction losses are too high. Indoor results have indicated that 

communications within a room with a single radio distribution port is feasible. This 

is due to the shorter propagation distances and large number of reflectors which can 

provide a high signal level behind obstructions. 

The results of the bit error rate measurements have indicated that when no 

line-of-sight path existed, the bit error rate closely followed the theoretical curve 

for Rayleigh fading. However, when a line-of-sight path existed, it departed from 

the theoretical curve. No irreducible error rate occurred, which indicated that time 

delay spreading and doppler spreading had negligible effects. 
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CHAPTER ONE 

INTRODUCTION 

At present, land mobile radio systems are becoming popular to the extent of 

saturating the available frequency bands. For example, the number of mobile radios 

in use in 1984 was about 540,000 with a growth rate of about 10% per annum in the 

UK, and an estimated growth rate of up to 20% has been made for other European 

countries. Using these figures, there will be an estimated 1 million users by 1990 

and 2.5 million users by the end of this century in the UK [1]. 

The demand for mobile radio services has increased rapidly over the past 

decade and the demand for their use has always exceeded the available system 

capabilities. Since the early days, as the demand increased, the solution to the 

spectrum congestion was to increase to higher frequencies and to reduce the channel 

spacing [2]. Today, there are mobile radio services operating at 800-900MHz with a 

channel spacing of 25kHz. However, as the demand increases, decreasing the channel 

spacing is soon limited. 

An alternative solution is to reuse the available radio channels a number of 

times at different locations to enable the efficient use of the allocated spectrum. 

This leads to the introduction of the cellular mobile radio systems which provide the 

solution at least temporarily for the present problem of spectrum congestion. This 

system has been used in Japan since 1979, in Sweden since 1982 and in the USA and 

UK since 1985. However, due to the rapid acceptance of these cellular mobile radio 

systems, it has been predicted that the growth rate could be as high as ý0"ýý per 

annum in the UK which would lead to 13 million users by the year 7-000 [ 3]. 



Basically, the cellular radio system is designed to work with vehicular 

equipment which typically transmit power levels in the order of one to several watts. 

It only partially satisfies portable communication needs and furthermore, it requires 

tall towers for the base stations to provide a wide coverage area and the number of 

users in a given area for a given band of frequencies is limited. 

In order to provide portable communications which could be used both 

within buildings and outdoors, universal digital portable communication systems 

have been proposed at 900MHz [4]. These systems would operate using low power 

portable hand sets which could be carried anywhere within the service areas. The 

system would use fixed radio distribution ports (low power base stations) attached to 

a telephone network. 

The popularity of the cordless telephone and cellular mobile radio clearly 

demonstrates the demand for cordless portable communications. Therefore, in future, 

due to the increase in demand for portable and mobile communications, spectrum 

congestion will occur again within the allocated frequency bands below 1 GHz. In 

order to reduce the problem of spectrum congestion, research is now being 

concentrated on ways of improving spectral efficiency through efficient modulation 

techniques and systems. However, if this is achieved by the end of the century, 

severe spectrum congestion will occur again within the allocated frequency bands no 

matter what modulation is used. There will be insufficient channels to cope with the 

increase in the number of users, particularly if higher data rate communication links 

are required. Therefore, the only solution to this spectrum congestion is to use 

higher frequency bands above l GHz wherever available which could provide large 

amounts of bandwidth. 
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A region of the radio spectrum is being sought which could accommodate a 

large number of users and wideband services especially in the usual demand 'hot 

spots' where most of the people spend their time such as shopping centres, city 

centres, public transport terminals, office blocks, factories and major road and 

motorway intersections. One such region is the millimetric waveband around 60GHz 

for providing integrated personal communications and a wide range of digital 

services to mobile users and data terminals. Currently, much interest has been 

generated concerning the use of this band for mobile communication [5] -and 

establishing in future, local cellular radio network (LCRNs) which could provide a 

broad range of wideband services in both urban and suburban areas [6]. 

Furthermore, this band has the potential for interference-free frequency re-use at a 

few kilometres separation and the potential for small size moderate gain aerials. 

However, this frequency band is unsuitable for long range communications because 

of the 10 to 16db/km attenuation due to oxygen absorption. With recent advances in 

Gallium Arsenide (GaAs) technology and signal processing, the use of 60GHz in 

broadband short range point-to-point links is also the subject of much investigation 

at the moment[7]. There are also several other applications at 60GHz such as 

wideband local radio networks and intersatellite links[8]. 

As in other areas of communication systems, detailed knowledge of the 

propagation characteristics of 60GHz transmission are required before comprehensive 

system studies can be undertaken with any degree of confidence. At 60GHz, there is 

currently very little propagation data available [9,10]. The work described here, 

which is the subject of this thesis, is concerned with propagation measurements 

conducted both within buildings and outdoors in order to determine the narrowband 

propagation characteristics. The method of measurements were designed to simulate 

the type of usage expected from the integrated portable communication systems 
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operating at 60GHz. Also, within buildings, the bit error rate performance using 

FSK through a 60GHz radio link under fading and non-fading conditions was 

measured. 
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CHAPTER TWO 

COMMUNICATIONS AT 60 GHz 

Given the congestion in the mobile radio frequency bands below 1 GHz, there 

is currently significant interest in the millimetric waveband around 60GHz for 

providing integrated personal communications and a wide range of digital services to 

mobile users and data terminals. Furthermore, with recent advances in Gallium 

Arsenide (GaAs) technology and signal processing, the use of 60GHz in broadband 

short-range point-to-point links is also the subject of much investigation at the 

moment. [ 1] However, this frequency band is unsuitable for long range 

communications because of the 10 to 16dB/km attenuation due to oxygen absorption. 

This chapter describes the millimetre wave spectrum and the possible applications at 

60GHz. 

2.1 MILLIMETRE-WAVE SPECTRUM 

As the propagation frequency is increased above 1 GHz, wider bandwidths 

are available, but most of the lower part of the gigahertz band is already occupied 

by other communication systems such as analog and digital radio relay systems [2]. 

Fig. 2.1 shows the frequencies already allocated to fixed and mobile communication 

systems by the International Telecommunication Union (ITU)[3]. In the millimetre 

bands more frequency spectrum is unused particularly at frequencies where high 

atmospheric absorption occurs. These frequency bands offer large unexploited 

bandwidths which could accommodate a large number of users. 

At millimetre-wave frequencies, the high attenuation due to gas molecules 

and precipitation present in the atmosphere could restrict their use for long range 

terrestrial communication links. When an electromagnetic field is incident on the 
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molecules of oxygen, water vapour or rain, a change in their total angular 

momentum causes transitions between their energy states [4]. For oxygen molecules, 

these transitions are found in the range from about 50 to 70GHz and result in the 

absorption of a broad range of frequencies centred at 60GHz (band A 1) and also a 

narrow range centred at 118GHz (band A2). For horizontal radio paths, fig. 2.2 [5] 

shows the oxygen absorption at various altitudes for a standard atmosphere. At sea 

level, the air pressure causes all the absorption lines to merge to form a continuous 

absorption spectrum with the maximum absorption at the centre of the band, while 

at high altitudes, where the air pressure is low, the individual absorption lines are 

resolvable, each being a few megahertz wide. The attenuation is as high as 16dB/km 

at 60GHz due to oxygen absorption. 

Fig. 2.3 shows the atmospheric attenuation versus frequency. For band A 1, 

the attenuation due to oxygen absorption reaches a peak value and the attenuation 

due to water vapour is a minimum when compared to band A2 [6]. For a moderately 

humid atmosphere at the earth's surface, the attenuation due to water vapour for a 

horizontal radio path varies from 0.1 to 0.2dB/km for frequencies between 50 to 

70GHz, which is insignificant compared to the oxygen attenuation. Therefore, band 

Al is more preferable for communications systems than band A2, especially at 

60GHz where peak oxygen absorption occurs. The 60GHz oxygen absorption 

spectrum is quite stable with time since it does not depend on weather conditions, 

making it a useful frequency range for applications requiring a high attenuation 

beyond the normal service area to reduce co-channel interference. On the other 

hand, bands with absorption peaks due to water vapour, which occurs at 22GHz and 

200GHz, are very dependent on weather conditions, so should be avoided. 
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Rain attenuates and scatters radiowaves causing rapid phase and amplitude 

fluctuations and signal depolarisation. The estimation of rain attenuation is well 

documented in the literature [6,7]. At centimetre and millimetre wave frequencies, 

Bodtman and Ruthroff [7] have computed the rain attenuation coefficients for 

different rainfall rates and their results are shown in figure 2.4. From this, it can be 

seen that rain attenuation increases with both frequency and rain rate. This 

attenuation is about 10dB/km for 25mm/h of rain at 60GHz. During very heavy 

rain, the extra attenuation can equal or exceed the oxygen absorption at 60GHz. 

Also at 60GHz, Dietrich and Delango [6] have measured the rain attenuation for the 

year 1970 over a 1.03km long path at Holmdel, New Jersey. Their experimental 

results along with the computed outage time for which the rain attenuation exceeds 

a certain level are shown in figure 2.5. About 99.9% of the time, rain attenuation is 

less than or equal to 9dB. One way of combatting this extra attenuation due to rain 

is to simply over-design the system. 

2.2 MILLIMETRE-WAVE TECHNOLOGY 

Microwave and millimetre wave equipment is benefiting from higher levels 

of component integration in micro-strip, fin-line and semiconductor chip 

technologies as well as from material advances. In the millimetre region [8], alumina 

has been introduced as the substrate material for microwave integrated circuits 

(MIC's). Systems for high capacity millimetre wave transmission through a low loss 

waveguide are also being constructed [9]. 

Several significant developments have been reported on millimetre wave 

devices. For example, there is a continued advance of various forms of Field Effect 

transistors (FET's) to achieve higher gains, higher power outputs, and low noise 

figures at higher frequencies so that they can be successfully used as oscillators, 
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power amplifiers and low noise amplifiers. Previously, microwave oscillators and 

amplifiers have been based on one port devices such as Gunn or IMPATT diodes. At 

microwave frequencies, these generally have lower efficiencies as oscillators and 

power amplifiers, and higher noise figures as low noise amplifiers when compared to 

Gallium Arsenide Field Effect Transistors (GaAs FET's). At the moment however, 

GaAs FET's lose these advantages above about 30GHz, although this frequency is 

being continually increased with the use of smaller gate lengths. A gate length of 

0.25µm has been developed which has resulted in gains of about 5dB from 55 to 

62GHz with noise figures of about 7dB at 60GHz [10]. Different transistor structures 

and materials other than GaAs have been proposed which are believed to be able to 

offer even better performance. These FET advances are being incorporated into 

monolithic microwave integrated circuits (MMIC's) formed on semi-insulating GaAs 

to achieve very wide bandwidth performance [111. Future communication systems 

operating at 60GHz are expected to require MMIC technology for the transmitter 

and receiver. Monolithic transmitters and receivers are already under development at 

20 and 30GHz and in time, should be available at 60GHz. 

At present, low-noise balanced mixer-preamplifiers are available for full 

coverage of the 40-60GHz and 50-75GHz wavebands. Improved receiver designs [12] 

at 55,100 and 205GHz have achieved noise figures of 5dB, 7dB and 9.5dB with 

conversion losses of 2.9dB, 7.2dB and 9.5dB respectively. 

Advances in technology have now permitted the construction of compact 

transmitting and receiving systems for communication applications. The compactness 

of the RF components (aerial, transmitter and receiver) at millimetre wave 

frequencies reduces the size and weight of the equipment. A millimetric front end 

transceiver could be attached, for example, to a lamp post for applicati«'ns such as 
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outdoor portable communication systems. Equipment costs at millimetre wave 

frequencies are still comparatively high, although advances in solid state technology 

and innovative design will reduce these costs in the future [13]. 

2.3 DESCRIPTION OF CELLULAR RADIO 

In cellular systems, the total allocated spectrum is divided into a number of 

channels. Each set of channnels is allocated to several users in different locations or 

cells, separated by a distance known as the re-use distance such that the co-channel 

interference is kept to a minimum. As the demand increases, the number of channels 

assigned to a cell becomes insufficient to provide the required grade of service. To 

overcome this problem, the congested cells can be subdivided into smaller cells (i. e. 

cell splitting), the aerial height and transmitted power of the new base station can be 

reduced and the channel sets can be re-allocated in a similar manner as before. As 

the cell size decreases, practical limitations on the overall system performance 

increase such as the handover rate between adjacent base stations as the mobile 

crosses through the cells. Also, the requirement to keep the co-channel interference 

to a minimum becomes a problem. The number of available channels per cell is 

given by [14] 

Number of channel/cell =B NS (2.1) 

where B is the total bandwidth, N is the number of cells per cluster and S is the 

channel bandwidth. 

Fig 2.6 demonstrates a cell pattern for N=7 along with the set of co- 

channel cells assuming a hexagonal layout. If the operational range, Ro, is the 

maximum distance from the cell centre to the cell boundary, and the interference 

- 10 - 
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range, Ri, is the distance between the centres of the closest co-channel cells, then 

the cochannel reuse distance is given by [14] 

Ri 
_ 

3N 
(2.2) 

0 

2.4 PORTABLE COMMUNICATION SYSTEMS 

2.4.1 Introduction 

Portable communication systems have been proposed in the literature at 

60GHz by Steele [15], and generally by Cox [16]. In the future, integrated portable 

communication systems operating at 60GHz could be accomplished by using a radio 

link at the end of the telephone loop, so that the 60GHz mobile links would be an 

integrated part of the telephone distribution network. They would offer nationwide 

coverage, access to a Public Switched Telephone Network (PSTN) and the ability for 

the users to move from one place to another. This is the only effective way of 

communicating with people on the move for the transmission of data and speech 

within restricted areas both within buildings and outdoors. Every communication 

terminal, eg a portable telephone, a computer terminal etc, would communicate with 

a fixed radio port by a short distance, high capacity, low power mobile radio link. 

Many portable handsets and data terminals could communicate simultaneously from 

a single distribution port. 

In this integrated portable communication system, multi-channel distribution 

ports need to be connected to a central switching office (CSO) for switching of 

voice and data and for controlling the channel allocation of the ports. Since the 

coverage area of the multichannel distribution ports would be small at 60GHz due to 

its limited transmission range, the probability of the portable users moving from one 

service area to another is high. Therefore, the strength of the signal in the existing 



service area would have to be constantly monitored over the channels by the central 

switching office and compared with the standard level of the signal strength. If the 

signal gets weaker and goes below the standard, the central switching office would 

transfer the call to a vacant channel that would give a better signal either in the 

same service area or the adjacent service area. At the same time, the fixed radio 

port in that service area would direct the portable users handsets to switch to a 

newly assigned channel. This would be done by the portable handset automatically 

and the CSO would check to see that the switch had taken place. This process is 

called handover. 

The switching equipment also needs to be able to communicate rapidly with 

switching equipment in adjacent service areas in order to coordinate handover of 

moving portable from one service area to another when necessary. Fig. 2.7 illustrates 

several multi-channel distribution ports both within buildings and outdoors 

connected to central switching office equipment and PSTN's. Each central switching 

office would be connected and controlled from the PSTN in order to allow 

connection to national and international subscribers. The connection between two 

central switching offices in the network would support the incoming call to be 

routed to another user wherever located. The ports should be completely compatible 

both within buildings and outdoors so that the same portable set could be used in 

both environments. These radio ports would allow wideband coverage of locations 

such as shopping centres, travel terminals, offices, factories, domestic buildings and 

major roads and motorways. 

In the future, inexpensive miniature millimetre-wave portable handsets 

would become available. The users might have hand-held portables which resemble a 

folding wallet which can be placed in their pockets. Each user would be assigned a 
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special identification number when they have purchased a portable set. Therefore 

the user must have a more complex multichannel handset than is available for 

current cordless telephone. This new system would provide cordless portable 

communications to people moving about, no matter where they are located within 

the service area. However, this system requires to identify people who move from 

one radio coverage area to another rather than identify places as with the present 

telephone network. The concept would be similar to the present cellular systems [14]. 

In future, wideband optical fibre distribution networks could be used to 

replace the existing telephone networks, since they can transmit at a rate of over a 

gigabit per sec. This would require the installation of optical fibres in every building 

where people reside. 

Outdoors, the radiation could be from street lamp elevation while within 

buildings, the radiation could be from fixed radio ports attached to the ceiling 

within office rooms and corridors. The coverage of fixed radio ports is determined 

by the radiated power and the propagation exponent. Service areas would overlap, 

and the small coverage area would increase frequency reuse and handover between 

service areas. Since power is radiated over relatively short distances compared to the 

present cellular system, the delay spread should be small, allowing high data rates 

without problems due to intersymbol interference, and the received envelope is 

expected to have a Rician PDF. 

The fixed radio port must be configured to reuse radio frequencies 

efficiently. Each radio port would use a group of frequencies sufficiently different 

from the frequencies in use in the adjacent radio port to avoid interference. The 

strength of radio signals generally decreases as the distance between transmitter and 
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receiver increases so that the frequencies can be reused for radio ports having 

sufficient separation. Therefore the reuse of radio frequencies throughout the service 

area is necessary to ensure the efficient use of radio spectrum. At 60GHz, the 

radiated energy is strongly attenuated by oxygen molecules, and, for the low 

transmitted power levels and small coverage areas that are being considered, the 

radiated signals are unlikely to propagate into different service areas using the same 

frequency, so co-channel interference should be significantly decreased compared to 

other frequencies where atmospheric absorption is negligible. However, frequency 

reuse in the portable communications environment is complicated by large variations 

in signal level both within buildings and outdoors. This occurs because the 

transmitted signals are attenuated by the materials in the walls and ceilings within 

buildings and experience multipath propagation between the radio ports and portable 

sets. The coverage area needs to be shaped to suit the local geography and a wide 

variety of environments need to be considered. This can be done by using suitable 

types of aerials, correct location of the radio ports and control of the radiated power 

level. Space diversity can also be used without making the hand-held transmitter 

cumbersome since the aerials have to be separated by a distance greater than half 

the carrier wavelength, and at 60GHz the carrier wavelength is only 5mm. 

2.4.2 System Configuration within Buildings 

At certain times, the density of users within some buildings, especially in 

city areas, may be much higher than the density outdoors, except for rush hour 

periods. Many users move around multi storey buildings and therefore, there is a 

need for personal portable communications throughout buildings. However, all 

telecommunication facilities used in offices, are still dependent upon a cable to 

connect them to the network system. Even though cordless telephones have become 

popular for use at home, they are not part of an integrated portable communication 
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system. Cordless telephone sets consist of two separate units, a base unit and a 

handset. Communication between the handset and base unit, which is connected to a 

telephone line, is by a low powered two way duplex radio link. There are several 

limitations on the present cordless telephone systems, for example limited user 

density, excessive co-channel interference, a very limited service area of a few 

hundred metres radius because of the low powered handset and limitations on data 

handling. These limitations are no longer true for the proposed integrated portable 

radio network because when users move out of the buildings, they can communicate 

through the fixed radio ports outdoors. 

Distribution networks located outside buildings do not appear feasible at 

60GHz due to the large attenuation of the radio waves through walls and other 

partitions because the exterior and interior building walls act as shields. This 

requires the fixed distribution network to be placed inside buildings. 

One important application within buildings is office communications using 

the Private Branch Exchange (PBX) system. The PBX would be connected to multi- 

channel fixed radio ports radiating 60GHz signals to various devices such as portable 

handsets or computer terminals. At the PBX, the digital switching network uses a 

control processor to provide switching connections between any pair of devices, with 

voice or data circuit switched. It also uses a control processor to set calls, switch 

signals, and control peripheral equipments. 

These fixed radio ports could be distributed throughout buildings as shown 

in Fig. 2.8. Radio ports may be required in each room or floor depending on the 

type of partitions used. Each individual would be able to move about the building 

and never be out of range of the telephone. Moving an office or a desk would not 
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involve moving a telephone connection or waiting for a new telephone number to be 

assigned. For new buildings, the telecommunications facilities can be built in, along 

with the plumbing and electricity, while construction is under way. Fig. 2.8 also 

illustrates the portable hand sets and data terminals communicating by short radio 

links through fixed multi-channel radio ports hanging from the ceiling using an 

omnidirectional aerial. Communications between distribution ports and the portable 

handsets or data terminals are accomplished by radio links operating at 60GHz as 

indicated by the dotted line. 

Distributing radio ports throughout a building would permit frequency reuse, 

which would significantly increase the user density due to the smaller coverage area. 

One radio port could serve an area as small as an office or as large as one or more 

floors. 

2.4.3 System Configuration Outdoors. 

When the users move out from the building, with the portable 

communication scheme, they can communicate with the outside radio ports using the 

same portable handsets or data terminals. The outside ports would require the aerial 

to be mounted at the height of street lights or traffic signals. The height of street 

lights is lowest in suburban areas and highest along motorways. The radio coverage 

area around the port would be approximately circular if omnidirectional aerials are 

used provided that there is no obstruction between the port and the portable unit. 

60GHz signal do not propagate significantly around obstacles such as buildings. 

Within urban areas with a high density of buildings, the radio signals within 

the streets will be substantially limited. A possible arrangement of the distribution 

ports in the streets between the buildings is shown in figure 2.9. Frequency reuse 
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within buildings can be combined with frequency reuse in the streets and the overall 

system would be controlled by the central switching office. 

Possible distribution networks along roads are shown in Fig. 2.10, where 

directional aerials are used. [17] These would limit the total radiated power, and help 

to reduce the multipath fading and would lower co-channel inteference. The 

beamwidth of the directional aerial should not be too narrow otherwise a 

misalignment of the radio port and portable set can occur. The radio signals are then 

radiated from fixed radio ports distributed along the roads at lamp post heights. By 

using this configuration, the distance between two fixed radio ports becomes farther 

apart and the radiated area stretches out along the road, thereby reducing co-channel 

interference. In addition, the interference from forward ports is small due to the 

radiation in one direction. Furthermore, the transmissions are more likely to have a 

strong line-of-sight' radiated component and shadow fading is likely to have less 

impact on system performance unless a lorry or a van blocks the LOS path. 

At road junctions, radio ports using omnidirectional aerials can be used as 

illustrated in figure 2.11. In order to provide a service within tunnels at 60GHz, the 

fixed radio ports could be placed at various points along the roof of the tunnels, 

although some would be required to radiate at the openings. Directional aerials could 

be used at the radio ports. 

