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Identifying parameter regions for multistationarity

Carsten Conradi1, Elisenda Feliu2, Maya Mincheva3, Carsten Wiuf2

August 16, 2016

Abstract

Mathematical modeling has become an established tool for studying biological dynamics.
Current applications range from building models that reproduce quantitative data to iden-
tifying models with predefined qualitative features, such as switching behavior, bistability
or oscillations. Mathematically, the latter question amounts to identifying parameter values
associated with a given qualitative feature.

We introduce an algorithm to partition the parameter space of a parameterized system
of ordinary differential equations into regions for which the system has a unique or multi-
ple equilibria. The algorithm is based on a simple idea, the computation of the Brouwer
degree, and creates a multivariate polynomial with parameter depending coefficients. Using
algebraic techniques, the signs of the coefficients reveal parameter regions with and without
multistationarity.

We demonstrate the algorithm on models of gene transcription and cell signaling, and
argue that the parameter constraints defining each region have biological meaningful inter-
pretations.

Keywords: biological dynamics; reaction networks; algebraic parameterization; quali-
tative analysis; Newton polytope; dissipative system

Mathematical models in the form of parameterized systems of ordinary differential equations
(ODEs) are valuable tools in biology. Often qualitative properties of the ODEs are associated
with macroscopic properties and biological functions [1–4]. It is therefore increasingly important
that mathematical modeling in biology not only focuses on obtaining accurate models, but
even more so on understanding the qualitative properties of these models. With the growing
adaption of differential equations in biology, it is expected that an automated screening of
ODE models for parameter dependent properties and discrimination of parameter regions with
different properties would be a very useful tool for biology, and perhaps even more for synthetic
biology [5]. Even though it is currently not conceivable how and if this task can be efficiently
formalized we view this paper as a first step in this direction.

Multistationarity, that is, the possibility of the system to rest in different positive equilibria
depending on the initial state of the system, is an important qualitative property. Biologically,
multistationarity is linked to cellular decision making and ‘memory’-related on/off responses to
graded input [2–4]. Consequently the existence of multiple equilibria is often a design objective
in synthetic biology [6, 7]. Various mathematical methods, developed in the context of reaction
network theory, can be applied to decide whether multistationarity exists for some parameter
values or not at all, or to pinpoint specific values for which it does occur [8–14]. Some of these
methods are freely available as software tools [15, 16].

Delimiting parameter regions for which multistationarity occurs is a hard mathematical
problem. Often it is solved by numerical investigations and parameter sampling, guided by
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Motif Discriminating expression Condition

A
K−−⇀↽−−
F

Ap

B
K−−⇀↽−−
F

Bp

b(k) =
(
kc1kc4 − kc2kc3

)
·(

kc1kc4

kM1kM4
−

kc2kc3

kM2kM3

) Multiple:
b(k) < 0
Unique:
b(k) ≥ 0

A
K−−⇀↽−−
F

Ap

Ap
K−−⇀↽−−
F

App

b1(k) =
(
kc1kc4 − kc2kc3

)
b2(k) = kc1kc4(kM2 + kM3)

− kc2kc3(kM1 + kM4)

Multiple:
b1(k) < 0
Unique:
b1(k) ≥ 0 and
b2(k) ≥ 0

Table 1: Conditions for multiple and unique equilibria in post-translational modification of
proteins. Symbols kci and kMi denote the catalytic and Michaelis-Menten constants of the i-
the modification step (i = 1: phosphorylation of A, i = 2: dephosphorylation of Ap, i = 3:
phosphorylation of B (resp. Ap), i = 4: dephosphorylation of Bp (resp. App)). All parameter
values satisfying the conditions in column 3 yield multiple (unique) equilibria for some (all)
values of the conserved quantities. See Supporting Information for details.

biological intuition or by case-by-case mathematical approaches. Alternatively, for polynomial
ODEs, a decomposition of the parameter space into regions with different numbers of equilibria
could be achieved by Cylindrical Algebraic Decomposition (a version of quantifier elimination)
[17]. This method, however, scales very poorly and is thus only of limited help in biology, where
models tend to be large in terms of the number of variables and parameters.

Here we present an algorithm to identify regions of the parameter space for which multiple
equilibria exist and regions for which only one equilibrium exists. In many cases we achieve a
complete partitioning of the parameter space. The input is a system of ODEs, commonly used
to model biological processes, and the output is a single polynomial. The capacity for multiple
(unique) equilibria is encoded in the signs of the polynomial as a function of the parameters and
the variables. The algorithm originates from ideas in [18, 19].

Table 1 shows two examples of network motifs that occur frequently in intracellular signaling:
a two-site protein modification by a kinase–phosphatase pair and a one-site modification of two
proteins by the same kinase–phosphatase pair. The conditions discriminating between a unique
and multiple equilibria highlight a delicate relationship between the catalytic and Michaelis-
Menten constants of the kinase and the phosphatase with the modified protein as a substrate
(the kc- and kM -values). If the condition for multiple equilibria is met, then multiple equilibria
occur provided the total concentrations of kinase, phosphatase and substrate are in suitable
ranges (values thereof can be computed as part of the algorithm).

The paper is organized as follows: we first introduce notation and mathematical background
material. We then give a theorem that links the number of equilibria to the sign of the deter-
minant of the Jacobian of a certain function, related to the ODE system. Using the theorem we
state the algorithm and give examples. Larger examples and proofs are given in the Supporting
Information, together with a detailed analysis of the motifs in Table 1.

Results

Reaction networks. A reaction network, or simply a network, consists of a set of species
{X1, . . . , Xn} and a set of reactions of the form:

Rj :

n∑
i=1

αijXi →
n∑
i=1

βijXi, j = 1, . . . , ` (1)

where αij , βij are non-negative integers. We let N = (Nij) ∈ Rn×` be the stoichiometric matrix
of the network, defined as Nij = βij −αij , that is, the (i, j)-th entry encodes the net production
of species Xi in reaction Rj . We refer to the ‘running example’ in Fig. 1 for illustration of
definitions.
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Reaction network:

X1
κ1−→ X2 X2 +X3

κ2−→ X1 +X4 X4
κ3−→ X3.

Stoichiometric matrix N , vector of mass-action reaction
rate functions v(x) and a matrix W with W N = 0:

N =




−1 1 0
1 −1 0
0 −1 1
0 1 −1


 ,

v(x) = (κ1x1, κ2x2x3, κ3x4)

W =

(
1 1 0 0
0 0 1 1

)
.

ODE system ẋ = f(x) with

f(x) = (−κ1x1 + κ2x2x3, κ1x1 − κ2x2x3

− κ2x2x3 + κ3x4, κ2x2x3 − κ3x4)

Figure 1: Running example. Simplified model of a two-component system, consisting of a
histidine kinase HK and a response regulator RR. Both occur unphosphorylated and phospho-
rylated (subscript p); X1 = HK, X2 = HKp, X3 = RR and X4 = RRp.

The concentration of the species X1, . . . , Xn are denoted by lower-case letters x1, . . . , xn.
We denote by Rn>0 (Rn≥0), the positive (non-negative) orthant in Rn. The evolution of the
concentrations with respect to time is modeled as an ODE system with initial condition x(0) = x0
and

ẋ = f(x), f(x) = Nv(x), x ∈ Rn≥0, (2)

where x = (x1, . . . , xn), v = (v1, . . . , v`) and vj : Rn≥0 → R≥0 is a C1-function, called the reaction
rate function of reaction Rj . Typical choices are mass-action kinetics, Michaelis-Menten and
Hill kinetics.

Under the assumption

vj(x) = 0 ⇔ xi = 0 for some i such that αij > 0, (3)

the orphants Rn>0 and Rn≥0 are forward-invariant under f in (19) [20, Section 16]. The above
mentioned kinetics fulfil the assumption in (3).

In the following, by a (reaction) network we implicitly assume it comes together with an
ODE system.

The trajectories of the ODEs in (19) are confined to the so-called stoichiometric compatibility
classes (SCCs), which are defined as follows. Let s = rank(N) and d = n − s. Further, let
W ∈ Rd×n be a matrix whose rows form a basis of im(N)⊥, see Fig. 1. Then, each c ∈ Rd
defines a SCC by

Pc := {x ∈ Rn≥0 |Wx = c},

which is empty if c /∈W (Rn≥0). The positive SCC is defined as the relative interior of Pc,

P+
c := {x ∈ Rn>0 |Wx = c} = Pc ∩ Rn>0.

The sets P+
c and Pc are convex and forward-invariant, hence by definition Wx is conserved

through time.
An equation of the form ω · x = c′ for some ω ∈ im(N)⊥ and c′ ∈ R is called a conservation

law. In particular, Wx = c forms a system of d conservation laws. The matrix W in Fig. 1 leads
to the conservation laws x1 + x2 = c1, x3 + x4 = c2. Here we have P+

(c1,c2)
6= ∅ if and only if

c1, c2 > 0.

Dissipative and conservative reaction networks. A reaction network is dissipative
if every trajectory eventually ends up in a compact set, which depends only on the SCC (see
Supporting Information). A reaction network is conservative if all concentrations participate
in at least one conservation law with non-negative coefficients. This is equivalent to the SCCs
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being compact sets [21]. Hence, in particular, a conservative reaction network is dissipative.
The running example is conservative.

A criterion to decide on dissipativity is the following proposition (see the Supporting In-
formation).

Proposition (Dissipative network). Let || · || be a norm in Rn. Assume that for each c
with P+

c 6= ∅, there exists a vector ωc ∈ Rn>0 and a number R > 0 such that ωc · f(x) < 0 for all
x ∈ Pc with ||x|| > R. Then the network is dissipative.

Equilibria. Given the ODE in (19), the set of non-negative equilibria is

V = {x ∈ Rn≥0 | f(x) = 0}.

With conservation laws, there are at most s linearly independent equations in at most s < n
unknown variables.

We assume that V ∩ Rn>0 admits a positive parameterization

Φ: Rm>0 → Rn>0 (4)

x̂ = (x1, . . . , xm) 7→ (x1, . . . , xm,Φm+1(x̂), . . . ,Φn(x̂)),

for some m < n, such that x̂ ∈ Rm>0 is the vector of free variables. In other words, xm+1, . . . , xn
are expressed at equilibrium as functions of x̂:

xi = Φi(x̂), i = m+ 1, . . . , n,

such that xm+1, . . . , xn are positive for positive x̂. Typically, m = d. We will say that a param-
eterization is algebraic if the components of Φ are polynomials or rational functions (quotients
of polynomials). See Fig. 2 (Step 4) for an example.

We are interested in the positive equilibria in each SCC, that is, the set V ∩Pc. Generically,
this set consists of isolated points obtained as the positive solutions to the equations

f(x) = 0, Wx = c. (5)

We choose the matrix of conservation laws W ∈ Rd×n to be row reduced (as in Fig. 1) and let
i1, . . . , id be the indices of the first non-zero coordinate of each row. For c ∈ Rd, we define a
C1-function ϕc(x) : Rn≥0 → Rn by

ϕc(x)i =

{
fi(x) i /∈ {i1, . . . , id}
(Wx− c)i i ∈ {i1, . . . , id}.

(6)

Fig. 2 (Step 5) shows ϕc(x) for the running example in Fig. 1. The function ϕc(x) is obtained by
replacing redundant equations in f(x) = 0 by components corresponding to conservation laws.
Thus

V ∩ Pc = {x ∈ Rn≥0 | ϕc(x) = 0}.

A positive x̂ determines uniquely a positive equilibrium Φ(x̂). This equilibrium belongs to
the SCC Pc with

c := WΦ(x̂). (7)

Given c, the positive solutions to (5) are in one-to-one correspondence with the positive solutions
to (7).

We conclude this subsection with some definitions: a network admits multiple equilibria
(or is multistationary) if there exists c ∈ Rd such that V ∩ P+

c contains at least two points.
Equivalently, if the equation ϕc(x) = 0 has at least two positive solutions for some c ∈ Rd.
Equilibria belonging to V ∩Pc but not to V ∩P+

c for some c are boundary equilibria. A boundary
equilibrium has at least one coordinate equal to zero.
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Input: N and v(x) from Fig. 1.

Step 1: Kinetics are mass action, thus [3] holds; f(x) and W are
given in Fig. 1. W is row reduced.

Step 2: The network is conservative and hence dissipative.

Step 3: If x1 = 0, then x2 = c1. The equation 1x1�2x2x3 = 0
gives x3 = 0 and hence x4 = c2. Then 0 = 2x2x3 �
3x4 = 3c2, a contradiction. By similar arguments, the
other concentrations cannot be zero.

Step 4: We observe that f(x) = 0, if and only if

1x1 � 2x2x3 = 0 and 2x2x3 � 3x4 = 0.

Solving for x1, x3 gives x1 = 3x4
1

and x3 = 3x4
2x2

and
the algebraic parameterization with bx = (x2, x4),

�(bx) =
⇣3x4

1
, x2,

3x4

2x2
, x4

⌘
.

Step 5: Since i1 = 1, i2 = 3 in W , we have

'c(x) =
�
x1 + x2 � c1,1x1 � 2x2x3,

x3 + x4 � c2,2x2x3 � 3x4

�
.

The Jacobian of 'c is

M(x) =

0
BB@

1 1 0 0
1 �2x3 �2x2 0
0 0 1 1
0 2x3 2x2 �3

1
CCA .

Substituting the expressions for x1, x3 and computing the
determinant of M(x) we obtain

a(bx) = det(M(�(bx))) =
12x

2
2 + 13x2 + 2

3x4

x2
.

Step 6: The sign of a(bx) is +1 for all x2, x4 > 0 and i > 0.

Figure 2: The algorithm applied to the example in Fig. 1.

