4,815 research outputs found

    Managing Uncertainty: A Case for Probabilistic Grid Scheduling

    Get PDF
    The Grid technology is evolving into a global, service-orientated architecture, a universal platform for delivering future high demand computational services. Strong adoption of the Grid and the utility computing concept is leading to an increasing number of Grid installations running a wide range of applications of different size and complexity. In this paper we address the problem of elivering deadline/economy based scheduling in a heterogeneous application environment using statistical properties of job historical executions and its associated meta-data. This approach is motivated by a study of six-month computational load generated by Grid applications in a multi-purpose Grid cluster serving a community of twenty e-Science projects. The observed job statistics, resource utilisation and user behaviour is discussed in the context of management approaches and models most suitable for supporting a probabilistic and autonomous scheduling architecture

    A Simulated Annealing Method to Cover Dynamic Load Balancing in Grid Environment

    Get PDF
    High-performance scheduling is critical to the achievement of application performance on the computational grid. New scheduling algorithms are in demand for addressing new concerns arising in the grid environment. One of the main phases of scheduling on a grid is related to the load balancing problem therefore having a high-performance method to deal with the load balancing problem is essential to obtain a satisfactory high-performance scheduling. This paper presents SAGE, a new high-performance method to cover the dynamic load balancing problem by means of a simulated annealing algorithm. Even though this problem has been addressed with several different approaches only one of these methods is related with simulated annealing algorithm. Preliminary results show that SAGE not only makes it possible to find a good solution to the problem (effectiveness) but also in a reasonable amount of time (efficiency)

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered
    • …
    corecore