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a b s t r a c t

Understanding information processing in the brain—and creating general-purpose artificial
intelligence—are long-standing aspirations of scientists and engineers worldwide. The distinctive
features of human intelligence are high-level cognition and control in various interactions with the
world including the self, which are not defined in advance and are vary over time. The challenge of
building human-like intelligent machines, as well as progress in brain science and behavioural analyses,
robotics, and their associated theoretical formalisations, speaks to the importance of the world-model
learning and inference. In this article, after briefly surveying the history and challenges of internal
model learning and probabilistic learning, we introduce the free energy principle, which provides a
useful framework within which to consider neuronal computation and probabilistic world models.
Next, we showcase examples of human behaviour and cognition explained under that principle. We
then describe symbol emergence in the context of probabilistic modelling, as a topic at the frontiers
of cognitive robotics. Lastly, we review recent progress in creating human-like intelligence by using
novel probabilistic programming languages. The striking consensus that emerges from these studies
is that probabilistic descriptions of learning and inference are powerful and effective ways to create
human-like artificial intelligent machines and to understand intelligence in the context of how humans
interact with their world.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During their lives humans constantly interact with the phys-
cal environment, as well as with themselves and others. How
o we generate our actions to interact with various environ-
ents? Important brain functions were modelled by compu-

ational learning schemes in the 80–90s (Jordan & Rumelhart,
992; Kawato, 1999; Kawato, Furukawa, & Suzuki, 1987; Wolpert,
hahramani, & Jordan, 1995); these studies demonstrated that
nternal models of the body and environment dynamics are
ffective for achieving movement goals. In addition, stochastic
enerative modelling (Dayan, Hinton, Neal, & Zemel, 1995) and
einforcement learning (Barto, Sutton, & Anderson, 1983; Barto,
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Sutton, & Brouwer, 1981; Sutton & Barto, 1987) were proposed
as general models of biological learning that implicitly acquire
structures and statistical regularities inherent in sets of data
generated by the world. These successful theoretical frameworks
support the idea that acquiring internal models is a natural way
to realise optimal exchange with the environment, and therefore
constitutes a reasonable explanation of how the brain functions.
Furthermore, physiological representations of internal models
were widely examined (Doya, 1999; Imamizu et al., 2000; Kawato
& Gomi, 1992; Miall & Wolpert, 1996; Shidara, Kawano, Gomi,
& Kawato, 1993) as ways to understand brain computations for
acting on the world.

In the past decades, studies of neural networks and statisti-
cal learning have progressed by developing new model learning
algorithms (Hinton, Osindero, & Teh, 2006; Kingma & Welling,
2013) and fast and parallel computational engines. These trends
have stimulated not only machine learning researchers to re-
alise human-like recognition and action control by creating world

models (Eslami et al., 2018; Ha & Schmidhuber, 2018), but have
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lso inspired neuroscience researchers to use these techniques
or decoding and creating brain-like processing using natural data
rom the real world (Yamins et al., 2014) .

In this article, Karl Friston (Section 2) introduces the free en-
rgy principle as a framework to integrate related theories, with
special emphasis on Bayesian inference and learning. Next, Ros-
lyn Moran (Section 3) and Yukie Nagai (Section 4) explain how
uman actions and cognitive behaviour can be explained under
hat principle. Tadahiro Taniguchi (Section 5) discusses current
nd novel approaches to create intelligence and world models
or real robots. Lastly, Josh Tenenbaum (Section 6) compares
uman and artificial intelligence in light of the previous sections.
e considers the outstanding challenges of building a general-
urpose AI by stressing the importance of world modelling and
robabilistic inference. We conclude with a brief discussion of
hat is needed to realise a brain-like artificial intelligence that
an interact naturally with the real world and our society.

. Theoretical examination of the world modelling

This section considers the fundaments of learning and infer-
nce under world models; under the banner of the free energy
rinciple (Friston, 2010). The free energy principle (FEP) and its
orollary—active inference (depicted in Fig. 1)—is a normative
ramework for inference and learning that takes the Bayesian
rain into the realm of actions and decisions (Doya, Ishii, Pouget,
Rao, 2007; Knill & Pouget, 2004). The free energy principle

nherits from variational Bayes (Beal, 2003; Winn & Bishop, 2005),
here the world model is known as a generative model (Dayan
t al., 1995; Le Roux, Heess, Shotton, & Winn, 2011; Roweis
Ghahramani, 1999). A generative model is simply a proba-

ilistic description of how causes (i.e., latent states) generate
onsequences (i.e., data or sensations).
The basic idea behind the FEP is that everything entailed by

n artefact, agent or autonomous system optimises variational
ree energy. This kind of free energy has various names. For
xample, in machine learning it is known as an evidence lower
ound, where evidence is also known as the marginal likelihood
Winn & Bishop, 2005). This means that extremising free energy
aximises model evidence, namely, the evidence for a generative
odel inherent in any observable data or sensations. This means

hat both action and perception can be neatly summarised as
elf-evidencing (Hohwy, 2016), under a variational principle of
tationary action (Friston, 2019). The action in this instance is a
ime or path integral of free energy.

Crucially, free energy is a functional (i.e., a function of a
unction) of two quantities. First, sensory data and a probability
istribution over the unobservable states generating those data.
his variational density is taken to be encoded, represented, or
arameterised by the internal states of any system, ranging from
particle to a person. On this view, perception corresponds to
hanging internal states to minimise the divergence between the
ariational density and the posterior density over latent states,
iven observations. Conversely, action can change the way that
ata or sensations are sampled—to ensure that they provide
he greatest evidence for the generative model entailed by an
gent. This dual aspect—to optimising free energy—gracefully ac-
ounts for action and perception, where both are in the service of
aximising (a variational bound on) marginal likelihood.
This may sound complicated; however, it is just a general-

sation of variational procedures that underwrite approximate
ayesian inference to include action. In other words, it subsumes
erception and planning into the same Bayesian mechanics by
reating planning as inference (Attias, 2003; Botvinick & Tou-
saint, 2012; Kaplan & Friston, 2018). Although not our focus
ere, there is a back story to the free energy principle that
574
comes from the physics of self-organisation; namely, systems
that maintain some form of non-equilibrium steady-state (Fris-
ton, 2019). In this setting, the action (time or path integral)
above corresponds to the system’s entropy. This follows because,
mathematically, the negative logarithm of model evidence is also
known as self-information in information theory—and the av-
erage self-information is entropy. This means that maximising
model evidence, on average and over time, is just a statement
that certain systems resist an increase in the entropy of their
constituent states (England, 2015; Friston, 2013; Jeffery, Pollack,
& Rovelli, 2019). So how does this help us frame inference and
learning?

