
Transformational Verification of

Linear Temporal Logic

Alberto Pettorossi1, Maurizio Proietti2, and Valerio Senni1

1 DISP, University of Rome Tor Vergata, Via del Politecnico 1, I-00133 Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

2 IASI-CNR, Viale Manzoni 30, I-00185 Rome, Italy
proietti@iasi.cnr.it

Abstract. We present a new method for verifying Linear Temporal
Logic (LTL) properties of finite state reactive systems based on logic
programming and program transformation. We encode a finite state sys-
tem and an LTL property which we want to verify as a logic program
on infinite lists. Then we apply a verification method consisting of two
steps. In the first step we transform the logic program that encodes the
given system and the given property into a new program belonging to
the class of the so-called linear monadic ω-programs (which are stratified,
linear recursive programs defining nullary predicates or unary predicates
on infinite lists). This transformation is performed by applying rules that
preserve correctness. In the second step we verify the property of inter-
est by using suitable proof rules for linear monadic ω-programs. These
proof rules can be encoded as a logic program which always terminates,
if evaluated by using tabled resolution. Although our method uses stan-
dard program transformation techniques, the computational complexity
of the derived verification algorithm is essentially the same as the one
of the Lichtenstein-Pnueli algorithm [9], which uses sophisticated ad-hoc

techniques.

1 Introduction

Model checking is a very successful technique for verifying finite state reactive
systems, such as protocols, concurrent systems, and digital circuits [5]. In model
checking the reactive system is formally specified as a Kripke structure and the
properties to be verified are specified as formulas of a suitable temporal logic.
Among the most popular logics that have been proposed are the temporal logic
CTL∗ and its two fragments: (i) the Computational Tree Logic CTL, and (ii) the
Linear-time Temporal Logic LTL (see [5] for a comprehensive account). In this
paper we will focus our attention on the logic LTL.

The logic LTL has been shown to be decidable for finite state systems and
several algorithms for LTL model checking have been proposed. These algorithms
use sophisticated ad-hoc techniques based on tableaux [9], symbolic representa-
tions using BDDs [2,4], translations to Büchi automata [21], and translations to
alternating automata [11].

In this paper we propose a method which is based on very general techniques
developed in the field of logic programming. We encode the satisfaction rela-
tion of an LTL formula ϕ with respect to a Kripke structure K by means of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12097178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a stratified logic program PK,ϕ. Program PK,ϕ belongs to a class of programs,
called ω-programs, which define predicates on infinite lists. Such predicates are
needed because the definition of the satisfaction relation of ϕ is based on the
computation paths of K, which are infinite lists of states. The semantics of PK,ϕ

is the perfect model M(PK,ϕ) [15], which is defined in terms of a non-Herbrand
interpretation for infinite lists.

Our verification method consists of two steps. In the first step we transform
the program PK,ϕ into a linear monadic ω-program, that is, a stratified, linear
recursive program which defines nullary or unary predicates on infinite lists. This
transformation is performed by applying unfold/fold transformation rules [8,20]
according to a strategy which is a variant of the strategy for the elimination of
multiple occurrences of variables described in [13]. The use of those unfold/fold
rules according to the given strategy guarantees the preservation of the perfect
model of PK,ϕ [8,17,18].

In the second step of our verification method we use suitable proof rules for
linear monadic ω-programs. Those proof rules are sound and complete, that is,
any given quantified literal L is true in the perfect model of a linear monadic
ω-program P iff we can prove that M(P ) � L holds by using those proof rules.
Moreover, those rules can be encoded in a straightforward way as a logic program
which always terminates if we evaluate it by using tabled resolution [3,19]. As a
consequence of this termination property, we get the decidability of the problem
of verifying whether or not a quantified literal is true in the perfect model of a
linear monadic ω-program.

We will prove that our verification method based on very general transfor-
mation techniques, has essentially the same time complexity of the algorithms
based on ad-hoc techniques presented in [2,4,9,21].

The paper is structured as follows. In Section 2 we introduce the class of
ω-programs and we present the encoding as an ω-program of the satisfaction
relation for any given Kripke structure and LTL formula. In Section 3 we present
our verification method. In particular, in Sections 3.1 and 3.2 we present the
transformation rules and the strategy which allow us to transform an ω-program
PK,ϕ into a linear monadic ω-program, in Section 3.3 we present the proof rules
for linear monadic ω-programs and the encoding of those proof rules as logic
programs, and in Section 3.4 we discuss the computational complexity of the
verification technique. Finally, in Section 4 we discuss related work in the area
of model checking and logic programming.

2 Encoding LTL Model Checking as a Logic Program

In this section we describe a method which, given a Kripke structure K and
an LTL formula ϕ, allows us to construct a logic program PK,ϕ that defines a
predicate prop such that ϕ is true in K, written K � ϕ, iff prop is true in the
perfect model of PK,ϕ, written M(PK,ϕ) � prop. Thus, the problem of checking
whether or not K � ϕ, also called the problem of model checking ϕ with respect
to K, is reduced to the problem of checking whether or not M(PK,ϕ) � prop.

2



For a detailed definition of the logic LTL we refer to [5] (see also Appendix A).
Throughout the paper we will consider a Kripke structure K defined as a 4-tuple
〈Σ, I, ρ, λ〉, where: (i) Σ={s1, . . . , sh} is a finite set of states, (ii) I ⊆ Σ is a set of
initial states, (iii) ρ ⊆ Σ×Σ is a total transition relation, and (iv) λ :Σ→P(Elem)
is a total function that assigns to a state s ∈ Σ a subset λ(s) of the set Elem
of elementary properties. A computation path of K is an infinite list [a0 a1 . . .]
of states such that a0 ∈ I and, for every i≥ 0, (ai, ai+1) ∈ ρ. LTL formulas are
constructed by using the elementary properties in Elem , the logical connectives
¬ and ∧, and the temporal operators X (next time) and U (until ).

Since the definition of the satisfaction relation K � ϕ refers to the computa-
tion paths of the Kripke structure K and these paths are infinite lists, in order
to encode that relation as a predicate defined by the program PK,ϕ we need
an extended form of logic programs where predicates have arguments that de-
note infinite lists. To this purpose in the following section we introduce the class
of ω-programs.

