
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997 701

A Three-Stage ATM Switch
with Cell-Level Path Allocation

Martin Collier, Member, IEEE

Abstract—A method is described for performing routing in
three-stage asynchronous transfer mode (ATM) switches which
feature multiple channels between the switch modules in adjacent
stages. The method is suited to hardware implementation using
parallelism to achieve a very short execution time. This allows
cell-level routing to be performed, whereby routes are updated in
each time slot. The algorithm allows a contention-free routing to
be performed, so that buffering is not required in the intermediate
stage. An algorithm with this property, which preserves the cell
sequence, is referred to here as a path allocation algorithm.
A detailed description of the necessary hardware is presented.
This hardware uses a novel circuit to count the number of cells
requesting each output module, it allocates a path through the
intermediate stage of the switch to each cell, and it generates
a routing tag for each cell, indicating the path assigned to
it. The method of routing tag assignment described employs a
nonblocking copy network. The use of highly parallel hardware
reduces the clock rate required of the circuitry, for a given switch
size. The performance of ATM switches using this path allocation
algorithm has been evaluated by simulation, and is described
here.

Index Terms—Asynchronous transfer mode, communication
switching, communication system routing.

I. INTRODUCTION

T HE THROUGHPUT achievable (in bits/second) in an
asynchronous transfer mode (ATM) switch depends heav-

ily on the process used to fabricate it. For example, Bianchini
and Kim [1] have described a single-board switch prototype
with 155-Mb/s link rate and a throughput of 2.48 Gb/s, con-
structed using “off-the-shelf” integrated circuits and PLD’s.
Collivignarelli et al. [2] have described a 1616 switch chip
with a 311-Mb/s link rate (and hence, with a throughput close
to 5 Gb/s) fabricated using a 0.8m BiCMOS process, which
dissipates 7 W. Merayoet al. [3] have reported a switch with
a 10-Gb/s throughput and a 2.5-Gb/s link rate, using a 0.7-m
BiCMOS process and requiring approximately twenty chips.
Hino et al. [4] have developed a 44 switching element (for
a rerouting banyan network) with link rates of 10 Gb/s using
a 0.2- m GaAs MESFET technology. The power dissipated
by this switch (some 30W) necessitates its implementation on
three integrated circuits.

It may be concluded, from the results reported above,
which are typical of the current state of the art, that the
tradeoffs to be performed between circuit complexity, power

Paper approved by G. P. O’Reilly, the Editor for Communications Switch-
ing of the IEEE Communications Society. Manuscript received July 3, 1995;
revised December 1, 1995.

The author is with the School of Electronic Engineering, Dublin City
University, Glasnevin, Dublin 9, Ireland.

Publisher Item Identifier S 0090-6778(97)04172-X.

dissipation and process cost in designing ATM switches are
such as to restrict single-chip and single-board switch fabrics
to throughputs below perhaps 40 Gb/s for the foreseeable
future, even when using leading-edge (and thus expensive) IC
technologies. Hence, alarge switch fabric (i.e., a switch with
a throughput exceeding, say, 200 Gb/s) will require a modular
architecture, allowing the switch fabric to be distributed across
multiple boards or cabinets.

An obvious method of implementing a large switch, given
these constraints, is to design the switch with three stages,
where each stage consists of smaller switch modules. Many
authors have proposed such switches [5]–[9]. This approach
typically introduces a new problem (not present in a single-
stage switch) whereby multiple paths from source to desti-
nation become available. Thus even if the individual switch
modules possess the self-routing feature, this feature is not
retained by the overall switch. Some method of routing is then
necessary, to select among the available paths from source to
destination, through the second stage of the switch.

Routing may be performed over a number of time scales.
In one approach (call-level routing), all cells belonging to a
virtual connection (“call”) are allocated the same route. Thus
the routing decision is made at connection setup time, and
this route is fixed for the duration of the connection.Cell-
level routing is performed if the routing decision is made
independently in each time slot. The process of determining
a routing pattern such that no blocking can occur in the
second stage of the switch is referred to here ascell-level
path allocation.