In general, there are three levels of optimisation under the free
energy principle. These correspond to the unknowns (i.e., latent
causes) in the generative model. These unknowns comprise (i)
latent states generating outcomes, (ii) model parameters encod-
ing contingencies and statistical regularities and, finally (iii) the
form or structure of the generative model. Each is equipped with
variational density (i.e., a Bayesian belief) that is parameterised
by the (i) states, (ii) weights, and (iii) structure of the agent at
hand.

2.1. Inference

At the fastest timescale, inference can then be read as optimis-
ing the states (e.g., synaptic activity) to optimise variational free
energy. This is usually cast in terms of a gradient flow on free
energy. Crucially, the gradients of free energy can almost univer-
sally be cast as prediction errors. This provides a straightforward
and principled way to articulate neuronal dynamics. Furthermore,
it leads to particular schemes for free energy optimisation. For
example, with generative models of continuous states, we end
up with predictive coding schemes (Rao & Ballard, 1999; Srini-
vasan, Laughlin, & Dubs, 1982) that, in engineering, correspond to
Bayesian filters, e.g., extended Kalman and particle filters (Lee &
Mumford, 2003; Loeliger, 2002). For generative models of discrete
states and time, the equivalent message passing becomes be-
lief propagation or variational message passing (Dauwels, 2007;
Winn & Bishop, 2005; Yedidia, Freeman, & Weiss, 2005). All of
these schemes have some degree biological plausibility when
applied in a neurobiological setting (Friston, Parr et al., 2017).

2.2. Learning

The second set of unknowns are the parameters of the genera-
tive model, encoded in slowly changing weights (e.g.,
synaptic efficacy). Again, learning can be construed as a free en-
ergy optimisation process that, in the biological setting, reduces
to experience-dependent plasticity via associative or Hebbian
schemes (Friston, FitzGerald, Rigoli, Schwartenbeck and Pezzulo,
2017). Because the gradients of free energy can be cast as predic-
tion errors, this also gracefully accommodates back propagation
of errors in deep learning and neuronal networks (Amari, 1998;
George & Hawkins, 2009; Hinton, 2007; LeCun, Bengio, & Hinton,
2015; Whittington & Bogacz, 2017).

2.3. Model selection

Finally, we have the structure or form of the model, e.g., corti-
cal hierarchies in the brain (Mumford, 1992). The structure of the
model can be regarded as being optimised with respect to free
energy or model evidence via a process of Bayesian model selec-
tion; namely, selecting those models with the greatest marginal
likelihood, as assessed over an extended period of time. This
level of optimisation manifests at different scales. For example,
one can construe natural selection as nature’s way of performing
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Fig. 1. Bayesian mechanics and active inference. This graphic summarises the belief updating implicit in the minimisation of variational and expected free energy.
t provides a generic (active) inference scheme that has been used in a wide variety of applications and simulations; ranging from games in behavioural economics
FitzGerald, Schwartenbeck, Moutoussis, Dolan and Friston, 2015) and reinforcement learning (Schwartenbeck et al., 2015) through to language (Friston, Rosch, Parr,
rice and Bowman, 2017) and scene construction (Mirza, Adams, Mathys, & Friston, 2016). In this setup, discrete actions solicit a sensory outcome that informs
pproximate posterior beliefs about hidden or external states of the world – via minimisation of variational free energy under a set of plausible policies (i.e., perceptual
nference). The approximate posterior beliefs are then used to evaluate expected free energy and subsequent beliefs about action (i.e., policy selection). Note a subtle
ut important move in this construction: the expected free energy furnishes prior beliefs about policies. This is interesting from several perspectives. For example,
t means that agents infer policies and, implicitly, active states. In other words, beliefs about policies – encoded by internal states – are distinct from the active
tates of the agent’s Markov blanket. In more sophisticated schemes, agents infer hidden states under plausible policies with a generative model based on a Markov
ecision process. This means the agent predicts how it will behave and then verifies those predictions based on sensory samples. In other words, agents garner
vidence for their own behaviour and actively self-evidence. In this setting, variational free energy reflects the surprisal or evidence that a particular policy is being
ursued. In sum, this means the agent (will appear to) have elemental beliefs about its enactive self — beliefs that endow it with a sense of purpose, in virtue
f the prior preferences that constitute risk. A key insight from simulations is that the form of the generative model can be quite different from the process by
hich external states generate sensory states. In effect, this enables agents (i.e., particles) to author their own sensorium in a fashion that has close connections with
coniche construction (Bruineberg & Rietveld, 2014). Please see Friston, Parr and de Vries (2017) for technical details and Friston, Parr et al. (2017) for a discussion
f how the implicit belief updating might be implemented in the brain.
c
t

2

m
c
o
c
s
p
d
m
t
2

n
e
a
B
(
t
R

ayesian model selection—i.e., accumulating evidence about an
coniche by selecting phenotypes that have high adaptive fit-
ess or marginal likelihood (Campbell, 2016; Frank, 2012). At a
omatic timescale, in biology, this could be regarded as neurode-
elopment with (epigenetic) hyperpriors over model structure.
n cognitive science, this kind of optimisation process is often
eferred to as structure learning (Tenenbaum, Kemp, Griffiths,
Goodman, 2011; Tervo, Tenenbaum, & Gershman, 2016). In
achine learning, structure learning is closely related to algo-

ithmic learning and, perhaps, meta-reinforcement learning (Ishii,
oshida, & Yoshimoto, 2002). In statistics, the exploration of
ifferent model structures is often cast in terms of nonparametric
ayes (Goldwater, 2007). In all instances, the way in which a new
tructure or model is scored corresponds to the model evidence.
Generally speaking, the optimisation in terms of inference,

earning and model selection go hand-in-hand and contextualise
ach other. In the variational setting of the free energy principle,
his is necessarily so—because optimisation rests upon a factori-
ation of the variational density over the three different levels
f unknowns, which means that each level provides empirical
riors for the level below. For example, Bayesian model selection
etermines which parameters are in play, while learning some
odel parameters optimises inference about hidden or latent
tates. With this integrative framework in place, we will now
575
onsider three cardinal issues that will emerge in various guises
hroughout the remainder of our treatment.