2.1 Syntax and Semantics of ω-Programs

Let us consider a first order language Lω given by a set Var of variables, a set
Fun of function symbols, and a set Pred of predicate symbols. We assume that
Fun includes: (i) the set Σ of states of the Kripke structure, each state being
a constant of Lω , (ii) the set Elem of the elementary properties of the Kripke
structure, each elementary property being a constant of Lω , and (iii) the binary
function symbol [ | ], denoting the constructor of infinite lists. Thus, [H |T ] is an
infinite list whose head is H and whose tail is the infinite list T .

We assume that Lω is a typed language [10] with three basic types: (i) fterm,
which is the type of finite terms, (ii) state, which is the type of states, and
(iii) ilist, which is the type of infinite lists of states. Every function symbol in
Fun − (Σ ∪ {[ | ]}), with arity n (≥ 0), has type fterm×· · ·×fterm → fterm,
where fterm occurs n times to the left of→. Every function symbol inΣ has type
state. The function symbol [ | ] has type state×ilist→ ilist. A predicate
symbol of arity n (≥0) in Pred has type of the form τ1×· · ·×τn, where τ1, . . . , τn ∈
{fterm, state, ilist}. ω-programs are logic programs constructed as usual from
symbols in the typed language Lω [10]. In what follows, for reasons of simplicity,
we will feel free to say ‘programs’, instead of ‘ω-programs’.

The definition of a predicate p in a program P is the set of all clauses of P
whose head predicate is p. If f is a term or a formula, then by vars(f) we denote
the set of variables occurring in f . By ∀(ϕ) and ∃(ϕ) we denote, respectively,
the universal closure and the existential closure of the formula ϕ.

An interpretation for our typed language Lω , called ω-interpretation, is given
as follows. Let HU be the Herbrand universe constructed from the set Fun −
(Σ ∪ {[ | ]}) of function symbols and let Σω be the set of infinite lists of states.
An ω-interpretation I is an interpretation such that: (i) to the types fterm,
state, and ilist, I assigns the sets HU, Σ, and Σω, respectively, (ii) to the
function symbol [ | ], I assigns the function [ | ]I such that, for any state s ∈ Σ
and infinite list [s1, s2, . . .] ∈ Σω, [s|[s1, s2, . . .]]I is the infinite list [s, s1, s2, . . .],

3



(iii) I is an Herbrand interpretation for all function symbols in Fun−(Σ∪{[ | ]}),
and (iv) to every n-ary predicate p ∈ Pred of type τ1×. . .×τn, I assigns a relation
on D1×· · ·×Dn, where, for i = 1, . . . , n, Di is either HU or Σ or Σω, if τi is either
fterm or state or ilist, respectively. We say that an ω-interpretation I is an
ω-model of a program P iff for every clause γ∈P we have that I � ∀(γ). Similarly
to the case of logic programs, we can define the (locally) stratified ω-programs
and we have that every (locally) stratified ω-program P has a unique perfect
ω-model (or perfect model, for short) denoted by M(P ) [1,15].

Definition 1 (Linear Monadic ω-Programs). A linear monadic ω-clause is
a clause of one of the following forms:

p0 ← p0 ← q0 p0 ← ¬q0
p0 ← q1(L) p0 ← ¬q1(L)
p1([s|L])← p1([s|L])← q1(L) p1([s|L])← ¬q1(L)

where: (i) s is a constant of type state and (ii) L a variable of type ilist.
A linear monadic ω-program is a stratified, finite set of linear monadic ω-clauses.

Example 1. The following set of clauses is an example of ω-program:

p([a|L])← p(L) p([a|L])← ¬q(L) q([a|L])← q(L)
p([b|L])← p(L) p([b|L])← ¬q(L) q([b|L])←

Every infinite list in {a, b}ω that satisfies predicate p is a list in (a + b)+aω.
Indeed, q(L) holds for every infinite list L which has an occurrence of b.

2.2 Encoding the LTL Satisfaction Relation as an ω-Program

Given a Kripke structure K and an LTL formula ϕ, we introduce a locally strati-
fied ω-program PK,ϕ which defines, among others, the following three predicates:
(i) the unary predicate path, such that path(π) holds iff π is an infinite list rep-
resenting a computation path of K, (ii) the binary predicate sat , which encodes
the satisfaction relation for LTL formulas in the sense that for all paths π and
LTL formulas ψ, we have that K, π � ψ iff M(PK,ϕ) � sat(π, ψ), and (iii) the
nullary predicate prop, which holds iff ϕ holds on all computation paths of K,
that is, M(PK,ϕ) � prop iff K � ϕ.

In the terms that encode LTL formulas, such as the second argument of the
predicate sat , we will use the function symbols x and u standing for the operator
symbols X and U, respectively.

Definition 2 (Encoding Program). Given a Kripke structureK = 〈Σ, I, ρ, λ〉
and an LTL formula ϕ, the encoding program PK,ϕ is the following ω-program:

1. prop ← ¬ p1

2. p1 ← p2(P )
3. p2(P )← path(P ) ∧ sat(P,¬ϕ)
4. path([X |P ])← initial (X) ∧ ¬nopath([X |P ])

5.1 nopath([s1|P ])← q1(P ) q1([s11|P ])← . . . q1([s1 k1
|P ])←

...
5.m nopath([sm|P ])← qm(P ) qm([sm1|P ])← . . . qm([sm km

|P ])←

4



6. nopath([X |P ])← nopath(P )
7. sat([X |P ], E)← elem(E,X)
8. sat(P,¬F )← ¬ sat(P, F )
9. sat(P, F1 ∧ F2)← sat(P, F1) ∧ sat(P, F2)

10. sat([X |P ], x(F ))← sat(P, F )
11. sat(P, u(F1, F2))← sat(P, F2)
12. sat([X |P ], u(F1, F2))← sat([X |P ], F1) ∧ sat(P, u(F1, F2))

together with the clauses defining the predicates initial and elem , where:
(1) initial (s) holds iff s∈I, for every state s∈Σ;
(2) elem(e, s) holds iff e∈λ(s), for every property e∈Elem and state s∈Σ;
(3) nopath(P ) holds if P is an infinite list [a0, a1, . . .] of states which is not a
computation path in K, that is, for some i≥0, we have that (ai, ai+1) 6∈ ρ; and
(4) clauses 5.1–5.m are obtained as follows. Let {s1, . . . , sm} be the subset of Σ
such that, for i = 1, . . . ,m, there exists s∈Σ for which (si, s) 6∈ρ. For i=1, . . . ,m,
the clauses 5.i are:

5.i nopath([si|P ])← qi(P ) and for all s∈Σ such that (si, s) 6∈ρ, qi([s|P ])← .