This paper considers cell-level path allocation, and, specif-
ically, the problem of implementing a cell-level algorithm for
path allocation in the channel-grouped three stage network of
Fig. 1. This is an switch, with , and
modules in the input, intermediate and output stages, respec-
tively. There are links in the channel group connecting input
and intermediate stage modules, andlinks in the channel
group connecting intermediate and output stage modules. The
use of channel grouping allows additional flexibility when
dimensioning the three-stage switch. Cell-level path allocation
has been proposed by a number of authors [5]–[7]. The
algorithm described here requires fewer iterations than that
in [6], does not require input buffering (which degrades the
throughput), unlike [7], and is fairer than that presented in
[5], in addition to readily supporting intermediate channel
grouping.

The path allocation algorithm and the hardware necessary
to implement it are described in Section II of this paper.

0090–6778/97$10.00 1997 IEEE

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11309658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

702 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997

Fig. 1. A three-stage switch with intermediate channel grouping.

The algorithm requires ancillary hardware to count incoming
cells and to deliver routing tags to them. Suitable hardware
is described in Sections III and IV of this paper. The switch
performance is discussed in Section V.

II. A N ALGORITHM FOR PATH ALLOCATION AT CELL LEVEL

A. The Objectives of a Path Allocation Algorithm

There are routes from each input module to each inter-
mediate module. There are routes from each intermediate
module to each output module. We must choose, for every
input cell (if possible) an intermediate switch module through
which to pass on the way to the selected destination, such that
no input module attempts to route more thancells via any
intermediate module, and no intermediate module attempts to
route more than cells to any output module, in any one
time slot. This strategy ensures that:

1) the intermediate stage can never be congested;
2) no queueing occurs in the intermediate stage; thus the

delay through the intermediate stage is uniform, regard-
less of the path taken; this makes it possible to preserve
cell sequence on a virtual connection;

3) contention can never occur in the intermediate stage,
simplifying its design.

An algorithm to implement this strategy will now be de-
scribed. It will be assumed, for simplicity, that all input ports of
the switch operate at the same rate, and thus that the duration of
the time slot (the interval between successive cell boundaries)
is the same for every cell.

B. Basic Principles of the Path Allocation Algorithm

A new and efficient algorithm will now be described. It is
suitable for use in a channel-grouped three-stage switch and
requires only knowledge obtainable at the input side of the
switch. It operates on the following quantities:

number of channels available from input moduleto
intermediate switch module
number of channels available from intermediate switch
module to output module
number of requests from input modulefor output
module .

(a)

(b)

Fig. 2. Examples of the processor array (a) showing contents of processors
during Iteration Zero(L1 = L2 = m = 4) and (b) showing initial conditions
for L1 = 2;m = 4, andL2 = 3.

Note that and need only be local to the input
module. The ’s must be forwarded to each input module
in turn. Let be the number of cells to be routed from
input module to output module via intermediate switch
module The values of and are updated using
the procedure described below:

This procedure is “atomic” in the sense that it is the basic
building block from which the path allocation algorithm is
constructed. The procedure determines the capacity available
from input module to output module via intermediate
switch module (i.e., the minimum of and . The
number of requests which can be satisfied is equal to the
minimum of the number of requests outstanding and
the available capacity.

A parallel implementation requires multiple processors, each
executing the procedure for a different set of
procedure parameters, subject to the following constraints:

• no two processors shall simultaneously require
access to the same quantity. For example,

uses and so that neither
nor

can be executed concurrently with for
any ;

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

COLLIER: A THREE-STAGE ATM SWITCH 703

Fig. 3. Implementation of theatomic() processor. Min: Calculator of minimum;Dx: Delay (needed to synchronise arrival times—may be zero).