2.5 OTHER APPLICATIONS AT 60GHz. 

Other applications are also possible at 60GHz. The large amount of available 

bandwidth and the reduced co-channel interference [18] make the 60GHz band 

suitable for short distance line-of-sight links, such as wideband temporary links or 

local distribution networks. These include the distribution from nodes of optical 
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fibre and trunk systems, and local area communication systems for industrial estates, 

harbours, airports etc. Intersatellite communications have also been proposed at 

60GHz [19] which have the advantage of the earth's atmosphere acting as a natural 

shield against interferences between intersatellite and terrestrial communication 

systems. 

For point-to-point communication links, the equipment could easily be 

mounted on a flat roof, or could even be allowed to radiate through a window for 

temporary links. At 60GHz, a small aerial provides high gain and a narrow 

beamwidth, and the equipment will be compact. 

Wideband services would be required mainly in city centres, commercial 

areas and industrial areas. The possible form of Local Distribution Networks (LDN) 

is shown in figure 2.12. The distribution network would be a link to a PSTN by 

optical fibre. The system must be installed on a tall building having a flat roof 

suitable for accommodating several transceivers simultaneously. The line-of-sight 

path must not be obstructed between the transceivers. Because of oxygen absorption, 

frequencies could be reused a few kilometres away without interference so the 

spectrum can be utilised efficiently. Point-to-point communication links could be 

realized by employing high directivity aerials installed on tall buildings so that 

interference to and from portable communication users would be minimal. 

As mentioned in section 2-1, at high altitudes, the individual oxygen 

absorptions lines are resolvable at 60GHz causing absorption windows to appear. 

These absorption windows can be used for inter-satellite links which shield against 

interference from ground users such as portable and point-to-point communication 

systems. Compared to lower frequency links, 60GHz offers reasonable aerial size, 
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large available bandwidth, and freedom from interference from other users. 

Approximately 9GHz of bandwidth, near 60GHz, are currently allocated for inter- 

satellite link applications [16]. It is expected that 60GHz inter-satellite links will 

have a significant role in future satellite communication applications. At present, the 

applications of inter-satellite links have been primarily experimental, involving 

relatively short distances and low data rates. 
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CHAPTER 3 

PORTABLE MOBILE RADIO PROPAGATION ENVIRONMENT. 

The portable mobile radio environment is qualitatively similar to the cellular 

mobile radio environment. The difference is that in the portable radio environment, 

the aerials are located both within buildings and outdoors. Furthermore, the aerial 

heights are lower and the distance between the transmitter and receiver is shorter 

than for the cellular mobile radio case. Because of the high attenuation due to 

obstructions, the coverage distance of fixed radio ports at 60GHz is likely to be less 

than 30m within buildings and less than 200m outdoors. Outdoors, the radio ports 

could be at lamp post height (about 8m) and indoors, they could be at ceiling height 

(about 3m). 

3.1 MOBILE RADIO ENVIRONMENT. 

In the portable radio environment, the signal would be transmitted or 

received from fixed radio ports to portable handsets or data terminals. Objects that 

have dimensions which are much greater than a wavelength become scatterers, which 

create reflected waves. The reflected waves come from different directions and 

result in many propagation paths existing between the fixed radio port and the 

portable handset with different time delays and different attenuations. The received 

signal is the vector addition of the direct wave and the many reflected waves. When 

the mobile handset is in motion, the relative phases of the direct wave and the 

reflected waves vary, so the magnitude of their vector addition fluctuates. Since 

fades tend to occur every half wavelength of travelled distance, these fluctuations 

are very rapid, so this phenomenon is called 'short term fading' or 'fast fading'. 

Superimposed on this short term fading is fading which is mainly cause by changes 

in the parameters of the environment, which cause changes in diffraction losses 
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around obstacles. Since appreciable changes in signal power occur after movements 

of many wavelengths, this type of fading is called 'long term fading' or 'slow fading' 

There will be quite a lot of difference between systems operating within 

buildings and outdoors. The outdoors environment will have fast moving vehicles, 

and the difference in path lengths is likely to be longer. Within buildings, it may be 

expected that applications such as integrated portable communications, where there 

is a significant number of mobile users, will create high traffic densities. The 

spacing between reflectors such as partition walls will be in the order of three to 

twenty metres. The users and the furniture will provide additional reflectors, 

creating a multipath environment. 

The received signal power can be represented as a function of distance or 

time. A typical plot of the received signal power as the mobile receiver moves away 

from the fixed transmitter is shown in figure 3.1. The fluctuations which occur 

about the mean signal power are caused by constructive and destructive interference 

of the direct and many reflected waves as the mobile moves. When the operating 

frequency is increased, the fluctuations become more rapid. 

Propagation is also dominated by the effects of shadowing where the mean 

signal power varies slowly and is apparent over distances large compared to a 

wavelength. The average received signal power also decreases as the mobile receiver 

moves away from the fixed transmitter. The decrease in average signal power with 

distance is one of the major parameters of interest in the analysis of radio wave 

propagation for mobile communications. 
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If the signal bandwidth is restricted to being much less than 1/(delay spread), 

then narrowband signal description and statistics are all that is required. These can 

be determined from measurements at a single frequency within the signal 

bandwidth, because the multipath fading is virtually frequency independent over 

this bandwidth. 

3.2 MULTIPATH FADING. 

3.2.1 Causes of Multipath Fading. 

Multipath fading is caused by multiple reflections of a transmitted wave by 

local scatterers such as furniture, ceilings, walls, and buildings surrounding the 

mobile unit. In order to illustrate the causes of multipath fading, a fixed transmitter 

and a mobile receiver will be assumed. If the mobile receiver is surrounded by many 

moving objects, the received signal will experience fading depending on the distance 

between the object and the receiver as illustrated in figure 3.2. 

If the receiver is moving at a velocity of v with no scatterers (figure 3.3) 

around the receiver, the received signal, Rr, can be represented as 

Rr = A. exp[ j2n(ft -- cos9)t] (3.1) 

where A is the amplitude of the received signal, ft is the transmission frequency, A 

is the wavelength and 0 is the angle of arrival of the incoming wave relative to the 

direction of motion of the mobile. However, if there is a perfect reflector ahead 

close to the moving receiver (figure 3.4) and the angle of arrival of the incoming 

wave is 00 and the angle of arrival of the reflected wave is 1800, the resultant 

received signal is the sum of two waves, which is given by 
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R=A. exp 
j2Trt 

+ A. ex 
2n"t 

rA p( 3) 
exp( j2nfttj (3.2) 

The envelope of the received signal becomes 

I Rr I= 2A. cos 
27rvt 

J (3.3) 

This results in the standing wave pattern as shown in figure 3.4. 

Now if there is no direct wave, but there are N reflected waves coming from 

N different directions and arriving at angles which are evenly distributed around the 

receiver as shown in fig. 3.5, the received signal will become 

N 

Rr =Z Aiexp(j2Trftt). exp 
j2nvAcosei 

i=1 

(3.4) 

where A. is the amplitude of the i'th wave, and Bi is the angle of arrival of the i'th 

wave which is randomly distributed from 0 to 2ir. 

The resultant received signal is itself a random quantity and varies rapidly 

when the mobile receiver moves a few wavelengths, which results in multipath 

fading. The rate of variation of the multipath fading is directly related to the mobile 

speed. In moving through this environment, the mobile receiver experiences fading 

with amplitude variations of typically 20dB and usually ranging from 10 to 35dB [1], 

the actual amount being dependent on the environment. Minima in the standing 

wave pattern tend to occur at a separation of about half a wavelength. The fading 

pattern for this condition is shown in figure 3.5 and is found to have a Rayleigh 

distribution at VHF and UHF [1,2]. However, when a LOS path is present between 
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the transmitter and receiver, then the envelope of the received signal has been 

shown to follow a Rician distribution [5]. 

3.2.2 Doppler Frequency Shift. 

Associated with the multipath fading is a Doppler frequency shift due to the 

motion of the mobile. The magnitude of the doppler shift depends upon the carrier 

frequency, the mobile velocity and the angle of arrival of the direct or reflected 

waves relative to the direction of motion of the mobile. From equation 3.1, the 

doppler shift is given by 

f=V. cose 
dA 

(3.5) 

The received frequency, fr, is offset from the transmitted frequency, ft, by the 

doppler frequency, fd, as the mobile unit moves. The received frequency is given by 

f =f -f rtd (3.6) 

When the mobile unit is moving away from the transmitter (fig 3.6) at 0= 00, the J 

received frequency is fr = ft-v/a. When the mobile unit is circling around the 

transmitter, 0= 900, so there is no doppler shift and therefore fr = ft. When the 

mobile unit is moving towards the transmitter, then 0= 1800, so fr = ft + v/a. A 

table of the maximum doppler shift (Hz) at 60GHz for various speeds is given in 

Figure 3.7. 

3.2.3 Envelope Properties of the Multinath Fading. 

Since multipath fading is difficult to predict, statistical data on the time 

variation of the received signal is required. The envelope of the received signal 
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when there is no line-of-sight (LOS) path between the transmitter and receiver is 

Rayleigh distributed [3,4] with a probability density function given by 

2 

p(r) =r exp ( 
2b 

) for r >, 0 
00 

p(r) =0 for r<0 (3.7) 

where r is the signal envelope and bo is. the mean signal power. The Rayleigh 

distribution describes the first order statistics of the envelope. From equation 3.7, 

the cumulative distribution function (CDF), i. e. the probability that the envelope is 

below any specified value, R, can be derived as [3] 

P(R) = prob (r<R) =1 - 
R2 

exp C-9-) 

0 
(3.8) 

A plot of P(R) plotted on Rayleigh paper produces a straight line as shown 

in figure 3.8. From this, it is possible to find the overall fraction of time for which 

the signal envelope is less than any specific value. 

If the mobile receiver is in direct line-of-sight with the fixed transmitter, 

the received signal will consist of a relatively strong direct component plus much 

weaker reflected components, and the PDF can be obtained by the application of the 

theory developed by Rice [5] for a sine wave accompanied by narrowband Gaussian 

noise. 

The PDF of the signal envelope is then known as a Rician distribution and 

may be expressed as [5] 
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p (r) =r exp r2 + Q2 
I rQ 

bo 200ö (3.9) 

where r is the envelope of the fading signal, bo is the average power of the fading 

signal, Q is the amplitude of the direct wave, and IO(x) is the modified Bessel 

function of zero order. 

Fig. 3.9 is a graph of the Rician PDF of a fading envelope. When Q is large 

(graph C), Q2/2bo » 1, equation 3.9 becomes a Gaussian distribution and when the 

direct line-of-sight path does not exist (graph B), Q becomes zero and equation 3.9 

becomes the Rayleigh PDF. 

Practically, the statistical distribution of the received signal envelope can be 

determined from the digitised recorded data. A typical plot of the multipath fading 

of a digitised recorded signal is shown in figure 3.10, with N sample points. The 

vertical axis is in dB which is equally divided into I dB intervals. In order to obtain 

the PDF, the number of data in each interval is counted and plotted against the 

corresponding level. The percentage of the signal within a particular interval can be 

calculated by dividing the number of samples in that interval by the total number of 

samples. The PDF generated from experimental data in dB needs to be converted to 

linear values before it can be compared with the theoretical distribution. 

In order to determine the CDF of the received signal envelope, the number 

of samples, N, can be counted below each level. These levels can be plotted on 

Rayleigh paper which produces a straight line for the Rayleigh distribution. 
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3.2.4 Level Crossing Rate and Duration of Fades. 

The PDF and CDF are both first order statistics and by definition are not 

functions of time. The PDF and CDF of the Rayleigh distribution are related to 

non-direct wave components whereas for the Rician distribution, they are related to 

non-direct waves plus a direct component. Second order statistics are functions of 

time, and examples are the level crossing rate and the average duration of fades. For 

the mobile radio situation in which waves are assumed to arrive from all directions 

with equal probability, and for Rayleigh fading, it can be shown that the level 

crossing rate of the electric field component is given by [3] 

2 

N(R) =b fmR. exp 
_R 

00 
(3.10) 

From equation 3.10, it can be seen that the number of crossings per second depends 

on the mobile speed due to the presence of the Doppler Shift, fm, For the same 

mobile speed, the level crossing rate is directly proportional to the carrier frequency. 

By dividing the cumulative distribution (i. e. the total fraction of time that 

the envelope r is below a given level) by the crossing rate, N(R), the average fade 

duration is obtained. Therefore the average duration of a fade below R is P(R)/N(R) 

2 

1- exp C- 
2 

0 
N(R) 

By substituing for N(R), the average duration of fades below any level R is 

2 

bo exp [ 2b )-1 

0 
7t fR 

m 

(3.11) 

(3.12) 

ITY 
TOt 
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From equation 3.12 it can be seen that the fade duration at a constant mobile speed 

is inversely proportional to the carrier frequency. 

3.2.5 RF and Baseband Power Spectrum of Fading Signal 

The RF power spectrum of the electric field component for vertical 

polarisation is theoretically given by [3] 

3b 
SEZ (f) = (3.13) 

2Trfm 
1f- ft 2 

f 

where fm is the maximum doppler shift, ft is the transmitted frequency and b is the 

average power that would be received by an isotropic aerial. 

The spectrum of a single frequency component received via multipath 

propagation is shown in figure 3.11a. It is centred at the transmitted carrier 

frequency and has a bandwidth of twice the maximum doppler shift. The additional 

presence of a direct component appears in the R. F spectrum as a single frequency 

(the line in figure 3.11b). The frequency of this is that of the doppler shifted 

transmitted frequency. 

The spectrum of the received signal envelope is given by [3] 

S (f) = 
b° 

K 1- 
f2 

Ez 8nf 2f 
mm 

(3.14) 

where bo is the average power, fm is the maximum doppler shift and K(x) is the 

complete elliptic integral of the first kind. This is a baseband spectrum as shown in 

figure 3.12a and shows that a sharp cut-off frequency exists at twice the maximum 

doppler frequency. This implies that the maximum doppler frequency, and therefore 
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the mobile speed, is constant. However, if the mobile speed and therefore fm varies, 

the resulting spectrum will appear smeared and will not show a clearly defined cut- 

off frequency. 

The presence of a direct component in the received signal alters the spectral 

shaping as shown in figure 3.12b, and results in two distinct peaks occurring at 

frequencies f=f, � (1 +/- cosO) where 0 is the angle of arrival of the direct wave 

relative to the direction of motion of the mobile. 

3.2.6 Effect of Multipath Fading. 

In the fading environment, the receiver will experience difficulty in 

receiving information undistorted. The fast amplitude variations severely impair the 

quality of the signal being received. Amplitude modulated signals under fading 

conditions suffer multiplicative modulation by the fading waveform. This can be 

reduced by using AGC, which detects the amplitude of the carrier and feeds this 

back to change the gain of the RF and/or IF amplifiers. However, AGC is not very 

effective at removing fast fades, because the feedback loop tends to become unstable 

if the speed of the AGC is increased. 

The rapid fading tends to eliminate the capture properties of frequency 

modulation systems. In addition, doppler shifts result in random FM, and the deeper 

fades usually coincide with rapid phase changes which produce demodulated 

frequency components greater than the theoretical maximum doppler shift. Also the 

fading causes a random capture of the F. M. receiver, resulting in increased baseband 

noise. Furthermore, the effect of multipath fading depends largely on the speed of 

the mobile receiver. The higher the speed, the faster the fading. 
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3.3 PROPAGATION PATH LOSS. 

3.3.1 Received Signal Power in Freesaace. 

In the absence of obstacles blocking the line-of-sight radio path, the power 

received by an aerial separated a distance d from a transmitting aerial is given by [6] 

2 

Pr Pt 4itd 
Gt ' Gr (3.1S) 

where Pt is the transmitted power, Pr is the received power, Gt is the gain of the 

transmitting aerial, Gr is the gain of the receiving aerial and A is the wavelength. 

Therefore, the freespace propagation power loss experienced by a signal is 

proportional to the square of the frequency, and to the square of the distance. 

However, even in a simple idealised model of mobile propagation, the earth's surface 

must be taken into account. The radio waves are modified by the ground due to 

ground reflections, so that the propagation path loss is usually greater than would be 

expected in free space. 

3.3.2 Received Sienal Power in freesaace with Ground Reflection. 

Consider propagation over a flat earth with no obstructions between the 

transmitter and receiver, such that a direct and a reflected component of equal 

magnitude are present (figure 3.13). These two components interfere, so the resultant 

signal amplitude depends on their relative phases. This simple model will later be 

developed into a more representive model for 60GHz propagation. 

From equation 3.15, mcdified to take the reflected component into account 

[3], 

- 32 - 



s 

0 

T 
v 

U 
I) 

0 

z 

o0 

0 
2 

u41 
s 

U-0 

tn 
r 
M 

0 
1Y 



P .G .G 2rth hr 
Pr =tt24. si n2 Adt 

r] 

C4n ) -d 1 
A 

where ht is the height of the transmitter and hr is the height of the receiver. 

(3.16) 

At UHF, where a large cell radius is used, the received power is often 

assumed to be proportional to 1/d4 . This can be shown to be true with the 

following example. 

Assume that the height of the transmitting aerial (ht) is 30m, the height of 

the receiving aerial (hr) is 1.5m and the distance (d) between the transmitter and the 

receiver is 5km. These are typical values for a 900MHz cellular radio system. In this 

case the argument of the sine term of equation 3.16 is small (equal to 0.17), so 

Sin 2Trhth' 2Tththr 
Ad Ad (3.17) 

Substituting this in equation 3.16, 

P Gr Gt 21chth 
rt2 Pr 

4ird 2 . 4. 
Ad «d4 (3.18) 

C 
Thus, when the distance d is large, the received signal power should be 

proportional to 1/d4 . Practical measurements have approximately confirmed this. 

Field measurements near 900MHz in three different cities made by independent 

workers in Kanto and Tokyo [7], New York [2], and Philadelphia [8], showed that 

the propagation loss was proportional to I/d", where x was always less than 4 and 

greater than 2 and was dependent upon the distance d relative to the base-station 

aerial height. For example, Black [8] found that the median signal power tends to 

fall off as 1 /d3 (i. e x =3) for distances greater than l to 2 miles from the base 
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station aerial. Generally, the propagation exponent is dependent on the nature of the 

earth and usually has a value of 3.2 to 3.8. 

A comparison can be made theoretically at 60GHz with ht equal to 8m (lamp 

post height), hr equal to 1.5m, and d equal to l km (about the maximum achievable 

without excessive attenuation due to oxygen). The argument of the sine term of 

equation 3.14 (equal to 15) is no longer small even at this large transmission 

distance, so the 1 /d4 power law is not applicable at 60GHz. 

A graph of received power against distance would be of the form shown in 

figure 3.14. The maxima are due to constructive interference between the direct and 

reflected components, and the minima are due to destructive interference between 

them. In practice, infinite attenuation does not occur at the minima because the 

reflection coefficient of the ground, i. e., the ratio of direct and reflected E-field 

components, is less than unity. At 60GHz, this is due to the surface roughness of the 

ground, which is appreciable compared with 5mm wavelength, and due to low 

ground conductivity. In order to determine whether the surface will give specular 

reflection, the Rayleigh criterion can be used, which is given by [3] 

C= 4no0 
A 

(3.19) 

where a is the standard deviation of the surface irregularities and 0 is the angle in 

radians between the incident wave and the surface. Experimental evidence [11] 

suggests that if C is less than 0.1, then there is specular reflection and the surface 

can be considered smooth, while if C is greater than 10, the surface is considered to 

be rough, so the reflected wave is almost insignificant. A low reflection coefficient 
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is desirable because it results in a higher received power level, hence a higher SNR, 

at positions of destructive interference. 

3.3.3 Received Signal Power and SNR with Obstructions and Oxygen Absorption. 

If the reflected component is assumed to be negligible, a1 /d2 power law 

results given by equation 3.15. If in addition to this law, the absorption due to 

oxygen and rain [section 2.1] is included, as well as an obstruction attenuation 

factor, a, the received power is given by 

p=t"t 
"P 

. exp(-k d). exp(-k d). a 
r 41Ld 2r 

A 

(3.20) 

where ko is the oxygen attenuation in nepers/m and kr is the rain attenuation in 

neper/m. In dB's with )º = 5mm at 60GHz, 

P =P(dBW) +G(dB) +G t 
(dB) 

rtr 

- (Kr +K o) 
(dB/km)d. (km) 

- 201og10d(km) 

- A(dB) - 128. (3.21) 

where KO is the oxygen attenuation in dB/km, Kr is the rain attenuation in dB/km 

and A is the obstruction attenuation factor in dB. 

To find the signal to noise ratio (SNR), the received noise power must be 

evaluated, which is given by [4] 

Ný = 1010910 (kä B) (3.22) 
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where k is Boltzman's constant (1.38x 10"23 J/K), - Ta is the aerial noise temperature 

(approximately 290K at 60GHz) and Bis the noise bandwidth (Hz) of the receiver 

IF. Thus 

Nr =- 204 + 101og10 B� (dBW) (3.23) 

Taking a noise figure, F into account, the SNR is, 

SNR =P- (N + F) 
rr 

SNR =P+ Gt + Gr - 20109d(km) - (Kr +K- A0- F 

- 101ogioBn+ 76 (3.24) 

3.3.4 Example Calculation of the Received SNR for a Non-Phase-Locked System 

In order to find the theoretical mean received signal to noise ratio as a 

function of distance at 60GHz under worst case conditions, the following typical 

figures applicable to a simple and relatively inexpensive non-phase-locked system 

may be assumed. Pt=-20dBW (10mW), Gt=Gr 8dB, (This results in an elevation 

beamwidth of approximately 200 from an omnidirectional aerial. A narrower 

beamwidth may cause problems if the mobile transceiver is held at an angle). Also, 

assume Kr l OdB/km (for a rainfall rate of 25mm/hr as given in section 2.1), 

Ko=16dB/km, F=lOdB and Bn 2MHz (a smaller bandwidth would result in problems 

due to frequency drifting) 

From equation 3.24 

SNR =- 20 +8+8- 201og10d(km) - (16 + 10)d(km) 

- Ao- 10 - 63 + 76 

SNR =- 20log10d(km) - 26d(km) - A0- 1 (3.25) 
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This equation is plotted in figure 3.15 as a graph of SNR against distance. 