Clauses 1, 2, and 3 of the above Definition 2 stipulate that prop holds iff the
formula ∀P (path(P ) → sat(P, ϕ)) holds. Since the universal quantifier and the
implication connective cannot appear in the body of a clause, we have defined the
predicate prop starting from the equivalent formula ¬∃P (path(P )∧sat(P,¬ϕ)).
Indeed, (i) p2(P ) holds iff path(P )∧ sat(P,¬ϕ), (ii) p1 holds iff ∃P p2(P ) holds,
and (iii) prop holds iff ¬ p1 holds.

Clauses 4–6 stipulate that path(P ) holds iff for every pair (ai, ai+1) of con-
secutive elements on the infinite list P we have that (ai, ai+1) ∈ ρ. Similarly to
the encoding of the predicate prop above, we have defined the predicate path
by using existential quantification and negation, instead of universal quantifi-
cation and implication. Indeed, clauses 5.1–5.m and 6 stipulate that nopath(P )
holds iff there exist two consecutive elements ai and ai+1 of the list P such that
(ai, ai+1) 6∈ ρ. Clause 6 is required for allowing the two consecutive elements ai

and ai+1 to occur at any position in P .
Clauses 7–12 define the satisfaction relation sat(P, ϕ) by cases, according to

the structure of the formula ϕ.
The program PK,ϕ is locally stratified w.r.t. the stratification function σ

from ground literals to natural numbers defined as follows (where, for an LTL
formula ψ, we denote by |ψ| the number of occurrences of function symbols in ψ):
σ always returns 0, except that, for all infinite lists π∈Σω and LTL formulas ψ,
(i) σ(prop) = |ϕ| + 2, (ii) σ(p1) = σ(p2(π)) = |ϕ| + 1, (iii) σ(path(π)) = 1,
(iv) σ(sat(π, ψ)) = |ψ|+ 1, and (v) for every ground atom A, σ(¬A) = σ(A)+1.

Example 2. Let us consider the set Elem = {true, a, b} of elementary properties
and the Kripke structure K = 〈Σ, I, ρ, λ〉, where: (i) Σ is {s1, s2}, (ii) I =Σ,
(iii) ρ is the transition relation {(s1, s2), (s2, s1), (s2, s2)}, and (iv) λ is the func-
tion such that λ(s1) = {a} and λ(s2) = {b}. Let us also consider the formula
ϕ = ¬ (true U (a∧¬ (true U b))) (that is, ϕ = G(a → Fb)). The encoding pro-
gram PK,ϕ, where we wrote u(true, a∧¬u(true, b)), instead of ¬ϕ, is as follows:

5



1. prop ← ¬p1

2. p1 ← p2(P )
3. p2(P )← path(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))
4. path([X |P ])← initial(X) ∧ ¬nopath([X |P ])
5. nopath([s1|P ])← q1(P ) q1([s1|P ])←
6. nopath([X |P ])← nopath(P )

together with clauses 7–12 of Definition 2 defining the predicate sat, and the
following clauses defining the predicates initial and elem:

initial (s1)← initial (s2)← elem(a, s1)← elem(b, s2)← elem(true, X)←

Theorem 1 (Correctness of the Encoding Program). Let PK,ϕ be the
encoding program for a Kripke structure K and an LTL formula ϕ. Then, K � ϕ
iff M(PK,ϕ) � prop.

3 Transformational LTL Model Checking

In this section we present a technique based on program transformation for check-
ing whether or not, for any given structure K and LTL formula ϕ, M(PK,ϕ) �

prop holds, where PK,ϕ is constructed as indicated in Definition 2 above. Our
technique consists of two steps. In the first step we transform the ω-programPK,ϕ

into a linear monadic ω-program T such that M(PK,ϕ) � prop iff M(T ) � prop.
In the second step we check whether or not M(T ) � prop holds by using a proof
system for linear monadic ω-programs.

3.1 Unfold/Fold Transformation Rules

Now we introduce the transformation rules that will be used for transforming
ω-programs into linear monadic ω-programs. These rules are specialized versions
of the familiar unfold/fold rules (see, for instance, [8,20]).

A transformation sequence is a sequence P0, . . . , Pn of ω-programs, where
for 0≤ k≤ n−1, program Pk+1 is derived from program Pk by the application
of a transformation rule as indicated below. In what follows we assume that
Σ = {s1, . . . , sh} is the set of states of the given Kripke structure K.

R1. Definition Introduction. Let us consider the following m (≥1) clauses:

δ1 : newp(X1, . . . , Xr)← B1, . . . , δm : newp(X1, . . . , Xr)← Bm,

such that: (i) newp is a predicate symbol that does not occur in {P0, . . . , Pk},
(ii) X1, . . . , Xr are distinct variables, (iii) for i = 1, . . . ,m, vars(Bi) = {X1, . . . ,
Xr}, and (iv) every predicate symbol occurring in {B1, . . . , Bm} also occurs
in P0. By definition introduction (or definition, for short) from program Pk we
derive the program Pk+1 = Pk ∪ {δ1, . . . , δm}.

For 0≤k≤n, we denote by Defsk the set of clauses introduced by using rule R1
during the transformation sequence P0, . . . , Pn. In particular, Defs0 = ∅.

R2. Definition Elimination. By definition elimination w.r.t. a predicate sym-
bol p, from program Pk we derive the new program Pk+1 = {γ ∈ Pk | the head

6



predicate of γ is either p or a predicate on which p depends} (see [1] for the
definition of the dependency relation).

R3. Instantiation. Let γ : H ← B be a clause in program Pk, L be a variable
of type ilist in γ, and M be a variable of type ilist not occurring in γ. By
instantiation of L in clause γ we derive the clauses:

γ1 : (H ← B){L/[s1|M ]}, . . . , γh : (H ← B){L/[sh|M ]}

(recall that {s1, . . . , sh} is the set Σ of states of the given Kripke structure K)
and from program Pk we derive the program Pk+1 = (Pk − {γ}) ∪ {γ1, . . . , γh}.