• the data required by a processor for the next iteration of
the algorithm should be available locally, or from adjacent
processors.

An implementation satisfying these two constraints will now
be presented.

C. Implementation of the Algorithm

Suppose that there are modules in each stage of the
switch. An array of processors is used. The processor
in the th row (numbered from the right) andth column
(numbered from the bottom) of the array is labeled .
Processor is initialized by loading the following three
values:

1) initial value of ;
2) initial value of (i.e., ;
3) initial value of (i.e., .

The values stored in the processor array are shown in
Fig. 2(a) for the case where .

The algorithm then requires iterations (iterations zero
through . Processor executes

during iteration ; after each iteration
forwards the updated value of to and of

to , and retains .
If we choose the same algorithm

may be used for a switch with an arbitrary number of modules
in each stage. Suppose that a square array of
processors is used. Some of the processor registers must be
initialized to zero if their contents pertain to a nonexistent
switch module. Specifically, processor is initialized as
follows:

otherwise.

otherwise.

otherwise.

where .

An examination of the operation of the resulting algorithm
reveals that the processors in row or higher and in column

or above never modify the and values they receive,
and thus may be replaced by simple delays.

In general, a switch with input modules and output
modules requires a processor array with rows and
columns. If , each column requires additional

registers. If , each row requires additional
registers. The initial conditions in the array for the case where

and are shown in Fig. 2(b).
An unichannel architecture may require a large value for
to obtain low cell loss probabilities. Hence a relatively

high clock speed will be required in the array, so as to
complete iterations of the algorithm in the time available
(which is less than the duration of one time slot). A switch
with intermediate channel grouping affords the possibility
of reducing cell loss probability by increasing and ,
rather than by increasing This can reduce the clock speed
requirements. Note that, unlike the cell scheduling algorithm
in [5], this algorithm attempts to allocate a path toeachcell
at the switch inputs duringevery iteration of the algorithm.
Thus, the proposed algorithm is fairer than that described
in [5].

D. Implementation Issues

The processor must execute the procedure, and
thus must perform two types of operation:

1) find the minimum of three numbers;
2) perform three subtractions.

Hence, in principle, the processor may be implemented as
shown in Fig. 3. The value of is stored locally. The
and values are obtained from (and forwarded to) adjacent
processors. The simple structure of the processor
ensures that many copies of it may be constructed on a single
integrated circuit (IC), and also ensures that it can operate at
high speed. A fast implementation using bit-serial arithmetic,
and which does not require the calculation of the minimum of
three numbers, was described in [10].

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

704 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997

Fig. 4. The circuitry for request counting and routing tag assignment. CG: Count generator; RPG: Routing packet generator; AG: Address generator.

Hardware is also needed in each input module to perform the
following tasks before and during the path allocation process:

• to count the number of requests for each output module
so as to obtain the initial values of the ’s;

• to forward a routing tag based on the results of path
allocation to each input cell.

The circuitry to implement these functions is shown in
Fig. 4. Its operation will be described in Sections III and IV.

It is assumed that cells losing contention are discarded. If
this is not the case, additional hardware will be required to
forward acknowledgments to the input port controllers, and
this circuitry will introduce an additional delay.

The switch fabric, as described above, operates at a
single rate (which will typically be the OC-3/STM-1 rate
of 155 Mb/s). The input and output port controllers must
perform the necessary bit rate adaptation (and multiplex-
ing/demultiplexing) for links operating at other rates, so
that cells traverse the switch fabric at a common rate. The
demultiplexing of incoming cell streams of high bit rate to a
number of switch fabric inputs has implications for the switch
performance (since correlations are then possible between
the arrival processes on adjacent input ports), and for cell
sequence preservation, which will be addressed in a future
paper.

