1,776 research outputs found

    A Framework for Evaluation and Identication of Time Series Models for Multi-Step Ahead Prediction of Physiological Signals

    Full text link
    Significant interest exists in the potential to use continuous physiological monitoring to prevent respiratory complications and death, especially in the postoperative period. Smart alarm-threshold based systems are currently used with hospitalized patients. Despite clinical observations and research studies to support benefit from these systems, several concerns remain. For example, a small difference in a threshold may significantly increase the alarm rate. A significant increase in alarm related adverse outcomes has been reported by health care oversight organizations. Also, it has been recently shown that the signaled alarms are indeed late detections for clinical instability leading to a delayed recognition and less successful clinical intervention. This dissertation advances the state of art by moving from just monitoring towards prediction of physiological variables. Moving in this direction introduces research challenges in many aspects. Although existing literature describes many metrics for characterizing the prediction performance of time series models, these metrics may not be relevant for physiological signals. In these signals, clinicians are often concerned about specific regions of clinical interest. This dissertation develops and implements different types of metrics that can characterize the performance in predicting clinically relevant regions in physiological signals. In the era of massive data, biomedical devices are able to collect a large number of synchronized physiological signals recording a significant time history of a patient's physiological state. Directionality between physiological signals and which ones can be used to improve the ability to predict the other ones is an important research question. This dissertation uses a dynamic systems perspective to address this question. Metrics are also defined to characterize the improvement achieved by incorporating additional data into the prediction model of a physiological signal of interest. Although a rich literature exists on time series prediction models, these models traditionally consider the (absolute or square) error between the predicted and actual time series as an objective for optimization. This dissertation proposes two modeling frameworks for predicting clinical regions of interest in physiological signals. The physiological definition of the clinically relevant regions is incorporated in the model development and used to optimize models with respect to predictions of these regions.PhDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/116666/1/elmoaqet_1.pd

    Health State Estimation

    Full text link
    Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.Comment: Ph.D. Dissertation @ University of California, Irvin

    Theories of anterior cingulate cortex function : opportunity cost

    No full text
    The target article highlights the role of the anterior cingulate cortex (ACC) in conflict monitoring, but ACC function may be better understood in terms of the hierarchical organization of behavior. This proposal suggests that the ACC selects extended goal-directed actions according to their learned costs and benefits and executes those behaviors subject to depleting resources

    Continual machine learning for non-stationary data analysis

    Get PDF
    Although deep learning models have achieved significant successes in various fields, most of them have limited capacity in learning multiple tasks sequentially. The issue of forgetting the previously learned tasks in continual learning is known as catastrophic forgetting or interference. When the input data or the goal of learning changes, a conventional machine learning model will learn and adapt to the new status. However, the model will not remember or recognise any revisits to the previous states. This causes performance reduction and re-training curves in dealing with periodic or irregularly reoccurring changes in the data or goals. Without continual learning ability, one cannot deploy an adaptive machine learning model in a changing environment. This thesis investigates the continual learning and mitigating the catastrophic forgetting problem in neural networks. We assume non-stationary data contains multiple different tasks which are coming in sequence and will not be stored. We propose a regularisation method, which is to identify and penalise the changes of important parameters of previous tasks while learning a new one. However, when the number of tasks is sufficiently large, this method cannot preserve all the previously learned knowledge, or it impedes the integration of new knowledge. This is also known as the stability-plasticity dilemma. To solve this problem, we proposed a replay method based on Generative Adversarial Networks (GANs). Different from other replay methods, the proposed model is not bounded by the fitting capacity of the generator. However, the number of parameters increases rapidly as the number of learned tasks grows. Therefore, we propose a continual learning model based on Bayesian neural networks and a Mixture of Experts (MoE) framework. The proposed model integrates different experts which are responsible for different tasks into a giant model. Previously knowledge is preserved, and new tasks can be efficiently learned by assigning new experts. Based on Monte-Carlo Sampling, the performance is not satisfied. To address this issue, we propose a Probabilistic Neural Network (PNN) and integrate it with a conventional neural network. The PNN can produce the likelihood given input and be used in a variety of fields. To apply continual learning methods to real-world applications, we then propose a semi-supervised learning model to analyse healthcare datasets. The proposed framework extracts the general features from unlabelled data. We integrate the PNN into the framework to classify the data, which includes a smaller set of labelled samples and continually learn the new cases. The proposed model has been tested on benchmark datasets and also a real-world clinical dataset. The results showed that our proposed model outperforms the state-of-the-art models without requiring prior knowledge of the tasks and overall accuracy of the continual learning. The experiments on the real-world clinical data were designed to identify the risk of Urinary Tract Infections (UTIs) using in-home monitoring data. The UTI risk analysis model has been deployed in a digital platform and is currently part of the on-going Minder clinical study at the UK Dementia Research Institute (UK DRI). An earlier version of the model was deployed as a part of a Class-I CE marked medical device. The UK DRI Minder platform and the deployed machine learning models, including the UTI risk analysis model developed in this research, are in the process to be accredited as a Class-IIa medical device. Overall, this PhD research tackles theoretical and applied challenges of continuous learning models in dealing with real-world data. We evaluate the proposed continual learning methods in a variety of benchmarks with comprehensive analysis and show their effectiveness. Furthermore, we have applied the proposed methods in real-world applications and demonstrated the applicability of the models to real-world settings and clinical problems.Open Acces