R4. Positive Unfolding. Let γ : H ← GL ∧A∧GR be a clause in program Pk

and let P ′
k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm, for m ≥ 0,

be all clauses of program P ′
k such that A is unifiable with K1,. . . ,Km with most

general unifiers ϑ1,. . . ,ϑm, respectively. By unfolding clause γ w.r.t. the positive
literal A we derive the clauses

η1 : (H ← GL ∧B1 ∧GR)ϑ1, . . . , ηm : (H ← GL ∧Bm ∧GR)ϑm

and from program Pk we derive the program Pk+1 = (Pk − {γ})∪ {η1, . . . , ηm}.

R5. Negative Unfolding. Let γ : H ← GL ∧ ¬A ∧GR be a clause in program
Pk and let P ′

k be a variant of Pk without variables in common with γ. Let

γ1 : K1 ← B1, . . . , γm : Km ← Bm, for m ≥ 0,

be all clauses of program P ′
k such that A is unifiable with K1,. . . ,Km with most

general unifiers ϑ1,. . . ,ϑm, respectively. Assume that: (i) for j = 1, . . . ,m, A =
Kjϑj , that is, A is an instance of Kj , (ii) for j = 1, . . . ,m, vars(Kj) = vars(Bj),
and (iii) from GL∧¬(B1ϑ1 ∨ . . . ∨ Bmϑm)∧GR we get an equivalent disjunction
Q1 ∨ . . . ∨ Qr of conjunctions of literals, with r ≥ 0, by first pushing ¬ inside
and then pushing ∨ outside. By unfolding clause γ w.r.t. the negative literal ¬A
we derive the clauses

η1 : H ← Q1, . . . , ηr : H ← Qr,

and from program Pk we derive the program Pk+1 = (Pk − {γ}) ∪ {η1, . . . , ηr}.

R6. Positive Folding. Let γ be a clause in Pk and let Defs ′k be a variant of
Defsk without variables in common with γ. Suppose that there exists a predicate
in Defs ′k whose definition consists of the clause

δ : K ← B, where vars(K) = vars(B).

Suppose that there exists a substitution ϑ such that γ is of the form H ← Bϑ.
By folding clause γ using clause δ we derive the clause η : H ← Kϑ and from
program Pk we derive the program Pk+1 = (Pk − {γ}) ∪ {η}.

R7. Negative Folding. Let γ be a clause in Pk and let Defs ′k be a variant of
Defsk without variables in common with γ. Suppose that there exists a predicate
in Defs ′k whose definition consists of the clauses

δ1 : K ← A1, . . . , δm : K ← Am

where, for j = 1, . . . ,m, Aj is an atom and vars(K) = vars(Aj). Suppose that
there exists a substitution ϑ such that γ is of the form H ← ¬A1ϑ∧ . . .∧¬Amϑ.
By folding clause γ using clauses δ1, . . . , δm we derive the clause η : H ← ¬Kϑ
and from program Pk we derive the program Pk+1 = (Pk−{γ}) ∪ {η}.

7



3.2 The Transformation Strategy

Now we present a transformation strategy which terminates for every input
program PK,ϕ and produces a linear monadic ω-program T such that M(PK,ϕ) �

prop iff M(T ) � prop.

Our strategy makes use of the transformation rules presented in Section 3.1
and it is a variant of the transformation strategy for eliminating the so-called
unnecessary variables presented in [13]. The strategy starts off from the clause
p2(P ) ← path(P ) ∧ sat(P,¬ϕ) (see Definition 2) and iterates a sequence of
applications of the three procedures: instantiate, unfold, and define-fold. At each
iteration, the set InDefs of input clauses is transformed into a set Es of linear
monadic ω-clauses, by possibly introducing some auxiliary (not linear monadic)
clauses NewDefs. These auxiliary clauses are given in input to a subsequent
iteration of the strategy until no more auxiliary clauses are introduced. Thus,
our strategy terminates when all clauses are transformed into linear monadic
ω-clauses without the need for new auxiliary clauses. As a final step of our
strategy, we apply the definition elimination rule and we keep only the clauses
for prop and for the predicates on which prop depends.

The Transformation Strategy.
Input: An ω-program PK,ϕ, for a Kripke structure K and an LTL formula ϕ.
Output: A linear monadic ω-program T such that M(PK,ϕ) � prop iff M(T ) �

prop.

T := PK,ϕ; Defs := {p2(P )← path(P ) ∧ sat(P,¬ϕ)}; InDefs := Defs ;

while InDefs 6=∅do

instantiate(InDefs ,Cs); T := (T − InDefs) ∪Cs ;

unfold(Cs ,Ds); T := (T − Cs) ∪Ds;

define-fold(Ds ,Defs,NewDefs ,Es); T := (T −Ds) ∪ NewDefs ∪ Es ;

Defs := Defs ∪ NewDefs ; InDefs := NewDefs

od;

T := {γ ∈ T | the head predicate of γ is either prop or a predicate on which
prop depends}.

Now we describe the three procedures instantiate, unfold, and define-fold that
are used in the transformation strategy. When describing these procedures we
will rely on the fact that during the application of the transformation strategy
we derive clauses with occurrences of a single variable of type ilist.

The instantiate procedure consists in applying rule R3 to each clause B in
the set InDefs.

The instantiate Procedure.
Input : A set InDefs of clauses. Output : A set Cs of clauses.

Cs :=
⋃

B∈InDefs{C | C is derived by instantiation of a variable L of type ilist

occurring in B}.

8



The unfold procedure applies rules R4 and R5 to a set of clauses of the form
H ← G1 ∧ L ∧ G2. The procedure applies positive unfolding if L is a positive
literal, and negative unfolding if L is a negative literal.

The unfold Procedure.
Input : A set Cs of clauses in program T. Output : A set Ds of clauses.

Ds := Cs ;
while there exists a clause D in Ds of the form H← G1 ∧ L ∧ G2, where L is
either an atom A or a negated atom ¬A and for all clauses K← B in T either
A and K are not unifiable or A is an instance of K do

Ds := (Ds − {D}) ∪ {U | U is a clause derived by unfolding D w.r.t. L}
od

The define-unfold procedure applies the positive and negative folding rules R6
and R7. The procedure transforms every clause in Ds, which has been obtained
by unfolding, into a linear monadic ω-clause. Each clause D in Ds is of the form
p([s|X ]) ← L1 ∧ . . . ∧ Lm. If among L1, . . . , Lm there is at least one positive
literal, then the procedure introduces a new clause N of the form newp(X) ←
L1 ∧ . . . ∧ Lm, unless (a variant of) such a clause N was added to Defs in a
previous transformation step. Then D is folded using N (by applying rule R6),
thereby deriving a linear monadic ω-clause of the form p([s|X ])← newp(X). The
new clause N is added to the set Defs of clauses that can be used for subsequent
folding steps and to the set InDefs of clauses to be processed in a subsequent
iteration of the strategy.