Assuming a minimum SNR of 20dB for an acceptable bit error rate (such a high 

value is needed because of the degradation caused by fast fading), the maximum 

transmission distance possible is about 70m. If the attenuation factor due to 

obstructions, A0, is 30dB, the distance becomes only 3m. It can therefore be assumed 

that successful reception outdoors over a long distance requires a LOS or near LOS 

path (small angle diffraction or a strong reflection around obstacles). In order to ' 

fulfil this portable communications application in a large and crowded city with 

fairly randomly arranged streets for each service area, many fixed radio ports would 

be required, i. e., base station diversity would be necessary. Improvements could be 

made by increasing the transmitted power to 100mW (a 10dB improvement) reducing 

the noise figure to 4dB (a 6dB improvement achieved by using a low noise 60GHz 

amplifier which may become available with future devices) and by using phase- 

locked tranceivers, which would allow a smaller receiver IF bandwidth, and 

therefore a lower noise level to be achieved. 

For LOS fixed links at 60GHz, the received signal power should be more 

than sufficient, especially if high gain aerials are used. A parabolic reflector aerial 

has a gain of 40dB for a parabola diameter of only about 20cm at 60GHz, making 

the system easily transportable. The transmitted power could be substantially 

reduced, whilst the transmission distance could be increased. The advantage of 

60GHz over other frequencies for LOS links is that the 13 to 16dB/km oxygen 

absorption (invariant with weather conditions) minimises co-channel interference 

problems, even when the same frequency is reused only a few km away. [12] At 

frequencies where high atmospheric absorption is not present, under certain weather 

conditions, which create refraction and ducting effects in the atmosphere, 
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microwave signals can be strongly received from distant co-channel transmitters, 

which can block the wanted transmission. This cannot happen at 60GHz because 

beyond a few km's, the oxygen absorption loss is very high and is virtually 

independent of weather conditions, so the co-channel interference from distant 

transmitters is negligible. 

3.3.5 Obtaining Mean Received Signal Power data from Measurements. 

The mean received signal power can be determined by averaging the signal 

power data to obtain a local mean at each particular distance. The speed of the 

mobile must be constant so that the time axis can be linearly changed to the distance 

axis (distance = velocity x time). If the mobile unit does not maintain constant speed 

while receiving the signal, information of distance or speed versus time has to be 

recorded. 

It has been stated earlier that the received signal envelope when the mobile is 

in motion consists of a fast fading signal superimposed on a slow fading component. 

It has been demonstrated experimentally, at VHF and UHF, that the slow fading has 

a log-normal distribution especially when the observation distance is greater than 

approximately l km [7], [8]. 

The local mean of a long piece of raw data depends on many factor such as 

the distance from the transmitter, the nature and type of the environment, the 

orientation and width of the street etc. The process is non-stationary and can be 

considered as stationary only over a small distance of between 20A to 40A [91 where 

factors influencing the local mean remain virtually unchanged. The local mean can 

be obtained by averaging the received signal power over a length L which can be 

treated as an averaging window over the raw data as shown in figure 3.16. If the 
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length L is too long, some of the variations of the long term fading will be 

smoothed out, whereas if it is too short, the short term variations will not be 

sufficiently smoothed out. A compromise must therefore be reached in choosing the 

averaging length, and [9] states that 40A is a good choice. 

Since most data processing is done digitally, it is necessary to find the 

number of samples required over the length of 40A. It has been found that at least 

50 samples are needed to be 90% certain of being within I dB of the true mean [9]. 

If N is reduced to 36, this increases to 1.17 dB. If more samples are taken, the 

accuracy improves, but it is necessary to store and process more data, which can be 

a problem when using a small computer. 

In order to determine the median propagation exponent of the received signal 

power, the median signal power can be computed over 40A. If the median signal 

power is in dB (10logP) and is plotted against the log of distance, the propagation 

exponent can be found from a straight line approximation to the plot. The 

propagation exponent, x, (for the propagation law I /d') is given by -(slope of 

line)/ 10. 

3.4 EDGE DIFFRACTION. 

If electromagnetic waves hit the edge of an obstructing object, a certain 

amount of power is diffracted into the geometrical shadow region. Fig. 3.17 

illustrates knife edge diffraction where a perfectly conducting knife edge is placed 

between the transmitter and receiver and all ground obstructions are ignored. 

The field strength, F(u), received by an aerial placed at point P behind the 

knife edge is the vector sum of all the contributions from the Huygen secondary 
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sources in the half plane above the edge. The mathematical solution to this yields the 

fresnel integral in terms of u, where u is the Fresnel parameter given by [13] 

u_y 
2d 1 

X(di + z)z (3.26) 

Fig. 3.18 shows the graph of the solution of the integral which can be 

obtained by a numerical method. 

When there is a LOS path between the transmitter and receiver, the edge 

diffraction effects have very little influence on the received signal power. As the 

receiver moves from LOS into the geometrical shadow region, the received signal 

begins to fluctuate and reaches a maximum at u =-1.25. When the obstructing edge 

is just in line with the transmitter and receiver (u=0), the lower half of the incident 

beam is blocked, and the received signal power is reduced by 6dB. As the receiving 

aerial is moved into the geometrical shadow region, the received signal power 

decreases rapidly. 
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CHAPTER 4 

MEASURING EQUIPMENT AND EXPERIMENTAL PROCEDURE. 

4.1 NON-PHASE LOCKED SYSTEM 

Initially, only non-phase-locked 60GHz oscillators were available for the 

transmitter and receiver which had relatively poor frequency stability. All of the 

outdoor measurements and a few of the indoor signal power measurements were 

made with these. A block diagram of the non-phase-locked system is shown in Fig. 

4.1. 

The transmitter consisted of an Alpha CMF 910 60GHz, 20mW Gunn 

Oscillator. The 60GHz receiver local oscillator, shown in fig. 4.2, had an output 

power of about 20mW and was based on the disc resonator Gunn Oscillator design 

[1] which is frequently used at millimetre wavelengths. The resonator disc is 

supposed to have a diameter of approximately half a wavelength (2.5mm at the 

resonant frequency of 60GHz). Several disc resonators were tried, and the one which 

gave the correct operating frequency had a diameter of 2.9mm. The disc not only 

acts as a resonator, but also as an impedance match, so that the available power 

from the Gunn diode is transferred to the waveguide. The backshort reflects power 

back to the waveguide and also acts as an impedance match. The quarter wavelength 

steps improve its reflecting properties by minimising the power that leaks through 

the small gaps between the backshort and the waveguide walls. The backshort was 

anodised to insulate it from the waveguide walls in order to prevent excessive phase 

noise when it was moved backwards and forwards in the waveguide for tuning 

purposes. The choke supplies d. c power to the Gunn diode via the disc. The dc earth 

return is through the metal body of the diode and the body of the oscillator. The 

quarter wavelength steps ensure that the end is a short circuit at 60GHz, so that no 
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power can pass through the small gap between the choke and its cylindrical hole. 

The choke was also insulated by anodising to stop the power supply from shorting. 

An Alpha V9660A 60GHz single balanced mixer with a 6dB conversion loss 

was used to downconvert to a 60MHz IF. The exact frequencies of the 60GHz 

transmitter and receiver oscillators were not known, because no accurate frequency 

measurement equipment was available. However, this did not matter since it was 

only the 60MHz difference between the two oscillators that was important, because 

this had to be maintained within the passband of a Bandpass filter. A 60GHz 

bandpass filter should have been used in front of the mixer to reject the image 

frequency twice the IF frequency (120MHz) away from the transmitted signal near 

60GHz, but was not used because it would have been too difficult to make. This 

meant that the noise present at the image frequency was also downconverted to IF, 

increasing the noise level by 3dB. The 60GHz mixer was followed by a 30dB gain, 

1.2dB noise figure integral IF amplifier. The output of this IF amplifier was passed 

through a 2nd order Butterworth bandpass filter with an insertion loss of 2.6dB and 

a 3dB bandwidth of 2MHz. This bandwidth was large enough to accommodate the 

frequency drifting of the transmitter and receiver oscillators, but was small enough 

to significantly reduce the wideband noise at the IF and therefore improve the 

sensitivity of the receiver. The output of the bandpass filter was passed through an 

RHG ICLT 6010 logarithmic amplifier. A log amplifier produces an output voltage 

proportional to the log of the signal power at its input. The output voltage is 

therefore proportional to the received field strength or signal power in dB. As well 

as having this useful feature, a log amplifier also compresses the dynamic range of 

its input, making it easier to record the signal on a tape recorder which has a 

limited dynamic range. The transfer characteristic of the log amplifier used is shown 

in figure 4.3, which shows an input dynamic range of 80dB, and a transfer slope 
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(the change in output voltage divided by the change in input signal power) of 

23mV/dB. The accuracy was +/-0.5dB. 

Fig 4.4 shows the overall input/output characteristic of the receiver system. 

The useful linear range at the input to the 60GHz mixer was from -35dBm to - 

105dBm, resulting in a 70dB dynamic range. Since all the analyses had to be carried 

out in the laboratory, the signal level had to be recorded in a suitable form for 

transfer after each set of measurements. Therefore, the output from the log 

amplifier was recorded on an FM instrumentation tape recorder (a Racal Store 4DS). 

An FM recorder was used because, unlike a conventional tape recorder, it can 

record signals down to DC. The recorder had one direct or voice (non-FM) channel 

which was used for making a voice commentary during the measurements. The 

recorded signal was digitised and analysed in the laboratory as described in section 

4.4. 

The transmitter and receiver had to be put in diecast boxes in order to 

minimise the effects of ambient temperature changes which caused frequency 

drifting. Tests carried out in the laboratory have demonstrated that the stability of 

the transmitter/receiver system was sufficient to keep the I. F signal within the pass 

band of the bandpass filter on an hourly basis. However, outdoors, the frequency 

drift rate was much higher and was dependent on the wind speed. The IF signal 

typically only stayed within the pass band of the bandpass filter for 10 to 20 

minutes. When fine tuning was necessary, this was accomplished by a small change 

of power supply voltage to the receiver Gunn Oscillator. 

The measurements with the non-phase-locked sources were performed on the 

amplitude rather than the phase of the received signal. An analysis of the phase (eg.. 
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the measurement of doppler shifts) could not be made because of the high phase 

noise and frequency drifting of the 60GHz oscillators. 

4.2 PHASE-LOCKED SYSTEM 

Towards the end of the research project, two phase-locked 60GHz oscillators 

became available. They were used for most of the signal envelope measurements 

conducted within buildings, for all the FSK bit error rate measurements, and for the 

spectral spreading (doppler) measurements. A block diagram of the phase-locked 

system is shown in figure 4.5. The transmitter and receiver are shown in Photograph 

1 and 2 respectively. 

The transmitter and receiver used Alpha 956U1 phase-locked oscillators with 

frequency stabilities of +/-1 in 108 over the temperature range 0 to 50°C when 

phase-locked to external Vectron 224-8658 100MHz crystal oscillators. A 50mW, 

59.9GHz phase-locked oscillator was used for the transmitter and a 10mW, 58.9GHz 

phase-locked oscillator was used for the local oscillator of the receiver. For 

measurements which required a very low noise level and therefore a very narrow IF 

filter bandwidth, or which required a very stable IF frequency, a single external 

100MHz crystal oscillator could be used as the reference frequency for both phase- 

locked oscillators. 

The down converter of the receiver used the same 60GHz mixer as the non- 

phased-locked receiver, although the IF frequency this time was 1 GHz. This IF was 

amplified by a separate Miteq AM-3A-0515 32dB gain, 1.5dB noise figure 1GHz 

amplifier. Its output was passed through a 1GHz bandpass filter for image rejection 

and then was further down converted to an IF of 60MHz. The 60MHz IF used a 

bandpass filter having a 3dB bandwidth of 1.5MHz. The output of the bandpass 

- 46 - 



it 
W 

W 
U 
W 
LC 

ý_ 

O 
Z 
O 
W 

N -1 
a 

O ti 
to 

W 
X_ 

cl: 
ý. W 
N 

(Z CL 

C3 LA.. 

ck: 
W 
X5 

O 
E 

U N0N 

OWZ CD 
rn = 1n CL 

w 
W 
U- 
J 

O 
_i< 

I 

D 

I 

D 

W 
0 

. 
LJO 
a-W 

N 
in 

N 

ZH- 
J 

ca CD Li 

U 
Ocr JO 

Z2 
ÜUO 

W 
N0 Cn 

0 
U, 

IL cr- 
NOW 

2ZJ 
Q ý a LZ EYo 

0 Ü 
O 

0 

_j O 
N in 

2: C) 
0 (n Z 

2 N 
lZo 

G0 0 
ula0 

Ir 
0 

N 

O»U 
O cr V1 

U0 

w 
0 

Ö 
CE N 

.-U0 

N 
F- 
Z 
W 
m 
W 
w 
D 

Z 
0 

Q 
C. D 

0 
X, 
0 
of 
0 
L 

W 
I-- 
>- 
cn 
C 
(iJ 

U 
0 
J 

W 
U, 

I 

Ul) 

li 
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filter was passed through the log amplifier and then recorded on the F`-1 tape 

recorder as described in section 4.1. The input/output characteristic of the receiver 

is shown in fig. 4.6. 

4.3 AERIALS 

The aerials used for the measurements were (i) two different types of 

omnidirectional aerial; (ii) two Flann 2524 20dB standard gain horn aerials with 

beamwidths of 18°, and (iii) two Alpha 858 006 V-1/385 high directivity horn-lens 

aerials having beamwidths of 2.4° in both E- and H- planes, and gains of 37dB 

with sidelobes which were greater than 27dB below the main lobe. 

The first type of omnidirectional aerial (type 1) is shown in figure 4.7. Only 

one was made and it was only available for a short period of time, so could only be 

used for the early measurements which were those conducted outdoors. It had an 

elevation beamwidth of about 200, a gain of about 6dB and was vertically polarised. 

An anechoic chamber was not available, so accurate beamwidth and gain 

measurements could not be made due to reflections interfering with the 

measurements. The mode in the rectangular waveguide is the normal TE10 mode and 

is converted to a TMol mode in the circular waveguide by the mode transducer. The 

energy is radiated from the circular horn to the parabola which reflects it to the 

cone reflector which then reflects it horizontally outwards. 

The second type of omnidirectional aerial is shown in figure 4.8. Two were 

made, which had gains of about 7dB, beamwidths of about 200 and were circularly 

polarised. The normal TE10 mode in the rectangular waveguide is converted into a 

TE11 mode in the circular waveguide by a tapered transition mode transducer. This 

linearly polarised mode is converted to circular polarisation by a quarter wavelength 
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dielectric plate. The circular horn radiates the electromagnetic waves from the 

waveguide, which are reflected from reflectors a, b and c, and then are radiated 

horizontally outwards as shown in figure 4.8. 

The high directivity horn lens aerials were used in the measurements for the 

determination of the penetration loss of building materials and walls, and for the 

edge diffraction measurements. This type of aerial was used when measurements had 

to be free of any significant reflected components. 

4.4 DIGITISING OF THE RECEIVED SIGNAL ENVELOPE 

The received signal recorded on the FM tape recorder was in analogue form, 

and required a considerable amount of processing to enable suitable analyses to be 

performed. A large amount of data is necessary in order to find the influence of the 

different factors on the propagation process. An efficient method of handling this 

data involves periodic sampling, digitising, formatting, and storing such that 

computational aids may be used. Therefore, the received signal stored in analogue 

form on the FM tape recorder was digitized by connecting to an analogue to digital 

converter before the analysis program was initialised. 

Initially, a Nicolet 2090-11 1A digital storage oscilloscope was used as an 

analogue to digital converter and the digitised data was transferred to a Hewlett 

Packard model 9826 desk top computer and stored directly on a floppy disk. The 

floppy disk was formatted into 32 tracks where each track was capable of storing 

4096 samples. The digitised data was calibrated to indicate the received signal power 

at the input of the receiver in dBm and was stored in an array before processing. 

The digital storage scope could only continuously sample and store up to 4096 

samples, so that if a1 KHz sampling frequency was used, only 4 seconds of the 
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recorded signal could be digitised without interruption. This was partially solved by 

writing a computer program which could combine two or more separate recordings, 

stored as separate files, for the analysis of the recorded data. However, there were 

still gaps between the separate recordings. 

To overcome the above problems, an IBM model AT personal computer 

incorporating a 20 megabyte hard disk was later used for digitising and analysing 

the recorded data. The analogue to digital converter was a Data Translation DT2821 

board, designed to fit in one of the expansion slots of the IBM computer. It had a 

resolution of 12 bits, and a maximum sampling frequency of 30KHz when the data 

was stored directly on the hard disk. The sampling frequency, the number of 

channels used and the gain were controlled by a computer program supplied with 

the A/D board. The board also had a digital to analogue converter, which was 

sometimes used to check the data stored on the hard disk by monitoring its output 

on a digital storage oscilloscope. The data samples created by the analogue to digital 

conversion process were written in an unformatted binary file on the hard disk of 

the computer. This enabled the converter to operate at maximum speed by using the 

most compact data format available. Before the analysis could proceed, the data had 

to be converted to a formatted ASCII text file. This was then read, and the data was 

calibrated to indicate the received signal power at the receiver input in dBm. The 

recorded signal envelope was digitised in small separate sections when analysing fast 

fading, whereas the whole recorded signal was digitised when determining the 

median received signal power. 

4.4.1 Analysing the Received Signal Envelope. 

Having obtained the received signal envelope in a usable form, it was 

necessary to devise the statistical analysis programs to interpret the results. The 
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analysis program was written in Basic for the Hewlett Packard desk top computer 

and later was written in Pascal for the IBM PC, as documented in Appendix A. The 

programs were written for reading and retrieving the data files, and for data 

analysis. The data analysis included calculating the mean or median and the 

probability distribution of the received signal power, performing a regression 

analysis, and plotting the results. The majority of the statistical analyses was 

performed on the IBM computer. The data was also transferred to a Honeywell level 

68 mainframe computer running the Multics operating system, for analysis with the 

Minitab statistical analysis package. 

The interconnection of the equipment for the data acquisition process is 

shown in figure 4.9. The signal envelope was monitored continously at conversion 

time using a digital storge oscilloscope operating at a slow scan rate. By this means 

the presence of interference could be instantly recognised and appropriate 

allowances could be made in the subsequent analysis. 

4.5 EXPERIMENTAL PROCEDURE. 

The propagation measurements were conducted both within buildings and 

outdoors in and around Bristol University. Some of these locations are shown in fig 

4.10. Within buildings, most of the measurements were made at night when there 

were no people in the rooms and corridors who would otherwise interfere with the 

measurements. 

The received signal power recorded was a function of time, but often had to 

be plotted as a function of distance. In order to convert from time to distance, the 

start and stop positions of the measurements (corresponding to the start and stop 

times) were spoken and recorded on the voice channel of the FM recorder. 
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Measurements were conducted by walking while carrying the transmitter or by 

pushing it on a trolley, at a speed as near to constant as possible so that the time to 

distance conversion was linear. The positions of objects between the start and stop 

positions were spoken and recorded on the voice channel, and were later used to 

check that the speed was sufficiently constant. For the majority of the field test 

conditions, the transmitter and the receiver were positioned 1.5m above the floor. 

Initially, only the non-phase-locked system was available for the propagation 

measurements. The measurements conducted outdoors used the non-phase-locked 

system while most of the measurements conducted indoors (received signal envelope 

and data transmission) used the phase-locked system. 

In order to ensure that the analysis program was working correctly, the 

output from a Rayleigh fading simulator was recorded on the FM tape recorder. The 

recorded signal was digitized and analysed for its amplitude distribution 

characteristics, and as expected, the measured distribution closely followed the 

theoretical Rayleigh distribution. 

In order to reveal the fast fading statistics of the received signal envelope, 

the recorded data was sampled at intervals of less than one tenth of a wavelength. 

With this sampling interval, there should be practically no aliasing, and preliminary 

measurements have shown that the statistics derived from the measurements made 

were accurate. By not using an excessively high sampling rate, the amount of data 

stored was kept to a minimum -a very important consideration when using a small 

computer. 
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For the analysis of fast fading the sampled data was computed within 40 

wavelengths (see section 3.3.5) so that there would be minimal variations due to slow 

fading. This method was used when analysing the multipath fading outdoors. 

However, for the measurements conducted within buildings for the determination of 

the envelope distribution of the received signal power, a scanning technique was 

used in collecting the data [2]. Within the scanned locations, the mean signal power 

is approximately stationary so that the analysis of the fast fading can be conducted 

and the sampled data is no longer restricted to a single 40 wavelength sweep. The 

data was calibrated and stored on 5.25 inch floppy disks so that it could be 

processed later to determine the statistics of the received signal envelope. 

Cumulative Distributions of signal levels enable more accurate comparisons to 

be made with the theoretical prediction. This is because the end regions of the 

cumulative distribution function (CDF) are very important in relating experimental 

results to theory. Many different distributions have similar characteristics over their 

mid-range, but it is only by extending the graphs into the very low and high outage 

rate zone that a true comparison can be made. The computer program was written to 

count the number of samples equal to or greater than a certain level of the received 

signal power. 

The procedure for obtaining the local mean or median power of a mobile 

radio signal has been described in section 3.3.5. The median or mean power was 

obtained over 50 samples which corresponded to a travelled distance of about 40 

wavelengths. In most measurements, the median was chosen instead of the mean 

because the median can be accurately determined if more than half of the samples 

are above the noise level, while the mean will depend on the receiver noise level [3]. 

In order to determine the propagation exponent, the median signal power in dBm 
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was plotted against the logarithm of the distance and a straight line curve fit was 

performed by using a linear regression technique. 

The median signal power was computed directly from the calibrated data in 

dBm. However, when the average signal power was computed, the calibrated 

received signal data was first converted from dBm to linear power values. The 

average was performed and the result was converted back to dBm. To produce the 

histogram of the spatial distribution of the received signal envelope (used for some 

of the measurements within buildings), the computer sorted the samples into 20 

blocks, each one corresponding to a 4dB increment of the dynamic range of the 

system. 

In most of the measurements conducted, the receiver was stationary and the 

transmitter was moved away from it. The recorded signal represents a measure of 

the signal amplitude as a function of distance and multipath effects. However, in the 

measurements to determine the penetration loss through walls and building materials, 

the transmitter and receiver were set at a fixed separation distance and the object 

under test was placed half way between the transmitter and receiver . The received 

signal was compared with that obtained without the obstacle in order to obtain the 

penetration loss. 

