511,258 research outputs found

    Towards the specification and verification of modal properties for structured systems

    Get PDF
    System specification formalisms should come with suitable property specification languages and effective verification tools. We sketch a framework for the verification of quantified temporal properties of systems with dynamically evolving structure. We consider visual specification formalisms like graph transformation systems (GTS) where program states are modelled as graphs, and the program behavior is specified by graph transformation rules. The state space of a GTS can be represented as a graph transition system (GTrS), i.e. a transition system with states and transitions labelled, respectively, with a graph, and with a partial morphism representing the evolution of state components. Unfortunately, GTrSs are prohibitively large or infinite even for simple systems, making verification intractable and hence calling for appropriate abstraction techniques

    Automated verification of shape and size properties via separation logic.

    Get PDF
    Despite their popularity and importance, pointer-based programs remain a major challenge for program verification. In this paper, we propose an automated verification system that is concise, precise and expressive for ensuring the safety of pointer-based programs. Our approach uses user-definable shape predicates to allow programmers to describe a wide range of data structures with their associated size properties. To support automatic verification, we design a new entailment checking procedure that can handle well-founded inductive predicates using unfold/fold reasoning. We have proven the soundness and termination of our verification system, and have built a prototype system

    Generalization Strategies for the Verification of Infinite State Systems

    Full text link
    We present a method for the automated verification of temporal properties of infinite state systems. Our verification method is based on the specialization of constraint logic programs (CLP) and works in two phases: (1) in the first phase, a CLP specification of an infinite state system is specialized with respect to the initial state of the system and the temporal property to be verified, and (2) in the second phase, the specialized program is evaluated by using a bottom-up strategy. The effectiveness of the method strongly depends on the generalization strategy which is applied during the program specialization phase. We consider several generalization strategies obtained by combining techniques already known in the field of program analysis and program transformation, and we also introduce some new strategies. Then, through many verification experiments, we evaluate the effectiveness of the generalization strategies we have considered. Finally, we compare the implementation of our specialization-based verification method to other constraint-based model checking tools. The experimental results show that our method is competitive with the methods used by those other tools. To appear in Theory and Practice of Logic Programming (TPLP).Comment: 24 pages, 2 figures, 5 table

    Enhancing Predicate Pairing with Abstraction for Relational Verification

    Full text link
    Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verification by applying a CHC transformation, called predicate pairing, which allows the CHC solver to infer relations among arguments of different predicates. In this paper we study how the effects of the predicate pairing transformation can be enhanced by using various abstract domains based on linear arithmetic (i.e., the domain of convex polyhedra and some of its subdomains) during the transformation. After presenting an algorithm for predicate pairing with abstraction, we report on the experiments we have performed on over a hundred relational verification problems by using various abstract domains. The experiments have been performed by using the VeriMAP transformation and verification system, together with the Parma Polyhedra Library (PPL) and the Z3 solver for CHCs.Comment: Pre-proceedings paper presented at the 27th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2017), Namur, Belgium, 10-12 October 2017 (arXiv:1708.07854

    Transformational Verification of Linear Temporal Logic

    Get PDF
    We present a new method for verifying Linear Temporal Logic (LTL) properties of finite state reactive systems based on logic programming and program transformation. We encode a finite state system and an LTL property which we want to verify as a logic program on infinite lists. Then we apply a verification method consisting of two steps. In the first step we transform the logic program that encodes the given system and the given property into a new program belonging to the class of the so-called linear monadic !-programs (which are stratified, linear recursive programs defining nullary predicates or unary predicates on infinite lists). This transformation is performed by applying rules that preserve correctness. In the second step we verify the property of interest by using suitable proof rules for linear monadic !-programs. These proof rules can be encoded as a logic program which always terminates, if evaluated by using tabled resolution. Although our method uses standard program transformation techniques, the computational complexity of the derived verification algorithm is essentially the same as the one of the Lichtenstein-Pnueli algorithm [9], which uses sophisticated ad-hoc techniques

    Proving Differential Privacy with Shadow Execution

    Full text link
    Recent work on formal verification of differential privacy shows a trend toward usability and expressiveness -- generating a correctness proof of sophisticated algorithm while minimizing the annotation burden on programmers. Sometimes, combining those two requires substantial changes to program logics: one recent paper is able to verify Report Noisy Max automatically, but it involves a complex verification system using customized program logics and verifiers. In this paper, we propose a new proof technique, called shadow execution, and embed it into a language called ShadowDP. ShadowDP uses shadow execution to generate proofs of differential privacy with very few programmer annotations and without relying on customized logics and verifiers. In addition to verifying Report Noisy Max, we show that it can verify a new variant of Sparse Vector that reports the gap between some noisy query answers and the noisy threshold. Moreover, ShadowDP reduces the complexity of verification: for all of the algorithms we have evaluated, type checking and verification in total takes at most 3 seconds, while prior work takes minutes on the same algorithms.Comment: 23 pages, 12 figures, PLDI'1

    Deciding KAT and Hoare Logic with Derivatives

    Get PDF
    Kleene algebra with tests (KAT) is an equational system for program verification, which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the algebra of regular expressions. In particular, KAT subsumes the propositional fragment of Hoare logic (PHL) which is a formal system for the specification and verification of programs, and that is currently the base of most tools for checking program correctness. Both the equational theory of KAT and the encoding of PHL in KAT are known to be decidable. In this paper we present a new decision procedure for the equivalence of two KAT expressions based on the notion of partial derivatives. We also introduce the notion of derivative modulo particular sets of equations. With this we extend the previous procedure for deciding PHL. Some experimental results are also presented.Comment: In Proceedings GandALF 2012, arXiv:1210.202
    corecore