If L1, . . . , Lm are all negative literals of the form ¬A1, . . . ,¬Am, respec-
tively, then the procedure introduces m new clauses N1: newp(X) ← A1 , . . . ,
Nm: newp(X)← Am, unless (variants of) such clauses were added to Defs in a
previous transformation step. Then D is folded using N1, . . . , Nm (by applying
rule R7), thereby deriving a linear monadic ω-clause of the form p([s|X ]) ←
¬newp(X). The new clauses N1, . . . , Nm are added to the sets Defs and InDefs.

The define-fold Procedure.
Input : (i) A set Ds of clauses of the form p([s|X ])← G1, where vars(G1) ⊆ {X},
and (ii) a set Defs of clauses;
Output : (i) A set NewDefs of clauses of the form newp(X)← G3, where {X} =
vars(G3), and (ii) a set Es of linear monadic ω-clauses.

NewDefs := ∅; Es := ∅;
for each clause D ∈ Ds of the form p([s|X ])← L1 ∧ . . . ∧ Lm do
if D is a linear monadic ω-clause then Es := Es ∪ {D} else
(Case 1. Positive Define-Fold )

if for some i ∈ {1, . . . ,m}, Li is a positive literal
then if there exists no clause N of the form newp(X)← L1 ∧ . . . ∧ Lm

such that: (i) (a variant of) N belongs to Defs ∪ NewDefs and
(ii) newp does not occur in (Defs ∪ NewDefs)− {N}
then NewDefs := NewDefs ∪ {newp(X)← L1 ∧ . . . ∧ Lm}, where

9



newp is a predicate not occurring in Defs ∪ NewDefs fi;

Es := Es − {D} ∪ {p([s|X ])← newp(X)} fi;
(Case 2. Negative Define-Fold )

if for all i ∈ {1, . . . ,m}, Li is a negative literal ¬Ai

then if there exists no set Ns: {newp(X)← A1, . . . ,newp(X)← Am} of

clauses such that: (i) Ns ⊆ Defs ∪ NewDefs (modulo variants) and
(ii) newp does not occur in (Defs ∪ NewDefs)−Ns

then NewDefs := NewDefs ∪{newp(X)← A1, . . . ,newp(X)← Am},
where newp is a predicate not occurring in Defs ∪ NewDefs fi;

Es := Es − {D} ∪ {p([s|X ])← ¬newp(X)} fi
od

The correctness of our transformation strategy can be proved by showing that
when the transformation rules R1–R7 are applied according to the strategy, the
perfect model of PK,ϕ is preserved (see [8,17,18] for analogous proofs).

The termination of the transformation strategy follows from the termination
of the procedures instantiate, unfold, and define-fold, and from the fact that the
while loop can be executed only a finite number of times. Indeed, (i) the strategy
terminates when no new clauses are introduced by the define-fold procedure and,
thus, InDefs = ∅, (ii) only a finite number of new clauses can be introduced by
the define-fold procedure, because every new clause is of the form newp(X) ←
L1 ∧ . . . ∧ Lm, where for i = 1, . . . , n, Li is either an atom Ai or a negated
atom ¬Ai and Ai belongs to the set {path(X), initial(X),nopath(X), q1(X), . . . ,
qm(X)} ∪ {sat(X,ψ) | ψ is a subformula of ϕ}.

Theorem 2 (Correctness and Termination of the Transformation
Strategy). Let PK,ϕ be the encoding program for a Kripke structure K and
an LTL formula ϕ. The transformation strategy terminates for the input pro-
gram PK,ϕ and returns an output program T such that: (i) T is a linear monadic
ω-program and (ii) M(PK,ϕ) � prop iff M(T ) � prop.

Example 3. Let us consider program PK,ϕ of Example 2. Our transformation
strategy starts off from the sets of clauses T = PK,ϕ and Defs = InDefs = {3},
where:

3. p2(P )← path(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))

The first execution of the loop body of our strategy applies the instantiate pro-
cedure to the set InDefs . We get the set of clauses Cs = {3.1, 3.2}, where:

3.1. p2([s1|P ])← path([s1|P ]) ∧ sat([s1|P ], u(true, (a ∧ ¬u(true, b))))
3.2. p2([s2|P ])← path([s2|P ]) ∧ sat([s2|P ], u(true, (a ∧ ¬u(true, b))))

Then, by applying the unfold procedure to the set Cs we get the set Ds =
{3.3, 3.4, 3.5}, where:

3.3. p2([s1|P ])← ¬ q1(P ) ∧ ¬nopath(P ) ∧ ¬ sat(P, u(true, b))

3.4. p2([s1|P ])← ¬ q1(P ) ∧ ¬nopath(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))
3.5. p2([s2|P ])← ¬nopath(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))

10



Finally, by applying the define-fold procedure, we get the sets NewDefs =
{13, 14, 15, 16, 17} and Es = {3.6, 3.7, 3.8}, where:

13. p3(P )← q1(P )

14. p3(P )← nopath(P )

15. p3(P )← sat(P, u(true, b))
16. p4(P )← ¬ q1(P ) ∧ ¬nopath(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))

17. p5(P )← ¬nopath(P ) ∧ sat(P, u(true, (a ∧ ¬u(true, b))))

3.6. p2([s1|P ])← ¬ p3(P )

3.7. p2([s1|P ])← p4(P )

3.8. p2([s2|P ])← p5(P )

Thus, at the end of the first iteration of our strategy we get:

T = (PK,ϕ − {3}) ∪ {13, 14, 15, 16, 17}∪ {3.6, 3.7, 3.8}
Defs = {3} ∪ {13, 14, 15, 16, 17}
InDefs = {13, 14, 15, 16, 17}

Since InDefs 6= ∅ we perform a second execution of the loop body of our strategy.
After a few more executions, and a final application of the definition elimination
rule, we get the following linear monadic ω-program T :

prop ← ¬ p1 p3([s2|P ])← p8(P ) p6([s1|P ])← p6(P )
p1 ← p2(P ) p3([s1|P ])← p6(P ) p6([s2|P ])←
p2([s1|P ])← ¬ p3(P ) p3([s2|P ])← p6([s2|P ])← p6(P )
p2([s1|P ])← p4(P ) p3([s2|P ])← p6(P ) p7([s1|P ])←
p2([s2|P ])← p5(P ) p4([s2|P ])← p5(P ) p8([s1|P ])← p7(P )
p3([s1|P ])← p5([s1|P ])← ¬ p3(P ) p8([s1|P ])← p8(P )
p3([s1|P ])← p7(P ) p5([s1|P ])← p4(P ) p8([s2|P ])← p8(P )
p3([s1|P ])← p8(P ) p5([s2|P ])← p5(P )

3.3 A Proof System for Linear Monadic ω-Programs.

Now we present a proof system for checking whether a quantified literal is true
or not in the perfect model of a linear monadic ω-program.