-53- 



REFERENCES 

[1] Haydl, W. H., "Fundumental and Harmonic operation of Millimeter-wave Gunn 

Diodes, " IEEE Trans. on Microwave Theory and Tech., vol. 31, No. 11, Nov. 1983, 

pp. 879 -889. 

[2] Hoffman, H. H, and Cox, D. C., "Attenuation of 900MHz Radio Waves 

Propagating into a Metal Building, " IEEE Trans. on Antennas and Propagation, Vol. 

AP-30, pp 808-811. 

[3] Cox, D. C., Murray, R. R., and Norris, A. W., "Measurements of 800MHz Radio 

Transmission into Buildings with metallic Walls, " B. S. T. J., Vol. 62 pp 2695-2717, 

Nov. 1983. 

- 54 - 



CHAPTER 5 

PROPAGATION MEASUREMENTS OUTDOORS 

5.1 INTRODUCTION 

Since integrated portable communication systems are required to operate 

outdoors, propagation measurements conducted outside buildings will be described in 

this chapter. The propagation characteristics will be quite different for a system 

operating in an outdoor, mobile environment than for one operating in an indoor 

environment because the outdoor environment consists of fast moving vehicles as 

well as slow moving people. It is necessary to describe both the multipath and 

shadowing effects in characterising the propagation channel. The received signal 

power, averaged in order to remove the multipath fading, varies as a negative power 

of the distance between the transmitter and receiver. A simple two path propagation 

model derived in chapter three predicted a dependence of 1 /d2 at 60GHz. 

The behaviour of the mobile propagation channel is strongly dependent on 

the type of environment in which the mobile is located. The direct signal may be 

obstructed by buildings and trees. Therefore, different types of environments will 

need to be considered. The environment can be classified as open areas, areas with 

partial obstructions and areas with almost complete obstructions. In open areas with 

no nearby obstructions, the multipath will be mainly determined by the properties of 

the surrounding ground, and it will usually be very low. The partial obstructions 

case may be represented by a road lined with trees, by open residential areas with 

houses, or by rural areas with buildings or trees. Finally, almost complete 

obstructions can be represented by cities with tall buildings where a direct signal is 

available for only a small percentage of the time. 
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The measurements have been conducted outdoors in order to determine the 

effect of multipath on the envelope distribution and the median signal power 

variations with distance. Also, measurements were made to determine the effect of 

an obstacle obstructing the LOS path, and the diffraction of the signal into the 

shadow region. Finally, measurements were conducted by radiating the 60GHz signal 

into a building in order to determine the resulting penetration loss. 

No specific investigation has been carried out on the influence of adverse 

weather conditions, due to the fact that all measurements were carried out in dry 

weather and no weather monitoring equipment was available. 

5,2 TEST EQUIPMENT 

The propagation measurements conducted outdoors used the non-phase- 

locked system described in chapter 4 because the phase-locked system was not 

available when the measurements were made. The stability of the non-phase-locked 

sources was only sufficient to keep the I. F. signal within the bandpass filter for 10 

to 20 minutes. To check that the frequency stability was acceptable, the received 

signal power along a single road was recorded. The receiver was stationary while the 

transmitter was moved away from the receiver at a constant speed until the end of 

the road, and then was moved back towards the receiver. The recorded signal power 

was almost identical for the outward and return movements. This demonstrates that 

stable measurements could be made. After each measurement, the receiver Gunn 

local oscillator frequency was varied to see if the IF signal was still within the 

passband of the 60MHz IF bandpass filter. In nearly every case it was, but if it was 

not, the measurement was repeated. Before a measurement was made, the IF was 

always centred in the passband of the 60GHz IF filter. 
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5.3 LINE-OF SIGHT PROPAGATION MEASUREMENTS WITH REFLECTIONS 

MINIMISED 

Line-of-sight (LOS) measurements were conducted with the transmitter and 

receiver placed on the flat roof of the Queen's building, a reinforced concrete 

building at the University of Bristol. For these measurements, the standard 20dB 

gain horn aerials were used for the transmitter which was 2.5m above the level of 

the roof and the receiver which was 1.5m above the level of the roof. The 

transmitter-receiver separation was varied from 4m to 50m by moving the 

transmitter along the roof. The received signal power was recorded every one metre 

whilst making sure that there was minimal reflection from the roof of the building 

by moving the transmitter so that the received signal power was not affected by 

reflection. The received signal should therefore have been only due to the free space 

law plus oxygen absorption law. 

A measurement beyond 50m separation was carried out by placing the 

transmitter at one corner on the roof at a height of 30m above ground level, while 

the receiver was placed at a distance of 100m from the transmitter. The receiver was 

placed in an open area with a grass surface at a height of about 1.5m above ground 

level. The received signal power was recorded at this location, again making sure 

that there were minimal reflections from the environment. The received signal 

power is plotted against distance together with the theoretical free-space curve as 

shown in fig. 5.1. The figure shows that the measured curve closely follows the 

free-space curve. At 100m separation, a difference of about 1.5dB between the 

measured and free-space path loss can be observed, and this can be attributed to 

oxygen absorption. If the separation between the transmitter and receiver was 

increased to a longer distance, the decrease in the received signal power would be 

significantly steeper due to high atmospheric attenuation compared to the theoretical 
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free space law. These measurements were not made however, because suitable test 

sites at large separation distances were not available. 

5.4 MEASUREMENTS IN DIFFERENT ENVIRONMENTS 

The behaviour of the mobile propagation channel is strongly dependent on 

the type of environment in which the mobile is located. Therefore, the 

measurements were conducted in three different environments in order to determine 

their influences on the received signal characteristics. From the measurements, the 

received signal power can be determined as a function of transmitter-receiver 

separation. The measurements were made in dry weather so that the variation with 

time of the received signal power was negligible. The transmitter used a 20dB gain 

standard horn aerial and the receiver used the type 1 omnidirectional aerial 

described in chapter 4. The handheld transmitter was moved away from the receiver 

at a constant speed and the received signal power was recorded on the FM tape 

recorder. 

For most of the time, there was a LOS path between the transmitter and 

receiver along both sides of the road and the measurements were conducted with the 

transmitter and receiver positioned at a height of about 1.5m above the ground. 

5.4.1 Description of the environments and the received signal. 

The first measurements were conducted along University Walk, an asphalt 

road which had University Buildings along one side and parked cars and a 3m high 

brick wall along the other side (environment A). Fig 5.2 shows a photograph of this 

environment. It was a private University road approximately 10m wide, and part of 

it was bordered with mature trees. The measurements were conducted when there 

was no moving vehicles or pedestrians along the road, and were made up to a 
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distance of 130m. Fig 5.3 shows part of the recorded signal power at a distance of 

about 100m from the receiver where large signal fluctuations occurred due to 

multiple reflections from trees, cars, buildings and walls. As at lower frequencies. 

up to 25dB fades can be experienced. 

Since the radio link in an urban environment consists of boundaries of 

asphalt roads and pavements in the horizontal plane and building walls in the 

vertical plane, it would be helpful to isolate the contribution of these surfaces in a 

propagation study. Therefore the second measurements were conducted in an open 

area of a park with a short grass surface and with no nearby vertical structures so 

that reflections could only have been from the grass surface (environment B). Fig. 

5.4 shows a photograph of this environment. The measurements were made up to a 

distance of about 200m from the receiver. Part of the recorded signal power at a 

distance of 100m from the receiver is shown in figure 5.5. Fluctuations can be 

observed due to the reflected wave from the grass surface interfering with the direct 

signal. However, the fades are much lower than they were for environment A, and 

fades of only up to 5dB below the mean level can be observed. This can be 

attributed to the roughness of the grass surface which prevents a strong specular 

reflection and instead produces weak diffuse reflections. As a result the reflected 

signals are much weaker than the direct signal, so they only produce small 

fluctuations in the received signal power. 

The third set of measurements were conducted along a busy road with 

buildings along both sides. Fig 5.6 shows a photograph of this environment. During 

the measurements there were many vehicles moving along the road and pedestrians 

walking on the pavements. Measurements were made with a transmitter - receiver 

separation of up to 200m along this road (environment Q. Figure 5.7 shows part of 
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FIG. 5.2 PHOTOGRAPH OF ENVIRONMENT A. 
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FIG. 5.6 PHOTOGRAPH OF ENVIRONMENT C. 
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the received signal power at a distance of about 100m when the transmitter Evas 

being moved away at a constant speed from the receiver. The signal variations due 

to the traffic have characteristically short durations and if a vehicle drove through 

the direct path, a drop in signal power of 15dB to 20dB occurred. Also observed on 

the recorded signal are many short term variations due to multipath fading, with 

some fades approaching 20dB. These variations occur all along the path in a near 

random manner. If the main beam was obstructed, this caused a decrease in the 

received signal power. As expected, the duration of fades was dependent on the time 

the obstruction was present, while the length and depth of fade was dependent on 

the type and number of vehicles passing by. 

The results have demonstrated the influence of the surrounding objects and 

the type of ground on the received signal power. Fluctuations of the received signal 

power are due to reflections from and diffraction around the surrounding obstacles 

and the ground whose relative phases change when the transmitter is in motion. 

Furthermore, there is a drop in received signal level when the LOS path is 

obstructed by a vehicle passing by. Less multipath was observed in the open area 

with a grass surface compared to the environment with parked cars, buildings and a 

wall along the road. This was because the diffuse reflected signal from the grass 

surface is relatively weak, and the lack of any nearby vertical structures means that 

there are no reflections from these. However, open area environments can create 

difficulties for millimetre wave radio because there are insufficient scatterers within 

a sufficient range of the receiver to reflect the signal to the receiver when the direct 

path is obstructed. 
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5.4.2 Envelope Fadine Distributions 

The received signal power varies as the transmitter moves away from the 

receiver. There are two kinds of variation. One is the rapid variation caused by 

multipath propagation and the other is a much slower variation due to the changes 

in parameters like street width or building height. The first is fast fading which is 

caused by multipath reflections from buildings and other obstacles in close proximity 

to the transmitter. The second is called slow fading which occurs over distances 

large compared to the carrier wavelength. Furthermore the total range over which a 

radio link operates will be an important factor in determining the total propagation 

path loss. Therefore, it is necessary to establish the relationship between the median 

received signal power and the separation of the transmitter and receiver. 

When analysing the fast fading, the received signal envelope was quantized in 

I dB increments within a short distance over which there was virtually no change in 

the long term fading. Figure 5.8 shows the CDF of the computed data together with 

the theoretical Rayleigh distribution for environments A and B described earlier. 

The 0dB point of the signal power has been normalised to the median signal power. 

The results show that the distribution for both environments depart from the 

theoretical Rayleigh distribution due to the presence of the LOS path between the 

transmitter and the receiver. However, the distribution for environment A was quite 

close to the Rayleigh distribution, and only departed significantly from it at about 

10dB below the median signal power. On the other hand, the distribution for 

environment B departed very significantly from the Rayleigh distribution, which 

was as expected, since the only significant reflected signal possible was from the 

ground, and this was weak due to the grass surface. 
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5.4.3 Median Signal Power Laws 

The median signal power was computed from the recorded data over forty 

wavelengths of travelled distance as was described in section 3.3.5. [1 ] These points 

are plotted as a function of the logarithm of distance as shown in figure 5.9 for 

environment A, and fig. 5.10 for environment B. The propagation exponents for 

each environment were computed from the median signal power by the least squares 

error method. The straight lines are least squares regression lines through the data 

points indicating the dependence of the median signal power on distance. It was 

found that the power exponent of the best fit straight line for environments A and 

B were 1.4, and 2.3 respectively. These propagation exponents are quite similar to 

those measured in reference [2], where they varied from 1.4 to 2.2 along a straight 

road with buildings on both sides up to a distance of 120m. 

The propagation exponent of 1.4 for environment A indicates that the signal 

fell considerably less slowly than the value of 2.0 for the theoretical free-space 

equation. This may have been because the asphalt road and the brick wall produced 

strong reflections which prevented the energy from spreading out, and therefore 

concentrated it more along the path. 

The propagation exponent of 2.3 for environment B was quite close to 2.0 

which occurs in free-space. One reason why this exponent was greater than the 

free-space value was because of the oxygen absorption, which theoretically rises to 

3dB at 200m. There were no nearby reflectors except for the ground, and this had a 

grass surface which can be considered as 'rough' at 60GHz, so the ground reflection 

was probably quite low. The propagation was therefore similar to free-space 

propagation, and this is confirmed by fig. 5.10 and the propagation exponent. 
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5.5 OBSTRUCTION MEASUREMENTS 

Measurements demonstrating the effect of direct LOS dependence were also 

conducted. During the measurements the transmitter used a standard 20dB gain horn 

aerial and the receiver used the type 1 omnidirectional aerial. 

The first measurement was conducted along University Walk with the 

transmitter moving towards the receiver at about 0.8m/s. The measurements were 

recorded when there was initially a LOS path, which was later blocked by a van. 

The transmitter - receiver separation was 150m, and the van was moving at a 

distance of 120m from the receiver at an estimated speed of 4m/s. Fig. 5.11 shows 

the recorded signal power. When the LOS path was obstructed by the van, the 

received signal power dropped below noise level for a duration of 1.5 sec, 

representing an attenuation of greater than 25dB. The result shows that propagation 

in an open road is difficult at 60GHz because there is an insufficient number of 

nearby scatterers to reflect the signal to the receiver when the direct path is 

obstructed. 

The second measurements was conducted to determine the propagation 

effects contributed by an isolated tree in an area with a grass surface. The receiver 

was placed at 20m from the tree which had a trunk diameter of 100cm. The 

transmitter was moved at about 0.5m/s along a line perpendicular to that formed by 

the receiver and the tree. The transmitter was moved from a clear view of the 

receiver to a position where the main trunk obstructed the LOS path at 1m from the 

tree and then back to a clear view of the receiver. At all times, the transmitter aerial 

was pointing towards the receiver. Fig. 5.12 shows the recorded signal power. The 

deep fade was due to the tree trunk obstructing the direct path. The signal power 

- 63 - 



-40 

-50 

-60 

-70 

-80 
z 
N -90 

-100 

-110 

! maw I_ 
.`- 

RECEIVER NOISE LEVEL 

-120 
1 

0123456789 10 

RELATIVE TIME, sec 

FIG. 5.11 RECEIVED SIGNAL POWER WHEN LOS PATH BETWEEN TRANSMITTER 
AND RECEIVER WAS OBSTRUCTED BY A VAN. 

-40 

-50 E 

-60 

-70 

-80 

-90 

-100 

-110 
______________ 

RECEIVER NOISE LEVEL, dBm 
_ 

-120-L 
0 2468 10 12 14 

RELATIVE DISTANCE, m 

FIG. 5.12 RECEIVED SIGNAL POWER WHEN LOS PATH BETWEEN TRANSMITTER 
AND RECEIVER WAS OBSTRUCTED BY A TREE TRUNK. 



dropped by about 25dB for a distance of about 80cm when the direct path was 

obstructed. 

5.6 EDGE DIFFRACTION MEASUREMENTS CONDUCTED OUTDOORS 

When radiation reaches an obstruction, diffraction occurs around its edges, so 

that some signal can be received in the shadow region. Edge diffraction 

measurements were conducted outdoors to see if the signal power was still usable. 

5.6.1 Diffraction around the corner of a Building. 

The transmission loss over a diffraction path depends on the shape and 

electrical characteristics of the diffracting edge. A vertical corner of a building may 

approach a "knife edge" which provides the minimum transmission loss if it is 

perfectly conducting. Both the transmitter and receiver used standard 20dB gain 

horn aerials. 

The measurement was conducted at the edge of a building. The geometry of 

the site and the position of the transmitter and receiver are shown in figure 5.13a. 

The corner of the building was formed from poured and finished concrete. The 

transmitter and receiver were at 1.5m above ground level and the transmitter 

distance from the edge (dl) was 25m. The transmitter was moved along the shadow 

region parallel to the building while pointing the transmitter aerial at the edge. The 

received signal power was recorded for different distances between the receiving 

aerial and the wall (d2) with the receiver aerial always pointing towards the corner 

of the building. 

The results are shown in figure 5.13b. When the transmitter, the edge and 

the receiver were aligned, the received signal power dropped by about 4dB 
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compared with that measured under LOS conditions. As the receiver was moved into 

the shadow zone, the received signal dropped rapidly. Moving just a few metres into 

the shadow region causes an attenuation of about 40dB in the received signal power. 

Fig. 5.13b also shows that the degree of attenuation is very dependent upon the 

distance, d, separating the obstruction and the receiver. 

5.6.2 Diffraction around a Curved Road. 

Further measurements were conducted to determine the propagation 

behaviour along Elton Road, a curved road with bushes and trees along one side and 

buildings on the other. A plan view of the road is shown in fig. 5.14. The 

transmitter used a 20dB gain horn aerial and was initially placed 20m away from the 

receiver, which used the type 1 omnidirectional aerial. During the measurements the 

transmitter was moved from a LOS position into the shadow region around the 

corner of the road and the transmitter aerial was always pointing towards the 

receiver at the corner of the road when the LOS path was blocked by trees and 

bushes. The average power was nearly constant at the beginning of the road with 

some fades, and decreased slowly with the curvature of the road. There was a steep 

decrease after the end of the road where the LOS path was not present. This 

demonstrates that the receiver output power is directly dependent on a LOS path. As 

shown in figure 5.15, the received signal power around the corner of the road 

dropped by about 25 to 30dB in a travelled distance of a few metres. 

5.7 PROPAGATION OF 60GHz SIGNALS INTO BUILDINGS 

There is a requirement for portable communications indoors as well as 

outdoors. Although this will probably require 60GHz radio distribution points within 

buildings, it is interesting to see how well 60GHz signals can penetrate into 

buildings, since propagation by this route may reduce the number of radio ports 
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required indoors. The measurements were made in the Queen's building, a 

reinforced concrete building having glass windows and concrete walls. These types 

of concrete walls were expected to exhibit high values of attenuation. There were 

five windows with aluminium frames which were 5m wide and 2m high. The 

thickness of the concrete walls was 40cm. The plan view of the building is shown in 

figure 5.16, which shows the corridor and the room where the receiver was placed 

during the measurements. The transmitter was placed 30m from the building at a 

height of 5m above ground level, and the receiver was placed in the first floor of 

the building at the same height as the transmitter. The receiver used a standard 20dB 

gain horn aerial and the transmitter used the type 1 omnidirectional aerial. 

At each location, the handheld receiver was scanned at a height of about 

1.5m above the floor. The receiver was subjected to a raster scan consisting of 10 

parallel linear scans with 5cm increments in a 50cm by 50cm square. The motion of 

the receiver results in small scale signal variations which are caused by multipath 

propagation. Within this area, the mean signal power is approximately statistically 

stationary so that the median signal power and envelope fading statistics can be 

computed. [3,4] After making these measurements, the transmitter was moved to 

another location and the procedure was repeated. The median signal power was 

obtained at several receiver locations. The median was used instead of the mean 

because it is affected less by the receiver noise floor, for reasons described in 

section 4-5. In order to determine the penetration loss into the building, a reference 

level was measured just outside the window of the building. The reference power 

outside the building was approximated by taking the average of several median 

powers measured at different locations just outside the windows. [5] 
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The median received signal power was computed for every location shown in 

figure 5.16. The penetration loss was later computed relative to the reference level 

outside the windows of the building. For a given distance, the penetration loss for 

each location within the building is the difference between the median signal power 

at that location and the reference signal power outside the building. Signal powers 

were measured at twelve locations along the corridor and two locations within the 

room adjacent to the corridor as shown in figure 5.16. The penetration losses for 

these locations are also shown in this figure. It can be seen that at the positions 

along the corridor behind the wall where there was no LOS path between the 

transmitter and receiver, the penetration loss was greater than when there was a LOS 

path. Within the room, the penetration loss was lower at the locations in front of the 

wooden doors compared to the locations in front of the wall. It was found that for 

this particular building, the penetration loss varied from 4dB to greater than 45dB. 

When there was no LOS path between the transmitter and receiver the 

received signal power was found to be very low and often below noise level. The 

median signal was found to be higher behind windows and the door compared to 

behind the wall due to the higher penetration loss of the walls. 

Generally, the 60GHz signal may enter the building directly from the 

transmitting aerial or may be reflected from many reflecting surfaces presented by 

the surrounding environment. Once inside, the signal experiences different kinds of 

objects such as walls, ceiling, floors etc. As a result the signal arrives through many 

different paths, each experiencing different attenuations. 
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CHAPTER 6 

PROPAGATION MEASUREMENTS WITHIN BUILDINGS. 

6.1 INTRODUCTION 

At certain times, there may be more people indoors than outdoors, especially 

in multistorey buildings. Therefore, there is a need for personal mobile 

communications in buildings. Experiments have been conducted (Chapter 5) to 

measure the penetration loss when radiating the 60GHz signal into a reinforced 

concrete building. It was found that the penetration loss was high when there was no 

LOS path through a glass window between the transmitter and receiver. Thus, for a 

usable signal level, the 60GHz signal must be radiated within buildings themselves. 

Within buildings, the radiation of the 60GHz signal in general travels a 

shorter distance than outdoors because of the high penetration loss of walls and 

thereby experiences less oxygen absorption compared to the outdoors environment. 

The propagation characteristics will be determined by the environment and its 

contents of fixed and moving objects. Futhermore, the environment within buildings 

will introduce multipath fading and shadowing. Measurements, therefore, have been 

conducted within a reinforced concrete building at the University of Bristol to 

determine the propagation characteristics under LOS and non-LOS conditions. 

The aim of the measurements was to study the reception of radio signals at 

60GHz in different environments within buildings for both fixed and mobile 

conditions. The analysis includes the determination of the fading statistics of the 

received signal envelope under LOS and non-LOS conditions, the variation of the 

median signal power with distance for different types of rooms and corridors, the 

- 69 - 



attenuation of various building materials, the signal coverage, the power spectrum of 

the received signal and edge diffraction measurements. 

For most of the measurements conducted, the transmitter and receiver were 

placed on a trolley at a height of about 1.5m above the floor. Unless stated 

otherwise, both the transmitter and receiver used phase-locked 60GHz oscillators 

and the type 2 omnidirectional aerials as described in chapter 4. Most of the 

measurements were conducted at night or during weekends in order to ensure that 

there would be no people around, whose movements would otherwise interfere with 

the measurements. 