    Annotated Bibliography: Anticipation

    Get PDF

    World model learning and inference

    Get PDF
    Understanding information processing in the brain-and creating general-purpose artificial intelligence-are long-standing aspirations of scientists and engineers worldwide. The distinctive features of human intelligence are high-level cognition and control in various interactions with the world including the self, which are not defined in advance and are vary over time. The challenge of building human-like intelligent machines, as well as progress in brain science and behavioural analyses, robotics, and their associated theoretical formalisations, speaks to the importance of the world-model learning and inference. In this article, after briefly surveying the history and challenges of internal model learning and probabilistic learning, we introduce the free energy principle, which provides a useful framework within which to consider neuronal computation and probabilistic world models. Next, we showcase examples of human behaviour and cognition explained under that principle. We then describe symbol emergence in the context of probabilistic modelling, as a topic at the frontiers of cognitive robotics. Lastly, we review recent progress in creating human-like intelligence by using novel probabilistic programming languages. The striking consensus that emerges from these studies is that probabilistic descriptions of learning and inference are powerful and effective ways to create human-like artificial intelligent machines and to understand intelligence in the context of how humans interact with their world

    Spatiotemporal precision of neuroimaging in psychiatry

    Get PDF
    Aberrant patterns of cognition, perception, and behaviour seen in psychiatric disorders are thought to be driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding these dynamic processes in vivo in humans has been hampered by a trade-off between the spatial and temporal resolution inherent to current neuroimaging technology. A recent trend in psychiatric research has been the use of high temporal resolution imaging, particularly magnetoencephalography (MEG), often in conjunction with sophisticated machine learning decoding techniques. Developments here promise novel insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to psychiatric illness such as reward and avoidance learning, memory, and planning. This review considers recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to applications the seek to drive a mechanistic understanding of psychopathology and the realisation of preclinical translation

    Ensemble of coupling forms and networks among brain rhythms as function of states and cognition

    Get PDF
    We acknowledge support from the W. M. Keck Foundation, and the US Israel Binational Science Foundation (BSF Grant 2020020). We also thank Dr. Sergi Garcia-Retortillo for stimulating discussions and helpful comments on the manuscript.The current paradigm in brain research focuses on individual brain rhythms, their spatiotemporal organization, and specific pairwise interactions in association with physiological states, cognitive functions, and pathological conditions. Here we propose a conceptually different approach to understanding physiologic function as emerging behavior from communications among distinct brain rhythms. We hypothesize that all brain rhythms coordinate as a network to generate states and facilitate functions. We analyze healthy subjects during rest, exercise, and cognitive tasks and show that synchronous modulation in the microarchitecture of brain rhythms mediates their cross-communications. We discover that brain rhythms interact through an ensemble of coupling forms, universally observed across cortical areas, uniquely defining each physiological state. We demonstrate that a dynamic network regulates the collective behavior of brain rhythms and that network topology and links strength hierarchically reorganize with transitions across states, indicating that brain-rhythm interactions play an essential role in generating physiological states and cognition.W.M. Keck FoundationUS-Israel Binational Science Foundation 202002

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table
    • …
    corecore