497 research outputs found

    A Projection Argument for Differential Inclusions, with Applications to Persistence of Mass-Action Kinetics

    Full text link
    Motivated by questions in mass-action kinetics, we introduce the notion of vertexical family of differential inclusions. Defined on open hypercubes, these families are characterized by particular good behavior under projection maps. The motivating examples are certain families of reaction networks -- including reversible, weakly reversible, endotactic, and strongly endotactic reaction networks -- that give rise to vertexical families of mass-action differential inclusions. We prove that vertexical families are amenable to structural induction. Consequently, a trajectory of a vertexical family approaches the boundary if and only if either the trajectory approaches a vertex of the hypercube, or a trajectory in a lower-dimensional member of the family approaches the boundary. With this technology, we make progress on the global attractor conjecture, a central open problem concerning mass-action kinetics systems. Additionally, we phrase mass-action kinetics as a functor on reaction networks with variable rates.Comment: v5: published version; v3 and v4: minor additional edits; v2: contains more general version of main theorem on vertexical families, including its accompanying corollaries -- some of them new; final section contains new results relating to prior and future research on persistence of mass-action systems; improved exposition throughou

    Permanence of Weakly Reversible Mass-Action Systems with a Single Linkage Class

    Full text link
    We give a new proof of the fact that each weakly reversible mass-action system with a single linkage class is permanent

    Identifying parameter regions for multistationarity

    Get PDF
    Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity.Comment: In this version the paper has been substantially rewritten and reorganised. Theorem 1 has been reformulated and Corollary 1 adde

    Intermediates, Catalysts, Persistence, and Boundary Steady States

    Full text link
    For dynamical systems arising from chemical reaction networks, persistence is the property that each species concentration remains positively bounded away from zero, as long as species concentrations were all positive in the beginning. We describe two graphical procedures for simplifying reaction networks without breaking known necessary or sufficient conditions for persistence, by iteratively removing so-called intermediates and catalysts from the network. The procedures are easy to apply and, in many cases, lead to highly simplified network structures, such as monomolecular networks. For specific classes of reaction networks, we show that these conditions for persistence are equivalent to one another. Furthermore, they can also be characterized by easily checkable strong connectivity properties of a related graph. In particular, this is the case for (conservative) monomolecular networks, as well as cascades of a large class of post-translational modification systems (of which the MAPK cascade and the nn-site futile cycle are prominent examples). Since one of the aforementioned sufficient conditions for persistence precludes the existence of boundary steady states, our method also provides a graphical tool to check for that.Comment: The main result was made more general through a slightly different approach. Accepted for publication in the Journal of Mathematical Biolog

    Absolute concentration robustness in networks with low-dimensional stoichiometric subspace

    Full text link
    A reaction system exhibits "absolute concentration robustness" (ACR) in some species if the positive steady-state value of that species does not depend on initial conditions. Mathematically, this means that the positive part of the variety of the steady-state ideal lies entirely in a hyperplane of the form xi=cx_i=c, for some c>0c>0. Deciding whether a given reaction system -- or those arising from some reaction network -- exhibits ACR is difficult in general, but here we show that for many simple networks, assessing ACR is straightforward. Indeed, our criteria for ACR can be performed by simply inspecting a network or its standard embedding into Euclidean space. Our main results pertain to networks with many conservation laws, so that all reactions are parallel to one other. Such "one-dimensional" networks include those networks having only one species. We also consider networks with only two reactions, and show that ACR is characterized by a well-known criterion of Shinar and Feinberg. Finally, up to some natural ACR-preserving operations -- relabeling species, lengthening a reaction, and so on -- only three families of networks with two reactions and two species have ACR. Our results are proven using algebraic and combinatorial techniques

    Rate-Independent Computation in Continuous Chemical Reaction Networks

    Full text link
    Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. Here we study the following problem: what functions f:R^k --> R can be computed by a CRN, in which the CRN eventually produces the correct amount of the "output" molecule, no matter the rate at which reactions proceed? This captures a previously unexplored, but very natural class of computations: for example, the reaction X1 + X2 --> Y can be thought to compute the function y = min(x1, x2). Such a CRN is robust in the sense that it is correct no matter the kinetic model of chemistry, so long as it respects the stoichiometric constraints. We develop a reachability relation based on "what could happen" if reaction rates can vary arbitrarily over time. We define *stable computation* analogously to probability 1 computation in distributed computing, and connect it with a seemingly stronger notion of rate-independent computation based on convergence under a wide class of generalized rate laws. We also consider the "dual-rail representation" that can represent negative values as the difference of two concentrations and allows the composition of CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear (with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities occurring only when some inputs switch from zero to positive (direct representation). The many contexts where continuous piecewise linear functions are powerful targets for implementation, combined with the systematic construction we develop for computing these functions, demonstrate the potential of rate-independent chemical computation.Comment: preliminary version appeared in ITCS 2014: http://doi.org/10.1145/2554797.255482

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF
    corecore