6.2 ENVELOPE MEASUREMENTS 

Measurements were conducted to determine the envelope fading statistics for 

both mobile and stationary conditions with and without a LOS path. The received 

signal envelope was sampled at an interval of less than a tenth of a wavelength. 

Preliminary measurements have indicated that as long as the data sampling interval 

is less than a tenth of a wavelength, the statistics deduced from the measurements 

are accurate. 

6.2,1 Envelope Distribution when the Transmitter was moving. 

The first measurements were conducted at the entrance of the building, the 

plan view of which is shown in figure 6.1. As indicated, there was no furniture or 

equipment in the area. The walls and ceiling consisted of plaster covered concrete, 

and the floor was covered with varnished cork tiles. The height of the ceiling was 

about 5m. LOS measurements were conducted by placing the transmitter at 8m from 

the receiver, whereas for non-LOS measurements, the receiver was placed at the 

same distance but with the direct signal obstructed by the corner of aw all as shown 
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in figure 6.1. During the measurements the transmitter was randomly moved 

horizontally in a 50cm by 50cm (100) by l 00X) square. 

A typical recording of the received signal power in dB when a LOS path was 

present between the transmitter and receiver is shown in figure 6.2. When there was 

no LOS path between the transmitter and receiver, a typical recording is shown in 

figure 6.3. The figures show that movements of the transmitter result in signal 

variations which are caused by multipath propagation. Multipath fading occurred 

due to reflections off the walls, the ceiling, and the floor. Received signal minima 

were up to 25dB below the mean signal power when there was no LOS path between 

the transmitter and receiver. However, when there was a LOS path between the 

transmitter and receiver, the median signal power was found on average to be about 

10dB higher than when no LOS path was present, and there was less multipath 

fading. 

The cumulative distribution function (CDF) of the received signal envelope 

was computed in I dB increments for both LOS and non-LOS conditions. The 

computed data was plotted on Rayleigh paper as shown in figure 6.4, where a 

Rayleigh distribution produces a straight line. The medians of the distributions have 

been normalised to 0dB so that different types of distribution could be more easily 

compared. 

When a LOS path existed between the transmitter and receiver, the envelope 

distribution departed from the Rayleigh distribution due to the presence of a strong 

direct signal. The signal received via this path is likely to be much stronger than the 

signal received via the reflected paths, so the distribution should depart from the 

Rayleigh distribution and become a Rician distribution. [ 1] However, when there was 
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no LOS path between the transmitter and receiver, the envelope closely followed the 

theoretical Rayleigh distribution. This was expected because when the received 

signal is dominated by reflection and diffraction with no strong and dominant direct 

component, the theoretical result should be a Rayleigh distribution. [2] 

6.2.2 Envelope Distribution when a person was moving 

The second measurements were conducted with the transmitter and receiver 

stationary for both LOS and non-LOS conditions. Since the signal reaching the 

receiver is randomly modified by people moving in the area as well as by the floor, 

the ceiling, the walls, and the furniture, it is interesting to find out what effect 

these have. The floor, ceiling, walls and furniture produce a static reflection pattern, 

whereas the movement of people cause randomly varying reflections off themselves, 

and randomly varying blockage of the direct and reflected paths between the 

transmitter and receiver, which must be considered. The measurements were made to 

simulate communications using a portable hand set where the LOS path is sometimes 

obstructed by the user when carrying the hand set. 

The measurements were conducted within the Communications Research 

Laboratory, a plan view of which is shown in figure 6.5. One third of the room was 

filled with various types of electronic equipment and furniture. The room was made 

up of a concrete ceiling, four plastered concrete walls which had an average 

thickness of 30cm, and a floor covered with varnished cork tiles. The height of the 

ceiling was 3.5m. The wall of the room adjacent to the corridor had three wooden 

doors at 3m intervals. Each door was Im wide and 2m high. The opposite wall had 

five aluminium window frame units which were 1.5m above the floor and were 2m 

wide and 2.5m high, separated by posts which were 0.35m wide and 0.25m deep. 

The other two sides of the room had neither doors nor windows. 
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During the measurements, a person moved in front of and behind the 

receiver at a distance of about 0.25m and at a speed of about I m/s. The received 

signal envelope statistics and the median signal power were found during the fading 

intervals. The measurements were conducted when the receiver was placed at 6m 

from the transmitter under LOS and non-LOS conditions as indicated in figure 6.5. 

For the non-LOS measurements, the transmitter was placed behind a metal cabinet 

so that the signal could only be received through reflection and diffraction. 

The received signal power in dB was recorded and plotted against time as 

shown in figures 6.6a and 6.6b. It can be seen from these figures that when a person 

moved in front of the receiver and behind the receiver, fades occurred in bursts of 

15 to 20sec duration separated by periods during which the received signal remained 

constant due to no movement. The burst characteristics were due to the signal 

reaching the receiver being randomly modified by the person moving in front of 

and behind the receiver. The transmitted signal will have transversed a variety of 

paths to reach the receiver and will therefore be subject to multipath fading. It 

shows deep fades of over 20 to 25dB in amplitude. 

For the LOS measurements, when a person was moving in front of the 

receiver the fading of the received signal was more severe. The fading was not only 

due to changes in multipath reflections, but also due to the change of penetration 

loss of the person and therefore the change in level of the LOS signal as he moved. 

The results have shown that the typical dynamic range for fading was about 20dB. 

When a person was moving behind the receiver when a LOS path existed, the 

characteristics of the received signal were statistically more stationary, and the 

fading was less bursty, with a smaller dynamic range of 2 to 4dB. When there was 
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no LOS path between the transmitter and receiver, the median received power 

remained low, and the received signal envelope had deeper fades compared to the 

LOS measurements. It made little difference if the person moved in front of or 

behind the receiver. 

The CDFs of the received signal envelopes during the bursty periods were 

computed. They were plotted on Rayleigh paper in I dB increments of the received 

signal power which was normalised to the median signal power as shown in figure 

6.7. It is interesting to note that when a person moves in front of and behind the 

transmitter with LOS conditions, the distribution departs from the Rayleigh 

distribution. However, when a person was moving in front of the transmitter, the 

distribution is closer to the Rayleigh distribution compared to when a person was 

moving behind the transmitter. 

The results are as expected, because when a person was moving behind the 

receiver, the level of direct signal is likely to be high and therefore more dominant 

than the level of the reflected signals. When a person moves in front of the receiver, 

the level of the LOS signal will be less dominant relative to the level of the reflected 

signals, so that the distribution will be closer to the Rayleigh distribution. 

When there was no LOS path between the transmitter and receiver, the 

distribution was found to follow the Rayleigh distribution when a person moved in 

front of or behind the receiver, as shown in figure 6.7. 

6.2 
.3 Envelope Distribution with two people moving along a corridor. 

Measurements were also conducted by placing the fixed transmitter and 

receiver 14m apart in a corridor which was 1.5m wide and 4m height. The side walls 
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and the ceiling of this corridor were of plaster covered concrete and the floor was 

covered with varnished cork tiles. The thickness of the side walls was about 40cm. 

There were wooden doors at 6m intervals on one side and 2.5m intervals on the 

other. During the recording period, two people walked to and fro between the 

transmitter and receiver at a speed of about I m/s. The recorded signal power in dB 

is shown in figure 6.8. 

The CDF of the received signal envelope was computed in I dB increments of 

the recorded signal power as shown in figure 6.9. The results have shown that the 

envelope distribution was found to follow the Rayleigh distribution. This may be 

due to several strong reflections from the smooth walls, floor and ceiling of the 

narrow corridor and also the LOS path which were randomly obstructed by the two 

people walking to and fro between the transmitter and receiver. The result is that no 

path reaching the receiver was dominant so a Rayleigh distribution occurred. 

6.2.4 EnveloDe Measurements alone a corridor. 

A further set of measurements were conducted along a long corridor. The 

side walls and the ceiling of the corridor were mainly plaster covered and the floor 

had varnished cork tiles. The thickness of the side walls was about 40cm. The 

corridor had wooden doors along side of it at intervals of 2.5m which were 2m high 

by Im wide. There was a staircase in the middle of the corridor, and at the end of 

the corridor, there was a 450 corner. 

During the measurements, the receiver was placed at the beginning of the 

corridor. The transmitter was initially positioned 1m from the receiver and was 

moved away at a constant speed up to a distance of 63m and into the shadow region 

created by the 450 corner. Fig. 6.10 shows the recorded signal power along the 
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corridor. Multipath fading as a result of the movement of the transmitter is observed 

with some fades approaching 35dB in depth which is due to the reflections from the 

walls, the ceiling and the floor. The figure also illustrates the effect of the 450 

corner on the received signal power. After turning the corner, the received signal 

power fell rapidly to an extremely low level. It fell by 40 to 50dB in a travelled 

distance of 6m. 

6.2.5 Envelope Fading at different speeds. 

Finally, measurements were also conducted by moving the transmitter at two 

different speeds (2m/s and 0.83m/s) along a narrow corridor with dimensions 14m x 

1.5m x 3.75m (length x width x height). The received signal power with speeds of 

2m/s and 0.83m/s are shown in fig. 6.11a and 6.11b respectively. The reflection of 

the signal from walls, floor and ceiling cause the received signal power at the 

receiver to experience deep fades. From the figure it is clear that the received signal 

power at the higher speed fluctuates faster than the received signal power at lower 

speed. At the higher speed, more fades occurred per second. 

6.3 MEDIAN RECEIVED SIGNAL POWER AGAINST DISTANCE 

MEASUREMENTS. 

Propagation measurements were conducted in different rooms and corridors 

within the same building to determine the influence of room or corridor size, shape, 

construction and content on the variation of the median received signal power with 

distance for LOS conditions. During the measurements, the transmitter was moved at 

a constant speed from Im away up to a distance of 14m away from the receiver. 

Four rooms and corridors were examined: a. Laboratory, an office, a narrow corridor 

and a wide corridor. 
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The first measurement was conducted within the Communications Research 

Laboratory at the second level of the Queen's Building as described in section 6.2.2. 

The second measurement was conducted in an office which was 15.5m x 

3.5m x 5m (length x width x height). It was being used as a postgraduate work 

room, and contained a lot of furniture such as wooden tables, chairs and cupboards, 

but there was no electrical equipment. The construction and content of the room are 

shown in figure 6.12. It consisted of plaster covered concrete walls which were about 

30cm thick. One of the walls had three wooden doors which were 2m high and 1m 

wide. The wall opposite this had four aluminium window frames and two concrete 

posts which separated the windows. The aluminium window frames were 2m wide 

and 2.5m height and the posts were 0.35m wide and 0.25m deep. The floor was 

made of concrete and was carpeted. 

The third measurement was conducted along a narrow corridor (corridor 1) 

which was 18m x 1.8m x 2.7m (length x width x height). The plan view is shown in 

figure 6.13. One side of the corridor had metal lockers protruding about 30cm from 

the side wall. The walls and ceiling were made of plaster covered concrete and the 

floor was covered with varnished cork tiles. 

The final measurement was conducted along a wide corridor (corridor 2) 

which was 18m x 3m x 2.5m (length x width x height). The side walls were made of 

40cm thick plastered covered concrete which had wooden display boxes with glass 

panelling on both sides. The ceiling was mainly plaster covered concrete and the 

floor was covered with varnished cork tiles. A plan view of the corridor is shown in 

figure 6.14. 
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During the measurements, the transmitter was moved at a constant speed 

from Im away up to a distance of 14m away from the receiver. 

The received signal powers for the four measurements are plotted against 

distance as shown in figures 6.15 to 6.18. In general the median level of the received 

signal power decreased with distance. Superimposed are fluctuations due to 

reflections interfering with the direct path. Multipath fading of the received signal 

power is observed in all regions as the transmitter moves. Fluctuations, in general, 

seem to be similar in all rooms and corridors, although they are less severe in the 

office. This is possibly because it had a carpet on the floor and a lot of furniture 

against the walls which may have significantly reduced strong reflections from the 

floor and the walls. 

The median received signal power was calculated over forty wavelengths of 

travelled distance in order to remove the short-term variations [5] as described in 

section 4.5. This was plotted against distance (log scale) as shown in figure 6.19 to 

6.22. The solid line is the least squares regression fit to the median points. The 

propagation power law within the laboratory containing a lot of electrical equipment 

was 1/d1'71 and within the office with furniture it was 1/d2''7. Within the narrow 

corridor (corridor 1) with metal lockers on one side and the corridor with glass 

panelling (corridor 2) on both sides, the power laws were 1/d137 and 1 /d1.2 

respectively. 

The results have indicated that the power law varies with different 

environments. The power laws for the two corridors were similar, and the received 

signal power fell more slowly than it would in free space (1/d2). This was probably 

due to the smooth parallel walls, floor and ceiling which produced strong specular 
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reflections which channelled the power to the receiver. Instead of spreading out in 

all directions, the 60GHz signal was concentrated in two directions along the 

corridor. Within the Laboratory, the power law was found to be higher compared to 

the corridors but still lower than it would be in free-space. Presumably. the 

channelling effect was still present, but to a smaller degree because the benches and 

equipment prevented strong specular reflections off the walls. Strong reflections 

could still have occurred off the floor and ceiling. The power law within the office 

(1/d2 . 17) was slightly higher but quite close to the free-space power law of 1 /d2. 

This was probably because the furniture and carpet prevented strong reflections off 

the walls and the floor so that propagation was closer to free space. This was 

confirmed by the fact that the envelope fading was less severe than it was in the 

two corridors and the Laboratory. 

6.4 RECEIVED POWER SPECTRUM. 

Measurements were conducted to determine the spectrum. of the received 

signal under mobile and stationary conditions. The two 60GHz phase-locked 

oscillators were locked to a single crystal to reduce frequency drifting. The received 

signal was down-converted from 59.9GHz to a1 GHz IF using the test receiver 

shown in fig. 6.23 and was further down-converted to about 3KHz by a mixer and 

local oscillator derived from a synthesised signal generator at 3KHz above 1 GHz. 

This 3KHz output was connected to an FFT digital spectrum analyser so that the 

spectrum could be observed. 

The first measurement was conducted with both the transmitter and receiver 

stationary, separated by 8m. The output spectrum is shown dotted in fig 6.24a and 

fig. 6.24b. This indicates the received signal frequency without doppler shift, and 
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the noise level. The centre frequency of the spectrum analyser was adjusted so that 

this signal was at the centre of the display. 

The second measurement was conducted with the transmitter and receiver 

fixed and a person walking between the transmitter and receiver when the LOS path 

was not blocked. The results are shown in figure 6.24a. The broad spectrum was due 

to changes in path lengths of the signals reflected off the moving person which 

therefore are doppler shifted as a result of the person walking between the 

transmitter and receiver. 

The third measurement was conducted by moving the transmitter away from 

the receiver at a constant speed of about 1ms with a LOS / path. The output 

spectrum of figure 6.24b shows that a frequency shift (fd) of about 200Hz occurred 

due to the Doppler effect on the LOS path. This was in agreement with theoretical 

doppler shift which is 200Hz for 60GHz at a speed of lm/s. As shown in the figure, 

a broad peak shifted by +3fd occurred which could have been due to the signal 

reflecting back to the transmitter, which then reflected it to the receiver. The 

effective velocity of this path is 3 times the velocity of the transmitter, which 

explains the shift of +3fd. The broad spectrum between -fd and +fd can be 

attributed to many reflections arriving from different angles. The effective velocity 

of the paths vary between +/- velocity of the transmitter so that the paths have 

doppler shifts between -fd and +fd. 

6.5 ATTENUATION OF BUILDING MATERIALS 

A knowledge of the attenuation of building materials is necessary for the 

determination of the feasibility of integrated portable communication systems 

operating within buildings. The measurements were conducted by placing the 
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transmitter and receiver pointing at each other with the object in between and the 

received signal power was noted. The transmitter and receiver were also placed in 

the same position pointing at each other in the absence of an object. The penetration 

loss is the difference in the received signal power in dB with and without the 

object. 

In the measurements, the transmitter used one of the horn lens aerials which 

had a beamwidth of 2.4° and a gain of 37dB. This type of aerial was used to 

minimise the reflections from other obstacles surrounding the object under test. The 

receiver used a standard 20dB gain horn aerial. The results of the penetration loss 

measurements are shown in the table in figure 6.25. The results show that the 

attenuation of different materials varies widely. The most common material used for 

external walls is plaster covered concrete, which is very effective in screening the 

signal. However, softwood has a moderate attenuation of about 4dB for a thickness 

of about 20mm. These results give a general outline for the attenuation of different 

types of materials used within buildings. The test with the aluminium sheet resulted 

in the received signal power falling to the noise level of the receiver. Theoretically, 

it should have an attenuation loss of 100's of dB, so this measurement shows that the 

level of the reflected signals reaching the receiver aerial was greater than 52dB 

below the direct signal. Generally, if the partitions within buildings are made from 

concrete or metal, they will contain the 60GHz signal whereas if the partitions are 

made from the chipboard or wood the signal can be expected to cover several rooms. 

6.6 SIGNAL COVERAGE WITHIN BUILDINGS 

The determination of coverage area and frequency reuse intervals is 

necessary for various indoor radio communications. For example, the integrated 

portable communication systems described in chapter 2 require a well defined and 
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OBJECTS THICKNESS ATTENUATION ATTENUATION 

CHIPBOARD 25 mm 14.07 dB 0.56 dB/mm 

SOFTBOARD 20 mm 4 dB ` 0.2 dB/mm 

PLYWOOD 17 mm 4.33 dB 0.25 dB/mm 

CARDBOARD 2 mm 2 d8 1 dB/mm 

HARDBOARD 3 mm 1.8 dB 0.6 dB/mm 

ALUMINIUM 1 mm > 52 dB > 52 dB/mm 

PLASTER 
COVERED 40mm >52 d8 > 1.3 dB/mm 

CONCRETE 
WALL 

FIG. 6.2 5 ATTENUATION OF BUILDING MATERIALS 



limited operational range and the ability to re-use the same frequency many times 

within the same building. The parameters which determine the coverage within 

buildings are the signal distribution, the mean or median signal power on a per room 

basis and the coupling between each room. Measurements were conducted within the 

Queen's building to determine the above parameters. 

The first set of measurements were conducted in an office area with metal 

partitions and doors which had 2m high glass windows which reached the ceiling. A 

plan view of the area is shown in fig. 6.26. Only one room within the area had a 

wooden door. The height of the ceiling was about 5m. This environment represents 

the worst case for the propagation at 60GHz because of the severely attenuating 

metal partitions. These measurements were made before the phase-locked system was 

available so the non-phase-locked system was used, together with a standard 20dB 

gain horn aerial for the transmitter and the type 1 omnidirectional aerial for the 

receiver. 

In order to determine the coverage area within a particular location, the 

measurements must relate to the whole area being surveyed and indicate the 

probability of a signal of suitable power being received. This was done by recording 

the received signal power while the transmitter was carried around the area to be 

surveyed, ensuring that it spent a similar amount of time in each place. This method 

has also been used by others [3]. 

The measurements were conducted by placing the stationary receiver as 

shown in Fig. 6.26. To sample each room, the transmitter was evenly moved around 

at a slow walking pace to cover as much area as practicable. The mean signal power 

within each room was determined by converting the received signal power in dB to 
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linear power data before averaging. The computed mean value was then converted 

back to dB. 

The digitized data was also sorted into 10 blocks from -44dBm to -104dBm 
in 6dB increments. These blocks were used to produce the histogram of the received 

signal power which directly indicates the probability of successful communication 

within the observed area. 

Fig 6.26 shows the mean received signal power and the histogram 

distribution of the received signal power of each location. The results show that the 

mean received signal power was high when both the transmitter and receiver were in 

the same room. However, when the transmitter and receiver were in separate rooms 

the mean received signal power was very low except for the rooms which, had a 

wooden door between them. The mean received signal power was high for the 

locations where there was a LOS path between the transmitter and receiver. 

The results have shown that reflections from the metal partitions improve the 

signal power within a room although with severe multipath effects. The metal 

partitions are very effective in screening the 60GHz signals although some leakage 

does occur through the wooden door. 

The second set of measurements was conducted with the phase-locked system 

and the type 2 omnidirectional aerials for both the transmitter and the receiver on 

the ground floor of the building. A plan view of the area is shown in figure 6.27. 

The partitions of this area were plaster covered concrete walls having a thickness of 

about 40cm. The doors of the rooms were made from 5cm thick wood which was 

found to a have a low attenuation for 60GHz signals. The measurements were 
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conducted at every location indicated in figure 6.27. The transmitter was placed in 

the foyer at the entrance to the building. During the measurements, for each 

measurement point, the transmitter was scanned horizontally over a 100 wavelength 

by 100 wavelength (50cm by 50cm) square so that the median signal power could be 

found at that point. [4] The scanning consisted of 11 parallel sweeps, the sweeps 

being 5cm apart. The median signal power should be approximately stationary within 

this scanned area. 

The median received signal power at the locations measured are shown in 

fig. 6.27. The results have shown that when there was a LOS path or a wooden door 

between the transmitter and receiver, the median received signal power was higher 

than when the LOS path was blocked by a 40cm thick plaster covered concrete wall. 

When there was no LOS path, leakage through wooden doors was possible but it was 

too small to give adequate coupling between rooms or corridors. This is illustrated 

by three median signal power measurements which were made at transmitter- 

receiver separation distances of about 11 m. The first was a LOS measurement 

(location 8), the second was blocked by a wooden door (location 11) and the third 

was blocked by a 40cm thick plaster covered concrete wall (location 12). The losses 

relative to the LOS path were 7dB for the path through the wooden door and 27dB 

for the path through the concrete wall. 

Measurements were also conducted to determine the received signal power 

when the transmitter and receiver were not in the same room. The receiver was 

placed at the centre of the room and the receiver in the corridor adjacent to the 

room. Between the room and the corridor was a 40cm thick plaster covered concrete 

wall which had three wooden doors. 
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This was one of the earlier measurements, so used the non-phase-locked 

system, a standard 20dB gain horn aerial at the transmitter and the type 1 

omnidirectional aerial at the receiver. The transmitter was moved at a constant speed 

along the corridor and the received signal power was recorded. As shown in figure 

6.28, it was found that a usable signal was obtained only when the transmitter was 

close to the wooden doors, and between the doors, the signal fell to the noise floor 

of the receiver. The poor transmission between the room and the corridor was due to 

the high attenuation of the concrete wall, although leakage through the wooden 

doors was possible, which resulted in an increase of greater than 70dB for the 

middle door. The signal power received behind the other two doors was about 40dB 

lower, presumably because the signal had to pass through, reflect or diffract around 

the benches in order to reach the receiver as can be seen in fig. 6.29. Because of the 

severe attenuation. of 60GHz signal through these types of partitions, coverage would 

be reduced to within a single room. However, the results show that useful 

propagation through wooden doors is possible at 60GHz although it was unable to 

provide complete coverage of the adjacent corridor in this particular case. 