.4. Inference and precision

Above, we divided optimisation into inference, learning and
odel selection. However, a finer grained analysis of inference
alls for a consideration of the representation of uncertainty. If
ne subscribes to the free energy principle, then optimisation
orresponds to optimising posterior or Bayesian beliefs (or their
ufficient statistics). This means that it is not sufficient to use
oint estimates of various quantities, the precision or inverse
ispersion (i.e., negentropy) of these beliefs also has to be opti-
ised. Sometimes this is a more difficult problem that estimating

he average or expectation of an unknown (Clark, 2013a; Hohwy,
013).
In engineering, this would be like optimising the Kalman gain;

amely, the precision afforded prediction errors in updating state
stimation. In neurobiology, this is often construed in terms of
ttentional selection; affording more or less precision to various
ayesian beliefs at different levels in a hierarchical world model
Ainley, Apps, Fotopoulou, & Tsakiris, 2016; Auksztulewicz & Fris-
on, 2015; Brown, Adams, Parees, Edwards, & Friston, 2013; Kok,
ahnev, Jehee, Lau, & de Lange, 2012; Limanowski, 2017).
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We highlight the importance of precision given its central role
in balancing the influence of sensory evidence and prior beliefs
during Bayesian belief updating. This has found a particularly
powerful explanatory role in many areas of cognitive science
and computational psychiatry (Nagai, 2019). For example, a large
range of neurological and psychiatric syndromes can be cast in
terms of a failure to attenuate sensory precision, and its conse-
quences. This is a particularly important perspective because the
neurobiological encoding of precision may lie in the postsynap-
tic gain or various neuronal populations encoding prediction or
prediction errors. In turn, the biological instantiation of preci-
sion control may implicate neuromodulatory transmitter systems
associated with many neuropsychiatric conditions (e.g., autism,
schizophrenia, depression, and Parkinson’s disease). Attention as
precision should be distinguished from salience (Parr & Friston,
2019), in the sense that salience is a kind of affordance that
speaks—not to pure sensory attention and attenuation—but the
implications for how to act. This brings us to our second point.

2.5. Active inference

Above, we have considered optimising the generative model to
best explain observed sensory inputs or data. However, from the
point of view of active inference, under the free energy principle,
these optimisation processes are just there to infer what the
artefact should do next. This leads to a rather subtle extension
of the free energy principle, where there is an additional set of
unknowns; namely, the sequences of actions or policies to be
pursued. In turn, Bayesian beliefs over policies are optimised with
respect to the free energy expected under each action sequence.
Actions can then be selected from these particular posterior be-
liefs in the usual way (Attias, 2003; Baker, Saxe, & Tenenbaum,
2009; Botvinick & Toussaint, 2012; Millidge, 2019).

The interesting twist here is the nature of this expected free
energy, conditioned upon a policy or plan. Free energy (i.e., log
model evidence) per se, can always be written down as accuracy
minus complexity. This decomposition has an interesting inter-
pretation when we consider the expected free energy under the
predictive posterior over outcomes, given a particular plan. In this
setting, inaccuracy becomes ambiguity and complexity becomes
risk. In brief, this means that optimising expected free energy
corresponds to minimising the risk of deviating from expected
or preferred outcomes while, at the same time, reducing the am-
biguity (i.e., conditional uncertainty about outcomes given their
causes). Intuitively, this means that there are both pragmatic (ex-
trinsic) and epistemic (intrinsic) imperatives for good plans that
resolve the exploration–exploitation dilemma (Cohen, McClure, &
Yu, 2007; Friston et al., 2015; Schmidhuber, 2006; Still & Precup,
2012; Sun, Gomez, & Schmidhuber, 2011; Tschantz, Baltieri, Seth,
& Buckley, 2020).

When one considers inference as planning from this
quintessentially enactive perspective, one moves away from
conventional machine learning in two senses. First, we need
generative models of the future that entertain counterfactual
outcomes under various policies. This means that there is a tem-
poral depth to the generative models that are required to explain
the behaviour (Friston, Rosch et al., 2017; Rikhye, Guntupalli,
Gothoskar, Lázaro-Gredilla, & George, 2019). Second, we bring of
overt action—such as selecting which data to mine or sample—
to the table. Additionally, one could regard the deployment of
precision as a form of covert action that can be construed in terms
of attention (Parr & Friston, 2019). There are many fascinating
aspects to this perspective on active inference or perception that
we will touch upon in later sections.

One might ask: what is the relationship between free energy
minimisation—as an existential imperative—and the formulation
576
of planning as a minimisation of expected free energy? In one
sense, the latter is a natural consequence of the former: heuristi-
cally, it has been argued—via a reductio ad absurdum argument—
that agents who do not act to minimise the surprise expected
following an action cannot exist, if existence is a minimisation
of surprise. A more formal argument would appeal to a varia-
tional principle of least action, in which the trajectories of action
minimise a path integral of expected free energy in the future.
This begs the question, is this a necessary feature of any self-
organising system? To a certain extent, this is an outstanding
question; however, there is a direct relationship between the
(log) probability of an action and expected free energy, which
depends on the degree to which actions minimise the ambiguity
of outcomes, given their causes (Friston, Da Costa, Hafner, Hesp,
& Parr, 2021). This admits the possibility that certain systems
(like people) engage in a precise and unambiguous exchange with
their environment—and look as if they are planning deep into
the future. Conversely, other simpler systems (like thermostats
and viruses) minimise surprise in the short-term without actively
minimising ambiguity. In turn, this raises interesting questions
about how one might quantify the difference between these kinds
of systems, in terms of their information geometry and density
dynamics.

2.6. Structure learning and complexity

As noted above, log model evidence can be decomposed into
accuracy and complexity. This is an important consideration that
provides a formal link with things like algorithmic complexity
and universal computation (Hutter, 2005). In brief, the complexity
of a generative model corresponds to the Kullback–Leibler di-
vergence between the posterior and prior. In other words, the
effective number of parameters or degrees of freedom that are
required to accurately account for some data—and its sampling.
Optimising free energy, therefore, puts pressure on finding the
simplest explanations and models (Schmidhuber, 2010). This is
exactly the same idea that underwrites the minimisation of al-
gorithmic complexity in the setting of minimum description or
message length schemes (MacKay, 1995; Wallace & Dowe, 1999).
Crucially this imperative applies to inference, learning and model
selection. This means that the best models—that generalise and
have a high cross validation accuracy—are the simplest models.