Unique and multiple equilibria. Let M(x) ∈ Rn×n be the Jacobian matrix of ϕc(x), which
does not depend on c, see (6). An equilibrium x∗ ∈ V ∩ Pc is non-degenerate if the Jacobian of
ϕc at x∗, M(x∗), is non-singular, that is, det(M(x∗)) 6= 0 [22].

We consider the determinant of M(x) evaluated at Φ(x̂),

a(x̂) = det(M(Φ(x̂))), x̂ ∈ Rm>0. (8)

By means of the following theorem, a(x̂) can be used to discriminate between multiple and
unique equilibria. The theorem is based on relating a(x̂), x̂ ∈ Rm>0, to the Brouwer degree of ϕc
at 0 (see the Supporting Information).

Theorem (Unique and multiple equilibria). Assume (3) on the reaction rate functions is
fulfilled and let s = rank(N). Further, assume that

(1) The network is dissipative.
(2) The set of positive equilibria admits a positive parameterization as in (25).
(3) Pc has no boundary equilibria, if P+

c 6= ∅ for c ∈ Rd.
Then the following holds.

(A) Uniqueness of equilibria. If

sign(a(x̂)) = (−1)s for all x̂ ∈ Rm>0,

then there is exactly one positive equilibrium in each Pc with P+
c 6= ∅. Further, this equilibrium

is non-degenerate.

(B) Multiple equilibria. If

sign(a(x̂)) = (−1)s+1 for some x̂ ∈ Rm>0,

then there are at least two positive equilibria in Pc, at least one of which is non-degenerate,
where c := WΦ(x̂). If all positive equilibria in Pc are non-degenerate, then there are at least
three and always an odd number.

The conclusion of part (A) is also true if sign(det(M(x)) = (−1)s for all x in a set containing
the positive equilibria, thereby removing the requirement of the existence of a parameterisation.
In addition, the theorem holds for a given SCC (that is, for c fixed) with x̂ ∈ Rm>0 replaced by
Φ(x̂) ∈ P+

c . Also note that the only situation not covered by the theorem is when sign(a(x̂))
takes the value 0 for some x̂, but never the value (−1)s+1.

The algorithm. Since the reaction rate functions v(x) depend on the parameters κ, the the-
orem can be used to find parameter inequalities that discriminate between unique and multiple
equilibria. Essentially, parameter regions for which either part (A) or part (B) of the theorem
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is fulfilled, can be established. We propose an algorithm that takes v(x) and N (the stoichio-
metric matrix) as input. The reaction rate functions are assumed to be polynomials (as for
mass-action kinetics) or quotients of polynomials (as for Michaelis-Menten or Hill kinetics with
integer exponents).

Algorithm (Identification of parameter regions)

Input: N and v(x).
1. Find f(x), a row reduced matrix W such that the rows form a basis of im(N)⊥ and check
that v(x) satisfies (3).
2. Check that the network is dissipative.
3. Check for boundary equilibria in Pc with P+

c 6= ∅.
4. Obtain an algebraic parameterization Φ(x̂) of the set of positive equilibria, as in (25).
5. Construct ϕc(x), M(x), compute det(M(x)) and a(x̂).
6. By the algebraic hypothesis, a(x̂) can be written as the quotient of two polynomials,
typically with positive denominator (a consequence of the positive parameterization). If so only
the numerator needs to be analyzed. If not, special care needs to be taken to avoid division by
zero.

6a. Identify coefficients that can change the sign of a(x̂).
6b. Use these terms to construct parameter inequalities such that, whenever these inequal-

ities hold, one has either sign(a(x̂)) = (−1)s for all x̂ or sign(a(x̂)) = (−1)s+1 for at least one
x̂.

There is no guarantee that all steps of the algorithm can be carried out successfully. While
steps 1 and 5 usually are straightforward, steps 2, 3, 4 and 6 might require case specific ap-
proaches. Before we comment further on this, we apply the algorithm to selected examples, and
identify parameter regions where unique or multiple equilibria occur.

Examples.

Running example in Fig. 1 A description of the steps of the algorithm is given in Fig. 2.
The determinant a(x̂) obtained in Step 6 has sign +1 for all x2, x4 > 0 and κi > 0. Hence,
applying part (A) of the theorem with s = 2, we conclude that there exists a unique positive
non-degenerate equilibrium in each stoichiometric compatibility class with c1, c2 > 0, for all
choice of reaction rate constants. Multiple equilibria are thus excluded.

Hybrid histidine kinase. This example is an extension of the running example. Specif-
ically, the histidine kinase is assumed to be hybrid, that is, it has two ordered phosphorylation
sites [23]. Whenever the second phosphorylation site is occupied, the phosphate group can be
transferred to a response protein, see Fig. 3. With mass-action kinetics the network is known
to be multistationary for specific choices of reaction rate constants [23]. An application of the
algorithm provides precise conditions for when it occurs.

We have s = 4. Let X1, . . . , X6 be HK00, HKp0, HK0p, HKpp, RR and RRp, respectively. The
network is conservative (hence also dissipative), due to the linearly independent conservation
laws x1 + x2 + x3 + x4 = c1 and x5 + x6 = c2. It has no boundary equilibria for c1, c2 > 0,
and admits a positive parameterization with free variables x̂ = (x4, x5). Fig. 3 shows a(x̂) (for
W derived from the given conservation laws). See §6.1 in the Supporting Information for
details.

Only one of the coefficients of the polynomial a(x̂) can be negative. If κ3 ≤ κ1, then
sign(a(x̂)) = (−1)4 = 1 for all x4, x5 > 0. Part (A) of the theorem implies that there is a unique
positive non-degenerate equilibrium in each SCC for c1, c2 > 0. Oppositely, if κ3 > κ1, define
x̂(T ) = (T, T ). Then a(x̂(T )) is a polynomial in T with negative leading coefficient of degree
3. Therefore, for T large enough, a(x̂(T )) is negative and sign(a(x̂(T ))) = (−1)5 = −1. Part
(B) of the theorem implies that there exists (c1, c2) such that Pc contains at least two positive
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Reaction network a(x̂) Condition Newton polytope

HK00
κ1−−→ HKp0

κ2−−→ HK0p
κ3−−→ HKpp

HK0p +RR
κ4−−→ HK00 +RRp

HKpp +RR
κ5−−→ HKp0 +RRp

RRp
κ6−−→ RR

κ1κ2κ3κ6 + (κ1 + κ2)κ4κ5κ6x
2
5

+ κ2κ4κ
2
5

(
κ1

κ3
− 1

)
x4x

2
5

+ 2κ1κ2κ4κ5x4x5

+ κ1(κ2 + κ3)κ5κ6x5

+ κ1κ2κ3κ5x4

multiple equilibria:

κ3 > κ1

unique equilibria:

κ3 ≤ κ1 x4

x5

(0, 0)
(1, 0)

(1, 2)(0, 2)

(1, 1)(0, 1)

X1
κ1−−→ X1 + P1 P1

κ3−−→ 0

X2
κ2−−→ X2 + P2 P2

κ4−−→ 0

X2 + P1
κ5−−⇀↽−−
κ6

X2P1 2P2
κ7−−⇀↽−−
κ8

P2P2

X1 + P2P2
κ9−−−⇀↽−−−
κ10

X1P2P2

κ3κ6

x4
(κ2κ7κ9x

2
4x5

− κ4κ7κ9x34 − κ2κ8κ10x5
− κ4κ8κ10x4)

multiple equilibria
possible for all
κi > 0

x4

x5

(3, 0)(1, 0)

(2, 1)
(0, 1)

Figure 3: The polynomial a(x̂), conditions for multiple/unique equilibria and the Newton poly-
tope for the hybrid histidine kinase and the gene transcription networks. Column 2: Monomials
with coefficient with constant sign (−1)s are in blue, those that can have sign (−1)s+1 in red.
Column 4: Each point corresponds to the exponent vector of a monomial of the numerator of
a(x̂), e.g. (1, 2) is the exponent vector of the monomial x4x

2
5. Blue points are vertices of the

Newton polytope. Red vectors correspond to the red monomials in column 2.

equilibria. Specific values of c1, c2 > 0 for which this is the case can be found from (7) with x̂
chosen such that a(x̂) is negative.

In summary, the region of the parameter space for which multistationarity exists is completely
characterized by the inequality κ3 > κ1. This condition states that the reaction rate constant
for phosphorylation of the first site of the hybrid kinase is larger when the second site is already
phosphorylated.

Gene transcription network. We consider a gene transcription motif with two proteins
P1, P2, produced by their respective genes X1, X2, and such that P2 dimerises [24]. Further, the
proteins cross regulate each other as depicted in Fig. 3.

We let X3, . . . , X7 denote P1, P2, X2P1, P2P2, and X1P2P2, respectively. We have s = 5
and two linearly independent conservation laws, x1 + x7 = c1 and x2 + x5 = c2. The network is
not conservative. However, with mass-action kinetics the network is dissipative [24]. This also
follows from the proposition with ωc = (1, 1, 1, 1, 2, 2, 3) ∈ R7

>0. Indeed, we have

ωc · f(x) = κ1x1 + κ2x2 − κ3x3 − κ4x4.

Note that x1, x2 are bounded (due to the conservation laws) while x3, x4 can be arbitrarily large.
Then, for x3, x4 large enough, ωc · f(x) < 0 and the network is dissipative.

The network has no boundary equilibria if c1, c2 > 0, and admits a positive parameterization
with free variables x̂ = (x4, x5). The function a(x̂) is given in Fig. 3 (for W derived from the
given conservation laws). See §6.2 in the Supporting Information for details.

In this case, part (B) of the theorem holds for all choices of reaction rate constants. Indeed,
let x̂(T ) = (T, T 2). Then a(x̂(T )) is a polynomial of degree 4 in T with positive leading term.
Thus for large T , sign(a(x̂(T ))) = (−1)s+1 = 1 since s = 5. We conclude that for all κi > 0
there exists c such that Pc contains at least two positive equilibria.

Comments on the algorithm.

Step 2: establishing dissipativity. If the network is not dissipative, then at least one
concentration grows to infinity over time. This is typically not the case for realistic networks,
but it needs to be ruled out in order to apply the theorem.

We start by checking whether the network is conservative. This implies solving the linear
system ωtN = 0 with the constraint ω > 0. As N does not contain parameters, this requires only
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numerical computation and hence can be done efficiently. Alternatively, conservation laws are
often easily established by inspection of the reactions. For example, in many signaling networks,
the total concentration of enzyme (free and bounded) and of substrate (phosphoforms) are
conserved.

If the network is not conservative, we proceed by checking dissipativity using the proposition
stated above. We look for ωc > 0 such that ωc · f(x) < 0 for large x. As we do not wish to
make any assumptions on the parameter values, this computation has to be done symbolically.
Here computer algebra software may assist. The task is computationally demanding, especially
if there is a large number of variables and parameters.

Step 3: absence of boundary equilibria. For systems of moderate size it is often
possible to establish nonexistence of boundary equilibria by arguments similar to those employed
in the analysis of the running example. For each i, assume xi = 0, and show that it leads to
a contradiction. A systematic procedure relies on computing the so-called minimal siphons of
the network [25] (see §5.1 in the Supporting Information for details). The complexity of this
computation can often be substantially reduced [26].

Step 4: finding an algebraic parameterization. Computer algebra systems like
Maple or Mathematica can be used to find a parameterization. The strategy is to solve the
equations fi(x) = 0, i /∈ {i1, . . . , id} for some subset of (at most) s variables, treating the
remaining (at least) d variables as coefficients of the system. If a parameterization exists but is
not positive, another set of variables should be tried out.

Existing results on positive parameterization of equilibria may be useful. Cascades of post-
translational modification networks admit a positive parameterization in terms of the concen-
trations of the enzymes and one substrate form [27, 28].

A general setting is based on non-interacting sets of species [29]. A set, say {Xm+1, . . . , Xn},
is non-interacting if two species never appear on the same side of a reaction and they have
coefficient at most one in all reactions. If the sum xm+1 + · · · + xn is not conserved, then a
positive parameterization exists with the species x1, . . . , xm as free variables [29]. In the running
example, {X1, X3} is a non-interacting set.

A systematic way to obtain a positive parameterization is to try all possible subsets of
variables and to check whether one of them gives a positive parameterization. It requires com-
putation and analysis of at most ( nd ) parameterizations. This can, for example, be achieved by
computing the circuits of degree one of the matroid associated with the equilibrium equations
[30].

Step 6: the sign of a(x̂) and the Newton polytope. This is perhaps the hardest
step of all. Assume the denominator of a(x̂) is always positive and hence the sign of a(x̂) is
determined by the polynomial of the numerator, say p(x̂). We first look for conditions that
ensure uniqueness of positive equilibria by imposing that all coefficients of p(x̂) have sign (−1)s.

We next identify coefficients that can have the sign (−1)s+1 (for some parameter choice)
and check whether the associated monomial can “dominate” the sign of p(x̂). This is to say, we
determine whether p(x̂) has the sign (−1)s+1 for some x̂, if the coefficient, say β, of a specific
monomial in p(x̂) has sign (−1)s+1. If that is the case, then the condition sign(β) = (−1)s+1 is
a sufficient condition for multiple equilibria.

Given a coefficient with sign (−1)s+1, it might not be straightforward to decide if the
polynomial can attain the same sign for some values of x̂. (For example, the polynomial
x2−2xy+y2 = (x−y)2 has a negative monomial but the polynomial itself can never be negative.)
The strategy we apply in the examples determines whether the monomial of interest corresponds
to a vertex of the Newton polytope (see §5.2 in the Supporting Information). The Newton
polytope of p(x̂) is defined as the convex hull of the exponent vectors α = (α1, . . . , αm) ∈ Rm
corresponding to the monomials xα1

1 · · · · · xαm
m of p(x̂). If α is a vertex of the Newton polytope,
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then there exists x̂ ∈ Rm>0 such that the sign of p(x̂) agrees with the sign of the coefficient of the
monomial.