Further measurements were conducted by placing the receiver at a height of 

3.5m above the floor in the Communications Research Laboratory described in 

section 6.2.2. These measurements were conducted in order to determine the 

coverage within a room when the radio port is at ceiling height, which is the most 

likely position that it would be placed. The receiver was placed at the centre of the 

room as shown in figure 6.30. The transmitter was placed on the trolley at a height 

of 1.5m and was randomly moved within a 50cm by 50cm square at the locations 

indicated in fig. 6.30. The median received power was then computed at these 

locations. 
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The results have indicated that the signal power was at its lowest behind 

obstructions but was generally higher compared to when the receiver was 1.5m 

above the floor. The signal could cover the whole room even though there was no 

LOS path between the transmitter and receiver at certain locations. It therefore 

seems that a good position for the radio ports is at the height of the ceiling in the 

middle of the room. The received signal was also fairly low when the transmitter 

was directly below the receiver, because the omnidirectional aerials transmit little 

perpendicular to their main lobe. One method of improving the signal power here 

would be to use an aerial which radiates more power downwards, by using for 

example an aerial with a cardiod shaped polar pattern instead of the torus shaped 

pattern of the omnidirectional aerial used. 

Generally, within buildings, the coverage area at 60GHz, unlike at UHF [3] 

is limited by the structure of the buildings. The building could be partitioned into 

several coverage areas which may be as small as a room by radiating from a radio 

distribution port using an aerial attached to the ceiling. The screening effect depends 

on the type of material used for the partitions. 

6.7 EDGE DIFFRACTION MEASUREMENTS 

Propagation of electromagnetic waves into shadow regions can exist as a 

consequence of edge diffraction. Measurements have been conducted qualitatively 

outdoors to determine the effects of edge diffraction at the corner of a building as 

was described in chapter 5. Indoor measurements have also been conducted to 

determine the order of magnitude of edge diffraction effects at 60GHz 

experimentally so that they can be compared with theory. The propagation 

measurements were conducted by using an aluminium sheet which is considered to 

be opaque to 60GHz signals. This aluminium sheet was 1.2m by 2.5m and the 
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thickness was about 1 mm, so it can considered to be knife edge at 60GHz. The 

measurements were conducted within a large empty room on the first floor of the 

building. The plan view of this room is shown in figure 6.31. 

The transmitter used one of the high directivity horn lens aerials described in 

chapter 4 pointing towards the vertical edge of the knife edge at a distance of 10m. 

This distance was used to ensure that the knife edge was in the far-field region of 

the aerial. The receiver used a 20dB gain horn aerial and was placed at 0.5m from 

the edge. The transmitter and receiver were at heights of 1.5m above the floor. 

LOS measurements were taken at* lcm intervals from the edge into an 

unobstructed region along a line perpendicular to the signal path as shown in figure 

6.31. The non-LOS measurements were taken by moving the receiver at 10cm 

intervals into the shadow region. For the non-LOS measurements, the receiving 

aerial was pointed towards the knife edge. The normalised distance, u, measured 

from the geometrical shadow boundary were computed by using equation 3.26 

U_Y 
2di 

X(di + z)z (6.1) 

where A is the wavelength, dl is the distance between the transmitter and the edge 

and z is the distance between the receiver and the edge as shown in fig. 6.31. The 

normalised distance u is positive in the illuminated region and negative in the 

shadow region. Fig. 6.32 shows the experimental and theoretical curve obtained from 

fig. 3.18 of chapter 3. It can be seen that the experimental curve is nearly identical 

to the theoretical curve for values of u less than 3. When the receiving aerial is 

located in the illuminated region, LOS conditions are maintained. It is interesting to 

note that at a certain distance edge diffraction may actually increase the received 
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signal power, though the increase is small. When the LOS path just skims over the 

edge, and the lower half of the incident beam is cut off the received signal power is 

reduced by 6dB. As the receiving aerial is moved into the shadow region, the 

received signal power decreases rapidly. However for u greater than 3, the 

experimental curve departed from the theoretical curve. The difference between the 

two curves is probably due to the fact that the theoretical curve is only correct for z 

» y, which was no longer true for u greater than 3. When u=8, the different 

between % the theoretical and measured value was about 4dB. The results have 

indicated that the loss at a diffracted angle of 110 (u=3) was 22dB above the free- 

space loss, which is not excessively large. Thus, the knife edge diffraction loss at 

60GHz is not particularly high for such a large angle of diffraction. 

In practice, obstructions cannot be considered to be knife edges, so 

diffraction measurements were attempted around the metal covered wall shown in 

fig 6.31 which protruded into the room. It was found, however, that even for a 

small diffraction angle of 30, the received signal was dominated by reflected signals. 

It is therefore likely that the diffraction around most obstructions will be small, and 

that the reflections must be relied upon. 
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CHAPTER 7 

BIT ERROR RATE (BER) MEASUREMENTS. 

The modulation system used at 60GHz must be capable of transmitting high 

bit rate digital signals, so it can be assumed that a digital modulation method will be 

used. An analogue signal such as speech can be digitised to convert it to a digital 

signal. One practical way of estimating the ability of transmitting data through a 

60GHz radio link is by performing bit error rate (BER) measurements under fading 

conditions. 

7,1 DIGITAL MODULATION METHODS. 

A simple radio frequency digital communication system is shown in figure 

7.1. The input data may be used to modulate a high frequency carrier in one of 

several possible ways [1]. If amplitude shift keying (ASK) is used then the digital 

signal is used to vary the amplitude of the carrier. Another method is frequency 

shift keying (FSK), where the digital signal varies the frequency of the carrier. Yet 

another method is phase shift keying (PSK) where a phase of 00 and 1800 is used for 

the marks and spaces. Other digital modulation techniques are available, eg. 

Quadrature Phase Shift Keying (QPSK), Offset Quadrature Phase Shift Keying 

(OQPSK) and Minimum Shift Keying (MSK) which are mainly modified and 

improved forms of the basic types [3,4], but are more difficult to implement, so are 

not considered here. 

The modulated carrier is often up-converted to a suitable radio frequency 

for transmission. At the receiver, the radio frequency is converted to a lower 

frequency. This is then demodulated and followed by decision circuitry which 

decides if a0 or a1 was transmitted. The decisions will not always be correct due to 
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the distorting effects of the channel. A measure of performance of a digital system 

is the bit error rate (BER). In all modulation systems the BER performance is 

degraded by the fading characteristics of the channel because many errors occur 

during deep fades. 

In mobile radio communications, the characteristics of the radio channel vary 

constantly due to motion of the transmitter and receiver and due to multipath 

propagation. For mobile data communications, these variations can cause bit error 

bursts of various length. However, it is possible to reduce the probability of deep 

fades by using diversity reception [5,6,7] which reduces the BER. Error correction 

coding techniques [8] can also be used to reduce the BER. At 60GHz, the 

interference from impulsive noise sources such as thermostats or car ignition can be 

considered to be negligible compared to the UHF band. 

ASK is not used for digital data transmission at higher frequencies (above 

HF), despite its simplicity, for three reasons. Firstly, the BER performance in noise 

is worse than for FSK and PSK. Secondly, the transmitted signal does not have a 

constant amplitude, so the amount of power which may be radiated is limited by the 

peak power handling capability of the transmitter, so it is not used efficiently. 

Thirdly, for optimum detection of an ASK signal, i. e., for a minimum BER, the 

detection threshold is a function of the received SNR [1]. This will change as the 

signal fades, and the threshold should also be changed. As a result, ASK modulation 

is not used in the mobile environment. In practice, better performance can be 

obtained by using other modulation methods which do not require a detection 

threshold dependent on the received SNR. Therefore only PSK and FSK are 

considered and evaluated in the following sections. 
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7.2 BIT ERROR RATE PERFORMANCE 

The BER is defined as the ratio of the total number of bits detected in error 

to the total number of bits received over a defined time period. This is also the 

definition of the probability of error, Pe. The BER depends on many factors: the 

signal to noise ratio (SNR), the modulation method used, the channel characteristics, 

the signal shaping, the bit rate, and also the type of demodulator used. 

The BER is very dependent on the SNR. The normalised SNR is usually used 

to assess the performance of different digital modulation methods. It is defined as 

E/No9 where E is the received signal energy per bit and No is the noise power 

density in one hertz of the available bandwidth. It can also be shown to be equal to 

signal power/noise power in a bandwidth equal to the bit rate, or SNR x receiver 

filter noise bandwidth/bit rate. The normalised SNR is used because it allows the 

performance of different digital modulation systems operating at different 

bandwidths to be compared directly. 

Multipath propagation and shadowing causes fading which degrades the SNR. 

This causes a high BER when the signal falls to near the noise level of the receiver. 

Random FM due to doppler shifts causes errors in digital angle modulation systems, 

and time delay spread due to multipath propagation produces intersymbol 

interference which causes errors. The BER caused by envelope fading can be 

reduced by increasing the transmitted power. However, increasing the transmitted 

power does not reduce the effects of random FM and time delay spread. Both of 

these result in an irreducible error rate. This means that as the SNR increases, the 

BER reduces until it reaches the irreducible error rate, after which point, no 

improvement in BER occurs. 
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7.3 BER PERFORMANCE IN SLOW NON-SELECTIVE RAYLEIGH FADING. 

7.3.1 Definition of Slow Non-Selective Rayleigh Fading 

Theoretical analyses of the error performance of data communication systems 

are usually based on the assumption of slow, non-selective Rayleigh fading. [2] 

The slow fading assumption means that the fade rate is slow, so that doppler 

spreading is small and has negligible effect on the BER. The non-selective fading 

assumption means that the fading is flat over the channel bandwidth, that is, the 

time delay spreading is small and has negligible effect on the BER. 

With digital modulation systems, carrier waves are modulated for known 

durations to represent marks and spaces. The effect of multipath on such systems is 

fading of the carrier wave and time dispersion of the envelope carrying the 

information about marks and spaces. Time dispersion will result in intersymbol 

inteference if the time delay spreads are appreciable compared to the bit period. For 

a bit period of T sec, fading is essentially non-selective if the multipath time delay 

spread, Tm, satisfies the relationship [2] 

T»T 
m c7. 

For example, if T= 30Tm, then the irreducible error rate is approximately equal to 
1p Lý z L/ O 

_ 
('- 4x 10-4 with raised cosine pulses [9]. ? /7,2 

When the transmitter or receiver is in motion, the carrier wave also 

experiences frequency dispersion due to doppler shifting. The maximum doppler 

shift, fm, can be obtained from equation 3.5 as 

of 
mC 

(7.2) 
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where v is the speed of motion, c is the speed of light and ft is the transmission 

frequency. 

Fading occurs at various rates up to the value of the maximum doppler shift. 

The slow-fading model cannot be used when the period of fades is comparable to 

the bit period. Thus, slow fading for mobile transmission only applies when [2] 

T << 1 
f (7.3) 

m 

where T is the bit period and fm is the maximum doppler shift. 

The maximum data rate that was used in the experiment was 480kbit/sec, so 

T=2.08µs for this data rate. 

Assume that the longest difference in path lengths indoors is 20m, so the 

time delay spread, Tm, is (path difference)/c = 0.0671Ls, thus T» Tm. If the 

transmitter is moved at a speed of 0.5m/s, then the maximum doppler shift, fm, is 

100Hz, so l /fm = 10000ju, thus T«1 /fm. The data rate chosen for the 

measurements therefore satisfied the assumption of slow non-selective Rayleigh 

fading. 

If a data rate of 2Mbit/sec is used, so that T= 0.5µs, T» Tr, still applies. 

Therefore, the assumption of slow non-selective Rayleigh fading is still 

approximately valid. 
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With the above assumptions, the irreducible error rate can be neglected, so 

the BER in a Rayleigh fading channel can be calculated by adopting the results 

from the probability of error for a steady signal in white Gaussian noise (WGN). 

7 . 3.2 Mathematical Calculation of the BER with Slow Non-Selective Rayleigh 

Fading. 

Mathematically, the probability of error for different modulated systems 

working in white Gaussian noise (WGN) is given by [2] 

Pe= 
1 

exp[-2) 
2 

Pe= 2 exp(-) 

Pe =2 erfc 

erfcý/° Pe =2 

(NON-COHERENT FSK) (7.4) 

(DPSK) (7.5) 

(PSK) (7.6) 

(COHERENT FSK) (7.7) 

where -y is the instantanous SNR, and erfc(x) is the complementary error function, 

given by [2] 

w 
2 

erfc (x) =2 e-t dt (7.8) 
v- 

x 

where x and t are general variables. 
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Equations (7.4) to (7.7) are derived theoretically using statistical decision 

theory, and are plotted in fig. 7.2. [21 

In a Rayleigh fading environment, the received SNR varies due to multipath 

fading, so the BER cannot be based on one constant SNR. The average BER or Pe 

for the Rayleigh fading case is given by 

Co 

Pe = Pe (ä). p(ä)dä (7.9) 
J0 

where p(7) is the pdf of the SNR for Rayleigh fading. 

In a Rayleigh environment, the pdf of the received signal envelope is given 

by equation 3.7 as [9] 

2 

p(r) =r exp ýr for r>0 
b, 2b0 

(7.10) 

where r is the envelope of the fading signal and bo is the average power of the 

short-term fading. Since the received thermal noise is not affected by the fading, 

the average noise power, Ph can be assumed to be constant. The instantaneous SNR 

is therefore given by 

2 
r (7.11 ) 

2P 
n 

and if I' is the mean SNR, then 

b 
I' = PO 

(7.12) 

n 

Also, 
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P(ý) = P(r) 
d''/dr) 

so 

(7.13) 

P(2') = P(r) 
2r 

(7.14) 2P 
n 

Thus, from equations (7.10), (7.11), (7.12) and (7.14), the pdf of the output SNR is 

p(') _ exp(- , 
(7.15) 

Substituting equation (7.15) and equation (7.4) to equation (7.7) into equation (7.9) 

gives [2] 

Pe 2+ 'r 

Pe =1 2+ 2I' 

(NON-COHERENT FSK) 

(DPSK) 

Pý 11+1 (PSK) 

r 

1 
Pe = 1- 

1 

11+ 2 
(COHERENT FSK) 

(7.16) 

(7.17) 

(?. 18 ) 

(7.19) 

The above equations are plotted in fig. 7.3. It can be seen that the BER 

increases greatly due to the Rayleigh fading. 
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At large SNR's, for all these systems in the Rayleigh fading environment 

Pe a1 r 
(7.20) 

So if both the BER and r have log scales, the graphs are straight lines with negative 

slopes for r»1. 

7.4 CHOICE OF DIGITAL MODULATION METHOD FOR 60GHz. 

The theoretical derivations in the previous section have indicated that 

coherent detection methods result in lower BER's at a given SNR both with and 

without Rayleigh fading. In practice, however, coherent detection methods are not 

commonly used because of the problem of establishing the reference in a channel 

characterised by deep fades. Instead, non-coherent system such as NCFSK and 

DPSK are employed for the majority of applications because they do not require 

additional reference circuitry for demodulation. The choice at 60GHz was therefore 

made between these two systems. 

The theoretical analysis of the previous section has indicated that DPSK 

gives a better performance than NCFSK both in WGN and in slow non-selective 

Rayleigh fading. The irreducible error rate caused by frequency selective fading 

(time delay spread) for both non-coherent FSK and DPSK is roughly the same. It 

does, however, depends on the pulse shaping, and raised cosine pulses are found to 

be more tolerent to delay spread than square pulses[9]. 
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When the fading is not slow, i. e, when the mobile is moving at a high speed 

so that the doppler spreading is high, NCFSK has a lower irreducible error rate than 

DPSK. For DPSK, the irreducible. error rate is given by [9] 

11 of 2 
Pe(DPSK) 

fm 
(7.21) 

for 27rfmT small, where fm is the maximum doppler shift and f8 is the bit rate. For 

FSK, the irreducible error rate is given by [9] 

f2 
Pe(FSK) =1 8 f, 

P (7.22) 

where fp is the peak frequency deviation and for fp » fm. From equations(7.21) and 

(7.22) and if fp = fs/2 is used, then 

Pe(DPSK) 
_ 10 

Pe(FSK) 
(7.23) 

Therefore the irreducible error rate for FSK is about 10 times lower than 

that for DPSK. The minimum data rate that was used in the experiment was 

240kbit/sec so fp = 120kHz. At 60GHz, if the transmitter is moved at a speed of 

0.5m/s, then fm = 100Hz. From equation (7.22) the irreducible error rate for the 

NCFSK is about 8.7x 10-8 and is about 8.6x 10-7 for DPSK from equation 7.21, which 

are both negligible. Theoretically, the results obtained from the experiment should 

experience a negligible irreducible error rate due to doppler shift at this speed. 

However, for the outdoor environment, if a vehicle is moving at 30m/s 

(67mph) then fm = 6kHz and the irreducible error rates for the DPSK and NCFSK 

would be about 3.1 x 10-3 and 3.1x104 respectively. The random FM and therefore 
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the irreducible error rate will increase if the triple doppler shifts measured in 

section 6.4 occur. Because the signal power received is likely to be weak, a lower bit 

rate may be necessary which would increase the irreducible error rate. The BER 

performance of DPSK is unacceptably high. Therefore if the system is to be used 

outdoors with fast moving vehicles, FSK is more suitable. However, the 

measurements were not conducted outdoors because the transmitter and receiver 

modem had to be linked with a cable. This is because the error detector used needed 

to be provided with both the transmitted and received bit sequences. 

Another advantage of NCFSK is that it is easier to implement than DPSK. 

Therefore, NCFSK was chosen because it was thought that it would result in a 

simple future 60GHz transceiver, and because it has the best BER at high vehicle 

speeds. 

7.5 DESCRIPTION OF THE FSK MODEM. 

The design and construction of the modulator and demodulator of the non- 

coherent FSK test system are described in this section. 

Fig. 7.4 shows the block diagram of the FSK modem. One method of 

producing FSK is by feeding the digital baseband data to an FM modulator. This is 

known as direct binary FSK. It can be generated by using circuits which switch the 

frequency of an oscillator [10]. One of these methods makes use of a free running 

oscillator whose frequency is controlled by a voltage. This is called a voltage 

controlled oscillator (VCO). 

The data was generated by using a7 bit shift register and an exclusive-or 

gate to produce a 127 bit length pseudo random binary sequence (PRBS). 
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Transmission rates of 240 and 480kbit/sec were used. The FSK encoder had a centre 

frequency of 60MHz, and was realised by feeding the PRBS to a 60MHz VCO. The 

ratio of peak frequency deviation to bit rate used was 0.5. Fig. 7.5 shows the output 

spectrum of the FSK modulator at 240 and 480kbits/sec. 

The demodulator consists of a 60MHz bandpass filter, a limiter, a frequency 

discriminator, an integrate and dump filter, and a decision circuit. The bandpass 

filter removes components of noise outside the signal band in addition to shaping the 

received signal. It was a second order Bessel filter, whose noise bandwidth was 

373kHz for the 240kbits/sec and 752kHz for the 480kbits/sec measurements. The 

limiter and frequency discriminator produce an output voltage level proportional to 

the input frequency, and when receiving an FSK signal, the output alternates 

between the two logic voltage levels. The characteristics of the discriminator must be 

linear so that the output voltage response is proportional to the input frequency. 

Because the amplitude of the received FSK signal varies due to fading, a pre- 

detection amplitude limiter is used. Integrate and dump circuitry and decision 

circuitry were used to convert the two noisy logic levels into a reconstituted data 

signal. 

7 .6 CHARACTERISING THE FSK MODEM 

The FSK modem needs to be characterised by measuring the BER 

performance in WGN before it can be used with the 60GHz system. This is to 

ensure that the performance of the system is optimum. In order to do this, \VGN 

was added to the modulated signal at 60MHz as shown in fig. 7.6. 

In order to determine the SNR, the band limited signal and noise power were 

measured separately at the bandpass filter ' output by using a power meter. If the 
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noise power is Pn and the signal power is P8, then the normalised SNR is found 

from 

P. 
_ IL (7.24) SNR 

norm Pn 'f (7 
9 

where Bn is the noise bandwidth of the bandpass filter and fs is the data rate in 

bits/sec. 

The demodulated data at point Y in fig. 7.6 was then compared with the 

transmitted data at point X on a bit-by-bit basis. The error detector circuit used an 

exclusive-or gate and the output of this was sampled with the sampling pulse stream 

derived from the clock generator. An error pulse is obtained at the output of the 

error detector at the sampling pulses whenever the transmitted and demodulated data 

differ. 

The error pulses were counted on a frequency meter over a 10sec period for 

a certain value of SNR. The error counting measurements were repeated for 

different SNR's. The ratio of the number of errors counted per second to the 

number of bits transmitted per second in the 10 second period gives the BER for the 

modem. Hence, if the reading of the frequency meter is fe for a transmitted data 

rate fs, then the BER is given by 

f 
BER =fe (7.25) 

S 

The curve for the measured BER versus SNR in WGN was plotted as shown 

in figure 7.7 together with the theoretical curve. The results show that the FSK 
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modem falls within 1dB of the theoretical performance expected for FSK with 

discriminator detection. 

7.7 TRANSMISSION OF FSK THROUGH THE 60GHz LINK 

The BER measurements were made, with the experimental system shown in 

figure 7.8. The output of the FSK generator was up-converted to 60GHz by an 

Alpha 964V01 E modulator. The output of the modulator consisted principally of 2 

sidebands at 59.96GHz and 59.84GHz (60MHz above and below the 59.9GHz output 

from the phase-locked oscillator). Because it was too difficult to design a filter at 

60GHz, both sidebands were transmitted. The loss of the modulator was 10dB which 

is the modulator input power at 59.9GHz in dBm minus the output power of the 

wanted 59.96GHz sideband in dBm. The transmitted power was therefore 10dB 

below the 50mW output power of the transmitter, which is 5mW. At the receiver, 

the 58.9GHz phase-locked local oscillator down-converted the transmitted sidebands 

to 1.06GHz and 0.94GHz. The bandpass filter passed only the 1.06GHz sideband, 

which was further down-converted to 60MHz by using a mixer and a1 GHz local 

oscillator. 