One might ask how does one simplify a model? In neurobi-
ology, this would be seen as a form of synaptic regression or
pruning to remove redundant model parameters (Tononi & Cirelli,
2006). More generally, the removal of model parameters and
associations defines the structure of the model. Perhaps one of the
most important examples here is at the heart of deep learning and
hierarchical generative models in the brain. This is meant in the
sense that a hierarchy is defined in terms of which connections or
conditional dependencies are absent. In other words, a hierarchy
is the simply the best explanation of how certain data or sensory
streams are generated.

Another cardinal aspect of model structure—that conforms
to the minimisation of complexity—emerges from factorisation.
For example, complexity can be reduced enormously if one can
identify conditional dependencies; such that only the marginal
distributions need to be encoded or parameterised. A clear ex-
ample of this is the separation of ‘what’ and ‘where’ in the brain
into two hierarchical streams (Friston & Buzsáki, 2016; Ungerlei-
der, 1994). This may follow from the fact that knowing where
something is does not tell you what it is and vice versa. Clearly,
one has to integrate marginal beliefs of this sort, when generating
predictions of sensory input, which speaks to nonlinear inter-
actions of various sorts in the brain—or nonlinearities in deep
learning schemes (Lin, Tegmark, & Rolnick, 2017). Another key
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erspective on simplicity of structure is the notion of functional
egregation, modularity and modular neuronal codes (O’Keefe &
ecce, 1993; Zeki & Shipp, 1988). On one view, modular or seg-
egated functional specialisation is just a statement of encoding
eliefs about the causes of sensations, using a set of well-chosen
arginals (Parr, Sajid and Friston, 2020). In this sense, many
uestions about the neural code—and attending architectures—
an be cast as finding the most parsimonious, minimally complex
orm of generative model that is apt to explain our sensations.

.7. Summary of theoretical framing of world modelling

On a final note, it will be apparent that the story above only
olds if we commit to optimising beliefs or probability distri-
utions, as opposed to point estimators or expectations. This
uggests that in terms of artificial intelligence, only schemes that
xplicitly represent uncertainty and beliefs (such as variational
utoencoders) will enjoy the full benefits of being able to en-
age in active inference, planning and, more possibly, artificial
onsciousness. Most importantly, these causes must include the
gent herself, which speaks to a special kind of active inference
hat may be necessary for understanding others, the self or,
ndeed, building conscious artefacts.

. Theoretical and computational interpretations of human
ctions

Action, in the context of the Free Energy Principle falls out as
corollary, known as Active Inference, as simply another, albeit
erhaps most important way, to minimise long term surprise.
n many machine learning approaches to action selection, in the
ontext of ‘world models’ (Ha & Schmidhuber, 2018) typically ‘the
orld’ or environment in which an agent sits (for example a car
acing game or game of doom), the artificial agent designed to
imic human behaviour has two computational goals with dis-

inct algorithmic architectures (Ha & Schmidhuber, 2018; Hafner
t al., 2019). The first computational unit aims to learn and repre-
ent the statistical structure of the sensory world (e.g., how pixels
epresenting a racetrack can change over time with bends in the
oad), while the second policy-making unit—or engine—abuts the
orld model and aims to perform actions that maximise some
ost function, typically a reward structure describing preferred
utcomes.
Under active inference the normative model of action in a

iven environment comprises, effectively, only one unit that acts,
earns and infers in concert (Friston, FitzGerald, Rigoli, Schwarten-
eck, & Pezzulo, 2016). Estimates of the free energy are com-
utable given a generative model over different sorts of time
onsiderations, as a process of comparing predictions from the
enerative model with the outcomes of actions in the given
nvironment, for example, by checking whether an action pro-
uces the expected sensory feedback (Friston, Samothrakis and
ontague, 2012). In other words, actions serve the use of infor-
ation from the real world, whereby models of human behaviour
nd action only serve to minimise free energy (Adams, Shipp, &
riston, 2013): by both adjusting parameters of the world model,
nd by choice of a set of actions that it believes will be associated
ith the lower prediction error.

.1. Action under hierarchical dynamic and nonlinear world models

Two specific forms of generative models—for the lived
nvironment—are generally considered and imbue different sorts
f actions. Early work focused on nonlinear hierarchical dy-
amical systems models of environments, where actions reacted
nline, in continuous time, to the immediate sensory data and
577
represented reflex arcs in central nervous system (Adams et al.,
2013). This sort ‘predictive coding’ account of action dynamics
has been used to model mainly proprioceptive (Adams, Perrinet,
& Friston, 2012) human behaviours including the discharge of
motor sequences such as those applied to hand writing (Friston
et al., 2012). Here, actions are driven by gradients of a free energy
functional over latent states. These hierarchical dynamic ‘scaffold’
models (Friston, Daunizeau, & Kiebel, 2009) comprised dynamic
states and causes in the environment, as well as slower evolving
states representing the certainty or precision of those state esti-
mates and finally even slower evolving parameters that governed
the form of the dynamical state space (Friston, 2008). These mod-
els highlighted that action resulted directly from inference and
did not operate in a distinct ‘action selection’ computational unit.
Specifically, it was shown that the tripartition of states (a mean
field partition) could directly impose specific types of actions
linked to particular neurobiological substrates. Importantly, in
an agent that both optimises its model and changes its action
plans, one overarching cost function can reveal unintuitive con-
sequences and explanations for human behaviour. These may be
particularly useful in the context of understanding neurological
and psychiatric disorders.

