Random linear network coding can be used in peer-to-peer networks to increase
the efficiency of content distribution and distributed storage. However, these
systems are particularly susceptible to Byzantine attacks. We quantify the
impact of Byzantine attacks on the coded system by evaluating the probability
that a receiver node fails to correctly recover a file. We show that even for a
small probability of attack, the system fails with overwhelming probability. We
then propose a novel signature scheme that allows packet-level Byzantine
detection. This scheme allows one-hop containment of the contamination, and
saves bandwidth by allowing nodes to detect and drop the contaminated packets.
We compare the net cost of our signature scheme with various other Byzantine
schemes, and show that when the probability of Byzantine attacks is high, our
scheme is the most bandwidth efficient.Comment: 26 pages, 9 figures, Submitted to IEEE Journal on Selected Areas in
Communications (JSAC) "Mission Critical Networking