The phase-locked system described in chapter 4 was used, because the 

narrow-band received signal would have quickly drifted out of the pass-band of the 

60MHz IF bandpass filter with the non-phase-locked system. It is assumed that 

temperature compensation and/or AFC could be applied to commercial transmitters 

and receivers in the future, so that the complexity and expense of phase-locking is 

avoided. The aerials used for the BER measurements were the omnidirectional 

aerials (type 2) described in chapter 4. 
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7.8 EXPERIMENTAL PROCEDURE AND RESULTS. 

The procedure of the BER measurements described in section 7-6 was used 

to obtain the BER for different SNR's. For these measurements, instead of adding 

the WGN, the signal was transmitted through the 60GHz radio link. 

The first measurements were conducted when there was a LOS path between 

the stationary transmitter and receiver. The results obtained are plotted in fig. 7.9. 

The second measurements were conducted by randomly moving the 

transmitter in a horizontal plane in order to produce fading, and the received signal 

envelope was recorded on the FM tape recorder. The received signal envelope during 

the fading period was computed in order to obtain the mean received signal power 

and the envelope distribution. It was later calibrated to give the mean normalised 

SNR for that particular level. The procedure was repeated for different power levels 

and therefore SNR's. 

The third measurements were conducted when there was no LOS path 

between the transmitter and receiver. The transmitter was placed behind a metal 

cabinet, so that the signal was received through reflections from surrounding objects 

and diffraction around the metal cabinet. The received signal envelope was recorded 

on the FM tape recorder and was later analysed in order to determine the mean 

signal power and the envelope fading statistics. 

When there was a LOS path between the transmitter and receiver, the 

envelope distribution departed from the Rayleigh distribution. However, for non- 

LOS conditions, where the signal was received through reflections from and 

diffractions around the surroundings, a near Rayleigh distribution was obtained. 
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The BER was plotted against the mean normalised SNR for both LOS and 

non-LOS conditions together with the theoretical curve derived earlier for non- 

coherent FSK in Rayleigh fading as the dotted line shown in fig. 7.9. For 

comparison, the theoretical non-coherent FSK curve of the BER with no fading was 

plotted as the full line on the same graph. 

It is interesting to note from the figure that, for non-LOS conditions, where 

the envelope was found to obey the Rayleigh distribution, the experimental curves 

for the BER are a close fit to the theoretical curves for Rayleigh fading. The BER 

performance was worse for Rayleigh fading when there was no LOS path compared 

to the non-Rayleigh fading when there was a LOS path. For Rayleigh fading, in 

order to maintain a BER of 1 in 103, an increase of about 18dB in mean SNR was 

required compared to when there is no fading. However, when there was a LOS path 

between the transmitter and receiver, a BER of 1 in 103 required an increase of 

about 13dB in average SNR compared to that in the absence of fading. 

The results also indicate that for the conditions of the experiments 

conducted, no irreducible error rate under LOS or non-LOS conditions occurred. 

This implies that the time delay spread was much less than the bit duration of the 

transmitted data so it experienced negligible intersymbol interference. This is 

because the path lengths in the room were short and there were presumably not 

many strong multiple reflections. The lack of an irreducible error rate also implies 

that the random FM due to doppler shifts was much smaller than the FM of the 

FSK signal. This is because the mobile transmitter was moved at a slow speed. In 

other areas, particularly outdoors, much higher doppler shifts and much higher time 

- 105 - 



P 

0 

-1 
10 

-2 
10 

-3 
10 

-4 
10 

-5 
10 

" 

T4SOkbIt/senon7OS) 

A 480 kbit/eec (LOS) 

240 kbit/sec (non-LOS) 

13 A dý- N, 

13 240 kbit/8ec (LOS) 

C  STA71ONAW (, 
_ AOA No-Fading 

o 
(Theoretical) 

Rayleigh Fading 
o ýe (Theoretical) 

A N O, 

o 

O 

o ,. 

 OO 

O 

  

  

  

05 10 15 20 25 30 

MEAN NORMALISED SNR (dB) 

FIG. 7.9 BER IN FADING AND NON-FADING CONDITIONS FOR 
NON-COHERENT FSK. 



delay spreads could be experienced, so under these conditions, an irreducible error 

rate would perhaps have occurred. 

7.9 METHODS OF IMPROVING THE BER PERFORMANCE 

The results show that a high SNR is required to obtain a reasonable BER 

when Rayleigh fading is present. Since Rayleigh fading occurs under non-LOS 

conditions when the SNR is at its lowest, the BER may be too high for a working 

system that has to cover an entire room with only one radio distribution port. The 

bit rates used were 240kbit/sec and 480kbit/sec which are relatively low. If, 

however, a high er bit rate is used, the BER would be higher because of the wider 

bandwidth which results in a higher noise power and therefore a worse SNR. In 

addition, in some locations, particularly outdoors where path lengths are usually 

longer, the time delay spread may be much greater, so higher bit rates may result in 

a very high irreducible error rate due to intersymbol interference. It is therefore 

desirable to find methods to significantly improve it. The BER could be improved 

by increasing the transmitted power. For example, by using a non-phase-locked 

transmitter, the loss in the modulator could be eliminated because the 60GHz 

oscillator could be frequency modulated directly, so that no modulator is needed. 

This would increase the transmitted power by 10dB in this case, and would also 

make transceivers less costly and complex. Diversity reception is another possibility 

which would greatly reduce the BER. It also can be used in conjunction with coding 

techniques which may provide a good solution to the problem. 

Another possibility is to use DPSK instead of FSK, because it gives better 

performance in slow non-selective Rayleigh fading. [ 1] However, a modulator is 

needed for the transmitter which has a typical loss of about 4 dB. If it is also used 
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outdoors, they may be problems due to high vehicle speeds. These would produce a 

worse irreducible error rate than they would in FSK. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

The aim of the research presented in this thesis was to investigate the narrow 

band propagation characteristics at 60GHz both within buildings and outdoors. The 

BER performance of FSK modulation at 240 and 480kbit/sec within buildings was 

also investigated. 

Outdoor and indoor communications to mobile terminals is subject to 

envelope variations. Small scale variations occur due to multipath propagation, and 

large scale variations occur due to shadowing. Also, the signal power decreases with 

increasing distance due to the spreading out of the radiated power. Furthermore, 

multipath propagation results in delay spread and therefore displays frequency 

selective fading. In a digital system, it causes intersymbol interference which causes 

an irreducible error rate. Also, mobile terminals experience random FM due to 

doppler shifts which causes errors in digital systems. 

The outdoor results have shown that up to a distance of 100m where 

reflections were minimised, the received signal power followed the theoretical free 

space law plus the oxygen absorption law. Also, the results have indicated that the 

surrounding objects and the type of ground have an influence on the received signal 

power. More multipath fading has been observed for an environment with many 

surrounding objects compared to an open area. More open environments have less 

fading. 

For the outdoors environment under LOS conditions the envelope distribution 

departed from the Rayleigh distribution. Also under LOS conditions, the median 
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signal power fell with distance, where the rate of fall depended on the type of 

environment. For a LOS path, the more open the environment, the faster the fall in 

received median power. The propagation power law was found to be 1/d2*3 for an 

open area with a grass surface and 1 /d1.4 along a road with buildings, parked cars 

and walls along the sides. 

The results have indicated that the received signal power after diffraction 

around 'obstacles such as the corner of a building is too small to be usable in the 

mobile environment. In one measurement, a movement of just a few metres into the 

shadow region caused an attenuation of about 40dB in the received signal power, 

although the attenuation was dependent on the distance from the obstruction. 

Open areas can create difficulties for communications at 60GHz when the 

LOS path is obstructed, because there may be no nearby objects to reflect the signal 

to the receiver. Even along a road with buildings and cars parked along the sides, 

one of the measurements has shown that when a LOS path was obstructed by a van, 

the received signal power fell by more than 25dB. This means that the reflected 

signals were weak so they were unable to provide a usable signal power at the 

receiver. 

Propagation of 60GHz into buildings, from lamp post height for example, is 

not feasible due to the high attenuation of 60GHz through walls and other partitions 

because the exterior and interior building walls act as shields. It was found that for 

the particular building measured, the penetration loss varied from 4dB to greater 

than 45dB. Therefore, in order to provide services within buildings, the radio 

distribution ports need to be installed indoors. 
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For the outdoor environment, if a 60GHz system is to be employed, careful 

consideration must be given when installing aerials so that the obstruction loss due 

to obstacles is minimised. This could be possible by using base station diversity. 

Several radio distribution ports may be necessary to fill in the signal behind 

obstructions. The system designer will always have to ensure that a LOS path or a 

strong reflection exists between the transmitter and receiver. 

Indoors, the results have indicated that when no LOS path existed, there was 

a very good fit to the Rayleigh distribution because the signal received was by 

reflections and there was no dominant direct signal. However, when a LOS path was 

present, there was a relatively poor fit to the Rayleigh distribution because the 

direct wave was much stronger than the reflected waves. Instead, the received signal 

envelope tended to follow a Rician distribution. 

Fading is not only caused by the transmitter or receiver moving, but also by 

people moving. When there was no LOS path and a person was moving in front of 

or behind the receiver, the distribution followed the Rayleigh distribution. However, 

when there was a LOS path the distribution tended to follow a Rician distribution. 

The fading was more severe when the LOS path was intermittently blocked by a 

person moving in front of the receiver. 

Measurements of power laws within buildings have been made with a LOS 

path for different environments. The results have indicated that under LOS 

conditions within a Laboratory and particularly within corridors, the median signal 

power fell with distance more slowly than it would in free space. This may be due 

to the channelling effect of the received power caused by strong reflections from the 

walls, floor and ceiling. However, in a furnished and carpeted office, the median 



signal power fell with distance slightly faster than it would in free-space. This was 
because strong reflections off the walls were prevented by many chairs, desks and 

bookshelves, and a strong reflection off the floor was prevented by a carpet. The 

power laws measured in different indoor environments do not however represent 

worst case conditions. This is because a LOS path results in a high received signal 

power and because it is usually rare indoors for there to be a LOS path over a long 

distance. The non-LOS case causes the biggest problem because generally, the 

received signal power is at its lowest because of the high obstruction losses, and the 

fast fading is at its most severe (Rayleigh) compared to the fading experienced 

under LOS conditions (Rician). 

The results from the attenuation of building materials have shown that the 

attenuation varies widely for different materials. The most common materials used 

for external walls such as concrete blocks are very effective in screening the 60GHz 

signal. However, materials such as chipboard and hardboard have a fairly low 

attenuation. 

The results also have indicated that room-to-room coverage depends on the 

type of partitions used. The high attenuation of concrete walls or partitions with 

metal linings prevent the signal from radiating to adjacent rooms. Although the 

signal attenuation through wooden doors was low, the signal power was usually only 

strong enough close to them. A rapid fall in the received signal power therefore 

occurs beyond the room. This results in the capability of greater frequency reuse 

and a higher reduction of co-channel interference due to the screening effects of the 

partitions. The screening effect of these partitions means that one radio distribution 

port would be required per room. Also, the low attenuation of wooden doors 
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suggests that if the walls are made of chipboard, the signal would perhaps cover 

several rooms. 

The indoor results have indicated that a high signal power occurs with knife 

edge diffraction. However, practically occurring diffractors (obstacles) do not have 

knife edges, and the received signal power due to diffraction is generally small 

compared to that due to reflections. If the signal in the shadow region is too low, 

the reflections from the surrounding environment, for example from the wall, could 

be improved by applying a reflective coating. 

The power spectrum of the received signal has indicated that it experienced 

frequency spreading between +/- the maximum doppler shift due to the doppler 

shifting of the direct and reflected paths. In the measurements, frequency shifts 

which were three times the maximum theoretical doppler shift have been observed. 

These were thought to be due to the signal being reflected back to the transmitter, 

which reflected it to the receiver. The doppler spreading is small at the speeds of 

motion usually experienced indoors compared to the expected transmission 

bandwidth, so its effects are likely to be small. 

The type of modulation chosen for the transmission of binary data was non- 

coherent FSK. This was because theoretically, the irreducible error rate performance 

of FSK with random FM due to doppler shifts is about ten times lower than for 

DPSK, which could be important outdoors, and because of the simplicity of the 

design and construction of an FSK modem. 

The results from the BER measurements in Rayleigh fading have indicated 

that no irreducible error rate occurred. This implies that the delay spread was much 
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less than the bit duration of the FSK signal so that the inter-symbol interference 

was small. This is because the indoor path length is short and probably because 

multiple reflections were not very strong. Furthermore, the transmitter was moved at 

a slow speed so the doppler shifts were small with negligible random FM. It has 

been proved theoretically that the irreducible error rate due to doppler shifts at this 
bit rate is very low. With the present system, a higher bit rate could not be achieved 
because of the limitations of the hardware used. Since no irreducible error rate 

occurred at 480kbit/sec, it is posssible that higher bit rates could be successfully 

used without problems of intersymbol interference. However, in other areas, 

particularly outdoors, the time delay spread may be higher, so a lower bit rate would 

have to be used. High bit rates also mean that the frequency stability of the 60GHz 

oscillators is less of a problem, so a non-phase-locked system would perhaps be 

. acceptable. With this, generating FSK is easier because it can be done by applying 

data to the varactor of the 60GHz transmitter oscillator. Therefore, a modulator 

would not be required, which would simplify the transmitter and would eliminate 

the modulator power loss. 

In conclusion, the following points can be made. The signal coverage at 

60GHz could be improved by careful location of the radio distribution ports, and by 

choosing suitable types of aerials and radiated power levels. Suitable placement of 

the radio ports can provide reasonable signal coverage. For example, in the urban 

outdoor environment, many radio distribution points distributed throughout the area 

would reduce the obstruction losses. A possible position for these radio distribution 

ports is on lamp posts, traffic signals or building walls. The choice of the radiated 

power and aerial radiation pattern would depend on the environment. For example, 

in an open area, omnidirectional aerials could be used since there are less 
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obstructions. This could be applied for example in stadiums or in open public places. 

In urban environments, for example, along streets, directional aerials could be used. 

Within buildings, a single room or corridor could be served by a single 

60GHz distribution port attached to the- ceiling. Optical fibre links could be 

connected to the 60GHz distribution ports for trunking purposes. A good position 

for a 60GHz radio distribution port in a room is in the middle of the room at 

ceiling height. With this placement, reflections off the side walls probably improve 

the received signal power behind obstructions. If the reflections are weak, the 

received signal power could perhaps be increased by applying some form of 

reflective coating to the walls. 

By using a different polar pattern for the aerial, the coverage within a room 

could be improved. The polar diagram of the omnidirectional aerial used had a torus 

shape. However, the received signal power was low when the transmitter was 

directly below the receiver when it was located near the ceiling. This was because 

the omnidirectional aerials transmit or receive little perpendicular to their main 

lobes. An aerial with a cardioid shaped polar pattern would probably give an 

improvement in the received signal power and therefore an improved BER at this 

location. 

The BER obtained may be too high for a working system and a substantial 

improvement will have to be made to the BER performance. Most of the errors are 

caused by the fading. If data transmission is going to be used in this kind of 

environment, i. e within a single room, Diversity reception in conjunction with 

coding techniques could improve the BER performance and therefore could provide 

a good solution to the problem. 
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SUGGESTIONS FOR FUTURE WORK. 

Included in this section are suggestions for further research that could be 

conducted for a better understanding and implementation for future 60GHz 

communication systems. 

The results presented in this thesis has been measured in a reinforced 

concrete building consisting mainly of plaster covered concrete partitions. It would 

be interesting to find the indoor propagation characteristics of different buildings 

having different types of partitions, since they may extend the coverage into 

adjacent rooms. A different polar pattern of the aerial to improve the signal 

coverage in a particular environment could also be investigated. 

The results have shown that no irreducible error rate occurred at 480kbit/sec 

within buildings. It would be of interest to try other areas within buildings and 

outdoors and to try higher data rates to see if an acceptable BER can be obtained. 

Furthermore, different aspects of digital encoding, diversity, modulation and 

multiplexing techniques could be considered. It is also of interest to try to 

characterise the BER performance using more complicated modulation methods such 

as DPSK, OQPSK, MSK etc. Furthermore, the feasibility of a simple non-phase 

locked system using FSK modulation for the transmission of wideband data by using 

automatic frequency control (AFC) could be investigated. 

Other possible applications at 60GHz are short range point-to-point links and 

local distribution networks. These areas of research could also be investigated, for 

example, the local distribution of wideband services such as 'cable' TV distribution 

into houses. The extremely wide bandwidth available could permit the transmission 

-1 16 - 



of a high data rate with low delay spread for a stationary local distribution network. 

It also could help to reduce the co-channel interference between various local 

distribution networks. 
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program load; 
(This program reads data from a binary file produced by) 
(A/D program and stores data in a formatted ASCII file ) 

var 
ipf ile 
opf ile 
ip f name 
opfname 
firstsamp 
lastsamp 
samp 
data 

: file of integer; 
: text; 
: string[80 
: string[80]; 
: integer; 
: integer; 
: integer; 
: integer; 

(binary file from A/D prog) 
(formatted ASCII op file) 
(input filename ) 
(output filename ) 
(first samp from ip file ) 
(last samp from ip file ) 
(samp number ) 
(data samp from ip file ) 

begin 
write('Enter input filename: '); 
readln(ipfname); 
assign (ipfile, ipfname) ; 
write('Enter output filename: '); 
readln(opfname); 
assign(opfile, opfname); 
write('Enter first sample: '); 
readln(firstsamp); 
write('Enter last sample: '); 
readln(lastsamp); 
reset(ipfile) ; 
rewrite(opfile); 
for samp: =1 to lastsamp do begin 

read(ipfile, data); 
if samp>=firstsamp then write(opfile, data: l0); 

end; 
close (ipfile) ; 
close (opf ile) ; 

end. 
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program plot; 
{Program plots data stored in ASCII file produced by 
{program load. Runs with turbo pascal & turbo graphix 
(version 3. Change MaxPlotGlb in file typedef. sys to 
(1500 to plot up to 1500 points 

(The following 6 lines include turbo graphix system 
files) 
($I c: \turbogra\typedef. sys) 
{$I c: \turbogra\graphix. sys} 
($I c: \turbogra\kernel. sys ) 
{$I c: \turbogra\windows. sys) 
($I c: \turbogra\axis. hgh } 
($I c: \turbogra\polygon. hgh) 

const 
maxnumsamp = 1500; {max num samps that can be read } 

type 
str80 = string[80]; 
dataarray = array [l.. maxnumsamp] of real; 

var 
data : dataarray; ( stores data read from file } 
numsamp : integer; ( num samps read from data file) 
ch : char; { menu option letter } 
points : plotarray; { stores points to be plotted } 

function isin(ch: char; s: str80): boolean; 
var 

charpos : integer; 
begin 

isin: =false; 
for charpos: =1 to 

if s[charpos]=ch 
end; (isin) 

function menu: char; 
var 

ch : char; 
begin 

writeln; 
repeat 

writeln('Display 
writeln('Save'); 
writeln('Load'); 
writeln('Quit'); 
writeln('Plot'); 
writeln; 

length(s) do 
then isin: =true; 

data') ; 

write('Choose one (D, S, L, Q, P): '); 

readln(ch); 
writeln; 
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ch: =upcase (ch) ; 
until isin(ch, 'DSLQP'); 
menu: =ch; 

end; (menu) 

procedure 
var 

samp 
begin 

display; 

: integer; 

tor samp: =1 to numsamp do 
writeln(samp, ': ', data[samp]: 15: 5); 

writeln; 
end; (display) 

procedure save; 
var 

samp : integer; 
fname : string[80]; 
temp : real; 
datafile : text; 

begin 
write('Enter filename: '); 
readln (fname) ; 
writeln; 
assign(datafile, fname); 
rewrite (datafile) ; 
temp: =numsamp; { change its type 
write(datafile, temp); 
for samp: =1 to numsamp 

do writeln(datafile, data[samp]) 
close(datafile); 

end; (save) 

procedure plotxy; 
var 

from integer to real 

I 

samp : integer; 
firstsamp : integer; 
lastsamp : integer; 

begin 
write('Enter firstsamp: '); 
readln (f irstsamp) ; 
write('Enter lastsamp: '); 
readln(lastsamp); 
initgraphic; 
clearscreen; 
definewindow(1,0,0, xmaxglb, ymaxglb); 
defineworld(1, firstsamp, 100, lastsamp, 0); 
selectworld(1); 
selectwindow(1); 
setbackground(0); 
drawborder; 
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drawaxis(81-7,0,0,0,0,0,0, true); 
for samp: =firstsamp to lastsamp do begin 

points[samp-firstsamp+1,1]: =samp; 
points[samp-firstsamp+1,2]: =data[samp]; 

end; 
drawpolygon(points, l, lastsamp-firstsamp+1,0,0,0); 
repeat until keypressed; 
leavegraphic; 

end; 

procedure load; 
var 

same : integer; 
fname : string[80]; 
temp : real; 
datafile : text; 

begin 
write('Enter filename: '); 
readln (fname) ; 
writeln; 
assign(datafile, fname); 
reset (datafile) ; 
writeln('Enter number of samples: '); 
readln(numsamp); 
for samp: =1 to numsamp do begin 

read(datafile, data[samp]); 
data[samp]: =data[samp]-2060; 
data[samp]: =data[samp]*5; 
data[samp]: =120-(2680-data[samp])/23; 

end; 
close (datafile) ; 

end; (load) 

begin 
repeat 

ch: =upcase(menu); 
case ch of 

'D': display; 
'S': save; 
'L': load; 
'P': plotxy; 

end; 
until ch='Q'; 

end. 
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program calib; 
(This program reads data stored in ASCII file produced } 
(by the program load, converts it to dB and stores it in) 
(another file } 

const 
maxnumsamp = 5000; {max num samps 

type 
str80 = string[80]; 
dataarray = array [1.. maxnumsamp] 

var 

that can be read 

of integer; 

data : dataarray; {stores data read from a 
numsamp : integer; (number of samples read 
ch : char; (menu option letter 

function isin(ch: char; s: str80): boolean; 
var 

charpos : integer; 
begin 

isin: =false; 
for charpos: =1 to length(s) do 

if s[charpos]=ch then isin: =true; 
end; (isin) 

function menu: char; 
var 

ch : char; 
begin 

writeln; 
repeat 

writeln('Display data'); 
writeln('Save '); 
writeln('Load'); 
writeln('Quit'); 
writeln; 
write('choose one (D, S, L, Q): '). 

readln(ch); 
writeln; 
ch: =upcase(ch); 

until isin(ch, 'DSLQ'); 
menu: =ch; 

end; (menu) 

file ) 
fromfile) 

} 

procedure display; 
var 

samp : integer; { sample number variable } 

begin 
for samp: =1 to numsamp do 

writeln(samp, ': ', data[samp]); 
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writeln; 
end; (display) 

procedure save; 
var 

samp : integer; (sample number variable } 
fname : string[80]; (calibrated data file name } 
temp : real; (converts an integer to a real } 
datafile : text; (calibrated data file } 

begin 
write('Enter filename: '); 
readln (f name) ; 
writeln; 
assign(datafile, fname); 
rewrite (datafile) ; 
temp: =numsamp; ( change its type from integer to real } 
for samp: =1 to numsamp do 

writeln(datafile, data[samp]); 
close (datafile) ; 

end; (save) 

procedure load; 
var 

same : integer; ( sample number variable 
fname : string[80]; { filename of ip file 
datafile : text; ( ip file 

begin 
write('Enter filename: '); 
readln (fname) ; 
writeln; 
assign(datafile, fname); 
reset (datafile) ; 
write('Enter number of samples: '); 
readln(numsamp); 
for samp: =1 to numsamp do begin 

read(datafile, data[samp]); 
data[samp]: =data[samp]-2060; 
data[samp]: =data[samp]*5; 
data[samp]: =-trunc((2680-data[samp])/23); 
data[samp]: =trunc(data[samp]-2.5); 

end; 
close (datafile) ; 

end; (load) 

begin 
repeat 

ch: =upcase(menu); 
case ch of 

'D': display; 
ISS: save; 
'L': load; 
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end; 
until ch='Q'; 

end. 