The switch will be required to support multiple loss prior-
ities in practice. This requires the path allocation algorithm
to preferentially allocate paths to cells with the CLP bit
set to zero. The simplest way of modifying the described
algorithm to achieve this is to perform path allocation twice,
once for cells with CLP , and a second time for the
cells tolerating higher loss rates, with the initialization of the
processor array being appropriately modified. However, this
approach doubles the required operating speed of the array,
which may be impractical in many cases. A less expensive
method for introducing differentials in loss probabilities is
described in [11].

III. A F AST METHOD OF REQUEST COUNTING

Suitable hardware to simultaneously calculate (the
number of requests from input modulefor output module

for all values of will now be described.
The execution time for this hardware is

clock cycles. A slower solution, requiring less hardware, was
described in [12].

The hardware required is shown in Fig. 5. Data cells from
the input ports associated with input moduleare merged
with control packets (one per output module) by a Batcher
sorting network. The merge operation is performed in such a
way that idle cells (i.e., empty cells from inactive input ports)
are sorted to the highest output ports of the Batcher network.
If the control packet for output moduleappears at output
of the Batcher network, then the data cells (if any) requesting
that output module appear at lower output ports of the sorter
(ports etc.), as shown in Fig. 5.

Under these circumstances, it may readily be shown that

where is the number of data cells requesting output
module , and is fixed, since the Batcher network processes
only requests from input module.

The key to this method of request counting is the obser-
vation that

The necessary subtraction can be performed very efficiently,
since

where is the 1’s complement of obtained by bitwise
inversion of It follows that the value of can be
generated using a serial adder, and can then be stored in the
register of the appropriate processor (i.e., of

It is necessary to generate a concentrated list of the values
as input data for the serial adders.

These values are obviously available at the sorter outputs
which have received control packets (since, for example, con-
trol packet 4 appears at output , but are not concentrated
onto contiguous outputs. Hence a concentrator is required. This
is the purpose of the binary self-routing network shown in
Fig. 5, which is often called the “reverse banyan” [13]. A
well-known property of this network is that it is nonblocking

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

COLLIER: A THREE-STAGE ATM SWITCH 705

Fig. 5. An example of request counting. CG: Count generator.

when acting as a concentrator. A formal proof that blocking
cannot occur in Fig. 5 was given in [14].

The count generators forward only control packets to this
network. Count generators which have received a data cell
or an idle cell through the Batcher network submit an inactive
packet to the concentrator. The count generator which receives
control packet from output of the Batcher network
appends a data field to the packet containing the value of

This packet is then routed to outputof the concentrator.
A total of control packets is thus simultaneously launched
into the concentrator, and these are routed to the serial adders
at outputs zero through without blocking.

The concentrated list of values is then read by these
serial adders, the lower input (as shown in Fig. 5) being
inverted. Hence the values are generated, and passed to the

processors. The example considered in Fig. 5 shows
three requests for output module zero, two for output module
one, and none for output module two. It can be seen that
the correct values (i.e., 3, 2 and 0) are returned to processors

and , respectively.
The submitted packets take two cycles to propagate through

each stage of the concentrator (one cycle to identify if the
packet is active, and another to determine where to route it)
and an additional clock cycle is required before the serial adder
generates the least significant bit of the appropriatevalue.
Thus the number of clock cycles required by the request count
hardware before path allocation can commence is

Hence, for a switch with and , the number
of clock cycles required is just 15.

IV. ROUTING TAG ASSIGNMENT

A. Principles of Operation

The processor generates a sequence of
values, one after every iteration of the path allocation

algorithm, commencing with (the initial value of

determined by the request counting hardware) and decrement-
ing, after every iteration, in accordance with the
procedure, as paths are allocated to cells. Thusrepresents
the number of outstanding requests from input modulefor
output module . The relevant cells must be informed of the
path through the intermediate stage which they have been
assigned. The relevant information is obtained from the
output of the processor shown in Fig. 3. After each iteration
of the algorithm, tokens are broadcast to cells
by the circuitry for routing tag assignment. A cell may receive
multiple tokens, but only the last token it receives contains
valid routing information. When the path allocation process is
complete, a special null token is broadcast to the cells which
have lost contention. The address generator then prefixes a
routing tag to each data cell whose value equals the token
value. Cells losing contention are marked as inactive.