In mimicking human motor control, for example,
Parkinsonian-like movements emerged as a failure of inference
on the precision of sensory signals (Friston, Shiner et al., 2012).
Taking the view of Dopamine as a neuromodulator responsible
for precision weighting on sensory contexts, and action as the
minimisation of proprioceptive prediction errors, a cued, mo-
tor sequence task simulation revealed that sensory signals with
affordance (could be acted upon) could be tuned to different
levels of precision and lead to different types of motor patterns.
In this theoretical work (Adams et al., 2012) as a counterpoint
to dopamine as a reward prediction error (FitzGerald, Dolan
and Friston, 2015; Pessiglione, Seymour, Flandin, Dolan, & Frith,
2006), tonic dopamine levels were simulated as a controller of
bottom-up sensory information—enhancing the sensory predic-
tion errors associated with afforded states of the environment by
enhancing the precision of expected sequences. Interestingly, to
simulate Parkinsonian-like movements and depleted dopamine,
low level sensory precision was diminished, resulting in an over-
reliance on higher order model dynamics that predicted (incor-
rect) sequence transitions. Moreover, specific deficits emerged
— namely perseveration to an old sequence of motor commands,
once a new cued set of actions had been presented (Friston,
Shiner et al., 2012). In a study of patients with Parkinson’s disease
on and off levodopa medication, these specific deficits were later
observed (Galea, Bestmann, Beigi, Jahanshahi, & Rothwell, 2012).
In trials where action reprogramming was required, patients
off levodopa displayed a reaction time deficit, similar to the
perseverative effects observed in silico in their motor patterns.
However, in the context of unpredictable sequences, rare events
that required action reprogramming did not result in such a
deficit, in line with model predictions (Galea et al., 2012).

3.2. Explore or exploit, action under probabilistic Markovian world
models

The second type of generative model that has been used to
represent the world in decision-making contexts, where actions
have a longer temporal horizon, are partially observable Markov
decision processes (Mirza et al., 2016). Here, actions are dis-
crete and policy selection (a series of actions into the future) is,
again, adjudicated based upon the Free Energy functional such
that uncertainty in the environment is resolved through actions
while goals are also attained through actions. This ‘future-looking’
Free Energy can be computed as the Expected Free Energy and
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omprises epistemic value and extrinsic value as an emergent
eature.

In terms of human behaviour in cognitive neuroscience, this
rocess model (the variational updates) has been theorised to
epresent neural architectures more associated with abstract
lanning including hippocampal and prefrontal interactions with
he basal ganglia (Parr, Rikhye, Halassa and Friston, 2020). The
ecision-making schema also encapsulates, for free, the explore–
xploit trade off (Sales, Friston, Jones, Pickering, & Moran, 2019).
n a study of human players of the arcade game ‘doom’ (Cullen,
avey, Friston, & Moran, 2018), the explore/exploit trade-off,
mplicit under active inference, was exposed. In aiming to match
mpirical human behaviours to computational agents, two agents
ere simulated with identical learning capacities but differing
olicy selection criteria (Cullen et al., 2018). One agent computed
he full expected free energy which comprised the expected log
odel evidence and the Kullback Leibler divergence from the
osterior of the state given an outcome to the expected state.
hus, if the states of the game were all known, without having to
bserve outcomes, this KL term would be zero and no exploration
ould be required. The model evidence, in turn, was determined
y the prior belief that the agent would ‘win the game’. Here
inning was constructed in a simple state–space model of the
oom environment as the state of being in front of the monster
nd firing, and self-evidencing comprises actions that attain this
oal. It was demonstrated that, like human performers, the full
ree Energy agent tends to remain in the game for longer in
nitial trials. This is because the agents first explored to learn
he structure of the world as illustrated in Fig. 2. In the human
layers, this exploration phase was shorter however, given that
nly button press response mappings were only amenable to
ncertainty. Crucially, the agent that just maximised extrinsic
alue—the expected log evidence or priors of winning, poorer per-
ormance, farther away from human play was observed (Cullen
t al., 2018).
Unlike simple move-point-score arcade games, realistic hu-

an behaviour typically requires both continuous and discrete
tates. When considering these ‘worlds’ both generative models
an be combined, and have been built (for example in the con-
ext of reading (Friston, Rosch et al., 2017) and speech compre-
ension) to demonstrate action in the context of understanding
orlds. Interestingly, formulating these mixed models requires a
upposition of hierarchical levels—which goes first—the discrete
r continuous domains? Considerations of cortical neuroanatomy
nd sensory architectures can reveal a straightforward world
odel through Free Energy stick-a-brick.

.3. Action and its emergent timing in mixed world models

Mixed-models of continuous and discrete states of the world
ave been formulated such that sequences of discrete states of
he world predict specific dynamic trajectories in continuous
ime (Friston, Parr et al., 2017). Under this scheme, reading has
een simulated as a prototypical human behaviour. The process
f reading requires, simply, the action of our eyes to evince
roprioceptive outcomes (position of the eyes) as well as ex-
eroceptive outcomes (what is seen) (Mirza, Adams, Mathys, &
riston, 2018). In previous Free Energy accounts, saccadic eye-
ovements were simulated under hierarchical dynamic models

o evince evidence for a particular visual object, e.g. to ‘see’ a
ace where priors on contrast at particular locations in the object
eyes, nose, etc.) could be supplied (Friston, Adams, Perrinet and
reakspear, 2012). Later a discrete formulation using MDPs was
pplied to visual search such that categorisation of visual scenes
lso required eye movements but applied them in sequence to
isambiguate ‘words’ that comprised multiple scene components
Mirza et al., 2016).
578
By combining the MDP and the continuous dynamical model
of visual inputs a deep temporal structure emerges such that
‘reading’ involves a high-level policy of semantic categorisation
of distinct sentences, where a policy at a level below prescribes
eye movements through words, and the actions below words re-
quire the final continuous domain eye-movement that recognises
characters in the word. The simulation (Friston, Parr et al., 2017)
accounts for reading phenomena such as word skipping (Him-
melstoss, Schuster, Hutzler, Moran, & Hawelka, 2020; Rayner,
Slattery, Drieghe, & Liversedge, 2011), for example once evidence
has been accumulated for a subset of sentences, to disambiguate
those sentences, only the remaining disambiguating word needs
a fixation event. Importantly, the Free Energy of the whole mixed
scheme is internally consistent by using the predicted outcomes
of the higher discrete level as prior beliefs or hypothesis on
the pixel-based continuous representations below. Then, feeding
back from the continuous level are a Bayesian Model Comparison
of the visual input predicted by each of these prior models —
with evidence accumulating for one or another hypothesis. This
requires the higher levels to wait for evidence from lower levels
– i.e., the highest decision-making level waits until words are
selected at the level below, which then waits to test whether
the characters are predicted with high posterior probability. Thus,
emerges a natural temporal structure (Friston, Rosch, Parr, Price,
& Bowman, 2018) where depth represents both high level seman-
tics and higher orders of time. In turn the process scheme returns
firing patterns that resemble pre-saccadic delay period activity in
the prefrontal cortex, as well as event-related potentials akin to
those observed in inferotemporal cortex.