A closed literal is a statement of one of the following forms: p, ¬p, ∀ (L),
∃ (L), where p is a nullary predicate and L is either an atom q(X) or a negated
atom ¬q(X), and ∀(L) and ∃(L) denote the universal and existential closure of L,
respectively. The proof rules in Figure 1 define a provability relation ⊢, such that
for every linear monadic ω-program P and closed literal L, P ⊢ L iff M(P ) � L
(see Theorem 3 below). When applying these proof rules we assume that: (i) the
set Σ of states is {s1, . . . , sh}, (ii) each clause in P of the form H← is written
as H← true (so that no clause in P has an empty body) and (iii) the formulas
∃(true) and ∀(true), which may appear in the premise of rules S5 and S6, are
identified with true.

Note that the proof rules S7, S8, and S9 have negative premises. The negated
judgement ‘P 0 L’ should be interpreted as ‘P ⊢ L cannot be proved by using
the proof rules S1–S9’ and in this case we say that ‘P ⊢ L has a disproof’.

11



S1.
P ⊢ true

S2.
P ⊢ p

if p← true ∈ P

S3.
P ⊢ L

P ⊢ p
if p←L ∈ P and vars(L)=∅ S4.

P ⊢ ∃ (L)

P ⊢ p
if p←L ∈ P and vars(L) 6=∅

S5.
P ⊢ ∃(L)

P ⊢ ∃(p(Z))
if p([s|Y ])←L ∈ P for some s ∈ {s1, . . . , sh}

S6.
P ⊢ ∀ (L1) . . . P ⊢ ∀ (Lh)

P ⊢ ∀(p(Z))
if { p([s1|Y ])←L1 , . . . , p([sh|Y ])←Lh} ⊆ P

S7.
P 0 p

P ⊢ ¬p
S8.

P 0 ∀(p(Z))

P ⊢ ∃(¬p(Z))
S9.

P 0 ∃(p(Z))

P ⊢ ∀(¬p(Z))

Fig. 1. Proof system for linear monadic ω-programs. Σ = {s1, . . . , sh} is the set of
states of the Kripke structure K.

The interpretation of P 0 L as (finite or infinite) failure of P ⊢ L is mean-
ingful because the program P is stratified and, thus, also the instances of the
proof rules can be stratified. The stratification of these instances is induced by
a well-founded ordering on closed literals such that, for every rule instance with
conclusion P ⊢ L1, (i) if P ⊢ L2 occurs as a premise, then L2 is not larger than
L1, and (ii) if P 0 L2 occurs as a premise, then L2 is strictly smaller than L1.
Thus, in order to construct a proof for P ⊢ L, we are never required to show
that P 0 L, that is, we are never required to show that no proof for P ⊢ L itself
can be constructed.

The following theorem shows that the proof rules of Figure 1 are a sound
and complete proof system for proving that a closed literal is true in the perfect
model of a linear monadic ω-program.

Theorem 3. For every linear monadic ω-program P and closed literal L, P ⊢ L
iff M(P ) � L.

The proof system for linear monadic ω-programs can be encoded as a logic
program, which we call Demo. In Demo a closed literal L is represented by a
ground term ⌈L⌉ constructed as follows. Let v be a new constant symbol. (i) For
any variable Z, ⌈Z⌉ is v, (ii) for any list [s|Z], where s is a state and Z is
a variable, ⌈[s|Z]⌉ is (s, v), (iii) for any nullary predicate p, ⌈p⌉ is p, (iv) for
any unary predicate q and term t, ⌈q(t)⌉ is (q, ⌈t⌉), (v) for any atom A, ⌈¬A⌉
is not(⌈A⌉), (vi) for any literal L, ⌈∃(L)⌉ is e(⌈L⌉) and ⌈∀(L)⌉ is a(⌈L⌉). An
ω-program P is represented by the set ⌈P ⌉ of ground unit clauses of the form
clause(⌈H⌉, ⌈B⌉)← such that H ← B is a clause of P .

In the clauses for Demo, which we list below, we also use the predicate
nullary(R) which holds iff R is a nullary predicate symbol, and emptyvars(L)
which holds iff L has no occurrences of the symbol v. The three clauses 1.1, 1.2,
and 1.3 correspond to rule S1 (recall that in the proof system of Figure 1 we
identify the three expressions true, ∃(true), and ∀(true)).

12



1.1 demo(true)←
1.2 demo(e(true))←
1.3 demo(a(true))←
2. demo(R)← nullary(R) ∧ clause(R, true)
3. demo(R)← nullary(R) ∧ clause(R, L) ∧ emptyvars(L) ∧ demo(L)
4. demo(R)← nullary(R) ∧ clause(R, L) ∧ ¬emptyvars(L) ∧ demo(e(L))
5. demo(e((R, v)))← clause((R, (S, v)), L) ∧ demo(e(L))
6. demo(a((R, v)))← clause((R, (s1, v)), L1) ∧ demo(a(L1)) ∧ . . . ∧

clause((R, (sh, v)), Lh) ∧ demo(a(Lh))
7. demo(not(R))← nullary(R) ∧ ¬demo(R)
8. demo(e(not((R, v))))← ¬ demo(a((R, v)))
9. demo(a(not((R, v))))← ¬ demo(e((R, v)))

Since P is a stratified program, Demo ∪ ⌈P ⌉ is a weakly stratified program [14]
and, hence, it has a unique perfect model M(Demo ∪ ⌈P ⌉).

Theorem 4. For every linear monadic ω-program P and closed literal L, P ⊢ L
iff M(Demo ∪ ⌈P ⌉) � demo(⌈L⌉).