-A. 8- 



program dbmean; 
(This program calculates mean, standard dev, max and min) 
(from calibrated data in dB stored in a file } 

const 
maxnumsamp=5000; (max num samps that can be read ) 

type 
str80=string[80]; 
dataarray=array[ 1.. maxnumsamp] 

var 
data : dataarray; 
meanval : real; 
std : real; 
maxval : real; 
minval : real; 
numsamp : integer; 
ch : char; 

of real; 

function isin(ch: char; s: str80): boolean; 
var 

charpos : integer; 
begin 

isin: =false; 
for charpos: =1 to 

if s[charpos]=ch 
end; (isin) 

( position in character string ) 

length (s) do 
then isin: =true; 

function menu: char; 
var 

ch : char; 
begin 

writeln; 
repeat 

writeln('Enter data'); 
writeln('Display data'); 
writeln('Basic statistics'); 
writeln('Save'); 
writeln('Load'); 
writeln Quit 
writeln; 
write('Choose one (E, D, B, 

readln(ch); 
writeln; 
ch: =upcase(ch); 

until isin(ch, 'EDBSLQ'); 
menu: =ch; 

end; (menu) 

S, L, Q): ') ; 

procedure display(numsamp: integer); 
var 

samp : integer; 
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datsamp : real; 
begin 

for samp: =1 to numsamp do begin 
datsamp: =20*(ln(data[samp])/ln(10)); 
writeln(samp, ': ', datsamp: 15: 5); 

end; 
writeln; 

end; (display) 

procedure enter; 
var 

samp : integer; 
begin 

write('Enter number of items: '); 
readln(numsamp);. 
writeln; 
for samp: =1 to numsamp do begin 

write('Enter item ', samp, ': '); 
readln(data[samp]); 
writeln; 

end; 
end; (enter) 

function mean(numsamp: integer): real; 
var 

samp : integer; 
avg : real; 

begin 
avg: =O; 
for samp: =1 to numsamp do 

avg: =avg+data[samp]; 
mean: =20*(ln(avg/numsamp)/ln(10)); 

end; (mean) 

function stddev(numsamp: integer): real; 
var 

samp : integer; 
std : real; 
avg : real; 

begin 
avg: =mean(numsamp); 
avg: =exp((avg/20)*ln(10)); 
std: =O; 
for samp: =1 to numsamp do 

std: =std+((data[samp]-avg)*(data[samp]-avg)); 
std: =std/numsamp; 
stddev: =-(ln(sgrt(std))/ln(10)); 

end; (stddev) 

function getmax(numsamp: integer): integer; 
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var 
samp : integer; 
max : real; 
get : real; 
dbdat : real; 

begin 
max: =20* (ln(data[1])/ln(10)) ; for samp: =2 to numsamp do begin 

dbdat: =20*(ln(data[samp])/ln(10)); 
if dbdat>max then max: =dbdat; 

end; 
getmax: =round(max); 

end; (getmax) 

function getmin(numsamp: integer): integer; 
var 

samp : integer; 
min : real; 
dbdat : real; 

begin 
min: =20*(ln(data[1])/ln(10)); 
for samp: =2 to numsamp do begin 

dbdat: =20*(ln(data[samp])/ln(10)); 
if dbdat<min then min: =dbdat; 

end; 
getmin: =round(min); 

end; (getmin) 

procedure save(numsamp: integer); 
var 

samp : integer; 
fname : string[80]; 
temp : real; 
datafile : text; 

begin 
write('Enter filename: '); 
readln(fname); 
writeln; 
assign(datafile, fname); 
rewrite (datafile) ; 
temp: =numsamp; (change its type) 
write(datafile, temp); 
for samp: =1 to numsamp do 

writeln(datafile, data[samp]); 
close (datafile) ; 

end; (save) 

procedure load; 
var 

samp : integer; 
scale : integer; 

- A. I1 - 



min : real; 
fname : string[80]; 
temp : real; 
datafile : text; 

begin 
write('Enter filename: '); 
readln (f name) ; 
writeln; 
assign (datafile, fname) ; 
reset(datafile); 
write('Enter number of samples: '); 
readln(numsamp); 
for samp: =1 to numsamp do begin 

read(datafile, data[samp]); 
data[samp]: =data[samp]; 
data[samp]: =exp((data[samp]/20)*ln(l0)); 

end; 
close (datafile) ; 

end; (load) 

begin 
repeat 

ch: =upcase(menu); 
case ch of 

'E': enter; 
'D': display(numsamp); 
'S': save(numsamp); 
'L': load; 
'B': begin 

meanval: =mean(numsamp); 
std: =stddev(numsamp); 
maxval: =getmax(numsamp); 
minval: =getmin(numsamp); 
writeln('mean: ', meanval: 15: 5); 
writeln('standard deviation: ', std: 15: 5); 
writeln('maximum sig. stren.: ', maxval: 15: 5); 
writeln('minimum sig. stren.: ', minval: 15: 5); 
writeln; 

end; 
end; 

until ch='Q'; 
end. 
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program dbmedian; 
(This program reads data stored in file by program calib) 
{and calculates the median in a small sector and stores } 
{it into another array to be transferred to multics for } 
(use with Minitab for plotting and for regression ) 

const 
maxnumsamp=1000; {max num samps read from data file } 

type 
dataarray = array [l.. maxnumsamp] of integer; 
medarray = array [l.. 400] of real; 

var 
data : dataarray; 
median : medarray; 
nsect : integer; 
nsamp : integer; 
samp : integer; 
sect : integer; 
fname : string[80]; 
ipfile : text; 
opfile : text; 

procedure bubble_sort (n: integer; var data: dataarray; 
var median: real); 

var 
temp : integer; 
i : integer; 
j : integer; 
p : integer; 

begin 
for i: =2 to n do begin 

for j: =1 to i-1 do begin 
if (data [j]> data [i ])then begin 

temp: =data[i]; 
data[i]: =data[j]; 
data[j]: =temp; 

end; 
end; 

end; 
p: =n div 2+1; 
if(n mod 2= O)then 

median: =(data[p]+data[p-1])/2 
else 

median: =data[p]; 
end; 

begin 
write('Enter filename: '); 
readln (fname) ; 
writeln; 

; assign (ipfile, fname) 
reset (ipfile) ; 
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write('Enter number of samples in each sector: '); 
readln(nsamp); 
writeln; 
write('Enter number of sectors: '); 
readln(nsect); 
for sect: =1 to nsect do begin 

for samp: =1 to nsamp do 
read(ipfile, data[samp]); 

bubble sort(nsamp, data, median[sect]); 
writeln; 
writeln('Here is the sorted list: '); 
writeln; 
for samp: =1 to nsamp do 

write (data [samp]: 10); 
writeln; 
writeln('The median is ', median[sect]: 5: 1); 

end; 
close (ipf ile) ; 
write('Enter filename: '); 
readln (fname) ; 
writeln; 
assign(opfile, fname); 
rewrite (opf ile) ; 
for sect: =1 to nsect do 

writeln(opfile, median[sect]: 5: 2); 

close (opf ile) 
end. 
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Noise Density measured on a spectrum analyser = -1 25.85dBm in 1 Hz 

= Actual Noise Density + Analyser Noise Density. 

Analyser Noise Density (measured with no input to the spectrum analyser) 

= -139.39 dBm in 1 Hz. 

Actual Noise Density = lologlo(10-(125.85/10) _ l0-(139.39/10)) 

= -126.05 dBm in 1Hz. 

Actual Noise Density when taking the cable loss (0.48dB) into consideration 

= -126.05 + 0.48 

= -125.57dBm in 1 Hz 

Normalised SNR = 

In dB's, 

Signal Power 

Noise Power in 1 Hz x Bit Rate 

Normalised SNR = 101og10(Signal Power) - 101og10(Noise Power in Hz) 

- 101oglo(bit rate) 

= Signal Power(dBm) + 125.57 - lOloglo(bit rate) 
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PROPAGATION AND BIT ERROR RATE MEASUREMENTS WITHIN BUILDINGS IN TILE MILLIMETRE WAVE BAND ABOUT 60 CIIz. 

A. R. Tharek and J. P. hlcCcchan 
Communication Research Group 

Department of Electrical Engineering 
University of Bristol 

Bristol BS8 ITR 

INTRODUCTION 

Given the significant congestion in the mobile radio frequency 
bands below I Giiz. there is currently significant interest in the 
millimetric waveband around 60 GHz for providing integrated 
personal communications and a wide range of digital services to 
mobile users and data terminals. Furthermore, with recent 
advances in GaAs technology, the use of 60GHz in broadband 
short-range point-to-point links is also the subject of much 
investigation at the moment. The work presented here is 
concerned with propagation and bit error rate measurements 
conducted within buildings using phase-locked oscillators at 60 
GHz. 

EQUIPMENT AND EXPERIMENTAL PROCEDURE. 

such as walls, furniture, ceiling and floor, and with no direct 
component, the envelope distribution should follow the Rayleigh 
distribution (2). When a LOS path does exist, the signal so 
received is likely to be much stronger than the signal received via 
the reflected paths, so the distribution should depart from the 
Rayleigh distribution and become a Rician distribution [3). 

When both the transmitter anc rccei%er are stationary, the signal 
reaching the receiver is randomly affected by people or objects 
moving in the area. The results have shown that whcn a LOS 
path existed, the envelope distribution when a person was moving 
behind and in front of the receiver at a dis; ancc of 0.25m did 
not obey the Rayleigh distribution. However, when there was no 
LOS path the envelope distribution exhibited a near Rayleigh 
distribution as shown in figure 4. 

The measurements were made with a 59.9GHz, 50mW phase- 
locked oscillator in the transmitter, and a 58.9GHz, 10mW phase- 
locked oscillator as the receiver local oscillator. Two 

omnidirectional 60GHz aerials were used for the measurements 
which hýd gains of approximately 7 dB, elevation beamwidths of 
about 20 and which were circularly polarised. These aerials were 
used for most of the propagation and BER measurements. For the 
edge diffraction measurebnents, a standard 20 dB gain horn aerial 
with a beamwidth of 18 was used for the receiver, and a high 
directivity horn-lens aerial was used for the transmitter The 
horn-lens aerial had a gain of 37 dB, a beamwidth of 2.40, and 
sidelobes whose amplitudes were more than 27 dß below the 

main lobe. This type of aerial was used because the measurements 
had to be free of any significant reflected components. 

The measurements were conducted within the Queen's Building 

of the University of Bristol, a substantial three storey brick and 

reinforced concrete building. For the majority of the 

measurements, the transmitter and the receiver were positioned 
1.5 m above the floor. For the envelope distribution 

measurements, the signal coverage measurements and the BER 

measurements in fading, the transmitter was scanned over a small 

area to collect the data as detailed in reference (1]. Within the 

scanned locations, the mean signal strength was approximately 

constant so that the mean or median signal power, or the 

envelope distribution could be accurately determined. 

ENVELOPE DISTRIBUTION MEASUREMENTS 

Line-of-sight (LOS) and non-LOS measurements were made with 
the receiver stationary and the transmitter randomly moved in a 
horizontal plane. Figures 1 and 2 are graphs of the received 
signal power against time for both these cases, which illustrate 

the nature of the fast fading experienced within buildings. Figure 
3 shows the cumulative distribution function (CDF) of the 

received signal envelope for both LOS and non-LOS conditions 
and also the theoretical Rayleigh CDF. When there was a LOS 

Path between the transmitter and receiver, the envelope 
distribution significantly departed from the Rayleigh distribution 

and tended to follow a Rician distribution. It is interesting to 
note that when there was no LOS path, the distribution was 
approximately Rayleigh. The LOS result was as expected, since 
the signal was received via many reflections off nearby objects 

MEDIAN RECEIVED SIGNAL POWER AGAINST DISTANCE 
DEPENDENCY MEASUREMENTS 

These measurements were conducted under LOS conditions with 
the receiver stationary and the transmitter on a trolley pushed at 
a constant speed so that the time to distance conversion was 
linear. The received signal power was averaged over 
approximately 40 wavelengths. This distance was long enough to 
filter out most of the short term variations (fast fading), but 
short enough so that it did not significantly affect the v%riations 
in the median level [4]. In order to determine the propagnticn 
exponent, a straight line curve fit was performed on the mediar 
received signal power. 

Different environments within buildings have different 
influences on the received signal power. Four areas have been 
examined: two types of corridor, a Laboratory, and an office. 
Details of these measurement tire-is and their influence on signal 
propagation are given below. 

The first corridor was narrow with dimensions 18m x 1.8m a 
2.7m (length x width x height) and had metal lockers along one 
side. The second corridor was wider with dimensions 18ni x 3m x 
2.5m (length x width x height) and had glass panelling on both 
sides. Both had 30cm thick pla.; tcr covered concrete walls and the 
floors were covered with varnished cork tiles. The median 
rec 3CZd signal pp ýr for the corridors decreased with distance as 
1/d and 1/d respectively. The propagation laws for both 

corridors were therefore very similar, and the signal power fei 

more slowly than it would in free space. Theoretically, a ; /d 
law occurs in free-space, and this has been confirmed outdoors 
over short distances when reflections were minimised. The flow 
fall-off in Signa: power in the corridors was probably due to the 
smooth parallel walls, floor and ceiling which produced strong 
specular reflections which channelled the power to the receiver. 

The laboratory was a 24m x 5.5m x 3.75m (length x width x 
height) room with 30cm thick plaster covered concrete walls and 

a floor covered with varnished cork tiles. There were many chairs 
and wooden benches in the room, and a larEe amount of 

electrical equipment. The median signal power decreascd as 
1/dl I, which was a faster fill with distance compared to the 



corridors but was still slower than it would be in free-space. 
Presumably, the channelling effect was still present, but to a 
snialier degree because the benches and equipment prevented 
strong specular reflections off the walls, although there could still 
be strong reflections' off the floor and ceiling. 

The office was a postgradual. e work room, which was 15.5m x 
3.5rn x 5m (length x widta x height) with plaster covered 
concrete walls and a carpeicd floor. There were many desks, 
chairs and bookhfýves in this room. The median signal power 
decreased as IN 

, whic was faster than the other areas tried 
and quite close to the 1/d free-space law. This was probably 
because the furniture . nd carpet prevented strong reflections off 
the walls and the flair. This was confirmed by the envelope 
fading which was less severe than, in the two corridors and the 
laboratory. 

SIGNAL COVERAGE MEASUREMENTS 

Measurements have been conducted in an area with many offices 
separated by metal partitions. The transmitter was carried around 
the rooms and the signal was received at a fixed point in the 
middle of the room. The results have shown that, as expected, 
the 60 GHz signal is effectively screened by the metal partitions. 
However, when the transmitter and receiver were in the same 
room, a high signal power was maintained, although with severe 
multipath effects. 

Measurements were also conducted within an area with corridors 
and rooms having concrete wUls and wooden doors. A plan view 
of the area and the median received signal power at various 
points is shown in figure 5. The signal power when the 
transmitter and receiver were in different rooms was generally 
too small to be usable. There was, however, some leakage through, 
the wooden doors, resulting in a high received signal power near 
them or when there was a LOS path through them, but it was 
insufficient to give adequate room to room coupling. This 
situation was illustrated by 

. 
hree median signal power 

measurements which were made at transmitter-receiver separation 
distances of about llm. The first was a LOS measurement, the 
second was blocked by a 4: m thick wooden door made of oak, 
and the third was blocked by a 40ern thick plaster covered 
concrete wall. The losses re'ative to the LOS path were 7 dB for 

the path through the wooden door and 27 dB for the path 
through the concrete wall. 

`"ledian signal power measurements have been made with the 
recei'cr placed at ceiling height in the middle of a large room. 
The results have indicated that the signal power was at its lowest 
behind obstructions but was generally higher here compared to 
when the receiver was 1.5in above the floor. The signal could 
cover the whole room even though there was no LOS path 
between the transmitter and receiver at certain locations. It 

therefore seems that a suitable position for the radio ports is at 
; tiling height in the middle of the room. 

RECEIVED PONN'CR SPECTRUM MEASUREMENTS. 

Measurements were also conducted to determine the spectrum of 

; he received signal by down-converting the 1 GHz IF to an IF 

about 3l; Hz, and monitoring the spectrum on a digital spectrum 

: analyser. '[his signal was centred of the analyser when there was 

no movement between the fixed transmitter and receiver. When 

the transmitter was moved away from the receiver at a constant 

speed of about I m/s, the IF shifted upwards by about 200 Hz, 

as shown in figure 6. Theorc: ically, for a mobile moving at a 

speed of about I m/s and a : airier of 60 GHz, the maximum 
doppler shift, fd, is 200 Hz. 

The broad peak shifted by 600Hz (+3fd) could have been due to 
the signal reflecting back to the transmitter, which then reflected it to the receiver. The broad spectrum between -fd and +fd can 
be attributed to many reflections arriving from different angles. 
and therefore having doppler shifts between -fd and +fd. 

KNIFE EDGE DIFFRACTION MEASUREMENTS 

Knife edge diffraction measurements were made using an 
aluminium sheet as the knife edge. The experimental results were 
found to fit the theoretical curve (5) as shown in figure 7. 

The loss at a diffracted angle of 110 (v-3) was 22 dB above the 
free-space loss, which is not excessively large. In practice though. 
obstructions cannot be considered to be knife edges of this form, 
so diffraction measurements were attempted around a metal 
covered wall. It was found, however, that even for a small 
diffraction angle of 3, the received signal was dominated by 
reflected signals. It is therefore likely that the diffraction around 
most obstructions will be small, and that reflections must be 
relied upon. Diffraction measurements outdoors are covered in 
another publication. (6) 

BIT ERROR RATE (BER) MEASUREMENTS. 

BER measurements were conducted for FSK modulation at 240 
kbits/sec and 480 kbits/sec in both LOS and non-LOS conditions 
while moving the transmitter randomly in a horizontal plane in 
order to produce fading. The received signal envelope was 
recorded and analysed to obtain the mean signal power and the 
envelope distribution. The output noise power density was 
measured and the normalised SNR was calculated as the ratio of 
the average signal power to the noise power in a bandwidth equal 
to the bit rate. The SNR was varied by reducing the transmitted 
power with a variable attenuator. The results are shown in figure 
8, where the BER varies as a function of the average, normalised 
SNR. 

it is interesting to note that for non-LOS conditions, where the 
envelope was found to obey the Rayleigh distribution. the 
experimental curve for the probability of error was very close to 
the theoretical curve. Under Rayleigh fading conditions, in order 
to maintain an error rate of l in 10 , an increase of 18 dß in the 
SNR was required compared with the required SNR in the 
absence of fading. However, when there was a LOS 'ath between 

the transmitter and receiver, an error rate of I in 10 required an 
increase of about 13 dB in average SNR compared to that in the 

absence of fading. 

Fig. 8 also shows that for the conditions of the experiments 

conducted in our laboratory, no irreducible error rate occurred 
for either bit rate under LOS and non-LOS propagation. This 

implies that the time delay spread was much less than the bit 

duration of the transmitted data and also that the random FM 

due to doppler shifts was much smaller than the FM of the FSK 

signal. 

DISCUSSION AND CONCLUSIONS 

This paper has presented the measured data for indoor 60GIIz 

propagation characteristics and FSK DER measurements. 

Generally, the non-LOS case causes the greatest difficulties since 

the median received signal power is at its lowest, the fast fading 

is more severe (Rayleigh) compared to that for LOS conditions 
(Rician), and the BER is at its highest. Attaching the radio 

transmitter near the middle of the ceiling can be expected to 



improve the signal strengd, behind obstructions. An aerial which 
directs the radiation downwards and sideways would probably 
improve the signal strength even further. 

The screening effect of concrete walls means that one radio 
transmitter would be required per room. The low attenuation of 
wooden doors suggests that if the walls are made of chipboard, 
the signal would perhaps cover several rooms. 

Doppler spreading is small ir. doors compared to the transmitted 
signal bandwidth of FSK, so its effects are likely to be small. 
This is confirmed by lack of an irreducible error rate with the 
E3ER measurements. The results have also indicated that a 
relatively low attenuation of signal strength occurs with knife 
edge diffraction. However, practically occurring diffractors 
(obstacles) do not have kniffe edges, and the received signal 
power due to diffraction is generally small compared to that due 
to reflections. 

Since no irreducible error rate occurred in the DER 
measurements at 480 kbits/sec, it is possible that a higher bit rate 
could be used without problems of intersymbol interference 
caused by time delay -spread. However, in other areas, the time 
delay spread may be higher, so a lower bit rate would have to be 
used. 
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