Fig. 3 shows the Newton polytopes associated with the networks in the figure. The vertex
corresponding to the monomial of interest is shown in red. To find the vertices of the Newton
polytope from the exponent vectors, one can for example use the software Polymake [31] or
Maple, as we demonstrate in the Supporting Information.

Discussion

The main result of this paper, the algorithm to identify parameter regions for unique and multiple
equilibria, combines Brouwer degree theory and algebraic geometry. In particular, under the
assumptions of the theorem, we show that there exist SCCs with at least two equilibria if, and
only if, a certain multivariate polynomial can attain a specific sign.

Discriminating regions of the parameter space where multistationarity occurs is a hard math-
ematical problem, theoretically addressable by computationally expensive means [17]. Our al-
gorithm beautifully overcomes these difficulties by building on a simple idea, the computation
of the Brouwer degree of a function related to a dissipative network. Additionally, not only
closed-form expressions in the parameters are obtained, but, as illustrated in examples, these
expressions are often interpretable in biochemical terms, providing an explanation of why mul-
tistationarity occurs.

Previous work based on so-called injectivity [10, 22, 32–36] is closely related to part (A) of the
theorem. A general version of the injectivity theorems state that multistationarity is precluded
if det(M(x)) = (−1)s for all x ∈ Rn>0 and all κ ∈ R`>0. In this case, part (A) guarantees
additionally the existence of exactly one equilibrium in each Pc (for each κ). It might also be
the case that for a particular κ, det(M(x)) = (−1)s+1 for some x ∈ Rn>0 (injectivity theorems
are silent in this case), while (A) holds for a given parameterization (see the Supporting
Information, §7.3 for an example). In [37] conditions for the existence of degenerate equilibria,
where one expects det(M(x)) to change sign, are given.

Several natural questions remain outside the reach of our algorithm. Firstly one would like to
determine the particular SCCs for which there are multiple equilibria. As stated in the theorem,
if sign(a(x̂)) = (−1)s+1, then c := WΦ(x̂) defines a SCC with multiple equilibria. However, this
only establishes c indirectly through x̂.

Secondly, one could ask for parameter regions differentiating between the precise number of
equilibria (that is, 0, 1, 2, . . .). This question should be seen in conjunction with the previous
question: in typical examples, when there are two equilibria in a particular SCC, then there exists
another class for which there are three. Hence the number of equilibria cannot be separated
from the SCCs.

A third question concerns the stability of the equilibria, which cannot be obtained from our
algorithm. It is, however, known that if the sign of the Jacobian evaluated at an equilibrium is
(−1)s+1, then it is unstable [22].

We consider our research a step in the direction of providing ‘black box tools’ to analyse
complex dynamical systems. Such tools would easily find their use in systems and synthetic
biology, where it is commonplace to consider (many) competing models. A particular problem
is to exclude models that cannot explain observed qualitative features, such as multistationarity.

Acknowledgements. EF and CW acknowledge funding from the Danish Research Council
of Independent Research.
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In this document we prove the claims of the main text. The document is self-contained and
does not require parallel reading of the main text. For this reason some parts of the main text
are repeated here for convenience.

Sections 1 to 4 focus on the proofs of the proposition and theorem in the main text. We start
by introducing some preliminaries before recapitulating the main facts about Brouwer degree
theory. Then we compute the Brouwer degree for a special class of functions (Theorem 2). We
proceed to introduce the necessary background on reaction networks and to state and prove
a key result regarding the Brouwer degree of a reaction network with a dissipative semiflow
(Theorem 3). In Section 4 we use Theorem 3 to prove the theorem of the main text.

Subsequently in Section 5, we provide details on how to check the steps in the procedure
of the main text. In Section 6 we give details of the two examples in the main text (hybrid
histidine kinase and a gene transcription network). Finally, in Section 7 we work out three more
examples: the two examples in Table 1 of the main text, and an additional one.
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1 Preliminaries

1.1 Convex sets

We let Rn≥0 denote the non-negative orthant of Rn and Rn>0 denote the positive orthant of Rn.
For a subset B of Rn, we let bd(B) denote the boundary of B and cl(B) the closure of B,

such that cl(B) = bd(B)∪B. If B is open, then bd(B)∩B = ∅. If B is bounded, then cl(B) is
compact.

A set B is convex if the following holds:

if x1, x2 ∈ B then λx1 + (1− λ)x2 ∈ B for all 0 ≤ λ ≤ 1.

Let B ⊆ Rn be a convex set. We say that v ∈ Rn points inwards B at x ∈ bd(B) if
x + εv ∈ cl(B) for all ε > 0 small enough. In particular, v = 0 points inwards B at all
x ∈ bd(B). If v points inwards B at x ∈ bd(B), then it also points inwards cl(B) at x ∈ bd(B).
The vector v points outwards B at x ∈ bd(B), if it does not point inwards B at x ∈ bd(B).

We will use the following facts about convex sets.

Lemma 1. Let B ⊆ Rn be a convex set. Then the following holds:

(i) The closure cl(B) of B is convex.

(ii) Assume B is open and consider x1 ∈ B, x2 ∈ bd(B). Let

[x1, x2) = {tx1 + (1− t)x2 | 0 < t ≤ 1}

be the half-closed line segment between x1 and x2. Then [x1, x2) ∈ B.

(iii) Let x1 ∈ B and x2 ∈ bd(B). Then the vector x1 − x2 points inwards B at x2. If B is
open, then the vector x2 − x1 points outwards B at x2.

Proof. (i) See Theorem 6.2 in [38]. (ii) See Theorems 6.1 in [38]. (iii) Consider x = x2 + ε(x1 −
x2) = (1 − ε)x2 + εx1 with 0 < ε < 1. By convexity, x belongs to cl(B), hence x1 − x2 points
inwards B at x2 ∈ bd(B). Assume that x2−x1 also points inwards B at x2 and that B is open.
Then, for small ε we have x = x2 +ε(x1−x2) ∈ B by (ii) (which is stronger than x ∈ cl(B)), and
x′ = x2 + ε(x2−x1) ∈ cl(B) by definition of pointing inwards. Again by (ii), 1

2x+ 1
2x
′ = x2 ∈ B,

contradicting that x2 ∈ bd(B) (B is open). Hence x2 − x1 points outwards B at x2.

1.2 Functions

Given an open set B ⊆ Rn, we let Ck(B,Rm) denote the set of Ck-functions from B to Rm. If B is
open and bounded, then we let Ck(cl(B),Rm) denote the subset of Ck(B,Rm)-functions f whose
j-th derivative djf , j = 0, . . . , k, extends continuously to the boundary of B. Equivalently, djf
is uniformly continuous in B for j = 0, . . . , k, since cl(B) is compact.

For f ∈ C1(B,Rn) and x∗ ∈ B, we let Jf (x∗) ∈ Rn×n be the Jacobian of f evaluated at x∗,
that is, Jf (x∗) is the matrix with (i, j)-entry ∂fi(x

∗)/∂xj . We say that y ∈ Rn is a regular value
for f if Jf (x) is non-singular for all x ∈ B such that y = f(x). If this is not the case, then we
say that y is a critical value for f .

If B ⊆ Rn is open and bounded, f ∈ C1(cl(B),Rn) and y is a regular value for f such that
y /∈ f(bd(B)), then the set

{x ∈ B|f(x) = y}.

is finite [39, Lemma 1.4].
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2 Brouwer degree and a theorem

2.1 Brouwer degree

We first recall basic facts about the Brouwer degree. We refer to Section 14.2 in [40] for back-
ground and fundamental properties of the Brouwer degree. See also the lecture notes by Van-
dervorst [39].

In this section we let B ⊆ Rn be an open bounded set. We use the symbol deg(f,B, y) to
denote the Brouwer degree (which is an integer number) of a function f ∈ C0(cl(B),Rn) with
respect to (B, y), y ∈ Rn \ f(bd(B)).

A main property of the Brouwer degree is that if y /∈ f(cl(B)), then deg(f,B, y) = 0 (but
not vice versa) and if deg(f,B, y) 6= 0, then there exists at least one x ∈ B such that y = f(x).
In particular, the Brouwer degree can be used to study the number of solutions to the equation

f(x) = y, x ∈ B,

provided y /∈ f(bd(B)) and f ∈ C0(cl(B),Rn).
The Brouwer degree deg(f,B, y) is characterized by the following properties:

(A1) Normalization. Let idB denote the identity map from B to itself. If y ∈ B, then

deg(idB, B, y) = 1.

(A2) Additivity. If B1 and B2 are disjoint open subsets of B such that y /∈ f
(

cl(B)\(B1∪B2)
)
,

then
deg(f,B, y) = deg(f,B1, y) + deg(f,B2, y).

(A3) Homotopy invariance. Let f, g : cl(B)→ Rn be two homotopy equivalent C0-functions
via a continuous homotopy H : cl(B)×[0, 1]→ Rn such that H(x, 0) = f(x) and H(x, 1) =
g(x). If y /∈ H(bd(B)× [0, 1]), then

deg(f,B, y) = deg(g,B, y).

(A4) Translation invariance. deg(f,B, y) = deg(f − y,B, 0).

To prove our main result (Theorem 4 below) we need the following well-known property of
the Brouwer degree, see e.g. [40, Theorem 14.4]:

Theorem 1. Let f ∈ C1(cl(B),Rn) with B ⊆ Rn an open bounded set. If y is a regular value
for f and y /∈ f(bd(B)), then

deg(f,B, y) =
∑

{x∈B|f(x)=y}

sign(det(Jf (x))), (9)

where the sum over an empty set is defined to be zero.

Corollary 1. Under the assumptions of Theorem 1, assume deg(f,B, y) = ±1. Then the
equation f(x) = 0 has at least one solution x ∈ B and the number of solutions in B is odd.

2.2 The Brouwer degree for a special class of functions

In this section we use Theorem 1 and the homotopy invariance of the Brouwer degree (A3)
to compute the Brouwer degree of certain functions. Specifically, we are concerned with C1-
functions

f : Rn≥0 → Rn, (10)

and matrices W ∈ Rd×n of maximal rank d. A priori there is no relationship between f and W .
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Assume that W is row reduced and let i1, . . . , id be the indices of the first non-zero coordinate
of each row, i1 < . . . < id. Let c ∈ Rd and define the C1-function

ϕc(x) : Rn≥0 → Rn

by

ϕc(x)i =

{
fi(x) i /∈ {i1, . . . , id}
(Wx− c)i i ∈ {i1, . . . , id}.

(11)

We say that ϕc is constructed from f and W . The dependence of ϕc on f and W is omitted in
the notation. We will make use of this construction with different choices of f and W .

Define the positive closed and open level sets of W by

Pc = {x ∈ Rn≥0 |Wx = c}, P+
c = {x ∈ Rn>0 |Wx = c}. (12)

It follows readily that the two set are convex. By reordering the columns of W , the vector
(x1, . . . , xn) and the coordinates of f simultaneously, if necessary, we can assume without loss
of generality that {i1, . . . , id} = {1, . . . , d}. In this case, W has the block form

W = (Id Ŵ ), (13)

where Ŵ ∈ Rd×s, s := n − d, and Id is the identity matrix of size d. The last s coordinates of
the function ϕc come from f .

Assuming this reordering, let π : Rn → Rs be the projection onto the last s coordinates.
Using (13), it follows that

Wx = c if and only if (x1, . . . , xd)
T = c− Ŵ (π(x)). (14)

In particular, for x, y ∈ Rn fulfilling Wx = Wy, we have that

x = y if and only if π(x) = π(y). (15)

If Wf(x) = 0, then it follows from (15) that f(x) = 0 if and only if π(f(x)) = 0.
Our first result concerns the Brouwer degree of ϕc. The proof of the theorem is adapted

from the proof of Lemma 2 in [41] in order to account for the reduction in dimension introduced
by Pc.

Theorem 2. Let f : Rn≥0 → Rm be a C1-function and W ∈ Rd×n a matrix of rank d. Let

s := n − d, c ∈ Rd, Pc as in (12) and ϕc as in (11). Let Bc be an open, bounded and convex
subset of Rn>0 such that

(i) Bc ∩ Pc 6= ∅.

(ii) f(x) 6= 0 and Wf(x) = 0 for x ∈ bd(Bc) ∩ Pc.

(iii) for every x ∈ bd(Bc) ∩ Pc, the vector f(x) points inwards Bc at x.

Then
deg(ϕc, Bc, 0) = (−1)s.

Proof. Without loss of generality, we might assume that W has the block form in (13). Choose
an arbitrary point x̄ ∈ Bc ∩ Pc, which exists by assumption (i), and consider the continuous
function G : cl(Bc)→ Rn defined by

G(x) = (Wx− c, π(x̄− x)) ∈ Rd × Rs ∼= Rn,

where π is the projection map onto the last s coordinates of Rn. By (13), the Jacobian of G has
the block form

JG(x) =

(
Id Ŵ
0 −Is

)
.
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Therefore, det(JG(x)) = (−1)s for all x. In particular, 0 is a regular value for G. Furthermore,
if G(x) = 0, then x ∈ Pc since Wx = c and π(x̄) = π(x). Using (15), we conclude that x̄ = x.
Since x̄ /∈ bd(Bc), it follows that G does not vanish on the boundary. We apply Theorem 1 to
compute the degree of G for 0:

deg(G,Bc, 0) = sign(det(JG(x̄))) = (−1)s.