The broadcasting is done by the copy network shown in
Fig. 4. This must copy tokens and perform routing in such a
way that the token required by the data cell at a given Batcher
network output in Fig. 4 appears at the corresponding copy
network output, and is thus received by the correct address
generator.

The copy network has inputs and outputs. The
routing packet generators are connected to of the copy
network inputs, and the remaining inputs are idle. Routing
packet generator receives the value of from the
appropriate processor.

The cells requesting output module appear at outputs
through of the Batcher network, where

(as before)

The routing packet generator for output module
must forward the relevant routing tokens to the data cells at
outputs through of the Batcher network.
The value of is readily obtainable from the request
counting hardware.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

706 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997

(a) (b)

(c) (d)

(e)

Fig. 6. An example of routing tag assignment. (a) Initialization (i.e., iteration0�). (b) Iteration0+: (c) Iteration1+. (d) Iteration2+. (e) Iteration3+. The
type of token being broadcast is shown on the input and output sides of the copy network. The type of packet receiving the token, and the value of the last token
received, are shown at the network outputs (clearly only data cells receive tokens, as required). RPG: Routing packet generator; ISM: Intermediate stage module.

During each iteration of the algorithm, submits a
routing packet to the copy network, to be broadcast to address
generators through containing in the
data field the token address, i.e., the address of the intermediate
switch module through which a route has been allocated. If

an inactive packet is submitted.
The routing packets submitted to the copy network do not

collide, since they satisfy the condition for avoiding internal
contention in the copy network, as shown in [10].

The copy network is based on that described by Lee
[15]. Lee’s copy network uses the ‘Boolean interval splitting
algorithm’ to generate copies at each copy network element.
Two bits (one each from the upper and lower address), in
addition to the activity bit, must be processed at each node of
the network. Hence, the interval between successive iterations
of the algorithm, in bit times, will be quite large. The speed
of the algorithm can be increased by observing that, in this
application, the lower address bit processed at each node never

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

COLLIER: A THREE-STAGE ATM SWITCH 707

(a) (b)

(c)

Fig. 7. Performance of the switch. (a) Performance with uniform traffic(L1 = m = L2; S1 = S2 = 4): (b) Performance with uniform traffic
(L1 = m = L2; S1 = 8; S2 = 4): (c) Performance with uniform traffic(L1 = m = L2; S1 = 4; S2 = 8).

TABLE I
PATTERN OF REQUESTS AND POSSIBLE

OUTCOME OF THE PATH ALLOCATION PROCESS

changes after the first iteration of the algorithm [16]. Hence,
on subsequent iterations of the algorithm, there is no need to
distribute the lower address, so that the header on the routing
packet may be shortened, reducing the delay through the copy
network.

B. An Example of Routing Tag Assignment

The example is documented in Tables I and II, and in Fig. 6.
It describes a possible outcome of path allocation for a switch
with four modules in each of the three stages.

Table I indicates the number of cells from input module 0
which have requested each of the four output modules

and a possible pattern of path allocations which might be

generated by the processors. The copy network
must be initialized before path allocation commences. This
corresponds to iteration in Table II and occurs simultane-
ously with iteration 0 of the path allocation algorithm. After
each iteration of the path allocation algorithm (i.e., iterations
0, 1, 2 and 3), the corresponding iteration of the routing tag
assignment algorithm is performed (iterations and

respectively). Thus, for example, iteration of the routing
tag assignment algorithm occurs concurrently with iteration 2
of the path allocation algorithm. The required broadcasts are
shown in Table II and illustrated in Fig. 6(a)–(e). Also shown
are the lower address bits processed by each switch element. It
can be seen that these bits never alter after the initial iteration
of the algorithm. After five iterations, the correct number of
cells has been assigned a path via each intermediate stage
module.