3.4. Summary of theoretical and computational interpretations of
human behaviour

In this section we have reviewed action under both discrete
and continuous schemes and in mixed models. Overall, the Ac-
tive Inference framework provides one overarching normative
goal of behavioural outputs, while providing for distinct process
models—depending on ‘the world’ at hand. This involves, in turn,
distinct computational instantiations of Free Energy minimisation
in predictive codes and variational message passing. Whether
the demonstrations by these artificial agents truly mimic human
behavioural control may require both more specific experimental
settings and large-scale environments that test at scale.

4. Theoretical and computational interpretations of cognitive
development

Development is a long-term process that involves learning
of various cognitive functions. Especially in the first few years
of life, infants and toddlers undergo significant changes in their
perception, action, and social capabilities. An open question is
what neural mechanisms drive cognitive development.

Neuroscience and computational studies have suggested that
the free energy principle (Friston, 2010; Friston, Kilner, & Har-
rison, 2006) and predictive coding or processing (Clark, 2013b;
Rao & Ballard, 1999) provide a unified account for cognitive
development (Nagai, 2019). Infants and toddlers learn to ac-
quire world models (or internal models) to perceive and act on
the world through the minimisation of prediction errors. The
theory of predictive coding can address two important aspects
of cognitive development: temporal continuity and individual
diversity (Nagai, 2019). Temporal continuity refers to develop-
mental dependencies between cognitive abilities. For example,
social cognition requires non-social sensorimotor abilities to in-
teract with the environment and other persons. Individual diver-
sity, in contrast, refers to qualitative and quantitative differences
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Fig. 2. Learning how actions affect outcomes. State transition matrices shown here corresponding to the fire, move left, move right actions at game trials t = 4, t =

16, t = 64, and t = 128 under the free energy–minimisation (left) and extrinsic value only (right) based cost function. Each matrix represents the agent’s belief
about how the environment will change after making the respective action. The uniformity of the matrix shows initial uncertainty (uniform probability) over state
transitions. After 128 epochs of learning, the transition matrices of the free energy agent have converged to those of the optimised agent presented in the MDP. The
transition matrix of the value-alone agent is much sparser by comparison, reflecting a lack of knowledge about the environmental contingencies.
in cognitive abilities between individuals. For example, persons
with developmental disorders show different characteristics and
temporal dynamics in cognitive capabilities compared to those
of typically developing individuals. The following sections pro-
vide theoretical and computational interpretations of cognitive
development based on predictive coding.

4.1. Continuous development based on prediction error minimisa-
tion

How do infants learn to communicate with others? What is
the origin of social intelligence? Neuroscience studies suggest
that internal models for sensorimotor behaviours play an impor-
tant role in social interaction. Mirror neuron systems (Iacoboni
& Dapretto, 2006; Rizzolatti, Fadiga, Gallese, & Fogassi, 1996;
Rizzolatti, Fogassi, & Gallese, 2001) are found as a neural basis for
social intelligence, which links the abilities of action perception
and action production through internal models. The discovery of
mirror neuron systems has inspired researchers to model them
and to reveal the developmental origin of mirror neuron systems.
A computational theory of cognitive development suggests that
two ways of minimising prediction errors lead to the emergence
of mirror neuron systems and social cognition: updating internal
models and generating actions through active inference (Nagai,
2019).

4.1.1. Sensorimotor abilities acquired through internal model learn-
ing

In order to develop social abilities, infants first have to learn
to control and recognise their body. The process of updating in-
ternal models is suggested to enable infants to acquire such basic
sensorimotor functions. Humans are born with immature internal
models and thus need to learn the models through their sensori-
motor experiences. For example, the abilities of self-recognition
and self-other discrimination, which are cornerstones of cognitive
579
development, are considered to develop through the learning of
internal models. Self-executed actions are detected as (nearly)
perfectly predictable events, whereas actions produced by oth-
ers are hard to predict. The certainty of predictions by internal
models can be utilised to discriminate the self from others. Goal-
directed actions such as reaching for and manipulating an object
are also acquired by internal models. Exploratory behaviours
generated by immature internal models enable infants to experi-
ence contingent relationships between multiple sensory modali-
ties. Minimising prediction errors through explorations leads to
the acquisition of sensorimotor coordination for goal-directed
actions.

4.1.2. Emergence of social cognition based on active inference
Once internal models are trained, they are applied to so-

cial contexts. Social cognitive abilities are expected to emerge
through the process of generating actions to minimise prediction
errors. Internal models learned through infants’ sensorimotor
experiences are applied to recognise and predict actions gener-
ated by other persons. In contrast to infants’ own sensorimotor
behaviours, certain prediction errors are detected from others’
actions because the internal models learned using only infants’
sensorimotor experiences cannot perfectly predict others. The
mechanism of active inference then triggers infants’ actions to
minimise errors. These actions alter the state of other persons and
the environment, which is regarded as the emergence of social
interaction. Note that actions at this stage are not yet socially mo-
tivated but are triggered to minimise prediction errors. Additional
mechanisms, such as social feedback, are necessary to promote
the development from proto-social to social cognition.

4.1.3. Computational interpretations of social cognitive development
The above hypothesis has been examined in several com-

putational experiments. Copete et al. (2016) proposed a deep
autoencoder that can acquire the function of mirror neuron sys-

tems (see Fig. 3). The network, which was pre-trained through



K. Friston, R.J. Moran, Y. Nagai et al. Neural Networks 144 (2021) 573–590

a
a
c
v
e
t
o
m
r

h
2
t
r
c
g
t
m
a
m

d
s
F
t
l
s
t
i
i
S
i

4

W
A
d
t
b

o
o
d
l
c

Fig. 3. Development of a mirror neuron system based on predictive coding.
Source: Modified from Copete, Nagai, and Asada (2016).
robot’s motor experiences, was applied to estimate the goal of
nother robot. Their key idea was that the network can recall the
orresponding sensorimotor representations during action obser-
ation, where only the visual signal is obtained as input. Their
xperiment demonstrated that the network trained through ac-
ion generation outperformed the network trained through action
bservation. Multimodal representations acquired in the internal
odel enabled the robot to better estimate the goal of another

obot as do mirror neuron systems.
This model was further extended to generate altruistic be-

aviours. Baraglia et al. (Baraglia, Cakmak, Nagai, Rao, & Asada,
017; Baraglia, Nagai, & Asada, 2016) developed a robotic system
hat produced ‘helping actions’ based on active inference. Their
obot—on observing a person failing to achieve a task—could ac-
omplish the goal of the observed task as if it was the robot’s own
oal. A discrepancy between the observed state (i.e., a failure of
he task) and the robot’s predicted state (i.e., a success of the task)
otivated the robot to minimise prediction errors by executing
relevant action. Proto-social behaviours emerged without social
otivation.
Horii, Nagai, and Asada (2016, 2018) proposed a multimodal

eep belief network that enabled a robot to acquire emotional
tates and to imitate other person’s emotions like infants (see
ig. 4. Their key idea was that the process of minimising predic-
ion errors enables the network to self-organise emotions in the
atent space and to produce imitative behaviour using the recon-
tructed sensory signals. Their experiments demonstrated that
he robot developmentally differentiated emotions as observed in
nfants and that the function of mirror neuron systems acquired
n the network improved the estimation of other’s emotions.
imilarly, to the previous experiments, perceptual and active
nference played an important role in social development.