Consider now the following homotopy between the functions ϕc and G:

H : cl(Bc)× [0, 1] → Rn

(x, t) 7→ tϕc(x) + (1− t)G(x).

Clearly, H is continuous. To apply (A3) to find the degree of ϕc, we need to show that
H(bd(Bc)× [0, 1]) 6= 0 for all t ∈ [0, 1]. Since

H(x, t) = (Wx− c, tπ(f(x)) + (1− t)π(x̄− x)),

H(x, t) = 0 implies that Wx = c and hence x ∈ Pc. Thus, we need to show that

tπ(f(x)) + (1− t)π(x̄− x) 6= 0 for all x ∈ bd(Bc) ∩ Pc. (16)

For t = 1, (16) follows from (15) using that f(x) 6= 0 and Wf(x) = 0 for x ∈ bd(Bc) ∩ Pc by
assumption (ii). For t = 0, we have already shown that G does not vanish on the boundary of
Bc.

Assume now that for t ∈ (0, 1), (16) does not hold. That is, there exists x′ ∈ bd(Bc) ∩ Pc
such that

π(f(x′)) =
t− 1

t
π(x̄− x′).

Since x′ ∈ bd(Bc) ∩ Pc, we have that Wf(x′) = 0 and W (x̄ − x′) = 0. We conclude using (15)
that

f(x′) =
t− 1

t
(x̄− x′). (17)

Since t−1
t < 0, x̄ ∈ Bc and x′ ∈ bd(Bc), it follows from Lemma 1(iii) that f(x′) points outwards

Bc at x′, contradicting assumption (iii).
Therefore, H(x, t) 6= 0 for all x ∈ bd(Bc) and t ∈ [0, 1]. As a consequence, the homotopy

invariance of the Brouwer degree (A3), gives the desired result

deg(ϕc, Bc, 0) = deg(G,Bc, 0) = (−1)s.

3 Chemical reaction networks

3.1 Setting

Consider a chemical reaction network with species set {X1, . . . , Xn} and reactions:

Rj :

n∑
i=1

αijXi →
n∑
i=1

βijXi, j = 1, . . . , `, (18)

where αij , βij are non-negative integers.
The ODE system associated with the chemical reaction network G (as described in the main

text) takes the form
ẋ = f(x) = Nv(x), f : Rn≥0 → Rn, (19)

where N ∈ Rn×` is the stoichiometric matrix and v(x) is the vector of rate functions, which are
assumed to be C1-functions (e.g. mass-action monomials).
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We say that the network has rank s if the rank of the stoichiometric matrix is s. The
stoichiometric compatibility classes are the convex sets Pc defined in (12), where W is a matrix
such that the rows form a basis of im(N)⊥. By construction, a trajectory of (19) is confined
to the stoichiometric compatibility class where its initial condition belongs to. The positive
stoichiometric compatibility classes P+

c are defined accordingly.
The positive solutions to the system of equations ϕc(x) = 0 with ϕc as in (11), are precisely

the positive equilibria of the network in the stoichiometric compatibility class Pc.
Let φ(x, t) denote the flow of the ODE system and let the semiflow of the ODE system be

the restriction of the flow to t ≥ 0. It is assumed that the choice of rate functions v(x) is such
that

vj(x) = 0 if xi = 0 for some i with αij > 0. (20)

In particular, mass-action kinetics fulfil this condition. Under this assumption, the non-negative
and the positive orthants, Rn≥0 and Rn>0, are forward invariant under the ODE system (19), cf.
[20, Section 16]. That is, if x0 ∈ Rn≥0 (resp. Rn>0), then the solution to the ODE system (19)
with initial condition x0 is confined to Rn≥0 (resp. Rn>0):

x0 ∈ Rn≥0 ⇒ φ(x0, t) ∈ Rn≥0, ∀t ≥ 0 in the interval of definition. (21)

Forward invariance implies that the semiflow φ(x, t) maps Rn≥0 to itself for any fixed t ≥ 0 for
which the solution is defined.

Since the dynamics is confined to the stoichiometric compatibility classes, this implies that
for a point x′ at the relative boundary of Pc, the vector f(x′) points inwards Pc. Further, both
Pc and P+

c are also forward invariant sets. Recall that these are convex sets.

3.2 Conservative and dissipative networks

Definition 1. A chemical reaction network is conservative if im(N)⊥ contains a positive vector,
that is, if Rn>0 ∩ im(N)⊥ 6= ∅.

A network is conservative if and only if the stoichiometric compatibility classes Pc are com-
pact subsets of Rn≥0 [21].

Definition 2. Consider a network with associated ODE system ẋ = Nv(x). The semiflow of
the network is dissipative if for all c ∈ Rd such that P+

c 6= ∅, there exists a compact set Kc ⊆ Pc
such that φ(x, t) ∈ Kc for all x ∈ Pc and t ≥ t(x), for some t(x) ≥ 0. That is, all trajectories in
Pc enter Kc at some point.

The set Kc is called attracting (and sometimes absorbing) [42]. Equivalently, the semiflow of
a network is dissipative if all trajectories are eventually uniformly bounded, that is, there exists
a constant k > 0 such that

lim sup
t→+∞

xi(t) ≤ k

for all i = 1, . . . , n and all initial conditions in Pc, provided that P+
c 6= ∅ for c arbitrary.

If the semiflow of the network is dissipative, then the unique solution to the ODE system
(19) for a given initial condition is defined for all t ≥ 0, in which case the semiflow is said to be
forward complete.

Lemma 2. Consider a network with a dissipative semiflow and let c ∈ Rd such that P+
c 6= ∅.

Further, let Kc ⊆ Pc be an attracting set. Then the following holds:

(i) The set Kc ∩ Rn>0 is non-empty, that is, Kc 6⊆ bd(Rn≥0).

(ii) All ω-limit points in Pc of the system are contained in Kc. In particular, all positive
equilibria in Pc belong to Kc.

(iii) There exists an attracting set K ′c such that Kc ⊆ K ′c, K
′
c is forward invariant and all

ω-limit points outside the boundary of Rn≥0 are in the interior of K ′c (relatively to Pc).
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Proof. (i) It follows from the fact that P+
c 6= ∅ and that the positive orthant is forward invariant

under the ODE system ẋ = Nv(x).
(ii) If it were not the case, there would exist an ω-limit point x′ ∈ Pc\Kc, a trajectory φ(x, t)

and a sequence of time points ti such that limi→∞ ti = ∞ and limi→∞ φ(x, ti) = x′. As Kc is
closed, there exists an open ball Bε(x

′) in Rn such that Bε(x
′)∩Kc = ∅ and φ(x, t) ∈ Bε(x′) for

arbitrary many time points. However, this contradicts that Kc is an attracting set.
(iii) By (ii) and choosing Kc potentially larger, all ω-limit points outside the boundary of

Rn≥0 are in the interior of Kc (relatively to Pc). The existence of an attracting set K ′c that
includes Kc and is forward-invariant is proven in the first part of the proof of Lemma 2 in [42].
In the notation of [42], K ′c = K+.

The semiflow of a conservative network is dissipative. Indeed, it is sufficient to take Kc = Pc,
since Pc is compact. If the network is not conservative, then the semiflow associated with the
network might still be dissipative (see Example “Gene transcription network” [15] in the main
text). However, in general, it is not straightforward to show that. In some cases it is possible to
prove dissipativity by constructing a suitable Lyapunov function. It is the idea underlying the
proof of the next proposition.

Proposition 1. Assume that for all c ∈ Rd such that P+
c 6= ∅, there exists a vector ω ∈ Rn>0

and a real number r > 0 such that ω · f(x) < 0 for all x ∈ Pc with ||x|| ≥ r, where || · || is any
norm. (Note that ω and r might depend on c.) Then the semiflow of the network is dissipative.

Proof. Let c ∈ Rd with P+
c 6= ∅ and let ω be as given in the statement. Define

V (x) =

n∑
i=1

ωixi for x ∈ Rn≥0.

The function V (x) satisfies V (0) = 0 and V (x) > 0 for all x ∈ Rn≥0, different from 0. Further,

for ||x|| ≥ r and x ∈ Pc, V̇ (x) = ∇V · f(x) = ω · f(x) < 0 by assumption. Thus, V (x) is a strict
Lyapunov function and V (φ(x, t)) is strictly decreasing along trajectories φ(x, t) in Pc as long
as ||φ(x, t)|| ≥ r. Choose R > 0 such that

{x ∈ Rn≥0 | ||x|| ≤ r} ⊆ {x ∈ Rn≥0 | V (x) ≤ R},

and define Kc = {x ∈ Rn≥0 | V (x) ≤ R}∩Pc. The set Kc is compact by construction and forward

invariant since V̇ (x) < 0 for all ||x|| ≥ r. Further, all trajectories eventually enter Kc within
finite time, that is, Kc is attracting. Indeed, if this were not the case, then there would exist
x ∈ Pc, x /∈ Kc (hence ||x|| > r) such that V (φ(x, t)) is decreasing for all t ≥ 0 in the interval
of definition and bounded above by R. As a consequence, the trajectory is defined for all t ≥ 0
and (∗) limt→∞ V (φ(x, t)) = R′ ≥ R for some R′. Hence φ(x, t) is in Bε := {x | V (x) ≤ R′ + ε}
for large t (and any ε > 0). Since Bε is compact it follows that the semiflow φ(x, t) has at least
one ω-limit point in Bε. By virtue of (∗), all ω-limit points x′ of φ(x, t) must fulfil V (x′) = R′.
Further, the set of ω-limit points is forward invariant and since V (x′) = R′ it must be that
V̇ ′(x′) = 0. This contradicts the assumption that V̇ ′(x) < 0 for all x with ||x|| ≥ r. We
conclude that there exists t(x) ≥ 0 such that φ(x, t) ∈ Kc for all x ∈ Pc and t ≥ t(x). Hence,
the semiflow is dissipative.

3.3 Degree for dissipative semiflows

The main results to establish a characterization of regions of multistationarity (Theorem 4) are
Theorem 1 and the theorem below. The proof of the theorem relies on Theorem 2 and ideas
developed in [42].
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B
Bc

KcU1

Pc

Figure 4: Step (A). The set Pc is the straight line connecting the two axis. The compact attracting set Kc is
depicted in blue. The set B ⊆ Rn is an open set containing Kc and Bc = B ∩ Rn

>0 is the restriction of B to the
positive orthant (shown in orange), such that Bc is open. Hence Kc is contained in Bc, except for points on the
boundary Kc ∩ bd(Rn

≥0), hence also Bc ∩ Pc 6= ∅. Step (B). The open set U1 ⊆ Rn (in green) is chosen such that
Kc ⊆ U1 ⊆ B. In the C1-partition of unit, the support of ψ1 is in U1 and that of ψ2 is in Rn \Kc.

Theorem 3. Consider a network of rank s with an associated ODE system ẋ = f(x) where
f(x) = Nv(x) as in (19). Assume (20) holds on the rate functions and let W ∈ Rd×n, d = n−s,
be a row reduced matrix such that the rows of W form a basis of im(N)⊥. Let c ∈ Rd such that
P+
c 6= ∅. Further, assume that:

• The semiflow of the network is dissipative, and that

• f(x) 6= 0 for all x ∈ bd(Rn≥0) ∩ Pc. That is, there are no boundary equilibria in Pc.

Then there exists an open bounded and convex set Bc ⊆ Rn>0 that contains all positive equilibria
of the network in the stoichiometric compatibility class Pc, and such that

deg(ϕc, Bc, 0) = (−1)s,

where ϕc is defined in (11) from f and W .

Proof. The idea of the proof is to construct a function g defined on Rn≥0 and a set Bc ⊆ Rn>0

such that the conditions of Theorem 2 are fulfilled for g,W and Bc. If we let ϕgc be the function
ϕc in (11) constructed from the function g and W , this will imply that deg(ϕgc , Bc, 0) = (−1)s.
Subsequently, we will use homotopy invariance to conclude that also deg(ϕc, Bc, 0) = (−1)s.

The function g will be defined as

g(x) =
1

T
(φ(x, T )− x) + Tρ(x),

where φ(x, t) is the semiflow of ẋ = f(x), Kc is a suitably chosen attracting set, T is the
maximum entrance time into Kc from a specific set, and ρ(x) is an auxiliary function with
certain useful properties (see below).

The proof is divided into four steps. In step (A) we define the set Bc, choose Kc and find
basic properties of Bc and Kc. In step (B), we construct the function ρ. In step (C), we properly
define g and show that g, Bc and W have the required properties to apply Theorem 2. In step
(D) we show that ϕgc and ϕc are homotopy equivalent and conclude the proof of the theorem
using the homotopy invariance of the Brouwer degree.

(A) Let Kc ⊆ Pc be as in Definition 2, that is, a compact attracting set of all trajectories
with initial condition in Pc. According to Lemma 2, Kc can be chosen such that all ω-limit
points in P+

c are interior points of Kc (relatively to Pc) and such that Kc is forward invariant.
Further, by Lemma 2(i), Kc ∩ Rn>0 6= ∅.
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Let B ⊆ Rn be an open, bounded and convex set containing Kc, that is, Kc ⊆ B. Let
Bc = Rn>0 ∩ B. Then Bc is also open, bounded and convex. Since Kc ⊆ Rn≥0 ∩ B, then Bc
contains all points in Kc except those on the boundary Kc ∩ bd(Rn≥0). Further,

Kc ⊆ cl(Bc) ⊆ Rn≥0, and Kc ∩ bd(Bc) = Kc ∩ bd(Rn≥0),

see Figure 4. Since ∅ 6= Kc ∩ Rn>0 = B ∩Kc ∩ Rn>0 = Bc ∩Kc ⊆ Bc ∩ Pc, then

Bc ∩ Pc 6= ∅.

