37,443 research outputs found

    Research on a ferroacoustic information storage system

    Get PDF
    Mill-processed media and thin films for improving speed and data densities for ferroacoustic memory information storage uni

    CUSTARD (Cranfield University Space Technology Advanced Research Demonstrator) - A Micro-System Technology Demonstrator Nanosatellite. Summary of the Group Design Project MSc in Astronautics and Space Engineering. 1999-2000, Cranfield University

    Get PDF
    CUSTARD (Cranfield University Space Technology And Research Demonstrator) was the group design project for students of the MSc in Astronautics and Space Engineering for the Academic Year 1999/2000 at Cranfield University. The project involved the initial design of a nanosatellite to be used as a technology demonstrator for microsystem technology (MST) in space. The students worked together as one group (organised into several subgroups, e.g. system, mechanical), with each student responsible for a set of work packages. The nanosatellite designed had a mass of 4 kg, lifetime of 3 months in low Earth orbit, coarse 3-axis attitude control (no orbit control), and was capable of carrying up to 1 kg of payload. The electrical power available was 18 W (peak). Assuming a single X-band ground station at RAL (UK), a data rate of up to 1 M bit s-1 for about 3000 s per day is possible. The payloads proposed are a microgravity laboratory and a formation flying experiment. The report summarises the results of the project and includes executive summaries from all team members. Further information and summaries of the full reports are available from the College of Aeronautics, Cranfield University

    Multiprocessing techniques for unmanned multifunctional satellites Final report,

    Get PDF
    Simulation of on-board multiprocessor for long lived unmanned space satellite contro

    Study of time-lapse processing for dynamic hydrologic conditions

    Get PDF
    The usefulness of dynamic display techniques in exploiting the repetitive nature of ERTS imagery was investigated. A specially designed Electronic Satellite Image Analysis Console (ESIAC) was developed and employed to process data for seven ERTS principal investigators studying dynamic hydrological conditions for diverse applications. These applications include measurement of snowfield extent and sediment plumes from estuary discharge, Playa Lake inventory, and monitoring of phreatophyte and other vegetation changes. The ESIAC provides facilities for storing registered image sequences in a magnetic video disc memory for subsequent recall, enhancement, and animated display in monochrome or color. The most unique feature of the system is the capability to time lapse the imagery and analytic displays of the imagery. Data products included quantitative measurements of distances and areas, binary thematic maps based on monospectral or multispectral decisions, radiance profiles, and movie loops. Applications of animation for uses other than creating time-lapse sequences are identified. Input to the ESIAC can be either digital or via photographic transparencies

    Apollo applications program data archives

    Get PDF
    Apollo applications program data archives to collect, store, retrieve, and distribute experiments-related dat

    Four Decades of Computing in Subnuclear Physics - from Bubble Chamber to LHC

    Full text link
    This manuscript addresses selected aspects of computing for the reconstruction and simulation of particle interactions in subnuclear physics. Based on personal experience with experiments at DESY and at CERN, I cover the evolution of computing hardware and software from the era of track chambers where interactions were recorded on photographic film up to the LHC experiments with their multi-million electronic channels

    JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Get PDF
    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States

    Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    Get PDF
    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing
    corecore