.2. Individual diversity caused by aberrant predictive processing

Some children follow different developmental trajectories.
hat neural mechanisms cause their atypical development?
utism spectrum disorder (ASD) is a type of neurodevelopmental
isorder characterised by atypical social communication and in-
eraction and a preference for restricted and repetitive patterns of
ehaviours and interests (Association, 2013; Baron-Cohen, 1995).
Neuroscience and first-person studies suggest that weakness

r difficulties in integrating information might be a core disease
f ASD (Happé & Frith, 2006; Kumagaya, 2015). They argue that
ifficulties in social communication appear as a secondary prob-
em of atypical perception and action. The theory of predictive

oding provides further insight into the neural mechanisms of

580
ASD. Imprecise prior predictions (i.e., hypo-priors) are hypothe-
sised to account for cognitive characteristics of ASD (Brock, 2012;
Pellicano & Burr, 2012; Van de Cruys et al., 2014).

4.2.1. Hypo-priors and hyper-priors as potential causes of ASD
It is known that individuals with ASD often suffer from hy-

peresthesia (Brown, Tollefson, Dunn, Cromwell, & Filion, 2001;
O’Neill & Jones, 1997). They show increased sensitivity to sen-
sory stimuli such as vision, audio, and touch. The hypo-priors
hypothesis suggests that inaccurate prior predictions make peo-
ple with ASD highly sensitive to sensory signals (Brock, 2012;
Pellicano & Burr, 2012; Van de Cruys et al., 2014). In contrast,
some individuals with ASD show hypoesthesia (Brown et al.,
2001; O’Neill & Jones, 1997). Their sensations seem to be reduced,
and no or weak behavioural responses to stimuli are observed.
Notably, even the same person exhibits both hyperesthesia and
hypoesthesia depending on sensations and/or contexts.

The predictive coding account for ASD has been extended
to cover the diversity within ASD as well as differences be-
tween ASD and typical development. Nagai (2019) suggested that
hypo-priors and hyper-priors explain seemingly inconsistent or
contradicting cognitive characteristics of ASD. On one hand, lower
precision in prior predictions (i.e., hypo-priors) makes the brain
strongly rely on sensory signals. Hypo-priors indicate that the
brain has immature or inaccurate internal models and thus relies
strongly on sensory signals. Too strong a reliance on sensory sig-
nals results in hyperesthesia and poor generalisation capabilities
as observed in ASD. On the other hand, a higher precision of prior
predictions (i.e., hyper-priors) is hypothesised to produce differ-
ent types of ASD. Hyper-priors intimate that the brain is highly
confident in predictions. Overly precise prior predictions atten-
uate the influence of sensory signals and bias active inference
towards top-down predictions and intentions. Hypoesthesia and
repetitive behaviours might be caused by predictive processing
with aberrant precision encoding of this sort.

The above hypothesis provides a new view of the spectrum of
cognitive development. The phenomenology of people with ASD
are explained by two extremes of aberrant predictive processing
(i.e., hypo-priors and hyper-priors). In contrast to the traditional
view of the ASD spectrum, typical development is considered to
be located in the middle of the spectrum, where people have
properly balanced predictive processing. This view implies that
even if people with ASD exhibit different difficulties in cognition,
the underlying neural mechanisms might share the common
characteristics of aberrant predictions. The contrary is true for
their similarities in cognitive behaviour caused by distinct neural
processing. The theory of predictive coding sheds light on the

diagnosis of developmental disorders and their treatment.
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Fig. 4. Development of emotion and its imitation through perceptual and active inference.
Source: Modified from Horii et al. (2016, 2018).
.2.2. Computational interpretations of developmental individuality
Philippsen and Nagai (2020, in press), investigated how mod-

fications of prior predictions affect the learning and behaviour
erformance of neural networks (see Fig. 5). They designed a re-
urrent neural network based on predictive coding with Bayesian
nference and trained it to perform the representational drawing
f multiple objects. Their experiments, where a parameter of
rior precision was controlled, revealed different effects of hyper-
nd hypo-priors. The networks with hyper-priors often misin-
erpreted the intended object and stuck to preferred patterns
egardless of the input, whereas the networks with hypo-priors
cribbled and failed in completing drawings. A close analysis
f the internal representations of the networks revealed that
earning with hyper- and hypo-priors resulted in undifferentiated
tronger attractors and no/weak attractors, respectively. Only
he networks with normal priors succeeded in acquiring attrac-
ors differentiated for different objects and thus completing the
epresentational drawing of objects.

The above experiment was replicated with human children to
erify the hypothesis. Philippsen, Tsuji, and Nagai (2020) con-
ucted the same drawing experiment with children aged two
o eight years old. They found that younger children were too
mmature for representational drawing, whereas older children
ere better at drawing. The ability to complete missing parts
ignificantly improved with age. Furthermore, younger children
howed significant differences between individuals. Some young
hildren performed scribbling and tracing as observed in hypo-
rior networks, while other young children repetitively drew
referred patterns similar to hyper-prior networks. This experi-
ent empirically supports the predictive coding hypothesis for

ndividuality.