The length of each routing packet (after the first) is

i.e., one activity bit, enough bits to represent the token address,
and sufficient bits to represent the requested upper copy
network output.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

708 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 6, JUNE 1997

TABLE II
VALUES OFK REGISTERS, ANDADDRESSES TOWHICH TOKENS ARE BROADCAST, IN EACH ITERATION, FOR THE EXAMPLE OF TABLE I

Hence, routing packets may be submitted to the network
at the rate of one every clock cycles. If this exceeds
the number of clock cycles required for one iteration of the
path allocation algorithm, an undesirable delay is introduced,
whereby the path allocation can only proceed at the rate of
one iteration per clock cycles.

A solution to this difficulty involves a reduction in the
value of . The token address is not broadcast, except during
the first iteration. The address generator stores the token
address received during the first iteration, and on subsequent
iterations calculates the token address by decrementing the
previous value. Therefore, the value of can be reduced by

bits.
Once path allocation is complete, the tag allocation process

requires only a further

clock cycles to terminate (this being the time required to
generate the final null routing packet, and to propagate it
through the copy network). A cheaper method of routing tag
assignment was described in [12], where the ‘over-run’ time
once path allocation has concluded increases linearly with the
sum of and .

V. PERFORMANCE OF THEPATH ALLOCATION ALGORITHM

The performance of a three-stage switch using the cell-
level path allocation algorithm described above will now be
evaluated. The cell loss probability must be determined by
simulation since no analytical method is currently available.
The simulation model is based on the following assumptions.

1) There is no input queueing; cells which are not allocated
a path on the first attempt are discarded.

2) The switch is offered a worst-case (maximum) load; each
input port of the switch submits a cell in every time
slot.

3) The destination of each cell is drawn from a uniform
distribution; all output modules receive the same load.

4) The switch modeled is that shown in Fig. 1, for various
choices of the parameters and .

5) The maximum number of cells generated is 10. If
zero cell loss is recorded during the simulation, the cell
loss probability is assigned the value 510 . The
probability of losing contention during path allocation
is assumed to be independent for each cell, at low levels
of loss. With this assumption, the probability that the
cell loss probability (CLP) is below 5 10 , given
that no losses were recorded, is above 95%, i.e.,

6) When cell losses are observed, the cell loss probability
is assumed to be equal to the expected number of
cells lost per time slot, as a proportion of the offered
load.

(Note that if the fifth assumption) is not made, a value can
only be assigned to the probability of cells being lost from the
set of input ports, rather than from one input port, when no loss
is observed. Specifically, if a simulation runs for 500 000 time
slots without loss being observed, the probability that cell loss
will be observed in an arbitrary time slot is below 2.610 at
the 5% significance level, since
This is for an offered load of typically 3000 cells/time slot for
the simulations described here. The probability of an individual
cell being lost is obviously much less, but cannot be evaluated
without knowing how the probability of a given cell losing
contention, and the corresponding probabilities for the cells
with which it contends, are correlated.)

The influence of the choice of channel group size in Fig. 1
on the cell loss probability is considered in Fig. 7. The graphs
show how the cell loss probability varies as a function of the
number of input ports, with the capacity of the intermediate
stage fixed. Confidence intervals have not been shown, but are
obviously moderate for probabilities above about 10, where
many cell losses have been recorded. The results where

are shown in Fig. 7(a). Note that for the
three switches simulated. Fig. 7(b) shows the corresponding
results for three similar switches, where equals 8. Doubling
the channel group size at the input side of the intermediate
stage gives rise to only a marginal decrease in the cell loss
probability. Doubling the channel group size at the output
side of the intermediate stage reduces the loss considerably,
as shown in Fig. 7(c).