Since f(x) 6= 0 for all x ∈ bd(Rn≥0) ∩ Pc by assumption and Kc contains all zeros of f in Pc,
then Bc contains all zeros of f in Pc, that is

{x ∈ Pc | f(x) = 0} ⊆ Bc. (22)

(B) The function ρ : Rn≥0 → Rn in the definition of g is defined such that it has the following
properties:

(i) ρ(x) points inwards Bc for all x ∈ bd(Bc) ∩ Pc.

(ii) ρ(x) = 0 for x ∈ Rn>0 ∩ bd(Bc) ∩ Pc.

(iii) ρ(x) 6= 0 for x ∈ Kc ∩ bd(Bc).

(iv) Wρ(x) = 0 for all x ∈ bd(Bc) ∩ Pc.

We first construct two other functions ρ̃ and ψ1, and subsequently define ρ : Rn≥0 → Rn as the
product ρ = ρ̃ ψ1. Let x̃ ∈ Kc ∩Rn>0 and define ρ̃ : Rn → Rn as ρ̃(x) := x̃−x. Let U1 ( B be an
open set containing Kc (which exists since B is open), see Figure 4. Consider the open cover of
Rn given by U1 and U2 = Rn\Kc, such that U1∩U2 6= ∅ and U1∪U2 = Rn. Choose a C1-partition
of unit ψ1, ψ2 : Rn → [0, 1] associated with this open cover. This implies in particular that the
support of ψi is included in Ui and ψ1(x) + ψ2(x) = 1 for all x.

Define ρ : Rn≥0 → Rn by ρ(x) = ψ1(x)ρ̃(x), x ∈ Rn≥0 (note the restriction to Rn≥0). This
function fulfils properties (i)-(iv) above. Property (i): Follows by definition of ρ(x) = ψ1(x)(x̃−
x), ψ1(x) ≥ 0 and Lemma 1(iii), using that x̃ ∈ Bc and x ∈ bd(Bc). Property (ii): Since
the support of ψ1 is contained in U1, ψ1(x) = 0 for all x /∈ U1, in particular for all x ∈
Rn>0 ∩ bd(Bc) ∩ Pc, since Rn>0 ∩ bd(Bc) ⊆ bd(B) and bd(B) ∩ U1 = ∅. Property (iii): Similarly,
ψ1(x) = 1 (since ψ2(x) = 0) for all x /∈ U2 = Rn \Kc, that is, for all x ∈ Kc; hence ρ(x) 6= 0 for
x ∈ Kc ∩ bd(Bc) since x̃ 6∈ bd(Bc). Property (iv): Wρ(x) = ψ1(x)W (x̃− x) = 0 as x, x̃ ∈ Pc.

(C) Let T be defined as the maximum of the entry times to Kc from any x ∈ cl(Bc) ∩ Pc.
The time T is finite because cl(Bc)∩Pc is compact and the semiflow is dissipative with respect
to Kc. Note that once a trajectory is in Kc, it stays there since Kc is forward invariant Redefine
T to be any positive number if T = 0.

We define

g : Rn≥0 → Rn, g(x) :=
1

T
(φ(x, T )− x) + Tρ(x),

Observe that Wg(x) = 0 for all x ∈ bd(Bc) ∩ Pc, using property (iv) in step (B) and
that φ(x, T ), x ∈ Pc. By definition of T , φ(x, T ) ∈ cl(Bc) ∩ Pc if x ∈ cl(Bc) ∩ Pc and hence
1
T (φ(x, T )− x) points inwards Bc at x ∈ bd(Bc) ∩ Pc by convexity of cl(Bc). Also Tρ(x) points
inwards Bc at x by property (i) in step (B). Hence, g(x) points inwards Bc at x ∈ bd(Bc) ∩ Pc
by convexity again.

Therefore, the function g, together with Bc and W , fulfil the conditions of Theorem 2. By
letting ϕgc be the function ϕc in (11) constructed from g and W , we conclude that

deg(ϕgc , Bc, 0) = (−1)s.

18



(D) We define a homotopy between ϕc and ϕgc on cl(Bc)× [0, T ] by

H(x, t) =

{
ϕc(x) if t = 0(

Wx− c, 1tπ(φ(x, t)− x) + tπ(ρ(x))
)

if 0 < t ≤ T.

The function H(x, t) is continuous since φ(x, t) is differentiable and is the semiflow of ẋ = f(x).
Note that H(x, 0) = ϕc(x) and H(x, T ) = (Wx − c, π(g(x))) = ϕgc(x). Thus H(x, t) is a
homotopy between ϕc(x) and ϕgc(x). We need to show that H(x, t) does not vanish on the
boundary bd(Bc).

If H(x, 0) = ϕc(x) = 0, then x ∈ Pc is an equilibrium of the ODE system. Hence H(x, 0)
does not vanish on bd(Bc) since Bc contains all zeros of f in Pc, see (22). Now let x′ ∈ bd(Bc)
and assume that H(x′, t) = 0 for some t ∈ (0, T ]. It follows that x′ ∈ Pc, hence

x′ ∈ bd(Bc) ∩ Pc, and π(φ(x′, t)− x′) = −t2π(ρ(x′)). (23)

Using (15) and property (iv) in step (B) we have that

φ(x′, t) = x′ − t2ρ(x′). (24)

By construction of Kc, all fixed points and periodic orbits are contained in Kc. If ρ(x′) = 0,
then (24) implies x′ ∈ Kc ∩ bd(Bc) as x′ ∈ bd(Bc) by assumption. However, this contradicts
property (iii) in step (B). Hence, it must be the case that ρ(x′) 6= 0.

Using that x′ ∈ bd(Bc) ∩ Pc from (23) and ρ(x′) 6= 0, we conclude that x′ ∈ bd(Rn≥0) by
property (ii) in step (B), since x′ 6∈ Rn>0 ∩ bd(Bc) ∩ Pc. It follows that there exists i such that
x′i = 0 and we have

φ(x′, t)i = x′i − t2ρ(x′)i = x′i − t2ψ1(x)ρ̃(x)i = −t2ψ1(x)x̃i < 0.

That is, φ(x′, t) does not belong to Rn≥0. However, this contradicts the forward invariance of
Rn≥0 with respect to the flow. Therefore, H does not vanish on bd(Bc)× [0, T ].

With this in place, homotopy invariance of the Brouwer degree implies that

deg(ϕc, Bc, 0) = deg(H(x, 0), Bc, 0) = deg(H(x, T ), Bc, 0) = deg(ϕgc , Bc, 0) = (−1)s.

Remark 1. The statement and proof of the theorem focus exclusively on one stoichiometric
compatibility class, that is, on a fixed value c ∈ Rd. Therefore, if a semiflow admits an attracting
set in one specific stoichiometric compatibility class (and not necessarily in all), then the theorem
and computation of the Brouwer degree holds for this specific class.

4 Multistationarity in dissipative networks

In this section we prove the main theorem stated in the main text, which is a consequence of
Theorem 3 from the previous section.

We assume that the positive solutions to the system f(x) = 0 (with f(x) as in (19)) admit
a parameterisation

Φ: Rm>0 → Rn>0 (25)

(x1, . . . , xm) 7→ (x1, . . . , xm,Φm+1(x1, . . . , xm), . . . ,Φn(x1, . . . , xm)),

for some m < n. That is, we assume that we can express xm+1, . . . , xn at equilibrium as functions
in x1, . . . , xm:

xi = Φi(x1, . . . , xm), i = m+ 1, . . . , n,

such that xm+1, . . . , xn are positive if x1, . . . , xm are positive. Clearly, if a parameterisation
exists as a function of some other m variables, we can always reorder the coordinates such that
the parameterisation is in x1, . . . , xm.
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For mass-action kinetics, the equation f(x) = 0 results in s = n− d polynomial equations in
n unknowns, which generically would lead to a d-dimensional parameterisation and m = d (if
such a parameterisation exists).

When such a parameterisation exists, then positive values of x1, . . . , xm determine uniquely
a positive equilibrium. This equilibrium then belongs to the stoichiometric compatibility class
given by

c := WΦ(x1, . . . , xm).

Reciprocally, given c, the positive solutions to ϕc(x) = 0 are in one-to-one correspondence with
the positive solutions to the equation c = WΦ(x1, . . . , xm).

As before, we let W ∈ Rd×n be a row-reduced matrix whose rows form a basis of im(N)⊥.
Let i1, . . . , id be the indices of the first non-zero coordinate of each row. Let π : Rn → Rs denote
the projection onto the coordinates with indices different from i1, . . . , id. We do not reorder
the coordinates now to ensure that {i1, . . . , id} = {1, . . . , d}, because we have already chosen a
convenient order of the free variables of the parameterisation.

Consider the Jacobian of the map ϕc(x). Because ϕc(x) is independent of c, we denote the
Jacobian by M(x). The i-th row of this matrix is given as

M(x)i := Jϕc(x)i =

{
Jfi(x) i /∈ {i1, . . . , id}
Wi i ∈ {i1, . . . , id},

where Wi is the i-th row of W . That is, one can think of M(x) as being the matrix obtained
from the Jacobian of f(x), with the ij-th row, j = 1, . . . , d, replaced by the j-th row of W .

An equilibrium x∗ of the network is said to be non-degenerate if M(x∗) has rank n, that is,
if det(M(x∗)) 6= 0.

We next consider the determinant of M(x) and use the parameterisation (25) to substitute
the values of xm+1, . . . , xn by their expressions as functions of x1, . . . , xm. For simplicity, we let

x̂ = (x1, . . . , xm) ∈ Rm

be the vector of free variables and define

a(x̂) = det(M(Φ(x̂))). (26)

Theorem 4. Let G be a network of rank s with associated ODE system (19) such that assump-
tion (20) on the rate functions holds. Assume that

(1) The semiflow of the network is dissipative.

(2) The set of positive equilibria admit a positive parameterisation as in (25).

(3) There are no equilibria in bd(Rn≥0) ∩ Pc, as long as P+
c 6= ∅.

Then

(A) Uniqueness of equilibria. Assume that

sign(a(x̂)) = (−1)s for all x̂ ∈ Rm>0.

Then there is exactly one positive equilibrium in each stoichiometric compatibility class Pc
such that P+

c 6= ∅. Further, this equilibrium is non-degenerate.

(B) Multiple equilibria. Assume that

sign(a(x̂)) = (−1)s+1 for some x̂ ∈ Rm>0,

and let c ∈ Rd be given by
c := WΦ(x̂).

Then there are at least two positive equilibria in the stoichiometric compatibility class Pc. In
particular, if all positive equilibria are non-degenerate, then there is an odd number strictly
greater than one of positive equilibria. If this is not the case, then there are at least two
positive equilibria (and possibly infinitely many), of which at least one is non-degenerate.
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Proof. The hypotheses ensure that we can apply Theorem 3. Therefore, for each c ∈ Rd such
that P+

c 6= ∅ we can choose an open bounded convex set Bc ⊂ Rn>0 that contains all positive
equilibria of the network in the stoichiometric compatibility class Pc and such that

deg(ϕc, Bc, 0) = (−1)s.

Given c, note that there is a bijection between the sets

{x ∈ Bc | ϕc(x) = 0} and Sc := {x̂ ∈ Rm>0 | c = WΦ(x̂)}.

An element of Sc corresponds to a positive equilibrium in the stoichiometric compatibility class
Pc.

(A) Consider a stoichiometric compatibility class Pc defined by c such that P+
c 6= ∅. For all

x̂ ∈ Rm>0, we have that det(Jϕc(Φ(x̂))) = a(x̂) 6= 0, and hence 0 is a regular value for ϕc. We
can therefore apply Theorem 1 and obtain

(−1)s =
∑
x̂∈Sc

sign(a(x̂)) = (−1)s(#Sc),

where #Sc is the cardinality of Sc. We conclude that #Sc = 1 and therefore that there ex-
ists a unique positive equilibrium in the stoichiometric compatibility class. Furthermore, since
sign(a(x̂)) 6= 0, the equilibrium is non-degenerate.

(B) Let x̂ be such that sign(a(x̂)) = (−1)s+1 and let c be defined as in the statement of the
theorem. Then x̂ ∈ Sc and further Φ(x̂) ∈ P+

c . Therefore, P+
c 6= ∅. If 0 is a regular value for

ϕc(·), then the equality

(−1)s =
∑
x̂∈Sc

sign(a(x̂)) = (−1)s+1 +
∑

x̂′ 6=x̂, x̂′∈Sc

sign(a(x̂′))

implies that there must exist at least two other points x̂′, x̂′′ ∈ Sc, that is, there are at least
three positive equilibria in Pc, all of which are non-degenerate. In this case by Corollary 1, there
is an odd number of equilibria and they are all non-degenerate.

Assume now that 0 is not a regular value for ϕc. By construction, x̂ defines a positive
equilibrium in Pc and a(x̂) 6= 0 by hypothesis. Therefore, if 0 is not regular, then there must
exist another positive equilibrium x∗ in Pc for which the Jacobian of ϕc(x

∗) is singular. This
implies that there are at least two positive equilibria in Pc, one of which is non-degenerate.

In typical applications we find an odd number of equilibria (≥ 3), all of which are non-
degenerate. Observe that the hypothesis for Part (A) holds if the sign of det(M(x)) is (−1)s

for all x in a set containing the positive equilibria. In particular, this it if this is the case for all
x ∈ Rn>0.

5 Details on the steps of the procedure

In this section we expand further on how to check step 3 and 6 of the algorithm.

5.1 On siphons and boundary equilibria

A siphon is a set of species Z ⊆ {X1, . . . , Xn} fulfilling the following closure property: if Xi ∈ Z
and Xi is produced in reaction Rj (that is, βij > 0), then there exists Xk ∈ Z such that Xk is
consumed in the same reaction (that is, αkj > 0). A minimal siphon is a siphon that does not
properly contain any other siphon.