Thus, by Theorems 3 and 4 for any linear monadic ω-program P , we can
check whether or not M(P ) � L holds by using any logic programming system
which computes the perfect model of Demo ∪ ⌈P ⌉. One can use, for instance,
a system based on tabled resolution [3,19] which guarantees the termination of
any query of the form demo(⌈L⌉) and returns ‘yes’ iff demo(⌈L⌉) belongs to
M(Demo ∪ ⌈P ⌉). Indeed, starting from demo(⌈L⌉), we can only derive a finite
set of queries of the form demo(⌈M⌉), and the tabling mechanism ensures that
each query is evaluated at most once.

Example 4. Let T be the linear monadic ω-program that is the output of our
transformation strategy, as illustrated in Example 3. By using our proof system
we obtain the proof in Figure 2 which shows that T ⊢ prop. Thus, M(PK,ϕ) �

prop and, therefore, G(a→ F a) holds in K (see Example 2).

3.4 Complexity of the Verification Technique

The complexity of our verification technique will be measured in terms of: (i) the
number of applications of transformation rules for generating the linear monadic
ω-program T from PK,ϕ (Step 1), and (ii) the number of closed literals that are
checked by the proof system during the execution of the Demo program (Step 2).

Let us consider Step 1. In the body of the clauses defining each new predicate
introduced by the define-fold procedure, there is at most one occurrence of an
atom in {q1(X), . . . , qm(X)} and all other occurrences of atoms are taken from
the set {path(X),nopath(X)} ∪ {sat(X,ψ) | ψ is a subformula of ϕ}. Thus, the
number of new predicate symbols that can be introduced is O((m + 1) · 2|ϕ|).
The number of clauses introduced for each new predicate symbol is O(|ϕ|).

For each new clause, our transformation strategy performs one execution
of the loop body, which starts off by applying the instantiate procedure and

13



T 0 p1

T ⊢ ¬ p1

� T ⊢ prop

T ⊢ p1�

T ⊢ ∃(p2(Z))

T ⊢ ∃(¬p3(Z)) T ⊢ ∃(p4(Z)) T ⊢ ∃(p5(Z))

T 0 ∀(p3(Z))

T ⊢ true T ⊢ true

� T ⊢ ∀(p3(Z))

Fig. 2. Proof of T ⊢ prop (see Example 4). A rectangle marked by � (or �) shows the
proof (or a disproof, respectively) of its root judgement at the bottom of the rectangle.
In the rectangle marked by � there is a solid arrow from judgement A to judgement B

iff there exists an instance of a proof rule with conclusion A and premise B. A dashed
uparrow from a negated judgement T 0 ϕ to a judgement T ⊢ ϕ indicates that in
order to show that T 0 ϕ holds (or does not hold), we provide a disproof (or a proof,
respectively) of T ⊢ ϕ.

generates O(|Σ|) clauses. Then, it continues by applying the unfold procedure.
The number of possible unfolding steps for each instantiated clause is O(|ϕ|).
Thus, the total number of unfolding steps for each new clause is O(|Σ| · |ϕ|),
which is also the number of clauses generated by the instantiation and unfolding
procedures. Finally, the define-fold procedure performs at most one folding step
and definition step per clause. Considering all possible predicate symbols and
recalling that the number of clauses introduced for each new predicate is O(|ϕ|),
we get that the total number of transformation rule applications during Step 1
is O(|Σ| · (m+ 1) · 2|ϕ|+2log

2
|ϕ|).

In Step 2, by using tabled resolution, the proof system checks every closed
literal at most once. The proof of a closed literal requires O((m + 1) · 2|ϕ|)
applications of proof rules. Therefore, we may conclude that the complexity of
our algorithm is O(|Σ| · (m+ 1) · 2|ϕ|+ 2log

2
|ϕ|).

The complexity of the Lichtenstein-Pnueli algorithm isO((|Σ|+|ρ|)·25|ϕ|) [9].
Since ρ is a total binary relation on Σ, we have that |Σ| ≤ |ρ| ≤ |Σ|2. In the
case where |ρ| = |Σ|2 and, thus, m = 0, the complexity of the Lichtenstein-
Pnueli algorithm is O(|Σ|2 ·25|ϕ|) and the complexity of our algorithm is O(|Σ| ·
2|ϕ|+2log

2
|ϕ|). In the case where ρ is a function, we have that |ρ| = m = |Σ|.

Thus, the complexity of the Lichtenstein-Pnueli algorithm is O(|Σ| · 25|ϕ|) and
the complexity of our algorithm is O(|Σ|2 · 2|ϕ|+ 2log

2
|ϕ|). When m = |Σ|, it

14



may still be the case that |ρ| is proportional to |Σ|2 and, in this case, the
Lichtenstein-Pnueli algorithm and our algorithm are both quadratic in the size
of Σ. In the literature, O(25|ϕ|) is often overestimated to 2O(|ϕ|) and, therefore,
the Lichtenstein-Pnueli algorithm and our algorithm have essentially the same
time complexity, that is, O(|Σ|2) · 2O(|ϕ|).

4 Related Work and Concluding Remarks

Various logic programming techniques and tools have been developed for model
checking. For instance, tabled resolution has been shown to be quite effective
for implementing a modal µ-calculus model checker for a CCS value passing lan-
guage [16]. Techniques based on constraint logic programming, abstract inter-
pretation, and program transformation have been proposed for performing CTL
model checking of finite and infinite state systems (see, for instance, [6,7,12]).

The main novelties of this paper are the following: (i) we have proposed a
method for specifying LTL properties of reactive systems based on ω-programs,
that is, logic programs acting on infinite lists, (ii) we have also introduced the
subclass of linear monadic ω-programs for which the truth in the perfect model
is decidable and, finally, (iii) we have shown that we can transform, by applying
semantics preserving unfold/fold rules, the logic programming specification of
an LTL property into a linear monadic ω-program.

Our two step verification approach bears some similarity to the automata-
theoretic approaches for LTL model checking, where the specification of a finite
state system and an LTL formula are translated into nondeterministic Büchi
automata [21] or alternating automata [11].

