11,383 research outputs found

    Optimal mobility-aware admission control in content delivery networks

    Get PDF
    This paper addresses the problem of mobility management in Content Delivery Networks (CDN). We introduce a CDN architecture where admission control is performed at mobility aware access routers. We formulate a Markov Modulated Poisson Decision Process for access control that captures the bursty nature of data and packetized traffic together with the heterogeneity of multimedia services. The optimization of performance parameters, like the blocking probabilities and the overall utilization, is conducted and the structural properties of the optimal solutions are also studied. Heuristics are proposed to encompass the computational difficulties of the optimal solution when several classes of multimedia traffic are considered

    On Counteracting Byzantine Attacks in Network Coded Peer-to-Peer Networks

    Get PDF
    Random linear network coding can be used in peer-to-peer networks to increase the efficiency of content distribution and distributed storage. However, these systems are particularly susceptible to Byzantine attacks. We quantify the impact of Byzantine attacks on the coded system by evaluating the probability that a receiver node fails to correctly recover a file. We show that even for a small probability of attack, the system fails with overwhelming probability. We then propose a novel signature scheme that allows packet-level Byzantine detection. This scheme allows one-hop containment of the contamination, and saves bandwidth by allowing nodes to detect and drop the contaminated packets. We compare the net cost of our signature scheme with various other Byzantine schemes, and show that when the probability of Byzantine attacks is high, our scheme is the most bandwidth efficient.Comment: 26 pages, 9 figures, Submitted to IEEE Journal on Selected Areas in Communications (JSAC) "Mission Critical Networking

    Optimal Traffic Splitting Policy in LTE-based Heterogeneous Network

    Full text link
    Dual Connectivity (DC) is a technique proposed to address the problem of increased handovers in heterogeneous networks. In DC, a foreground User Equipment (UE) with multiple transceivers has a possibility to connect to a Macro eNodeB (MeNB) and a Small cell eNodeB (SeNB) simultaneously. In downlink split bearer architecture of DC, a data radio bearer at MeNB gets divided into two; one part is forwarded to the SeNB through a non-ideal backhaul link to the UE, and the other part is forwarded by the MeNB. This may lead to an increase in the total delay at the UE since different packets corresponding to a single transmission may incur varying amounts of delays in the two different paths. Since the resources in the MeNB are shared by background legacy users and foreground users, DC may increase the blocking probability of background users. Moreover, single connectivity to the small cell may increase the blocking probability of foreground users. Therefore, we target to minimize the average delay of the system subject to a constraint on the blocking probability of background and foreground users. The optimal policy is computed and observed to contain a threshold structure. The variation of average system delay is studied for changes in different system parameters.Comment: Conferenc

    High speed all optical networks

    Get PDF
    An inherent problem of conventional point-to-point wide area network (WAN) architectures is that they cannot translate optical transmission bandwidth into comparable user available throughput due to the limiting electronic processing speed of the switching nodes. The first solution to wavelength division multiplexing (WDM) based WAN networks that overcomes this limitation is presented. The proposed Lightnet architecture takes into account the idiosyncrasies of WDM switching/transmission leading to an efficient and pragmatic solution. The Lightnet architecture trades the ample WDM bandwidth for a reduction in the number of processing stages and a simplification of each switching stage, leading to drastically increased effective network throughputs. The principle of the Lightnet architecture is the construction and use of virtual topology networks, embedded in the original network in the wavelength domain. For this construction Lightnets utilize the new concept of lightpaths which constitute the links of the virtual topology. Lightpaths are all-optical, multihop, paths in the network that allow data to be switched through intermediate nodes using high throughput passive optical switches. The use of the virtual topologies and the associated switching design introduce a number of new ideas, which are discussed in detail

    A three-stage ATM switch with cell-level path allocation

    Get PDF
    A method is described for performing routing in three-stage asynchronous transfer mode (ATM) switches which feature multiple channels between the switch modules in adjacent stages. The method is suited to hardware implementation using parallelism to achieve a very short execution time. This allows cell-level routing to be performed, whereby routes are updated in each time slot. The algorithm allows a contention-free routing to be performed, so that buffering is not required in the intermediate stage. An algorithm with this property, which preserves the cell sequence, is referred to as a path allocation algorithm. A detailed description of the necessary hardware is presented. This hardware uses a novel circuit to count the number of cells requesting each output module, it allocates a path through the intermediate stage of the switch to each cell, and it generates a routing tag for each cell, indicating the path assigned to it. The method of routing tag assignment described employs a nonblocking copy network. The use of highly parallel hardware reduces the clock rate required of the circuitry, for a given-switch size. The performance of ATM switches using this path allocation algorithm has been evaluated by simulation, and is described
    corecore