Proposition 2. If for every minimal siphon Z there exists a subset {Xi1 , . . . , Xik} ⊆ Z, and a
conservation law λ1xi1 + · · · + λkxik = c for some positive λ1, . . . , λk, then the network has no
boundary equilibria in any stoichiometric compatibility class Pc with non-empty relative interior,
P+
c 6= ∅.
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A proof of this proposition for mass-action kinetics can be found in [43], where strategies to
find siphons are also detailed. The proof in [43] is however valid for general kinetics fulfilling
assumption (20) (see [26, Prop. 2]). Different algorithms developed in Petri Net theory can be
applied to find the siphons of a reaction network.

The hypothesis of the proposition is summarised by saying that each minimal siphon contains
the support of a positive conservation law.

Example 1. The minimal siphons of the running example in the main text are {X1, X2} and
{X3, X4}. The conservation laws x1 + x2 = c1, x3 + x4 = c2 fulfil the requirements of the
proposition, and hence the network has no boundary equilibria in any P(c1,c2) with c1, c2 > 0.

For large networks, the task of finding the siphons can be daunting. A way to reduce the
complexity of the computation is by the removal of intermediate species and catalysts [26]. We
explain the key aspects of this reduction method here. The method is used in the examples
below.

The first reduction concerns removal of intermediates. Intermediates are species in the
network that do not appear interacting with any other species, are produced in at least one
reaction, and consumed in at least one reaction. For example the species ES0 in the reaction
network

S0 + E −−⇀↽−− ES0 −−⇀↽−− S1 + E (27)

is an intermediate.
Given a network, we obtain a reduced network by “removing” some intermediates, one at a

time. This is done in the following way. Say we want to remove an intermediate Y from the
network. We remove all reactions of the original network that involve Y and add a reaction

y → y′ whenever y → Y → y′ with y 6= y′

belongs to the original network. Here y and y′ are the reactant of a reaction y → Y and product
of a reaction Y → y′, respectively.

To illustrate this, we consider the removal of the intermediate ES0 in the network (27). The
reactions of the reduced network are obtained by considering all length 2 paths of the original
network that go through ES0. We have two such paths:

S0 + E −−→ ES0 −−→ S1 + E and S1 + E −−→ ES0 −−→ S0 + E.

By “collapsing” these paths we obtain the reactions

S0 + E −−→ S1 + E and S1 + E −−→ S0 + E. (28)

Clearly the process could be repeated now by choosing other intermediates of the network
(if any). In this way we can obtain reduced networks by removing several intermediates.

The second reduction concerns removal of catalysts. Catalysts are species that whenever
they appear in a reaction, then they appear at both sides and with the same stoichiometric
coefficient. For example, E in the reaction network (28) is a catalyst. Catalysts are actually
defined in more generality in [26], but we restrict to this scenario to keep the discussion simple.
Catalysts are removed from a network by literally removing them from the reactions where they
appear. Removal of E in the reaction network (28) yields the reaction network

S0 −−⇀↽−− S1. (29)

This network has one minimal siphon, namely {S0, S1}, and s0+s1 = c is a conservation law.
By Proposition 2, it does not admit boundary equilibria in stoichiometric compatibility classes
with non-empty positive part. The next proposition allows us to conclude that the original
network in (27) neither admits boundary equilibria in stoichiometric compatibility classes with
non-empty positive part.
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Proposition 3 (Theorems 1 and 2 in [26]). Let G be a network and G′ be a network obtained
after iterative removal of intermediates or catalysts from G as described above. Each minimal
siphon of G contains the support of a positive conservation law if and only if this is the case for
G′.

In several cases, removal of intermediates and catalysts yields a so-called monomolecular
network. That is, a network whose complexes agree with some species or the complex zero.
For example, the network in (29) is monomolecular. In this case, checking the hypothesis of
Proposition 2 is straightforward, in view of the next lemma.

Lemma 3 (Proposition 3 in [26]). Let G be a monomolecular network. Each minimal siphon
of G contains the support of a positive conservation law if and only if all connected components
of G are strongly connected.

The network in (29) is clearly strongly connected. Thus, we do not need to find the siphons
of the network to conclude that each of its minimal siphons contains the support of a posi-
tive conservation law and thereby conclude that (27) does not admit boundary equilibria in
stoichiometric compatibility classes with non-empty positive part.

Corollary 2. Let G be a network and G′ be a network obtained after iterative removal of in-
termediates or catalysts from G as described above. If G′ is a monomolecular network with all
connected components strongly connected, then G has no boundary equilibria in any stoichiomet-
ric compatibility class Pc such that P+

c 6= ∅.

5.2 Newton polytope

We write a multivariate polynomial f(x) ∈ R[x1, . . . , xn] as a sum of monomials:

f(x) =
∑
α∈Nn

cαx
α,

where xα = xα1
1 . . . xαn

n and cα ∈ R, for which only a finite number are non-zero.
The Newton polytope of f(x), denoted by N (f), is a closed convex set in Rn, defined as the

convex hull of the exponents α ∈ Nn for which cα 6= 0 (See [38, Section 2] for a definition of
convex hull). The set of vertices of N (f) is a subset of the set of points α for which cα 6= 0.

The following is a well-known fact about the Newton polytope of a polynomial. The proof
of the fact is constructive and provides an explicit way to find x̂ in Theorem 4(B). Thus it offers
a way to find stoichiometric compatibility classes (i.e. values of c) for which multistationarity
exists.

Proposition 4. Let f(x) =
∑

α∈Nn cαx
α and let α′ be a vertex of N (f). Then there exists

x′ ∈ Rn>0 such that
sign(f(x′)) = sign(cα′).

Proof. By hypothesis cα′ 6= 0. Since α′ is a vertex in a bounded convex polytope, there exists a
separating hyperplane ω · x = T that intersects the polytope only in α′ and such that ω · x′ < T
for any other point x′ of the polytope (see e.g. Definition 3.5 and Theorem 3.8 in [44]). In
particular, ω · α < ω · α′ for all vertices α 6= α′.

For y = tω, we have

f(y) =
∑
α∈Nn

cα(tω)α =
∑
α∈Nn

cαt
ω·α = cα′t

ω·α′ +
∑

α∈Nn,α 6=α′
cαt

ω·α.

Let ω′′ ·α′′ be the smallest of the exponents of t in f(y) (this exponent might be negative). After
multiplication of f(y) by tω

′′·α′′ , we obtain a univariate polynomial in t with leading coefficient
equal to cα′ . By letting t be large enough, the sign of f(y) agrees with the sign of cα′ .
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Finding the vertices in practice. In the examples below, we find the vertices of the
Newton polytope of the polynomial of interest as follows. We use Maple (version 2015). We
construct first the polytope using the command PolyhedralSet and subsequently use the com-
mand VerticesAndRays, from the package PolyhedralSets, to find the vertices.

6 Details on the examples in the main text

In this section we present the details of the algorithm for the two examples in the main text:
the hybrid histidine kinase model and a gene transcription network.

6.1 Hybrid histidine kinase

Using the notation X1 = HK00, X2 = HKp0, X3 = HK0p, X4 = HKpp, X5 = RR and X6 = RRp,
the reaction network is

X1
κ1−→ X2

κ2−→ X3
κ3−→ X4 X3 +X5

κ4−→ X1 +X6 X4 +X5
κ5−→ X2 +X6 X6

κ6−→ X5.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from a
basis of im(N)⊥ are

N =



−1 0 0 1 0 0
1 −1 0 0 1 0
0 1 −1 −1 0 0
0 0 1 0 −1 0
0 0 0 −1 −1 1
0 0 0 1 1 −1

 , W =

(
1 1 1 1 0 0
0 0 0 0 1 1

)
. (30)

The matrix W gives rise to the conservation laws

x1 + x2 + x3 + x4 = c1, x5 + x6 = c2. (31)

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1, κ2x2, κ3x3, κ4x3x5, κ5x4x5, κ6x6).

The function f(x) = Nv(x) is thus

f(x) = (−κ1x1 + κ4x3x5, κ1x1 − κ2x2 + κ5x4x5,−κ3x3 + κ2x2 − κ4x3x5,
κ3x3 − κ5x4x5,−κ4x3x5 − κ5x4x5 + κ6x6, κ4x3x5 − κ6x6 + κ5x4x5).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption [3] in the main text. The function f(x) and
W are given above. The matrix W in (30) is row reduced.

Step 2. The network is conservative since (1, 1, 1, 1, 1, 1) ∈ im(N)⊥. Therefore the semiflow
of the network is dissipative.

Step 3. The minimal siphons of the network are {X1, X2, X3, X4} and {X5, X6}. These two
sets are the supports of the conservation laws in (31). By Proposition 2, there are no boundary
equilibria in any Pc as long as P+

c 6= ∅.

Step 4. We solve the equilibrium equations f2 = f3 = f4 = f6 = 0 for x1, x2, x3, x6. This
gives the following algebraic parameterization Φ: R2

>0 → R6
>0 of the set of equilibria in terms of

x̂ = (x4, x5):

Φ(x4, x5) =
(κ4κ5x4x25

κ1κ3
,
κ5(κ4x5 + κ3)x4x5

κ2κ3
,
κ5x4x5
κ3

, x4, x5,
κ5(κ4x5 + κ3)x4x5

κ3κ6

)
.
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Step 5. With our choice of W , we have i1 = 1, i2 = 5. Hence ϕc is obtained by replacing the
components f1(x), f5(x) of f(x) by the expressions derived from the two conservation laws:

ϕc(x) = (x1 + x2 + x3 + x4 − c1, κ1x1 − κ2x2 + κ5x4x5,−κ3x3 + κ2x2 − κ4x3x5,
κ3x3 − κ5x4x5, x5 + x6 − c2, κ4x3x5 − κ6x6 + κ5x4x5).

The Jacobian of ϕc(x), M(x), is

M(x) =



1 1 1 1 0 0
κ1 −κ2 0 κ5x5 κ5x4 0
0 κ2 −κ3 − κ4x5 0 −κ4x3 0
0 0 κ3 −κ5x5 −κ5x4 0
0 0 0 0 1 1
0 0 κ4x5 κ5x5 κ4x3 + κ5x4 −κ6

 .

We compute the determinant of M(x) and evaluate it in Φ(x4, x5) to obtain the polynomial

a(x̂) = κ1κ2κ3κ6 + (κ1 + κ2)κ4κ5κ6x
2
5 + κ2κ4κ

2
5

(
κ1
κ3
− 1

)
x4x

2
5

+ 2κ1κ2κ4κ5x4x5 + (κ2 + κ3)κ1κ5κ6x5 + κ1κ2κ3κ5x4.

Step 6. Proceed as in the main text.

6.2 Gene transcription network

We use the notation X1 = X1, X2 = X2, X3 = P1, X4 = P2, X5 = X2P1, X6 = P2P2, and
X7 = X1P2P2. The reaction network is

X1
κ1−→ X1 +X3 X3

κ3−→ 0 X2 +X3
κ5−−⇀↽−−
κ6

X5

X2
κ2−→ X2 +X4 X4

κ4−→ 0 2X4
κ7−−⇀↽−−
κ8

X6 X1 +X6
κ9−−⇀↽−−
κ10

X7.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from a
basis of im(N)⊥ are

N =



0 0 0 0 0 0 0 0 −1 1
0 0 0 0 −1 1 0 0 0 0
1 0 −1 0 −1 1 0 0 0 0
0 1 0 −1 0 0 −2 2 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 1 −1


, W =

(
1 0 0 0 0 0 1
0 1 0 0 1 0 0

)
.

(32)
The matrix W gives rise to the conservation laws

x1 + x7 = c1, x2 + x5 = c2. (33)

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1, κ2x2, κ3x3, κ4x4, κ5x2x3, κ6x5, κ7x
2
4, κ8x6, κ9x1x6, κ10x7).

The function f(x) = Nv(x) is thus

f(x) = (−κ9x1x6 + κ10x7,−κ5x2x3 + κ6x5, κ1x1 − κ3x3,−κ5x2x3 + κ6x5κ2x2 − κ4x4
− 2κ7x

2
4 + 2κ8x6, κ5x2x3 − κ6x5, κ7x24 − κ8x6 − κ9x1x6 + κ10x7, κ9x1x6 − κ10x7).

We apply the algorithm to this network with the matrix N and the vector v(x).
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Step 1. Mass-action kinetics fulfils assumption [3] in the main text. The function f(x) and
W are given above. The matrix W in (32) is row reduced.

Step 2. It is shown in the main text that the semiflow of the network is dissipative.

Step 3. The species X5, X6, X7 are intermediates. Removing them from the network yields
the reaction network

X1 −−→ X1 +X3 X3 −−→ 0 X2 −−→ X2 +X4 X4 −−→ 0,

For this network, X1, X2 are catalysts. Its removal yields the reaction network

X3 −−⇀↽−− 0 −−⇀↽−− X4.

This is a strongly connected monomolecular network. By Corollary 2, there are no boundary
equilibria in any Pc as long as P+

c 6= ∅.

Step 4. We solve the equilibrium equations f3 = f4 = f5 = f6 = f7 = 0 for x1, x2, x3, x6, x7.
This gives the following algebraic parameterization Φ: R2

>0 → R7
>0 of the set of equilibria in

terms of x̂ = (x4, x5):

Φ(x4, x5) =
(κ2κ3κ6x5
κ1κ4κ5x4

,
κ4x4
κ2

,
κ2κ6x5
κ4κ5x4

, x4, x5,
κ7x

2
4

κ8
,
κ2κ3κ6κ7κ9x4x5
κ1κ4κ5κ8κ10

)
.