The automata-theoretic approach has the advantage that automata theory
is very well studied and many results are available. However, we believe that
also our approach has its advantages because of the following features. (1) The
specification of the properties of the reactive systems, the transformation of the
specification into a linear monadic ω-program, and the proof of the properties of
a linear monadic ω-program can all be done within the single framework of logic
programming, while in the automata-theoretic approach one has to use both
the temporal logic formalism and the automata-theoretic formalism. (2) The
translation of the specification into an ω-program can be performed by using se-
mantics preserving transformation rules, thereby avoiding the burden of proving
the correctness of the translation via ad-hoc methods.

Issues which can be investigated in future research include: (i) the relation-
ships between linear monadic ω-programs, Büchi automata, and alternating au-
tomata, (ii) the strength of our transformational approach and its applicability
to other logics, such as CTL∗ and the Monadic Second Order logic of successors,
and (iii) the comparison of the efficiency of our approach w.r.t. that of other
model checking techniques via experiments using practical examples.

References

1. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of

Logic Programming, 19, 20:9–71, 1994.

15



2. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, 1992.

3. W. Chen and D. S. Warren. Tabled evaluation with delaying for general logic
programs. JACM, 43(1), 1996.

4. E. M. Clarke, O. Grumberg, and K. Hamaguchi. Another look at LTL model
checking. Formal Methods in System Design, 10(1):47–71, 1997.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
6. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-

national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.
7. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite

state systems by specializing constraint logic programs. Proceedings of the ACM

Sigplan Workshop on Verification and Computational Logic VCL’01, Technical
Report DSSE-TR-2001-3, pages 85–96. Univ. Southampton, UK, 2001.

8. F. Fioravanti, A. Pettorossi, and M. Proietti. Transformation rules for locally
stratified constraint logic programs. In Program Development in Computational

Logic, LNCS 3049, pp. 292–340. Springer-Verlag, 2004.
9. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs

satisfy their linear specification. Proc. of POPL’85, pp.97–107. ACM Press, 1985.
10. J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

Second Edition.
11. D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a

simple explanation of why most temporal and dynamic logics are decidable in
exponential time. In Proceedings of LICS ’88, pages 422–427. IEEE Press, 1988.

12. U. Nilsson and J. Lübcke. Constraint logic programming for local and symbolic
model-checking. Proc. of CL 2000, LNAI 1861, pp. 384–398. Springer, 2000.

13. M. Proietti and A. Pettorossi. Unfolding-definition-folding, in this order, for
avoiding unnecessary variables in logic programs. Theoretical Computer Science,
142(1):89–124, 1995.

14. H. Przymusinska and T. C. Przymusinski. Weakly stratified logic programs. Fun-

damenta Informaticae, 13:51–65, 1990.
15. T. C. Przymusinski. On the declarative semantics of stratified deductive databases

and logic programs. In J. Minker, editor, Foundations of Deductive Databases and

Logic Programming, pages 193–216. Morgan Kaufmann, 1988.
16. Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka,

T. Swift, and D. S. Warren. Efficient model checking using tabled resolution.
Proceedings of CAV ’97, LNCS 1254, pages 143–154. Springer-Verlag, 1997.

17. A. Roychoudhury, K. Narayan Kumar, C. R. Ramakrishnan, I.V. Ramakrishnan.
Beyond Tamaki-Sato style unfold/fold transformations for normal logic programs.
International Journal on Foundations of Computer Science, 13(3):387–403, 2002.

18. H. Seki. Unfold/fold transformation of stratified programs. Theoretical Computer

Science, 86:107–139, 1991.
19. K. Sagonas, T. Swift, D. S. Warren, J. Freire, P. Rao, B. Cui, and E. Johnson. The

XSB System, Version 2.2., 2000.
20. H. Tamaki and T. Sato. Unfold/fold transformation of logic programs. In Proceed-

ings of ICLP’84, pages 127–138, Uppsala, Sweden, 1984. Uppsala University.
21. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program

verification (preliminary report). Proc. LICS ’86, pp. 332–344. IEEE Press, 1986.

16



A Linear Temporal Logic

In this section we briefly recall the definition of the Linear Temporal Logic. We
first introduce the notion of a Kripke structure, which models state transition
systems, and then we define the semantics of LTL formulas with respect to
Kripke structures. We refer the reader to [5] for further details.

Definition 3 (Kripke Structure). Let Elem be a set of symbols denoting
elementary properties. A Kripke Structure K is a 4-tuple 〈Σ, I, ρ, λ〉 where:

1. Σ is a finite set of states;
2. I ⊆ Σ is a set of initial states;
3. ρ ⊆ Σ ×Σ is a total transition relation, that is, for every state s ∈ Σ there

exists a state s′ ∈ Σ such that (s, s′) ∈ ρ;
4. λ : Σ → P(Elem) is a total function that assigns to a state s ∈ Σ a subset
λ(s) of Elem which is the subset of the elementary properties that hold in s.

A computation path π in K is an infinite list [s0, s1, . . .] of states such that s0∈I
and, for every i≥ 0, (si, si+1) ∈ ρ. We use πi to denote the sequence obtained
by taking the suffix of π which starts at state si.

LTL is a propositional temporal logic for expressing properties of the com-
putation paths of a Kripke structure. LTL makes use of the temporal operators
X (next time) and U (until). Other temporal operators, such as F (eventually)
and G (always), can be defined in terms of X and U as follows: for every formula
ϕ, Gϕ = ¬F¬ϕ, and Fϕ = U(true, ϕ).

Definition 4 (LTL Formulas). Given a set Elem of elementary properties,
the syntax of the LTL formulas ϕ is as follows:

ϕ ::= e | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2, where e ∈ Elem .

Now we define the satisfaction relation K, π � ϕ, which tells us when an LTL
formula ϕ holds on a computation path π of the Kripke structure K. We assume
that the structure K and the formula ϕ share the same set Elem of elementary
properties.

Definition 5 (Satisfaction Relation for LTL). Given a Kripke structure
K = 〈Σ, I, ρ, λ〉, a computation path π of K, and an LTL formula ϕ, we induc-
tively define the relation K, π � ϕ as follows:

K, π � e iff π = s0s1 . . . and e ∈ λ(s0)
K, π � ¬ϕ iff K, π 6� ϕ
K, π � ϕ1 ∧ ϕ2 iff K, π � ϕ1 and K, π � ϕ2

K, π � X ϕ iff K, π1 � ϕ
K, π � ϕ1 U ϕ2 iff there exists i≥0 such that K, πi � ϕ2

and, for all 0≤j<i, K, πj � ϕ1

K � ϕ iff for all computation paths π in K we have that K, π � ϕ.

17