These simulations indicate that the intermediate modules
should be designed as expansion modules, with more outputs
than inputs, to obtain the best performance. This seems intu-
itively reasonable; a cell may be routed to any intermediate
module, but can be routed to only one output module. An
alternative to increasing is to change the value of . How-
ever, this has the disadvantage that the number of iterations
required by the path allocation algorithm will increase, so
that higher speed hardware may be required. These graphs
can be used to find the maximum number of input ports
which a switch with a given capacity in the intermediate stage
can support, for a given probability of cell loss during path
allocation.

Further simulation results, including an investigation of
the performance in the presence of nonuniform loads, are
presented in [14].

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

COLLIER: A THREE-STAGE ATM SWITCH 709

VI. A D ESIGN EXAMPLE

A 3072 3072 switch can be constructed by choosing
and

in the switch shown in Fig. 1. The resulting switch has a
cell loss probability (due to loss of contention during path
allocation) below 10 even in the presence of a nonuniform
load [14]. The input modules must accept data from the
address generators in Fig. 4, and so must have 128 inputs,
even though at most 96 data cells will be present. The
dimensions of the input, intermediate and output stage modules
are 128 128, 128 256, and 256 96, respectively. The input
and intermediate modules can be of simple design, since they
are contention-free. Thus the only stage of the switch which
represents a major design challenge is the output stage, where
the 256 96 switch modules should also introduce a low cell
loss probability.

The process of path allocation should be completed within
one time slot. The request counting hardware requires

clock cycles. One execution
of the procedure will require nine clock cycles,
using the efficient implementation described in [10]. Thus
288 (9 32) cycles are needed to test all possible paths. The
number of processors required is 1024 (3232), but the IC
count should be relatively low because of the simplicity of
the processor design. Broadcasting null tokens to cells losing
contention requires an additional
clock cycles, for a total of 325 clock cycles. Hence the clock
rate required should be below 130 MHz (for operation at
the STM-1 rate), including some additional overhead. This
indicates that a CMOS or BiCMOS VLSI implementation of
the path allocation circuitry should be possible.

The resulting switch features a level of cell delay variation
which is no worse than that of a single-stage switch, because
cells are buffered only in the output stage. The complexity of
the path allocation circuitry is relatively high, but the switch
modules in the first and second stages are of simple design,
because of the avoidance of output contention. The author is
currently investigating the practical implementation of the path
allocation circuitry, with a view to confirming that the overall
complexity of the switch is no greater than that of competing
architectures, such as those in [5]–[9].

VII. CONCLUSIONS

A new algorithm for path allocation in three-stage broad-
band networks has been described. A complete hardware
implementation of this algorithm has been presented, including
a method for generating the initial data required by the algo-
rithm, and for forwarding the results to each cell at the input
side of the switch, in the form of a routing tag. The operating
speed required of the design appears within the capabilities of
VLSI technology in the short term. The performance of the
algorithm has been investigated, and the additional flexibility
offered in dimensioning the switch when intermediate channel
grouping is supported has been demonstrated. The resulting
switch offers the delay performance of an output-buffered
switch, unlike either three-stage switches featuring call-level
routing, which buffer the cells at each stage, or those featuring
input buffers. It avoids the fairness problem intrinsic to the

“cell scheduling” algorithm of the Growable Packet Switch [5].
It thus represents a viable architecture for the implementation
of a large ATM switch.

ACKNOWLEDGMENT

The author gratefully acknowledges the assistance of his
colleague Tommy Curran in the preparation of this paper.
He also thanks the anonymous reviewers for their helpful
comments.

REFERENCES

[1] R. P. Bianchini and H. S. Kim, “The Tera project: A hybrid queueing
ATM switch architecture for LAN,” IEEE J. Select. Areas Commun.,
vol. 13, pp. 673–685, May 1995.