Step 5. With our choice of W , we have i1 = 1, i2 = 2. Hence ϕc is:

ϕc(x) = (x1 + x7 − c1, x2 + x5 − c2, κ1x1 − κ3x3,−κ5x2x3 + κ6x5κ2x2 − κ4x4
− 2κ7x

2
4 + 2κ8x6, κ5x2x3 − κ6x5, κ7x24 − κ8x6 − κ9x1x6 + κ10x7, κ9x1x6 − κ10x7).

We compute the Jacobian of ϕc(x), M(x), its determinant and evaluate it in Φ(x4, x5) to obtain
the polynomial

a(x4, x5) =
κ3κ6
x4

(κ2κ7κ9x
2
4x5 − κ4κ7κ9x34 − κ2κ8κ10x5 − κ4κ8κ10x4).

Step 6. Proceed as in the main text.

7 Further examples

In this section we obtain the conditions for multiple and unique equilibria for the two networks
in Table 1 in the main text. We also provide an extra example (that is not multistationary),
involving a two-substrate enzyme catalysis.

7.1 Phosphorylation of two substrates

In this subsection we consider the network in the first row of Table 1 in the main text.
We consider a system in which two substrates can be either unphosphorylated, A,B or

phosphorylated Ap, Bp. Phosphorylation of both substrates is catalyzed by the same kinase K
and dephosphorylation of Ap, Bp is catalyzed by the same phosphatase F . That is, the system
consists of two futile cycles sharing kinase and phosphatase.

The reactions of the system are:

A+K
κ1−−⇀↽−−
κ2

AK
κ3−→ Ap +K B +K

κ7−−⇀↽−−
κ8

BK
κ9−→ Bp +K

Ap + F
κ4−−⇀↽−−
κ5

ApF
κ6−→ A+ F Bp + F

κ10−−⇀↽−−
κ11

BpF
κ12−−→ B + F.
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It was shown in [45] that this network with mass-action kinetics is multistationary. Here we find
the necessary and sufficient condition on the reaction rate constants for having multistationarity
in some stoichiometric compatibility class. We let

X1 = K, X3 = A, X5 = B, X7 = AK, X9 = ApF,

X2 = F, X4 = Ap, X6 = Bp, X8 = BK, X10 = BpF.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from
a basis of im(N)⊥ are

N =



−1 1 1 0 0 0 −1 1 1 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1
−1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 −1 1 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1


,

W =


1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 0 0 0 1 1 0 1 0 1

 .

The rank of N is s = 6. The matrix W gives rise to the conservation laws

c1 = x1 + x7 + x8, c3 = x3 + x4 + x7 + x9,

c2 = x2 + x9 + x10, c4 = x5 + x6 + x8 + x10,

where c1, c2, c3, c4 correspond to the total amounts of kinase, phosphatase, substrate A and
substrate B, respectively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x3, κ2x7, κ3x7, κ4x2x4, κ5x9, κ6x9, κ7x1x5, κ8x8, κ9x8, κ10x2x6, κ11x10, κ12x10).

The function f(x) = Nv(x) is thus

f(x) = (−κ1x1x3 − κ7x1x5 + κ2x7 + κ3x7 + κ8x8 + κ9x8,

− κ4x2x4 − κ10x2x6 + κ5x9 + κ6x9 + κ11x10 + κ12x10,−κ1x1x3 + κ2x7 + κ6x9,

− κ7x1x5 + κ8x8 + κ12x10,−κ10x2x6 + κ9x8 + κ11x10, κ1x1x3 − κ2x7 − κ3x7,
κ7x1x5 − κ8x8 − κ9x8, κ4x2x4 − κ5x9 − κ6x9, κ10x2x6 − κ11x10 − κ12x10).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption [3] in the main text. The function f(x) and
W are given above and the matrix W is row reduced.

Step 2. The network is conservative since the concentration of every species is in the support of
a conservation law with positive coefficients. Therefore the semiflow of the network is dissipative.

Step 3. The network has four intermediates AK,ApF,BK,BpF . After their elimination, we
are left with the reaction network

A+K −−→ Ap +K B +K −−→ Bp +K Ap + F −−→ A+ F Bp + F −−→ B + F.

This network has two catalysts: K,F . Their elimination yields the reaction network

A −−⇀↽−− Ap B −−⇀↽−− Bp.
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This is a monomolecular network with two strongly connected components. By Corollary 2,
there are no boundary equilibria in any Pc for which P+

c 6= ∅.

Step 4. By solving the equilibrium equations f4 = f6 = f7 = f8 = f9 = f10 = 0 in the variables
x4, x6, x7, x8, x9, x10, we find the following positive parameterization of the set of equilibria in
terms of x̂ = (x1, x2, x3, x5):

x4 =
(κ6 + κ5)κ3x3x1κ1
κ6 (κ3 + κ2)x2κ4

, x7 =
κ1x1x3
κ3 + κ2

, x9 =
κ3x3x1κ1
κ6 (κ3 + κ2)

,

x6 =
(κ12 + κ11)κ9x5x1κ7
κ12 (κ9 + κ8)κ10x2

, x8 =
κ7x1x5
κ9 + κ8

, x10 =
κ9x5x1κ7

κ12 (κ9 + κ8)
.

Step 5. For our choice of W , we have i1 = 1, i2 = 2, i3 = 3, i4 = 5. The function ϕc(x) is thus

ϕc(x) =
(
x1 + x7 + x8 − c1, x2 + x9 + x10 − c2, x3 + x4 + x7 + x9 − c3,
− κ4x2x4 + κ3x7 + κ5x9, x5 + x6 + x8 + x10 − c4,−κ10x2x6 + κ9x8 + κ11x10,

κ1x1x3 − κ2x7 − κ3x7, κ7x1x5 − κ8x8 − κ9x8, κ4x2x4 − κ5x9 − κ6x9,
κ10x2x6 − κ11x10 − κ12x10

)
.

The Jacobian matrix M(x) = Jϕc(x) is

1 0 0 0 0 0 1 1 0 0
0 1 0 0 0 0 0 0 1 1
0 0 1 1 0 0 1 0 1 0
0 −κ4x4 0 −κ4x2 0 0 κ3 0 κ5 0
0 0 0 0 1 1 0 1 0 1
0 −κ10x6 0 0 0 −κ10x2 0 κ9 0 κ11

κ1x3 0 κ1x1 0 0 0 −κ2 − κ3 0 0 0
κ7x5 0 0 0 κ7x1 0 0 −κ8 − κ9 0 0

0 κ4x4 0 κ4x2 0 0 0 0 −κ5 − κ6 0
0 κ10x6 0 0 0 κ10x2 0 0 0 −κ11 − κ12


.

We compute the determinant of M(x) and substitute x4, x6, x7, x8, x9, x10 with the terms of
the parameterization in Step 4, that is, we find a(x̂).

Step 6. The function a(x̂) is a large rational function with positive denominator. Therefore,
the numerator of this function, a polynomial p(x̂), determines the sign of a(x̂). The coefficients
are polynomials in κ1, . . . , κ10. All but one of the coefficients are polynomials in κ1, . . . , κ10 with
positive coefficients. Therefore, all coefficients but one are always positive, independently of the
values of the reaction rate constants κ1, . . . , κ10.

The only coefficient with sign depending on the specific values of κ1, . . . , κ10 is

α(κ) = κ1κ7 (κ3κ12 − κ6κ9) (κ1κ3κ5κ8κ10κ12 + κ1κ3κ5κ9κ10κ12 + κ1κ3κ6κ8κ10κ12

+ κ1κ3κ6κ9κ10κ12 − κ2κ4κ6κ7κ9κ11 − κ2κ4κ6κ7κ9κ12 − κ3κ4κ6κ7κ9κ11 − κ3κ4κ6κ7κ9κ12).

If α(κ) ≥ 0, then all coefficients of p(x̂) are positive, and hence a(x̂) is positive for all positive
x̂. Using (−1)s = (−1)6 = 1, Theorem 4(A) gives that there is a unique positive equilibrium in
each stoichiometric compatibility class with non-empty positive relative interior.

When this coefficient is negative, then we need to check whether p(x̂) is negative for some
x̂. We analyse this by finding the Newton polytope and using Proposition 4.

The coefficient α(κ) corresponds to the monomial x21x2x3x5. The exponent vectors of the
monomials of p(x̂) are:

(0, 3, 0, 0), (0, 3, 0, 1), (0, 3, 1, 0), (1, 2, 0, 0), (1, 2, 0, 1), (1, 2, 1, 0), (1, 3, 0, 0),
(1, 3, 0, 1) (1, 3, 1, 0), (2, 1, 0, 0), (2, 1, 0, 1), (2, 1, 1, 0), (2, 1, 1, 1), (2, 2, 0, 0),
(2, 3, 0, 0), (3, 0, 0, 1), (3, 0, 1, 0), (3, 1, 0, 1), (3, 1, 1, 0).
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We find the vertices of the convex hull of the exponent vectors, and find that they are

(0, 3, 0, 1), (0, 3, 1, 0), (2,1,1,1), (0, 3, 0, 0), (2, 1, 0, 0), (3, 0, 0, 1),
(3, 0, 1, 0), (1, 3, 0, 1), (1, 3, 1, 0), (2, 3, 0, 0), (3, 1, 0, 1), (3, 1, 1, 0).

Thus the exponent vector of the monomial of interest, (2, 1, 1, 1) (highlighted in bold), is a
vertex of the Newton polytope. Therefore, by Proposition 4, there exists x̂ such that p(x̂) is
negative. Theorem 4(B) gives that there is a stoichiometric compatibility class with multiple
positive equilibria.

The condition α(κ) < 0 can be rewritten as:

(κ3κ12 − κ6κ9)(κ3κ12κ1κ10(κ5 + κ6)(κ8 + κ9)− κ6κ9κ4κ7(κ2 + κ3)(κ11 + κ12)) < 0,

which in turn can be written as

(κ3κ12 − κ6κ9)
(
κ3κ12 ·

κ1
κ2 + κ3

· κ10
κ11 + κ12

− κ6κ9 ·
κ4

κ5 + κ6
· κ7
κ8 + κ9

)
< 0,

Note that κ3, κ6, κ9, κ12 are the catalytic constants of phosphorylation/dephosphorylation of A
and B (kc1, kc2, kc3, kc4 in the main text), and

k−1M1 =
κ1

κ2 + κ3
, k−1M2 =

κ4
κ5 + κ6

, k−1M3 =
κ7

κ8 + κ9
, k−1M4 =

κ10
κ11 + κ12

are the inverses of the Michaelis-Menten constants of K and F for each substrate. Therefore, the
necessary and sufficient condition for multistationarity can be written in terms of the catalytic
constants and the Michaelis-Menten constants,

(κ3κ12 − κ6κ9)
(

κ3κ12
kM1kM4

− κ6κ9
kM2kM3

)
< 0.

This proves the condition for multiple and unique equilibria given in the first row of Table 1 in
the main text. In particular, we have that

• If κ3κ12 > κ6κ9, then we need κ3κ12
kM1kM4

< κ6κ9
kM2kM3

for multiple equilibria to occur.

• If κ3κ12 < κ6κ9, then we need κ3κ12
kM1kM4

> κ6κ9
kM2kM3

for multiple equilibria to occur.

7.2 Two-site phosphorylation system

In this subsection we consider the network in the second row of Table 1 in the main text. The
conditions given here were also found in [18], the paper that lay the foundations of this algorithm.
In this work we consider a direct route using the function ϕc and avoiding changes of variables.
We explain here how to find the conditions using the algorithm in the main text.

We consider a system in which one substrate undergoes sequential and distributive phospho-
rylation by a kinase K and sequential and distributive dephosphorylation by a phosphatase F .
The three phosphoforms of the substrate are A,Ap, App. The reactions of the system are:

A+K
κ1−−⇀↽−−
κ2

AK
κ3−→ Ap +K

κ7−−⇀↽−−
κ8

ApK
κ9−→ App +K

App + F
κ10−−⇀↽−−
κ11

AppF
κ12−−→ Ap + F

κ4−−⇀↽−−
κ5

ApF
κ6−→ A+ F

We let

X1 = K, X3 = A, X5 = App, X6 = AK, X7 = ApF,

X2 = F, X4 = Ap, X8 = ApK, X9 = AppF.
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The stoichiometric matrix N of the network and a row reduced matrix W whose rows from
a basis of im(N)⊥ are

N =



−1 1 1 0 0 0 −1 1 1 0 0 0
0 0 0 −1 1 1 0 0 0 −1 1 1
−1 1 0 0 0 1 0 0 0 0 0 0

0 0 1 −1 1 0 −1 1 0 0 0 1
0 0 0 0 0 0 0 0 1 −1 1 0
1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 −1 −1


,

W =

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 1

 .

The rank of N is s = 6. The matrix W gives rise to the conservation laws

c1 = x1 + x6 + x8, c2 = x2 + x7 + x9, c3 = x3 + x4 + x5 + x6 + x7 + x8 + x9,

where c1, c2, c3 correspond to the total amounts of kinase, phosphatase and substrate A, respec-
tively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x3, κ2x6, κ3x6, κ4x2x4, κ5x7, κ6x7, κ7x1x4, κ8x8, κ9x8, κ10x2x5, κ11x9, κ12x9).

The function f(x) = Nv(x) is thus

f(x) = (−κ1x1x3 − κ7x1x4 + κ2x6 + κ3x6 + κ8x8 + κ9x8,

− κ4x2x4 − κ10x2x5 + κ5x7 + κ6x7 + κ11x9 + κ12x9,−κ1x1x3 + κ2x6 + κ6x7,

− κ4x2x4 − κ7x1x4 + κ3x6 + κ5x7 + κ8x8 + κ12x9,−κ10x2x5 + κ9x8 + κ11x9,

κ1x1x3 − κ2x6 − κ3x6, κ4x2x4 − κ5x7 − κ6x7, κ7x1x4 − κ8x8 − κ9x8,
κ10x2x5 − κ11x9 − κ12x9).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption [3] in the main text. The function f(x) and
W are given above and the matrix W is row reduced.

Step 2. The network is conservative since the concentration of every species is in the support of
a conservation law with positive coefficients. Therefore the semiflow of the network is dissipative.

Step 3. The network has four intermediates AK,ApK,ApF,AppF . After their elimination, we
are left with a reaction network with two catalysts: K,F . Their elimination yields the reaction
network

A −−⇀↽−− Ap −−⇀↽−− App.
This is a monomolecular network with two strongly connected components. By Corollary 2,
there are no boundary equilibria in any Pc for which P+

c 6= ∅.
Step 4. By solving the equilibrium equations f4 = f5 = f6 = f7 = f8 = f9 = 0 in the variables
x4, . . . , x9, we find the following positive parameterization of the set of equilibria in terms of
x̂ = (x1, x2, x3):

x4 =
κ1κ3(κ5 + κ6)x1x3
(κ2 + κ3)κ4κ6x2

, x5 =
κ1κ3(κ5 + κ6)κ7κ9(κ11 + κ12)x

2
1x3

(κ2 + κ3)κ4κ6(κ8 + κ9)κ10κ12x22
,

x6 =
κ1x1x3
κ2 + κ3

, x7 =
κ1κ3x1x3

(κ2 + κ3)κ6
,

x8 =
κ1κ3(κ5 + κ6)κ7x

2
1x3

κ2 + κ3)κ4κ6(κ8 + κ9)x2
, x9 =

κ1κ3(κ5 + κ6)κ7κ9x
2
1x3

κ2 + κ3)κ4κ6(κ8 + κ9)κ12x2
.
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Step 5. For our choice of W , we have i1 = 1, i2 = 2, i3 = 3. The function ϕc(x) is thus

ϕc(x) =
(
x1 + x6 + x8 − c1, x2 + x7 + x9 − c2, x3 + x4 + x5 + x6 + x7 + x8 + x9 − c3,
− κ4x2x4 − κ7x1x4 + κ3x6 + κ5x7 + κ8x8 + κ12x9,−κ10x2x5 + κ9x8 + κ11x9,

κ1x1x3 − κ2x6 − κ3x6, κ4x2x4 − κ5x7 − κ6x7, κ7x1x4 − κ8x8 − κ9x8,
κ10x2x5 − κ11x9 − κ12x9

)
.

The Jacobian matrix M(x) = Jϕc(x) is

1 0 0 0 0 1 0 1 0
0 1 0 0 0 0 1 0 1
0 0 1 1 1 1 1 1 1

−κ7x4 −κ4x4 0 −κ4x2 − κ7x1 0 κ3 κ5 κ8 κ12
0 −κ10x5 0 0 −κ10x2 0 0 κ9 κ11

κ1x3 0 κ1x1 0 0 −κ2 − κ3 0 0 0
0 κ4x4 0 κ4x2 0 0 −κ5 − κ6 0 0

κ7x4 0 0 κ7x1 0 0 0 −κ8 − κ9 0
0 κ10x5 0 0 κ10x2 0 0 0 −κ11 − κ12


.

We compute the determinant of M(x) and substitute x4, . . . , x9 with their expressions in the
parameterization, that is, find a(x̂).

Step 6. The function a(x̂) is a large rational function with positive denominator. The
numerator of this function, a polynomial p(x̂), determines therefore the sign of a(x̂). The
coefficients are polynomials in κ1, . . . , κ10.

The polynomial has 15 terms, 9 of which are positive for all values of the reaction rate
constants. The remaining 6 coefficients are polynomials in κ1, . . . , κ10 that can either be positive
or negative.

Five of the six coefficients are of the form β(κ)b1(κ), where β(κ) is a positive polynomial in
κ and

b1(κ) = κ3κ12 − κ6κ9
(thus b1(κ) is the same for all five coefficients). These five coefficients correspond to the mono-
mials x31x

2
2x3, x

2
1x

2
2x

2
3, x

3
1x2x

2
3, x

2
1x

3
2x3 and x41x

2
3.

The remaining coefficient is of the form γ(κ)α(κ), where γ(κ) is a positive polynomial in κ
and

α(κ) = κ1κ3κ4κ8κ10κ12 + κ1κ3κ4κ9κ10κ12 + κ1κ3κ5κ7κ10κ12 + κ1κ3κ6κ7κ10κ12

− κ1κ4κ6κ7κ9κ11 − κ1κ4κ6κ7κ9κ12 − κ2κ4κ6κ7κ9κ10 − κ3κ4κ6κ7κ9κ10.

It corresponds to the monomial x21x
2
2x3.

Since (−1)6 = 1, part Theorem 4(A) tells us that there is a unique positive equilibrium in
each stoichiometric compatibility class with non-empty positive part, if

b1(κ) ≥ 0 and α(κ) ≥ 0.

The condition α(κ) ≥ 0 can be rewritten as:

κ1κ3κ10κ12
(
κ4(κ9 + κ8) + κ7(κ6 + κ5)

)
− κ4κ6κ7κ9

(
κ1(κ12 + κ11) + κ10(κ3 + κ2)

)
≥ 0.

Dividing the expression by κ1κ4κ7κ10, the condition can be rewritten as

κ3κ12
(
kM2 + kM3

)
− κ6κ9

(
kM1 + kM4

)
≥ 0,

where

kM1 =
κ2 + κ3
κ1

, kM2 =
κ5 + κ6
κ4

, kM3 =
κ8 + κ9
κ7

, kM4 =
κ11 + κ12

κ10
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are the Michaelis-Menten constants of K and F for each site. Note that κ3, κ6, κ9, κ12 are the
catalytic constants of phosphorylation of A, dephosphorylation of Ap, phosphorylation of Ap
and dephosphorylation of App. These are denoted by kc1, kc2, kc3, kc4 in the main text.

By letting
b2(κ) = κ3κ12

(
kM2 + kM3

)
− κ6κ9

(
kM1 + kM4

)
,

α(κ) ≥ 0 if and only if b2(κ) ≥ 0. Thus we have proven the condition for unique equilibria given
in the second row of Table 1 in the main text.

Let us consider whether Theorem 4(B) applies if b1(κ) < 0 and/or α(κ) < 0. The exponent
vectors of the monomials of p(x̂) are:

(3, 1, 1) (1, 3, 1) (2, 2, 1) (2, 2, 2) (2, 3, 0) (2, 2, 0) (1, 3, 0) (3, 1, 2)
(2, 3, 1) (3, 2, 1) (4, 0, 2) (4, 0, 1) (0, 4, 1) (1, 4, 0) (0, 4, 0)

The vertices of the convex hull of the exponent vectors are

(2, 3, 0) (4, 0, 1) (2, 2, 0) (0, 4, 0) (1, 4, 0) (3,2,1) (4, 0, 2) (0, 4, 1) (2, 3, 1) (2, 2, 2).

The vertex highlighted in bold corresponds to the monomial x31x
2
2x3, whose sign depends on

b1(κ). By Proposition 4, if b1(κ) < 0, then there exists x̂ such that p(x̂) is negative. Theorem
4(B) gives that there is a stoichiometric compatibility class that admits positive multiple equi-
libria. This proves the condition for multistationarity given in the second row of Table 1 in the
main text.

The exponent vector of the monomial corresponding to the coefficient α(κ), (2, 2, 1), is not
a vertex of the Newton polytope. In this case it is uncertain whether the condition α(κ) < 0 is
sufficient for multistationarity.

7.3 Two-substrate enzyme catalysis

We consider here a mechanism in which an enzyme E binds two substrates, S1, S2, in an un-
ordered manner in order to catalyze the reversible conversion to the product P . A variation of
this system was considered in [46]. The reactions of the system are:

E + S1
κ1−−⇀↽−−
κ2

ES1 S2 + ES1
κ5−−⇀↽−−
κ6

ES1S2 ES1S2
κ7−−⇀↽−−
κ8

E + P

E + S2
κ3−−⇀↽−−
κ4

ES2 S1 + ES2
κ9−−⇀↽−−
κ10

ES1S2.

We let

X1 = E, X2 = S1, X3 = ES1, X4 = S2, X5 = ES2, X6 = ES1S2, X7 = P.

The stoichiometric matrix N of the network and a row reduced matrix W whose rows from a
basis of im(N)⊥ are

N =



−1 1 −1 1 0 0 0 0 1 −1
−1 1 0 0 0 0 1 −1 0 0

1 −1 0 0 −1 1 0 0 0 0
0 0 −1 1 −1 1 0 0 0 0
0 0 1 −1 0 0 1 −1 0 0
0 0 0 0 1 −1 −1 1 −1 1
0 0 0 0 0 0 0 0 1 −1



W =

1 0 1 0 1 1 0
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

The rank of N is s = 4. The matrix W gives rise to the conservation laws

c1 = x1 + x3 + x5 + x6, c2 = x2 + x3 + x6 + x7 c3 = x4 + x5 + x6 + x7,
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where c1, c2, c3, c4 correspond to the total amounts of kinase, substrate S1 and substrate S2,
respectively.

With mass-action kinetics, the vector of reaction rates is

v(x) = (κ1x1x2, κ2x3, κ3x1x4, κ4x5, κ5x4x3, κ6x6, κ7x6, κ8x2x5, κ9x6, κ10x1x7).

The function f(x) = Nv(x) is

f(x) = (−κ1x1x2 − κ3x1x4 − κ10x1x7 + κ2x3 + κ4x5 + κ9x6,

− κ1x1x2 − κ8x2x5 + κ2x3 + κ7x6, κ1x1x2 − κ5x4x3 − κ2x3 + κ6x6

− κ3x1x4 − κ5x4x3 + κ4x5 + κ6x6, κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6,

κ5x4x3 + κ8x2x5 + κ10x1x7 − κ6x6 − κ7x6 − κ9x6,−κ10x1x7 + κ9x6).

We apply the algorithm to this network with the matrix N and the vector v(x).

Step 1. Mass-action kinetics fulfils assumption [3] in the main text. The function f(x) and
W are given above and the matrix W is row reduced.

Step 2. The network is conservative since the concentration of every species is in the support of
a conservation law with positive coefficients. Therefore the semiflow of the network is dissipative.

Step 3. This network has only one intermediate ES1S2. Its removal yields the reaction
network

E + S1 −−⇀↽−− ES1 S2 + ES1 −−⇀↽−− E + P S2 + ES1 −−⇀↽−− S1 + ES2

E + S2 −−⇀↽−− ES2 S1 + ES2 −−⇀↽−− E + P.

The conservation laws of this new network are (with the notation above):

c1 = x1 + x3 + x5, c2 = x2 + x3 + x7 c3 = x4 + x5 + x7.

The minimal siphons of the network are

{E,ES1, ES2}, {S1, ES1, P}, {S2, ES2, P}.

These siphons contain the support of the conservation laws for c1, c2, c3 respectively. Thus, by
Propositions 2 and 3 the original network does not have boundary equilibria in any stoichiometric
compatibility class that intersects the positive orthant.

Step 4. By solving the equilibrium equations f3 = f5 = f6 = f7 = 0 in the variables
x3, x5, x6, x7, we find the following positive parameterization of the set of equilibria in terms of
x̂ = (x1, x2, x4):

x3 =
x2x1 (κ1κ6κ8x2 + κ3κ6κ8x4 + κ1κ4κ6 + κ1κ4κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x5 =
x1x4 (κ1κ5κ7x2 + κ3κ5κ7x4 + κ2κ3κ6 + κ2κ3κ7)

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x6 =
x2x4 (κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)x1

κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7
,

x7 =
κ9x2x4 (κ1κ5κ8x2 + κ3κ5κ8x4 + κ1κ4κ5 + κ2κ3κ8)

(κ2κ6κ8x2 + κ4κ5κ7x4 + κ2κ4κ6 + κ2κ4κ7)κ10
.

Step 5. For our choice of W , we have i1 = 1, i2 = 2, i3 = 4. The function ϕc(x) is thus

ϕc(x) =
(
x1 + x3 + x5 + x6 − c1, x2 + x3 + x6 + x7 − c2, κ1x1x2 − κ5x4x3 − κ2x3 + κ6x6,

x4 + x5 + x6 + x7 − c3, κ3x1x4 − κ8x2x5 − κ4x5 + κ7x6,

κ5x4x3 + κ8x2x5 + κ10x1x7 − κ6x6 − κ7x6 − κ9x6,−κ10x1x7 + κ9x6

)
.
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The Jacobian matrix M(x) = Jϕc(x) is

1 0 1 0 1 1 0
0 1 1 0 0 1 1

κ1x2 κ1x1 −κ5x4 − κ2 −κ5x3 0 κ6 0
0 0 0 1 1 1 1

κ3x4 −κ8x5 0 κ3x1 −κ8x2 − κ4 κ7 0
κ10x7 κ8x5 κ5x4 κ5x3 κ8x2 −κ6 − κ7 − κ9 κ10x1
−κ10x7 0 0 0 0 κ9 −κ10x1


.

The determinant of M(x) has terms with positive sign and terms with negative sign. After
substituting x3, x5, x6, x7 with their expressions in the parameterization, that is, after finding
a(x̂), the obtained rational function is always positive.

Step 6. By Theorem 4(A) (using s = 4), there is a unique positive equilibrium in each
stoichiometric compatibility class that intersects the positive orthant.
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