[2] M. Collivignarelli, A. Daniele, P. De Nicola, L. Licciardi, M. Turolla,
and A. Zappalorto, “A complete set of VLSI circuits for ATM switch-
ing,” in Globecom ’94 Conf. Rec., San Francisco, CA, Dec. 1994, pp.
134–138.

[3] L. A. Merayo, P. L. Plaza, P. Chas, G. Piccinni, M. Zamboni, and M.
Barbini, “Technology for ATM multigigabit/s switches,” inGlobecom
’94 Conf. Rec., San Francisco, CA, Dec. 1994, pp. 117–122.

[4] S. Hino, M. Togashi, and K. Yamasaki, “Asynchronous transfer mode
switching LSI chips with 10 Gb/s serial I/O ports,”IEEE J. Solid-State
Circuits, vol. 30, pp. 348–352, Apr. 1995.

[5] K. Y. Eng, M. J. Karol, and Y.-S. Yeh, “A growable packet (ATM)
switch architecture: design principles and applications,”IEEE Trans.
Commun., vol. 40, pp. 423–430, Feb. 1992.

[6] A. Cisneros, “Large packet switch and contention resolution device,”
in Proc. Int. Switching Symp., Stockholm, Sweden, 1990, vol. III, pp.
77–83.

[7] J. Hui and T.-H. Lee, “A large-scale ATM switching network with sort-
banyan switch modules,” inGlobecom ’92 Conf. Rec., Orlando, FL,
Dec. 1992, pp. 133–137.

[8] A. Jajszczyk and W. Kabacinski, “A growable ATM switching
fabric architecture,”IEEE Trans. Commun., vol. 43, pp. 1155–1162,
Feb./Mar./Apr. 1995.

[9] W. E. Denzel, A. P. J. Engbersen, and I. Iliadis, “A flexible shared-
buffer switch for ATM at Gb/s rates,”Comput. Networks ISDN Syst.,
vol. 27, no. 4, pp. 611–624, 1995.

[10] M. Collier, “Switching techniques for Broadband ISDN,” Ph.D. disser-
tation, Dublin City University, Dublin, Ireland, July 1993.

[11] , “Loss priorities in a three-stage multi-rate ATM switch,” Tech.
Rep. EE/BSSL/9S/1, Sch. of Elect. Eng., Dublin City Univ., Dublin,
Ireland, 1995.

[12] M. Collier and T. Curran, “Path allocation in a three-stage ATM switch
with intermediate channel grouping,” inProc. INFOCOM ’93, San
Francisco, CA, Mar.–Apr. 1993, pp. 927–934.

[13] H. S. Kim and A. Leon-Garcia, “Nonblocking property of reverse
banyan network,”IEEE Trans. Commun., vol. 40, no. 3, pp. 472–476,
Mar. 1992.

[14] M. Collier and T. Curran, “Cell-level path allocation in a three-stage
ATM switch,” in ICC’94 Conf. Rec., New Orleans, LA, May ’94, pp.
1179–1183.

[15] T. T. Lee, “Nonblocking copy networks for multicast packet switching,”
J. Select. Areas Commun., vol. 6, pp. 1455–1467, Dec. 1988.

[16] M. Collier, “High-speed cell-level path allocation in a three-stage ATM
switch,” in Globecom’94 Conf. Rec., San Francisco, CA, Nov. 1994,
pp. 324–328.

Martin Collier (S’87–M’93) was born in Drogheda,
Ireland, in 1964. He received the B.Eng. and M.Eng.
degrees in electronic engineering at the National
Institute for Higher Education, Dublin, in 1986 and
1988 respectively, and the Ph.D. degree from Dublin
City University, Dublin, Ireland, in 1993.

He is currently a lecturer in the School of Elec-
tronic Engineering at Dublin City University, where
he runs the Broadband Switching and Systems Lab-
oratory. His research interests include broad-band
switching, switching network topology, and sig-

nalling in ATM networks.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 08:54:07 UTC from IEEE Xplore. Restrictions apply.