.3. Toward open-ended development of world models

This section presented theoretical and computational inter-
retations of cognitive development. The important hypothesis is
hat the theory of predictive coding accounts for both temporal
ontinuity and individual diversity of development. Infants and
oddlers learn to acquire world models through sensorimotor
xperiences and to communicate with others using the models.
erceptual and active inference plays a key role in perception, ac-
ion, and social interaction, where aberrant processes of inference
ould lead to developmental disorders.
To advance our understanding—and open-ended development

f world models in humans and robots—the following issues
ould be addressed: First, hierarchical predictive processing is
ecessary for sophisticated cognitive functions. Lower levels to
rocess local and short-term information must be integrated
ith global and long-term information processed in higher lev-
ls. Predictions from higher-levels control activities in lower-
evels, while prediction errors from lower levels are used to
581
update higher levels. Open-ended cognitive development can be
achieved by acquiring hierarchical processes of predictive coding.
Second, intrinsic motivations that drive continuous development
should be integrated. Current robot experiments are still limited
to specific tasks, although developmental dependencies between
non-social and social cognition were demonstrated. A criterion
to minimise prediction errors can be used for designing moti-
vational mechanisms for open-ended learning (Oudeyer, 2007).
Third, the question as to why and how the precision of prior pre-
dictions differs should also be addressed. Although computational
studies demonstrated that modifications in the prior precision
account for individual and developmental diversities, it is not
fully understood yet what neural mechanisms control prior pre-
cisions. Recent neuroscience and psychiatry studies suggest that
neurotransmitters such as dopamine and serotonin might be re-
lated to the precision control (Friston, Shiner et al., 2012; Sterzer
et al., 2018). Further computational studies that examine the
roles of neurotransmitters are necessary to better understand the
predictive processing and its disorder in cognitive development.

5. World model learning and inference in robotics

5.1. Cognitive systems and world models

Natural Intelligence is not a single-purpose and task-oriented
cognitive module developed by an external designer (e.g., a pat-
tern recognition system), but a phenomenon emerging through
organising sensorimotor information flow. A brain of an embod-
ied system interacting with its environment (i.e., the world) codes
the information to predict the observations. Therefore, world
model learning is essential for understanding cognitive systems
in the real world. A world model is about a subjective world for
an agent; autonomous agents (e.g., a human and an autonomous
robot) cannot directly observe their state but should infer its
latent state based on its history of sensorimotor information
(i.e., observations of its subjective viewpoint). Von Uexküll, who
established biosemiotics, carefully distinguished umwelt from the
objective environment (i.e., the world; Von Uexküll, 1992). Bio-
logical systems have cognitive limitations, and they can only ob-
serve information obtained through their sensorimotor systems.
Therefore, a world model is an umwelt model.

From an engineering viewpoint, advancement in the field of
artificial intelligence has provided numerous intelligent func-
tions, such as visual recognition, speech recognition, and ma-
chine translation systems. However, the functions have been
trained separately from an embodied cognitive system living in
a physical and social environment. The human brain evolves
and develops through sensorimotor interaction with its envi-
ronment for survival. Developing a cognitive system that can
behave autonomously and learn a wide range of cognitive capa-
bilities in the real-world environment is an actual challenge in
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Fig. 5. Diverse drawing abilities generated by modifications of precision of prior predictions.
Source: Modified from Philippsen and Nagai (in press).
he field of artificial intelligence. This argument results in the
se of robots. Possessing a body as that of a robot allows a
omputational cognitive system to interact with its environment
sing its sensorimotor system.
The extent to which the world model learning approach can

xplain human cognitive development is a challenge. Human cog-
ition involves low-level cognitive capabilities, such as sensory
erception and motor action, which are mainly related to physical
nteractions, and high-level cognitive capabilities, such as plan-
ing and language, related to social interactions. However, they
re intertwined in many cases. Considering the child language
cquisition process, we notice that the process is also performed
hrough interaction with their real-world environment. More-
ver, such a learning process inevitably involves a multimodal
ensorimotor experience. For example, when a child learns the
exicon of a fruit (e.g., apple), the cognitive process of the lexical
cquisition involves sensorimotor interactions, including observ-
ng, grasping, and biting the object. From the viewpoint of a prob-
bilistic generative model, learning a world model corresponds to
odelling sensorimotor observations by inferring local and global

atent variables. A variety of integrative, multimodal machine
earning systems—representing concept formation (i.e., represen-
ation learning and language acquisition)—has been developed in
he field of symbol emergence in robotics (Taniguchi et al., 2016,
019).

.2. Symbol emergence in robotics

Symbol emergence in robotics is regarded as a part of cogni-
ive and developmental robotics, and it is a research field in which
n integrative cognitive system that enables a robot to learn
otor skills, form multimodal representations, and acquire lan-
uage from real-world experience has been explored. For exam-
le, SpCoSLAM is a probabilistic generative model that integrates
apping, localisation, multimodal spatial concept formation, and

exical acquisition (Taniguchi, Hagiwara, Taniguchi, & Inamura,
017, 2020a). Without a pre-existing dictionary, a robot with Sp-
oSLAM can discover words in an online manner. The discovered
ords are always grounded in relation to spatial concepts that are
rganised through the sensorimotor information that the robot
xperiences; that is, the symbols are grounded. Fig. 6 shows the
orld or generative (probabilistic graphical) model that under-
rites SpCoSLAM. This shows that SpCoSLAM is trained to predict
ultimodal sensorimotor information, including speech, visual,
istance sensor, and odometer information. All these sensations
onvey sensorimotor information that a robot can obtain single-
andedly. This demonstrates that even lexical acquisition in the
eal-world environment, which is the primary task in language
evelopment, can be modelled from the predictive coding view-
oint. SpCoSLAM enables a robot to acquire spatial concepts and
582
lexicons and recognise the current status through inference of
local and global latent variables in the probabilistic generative
model.

A series of studies on symbol emergence in robotics has used
probabilistic generative models to represent the dynamics of an
internal representation of a cognitive system (Taniguchi et al.,
2019, 2016). The dynamics have often been referred to as multi-
modal concept formation. Nakamura et al. proposed a multimodal
latent Dirichlet allocation (MLDA) of a machine learning model
for representing object concept formation (Nakamura, Araki, Na-
gai, & Iwahashi, 2011). MLDA and its variants integrate hap-
tic, visual, auditory, and linguistic information to form object
categories. Similar phenomena can be reproduced using mul-
timodal variational autoencoder (MVAE) and multimodal bidi-
rectional transformers, which are deep generative models and
self-supervised learning architectures, respectively (Miyazawa,
Aoki, Horii, & Nagai, 2020; Suzuki, Nakayama, & Matsuo, 2016).
Latent variables corresponding to internal representations of mul-
timodal sensorimotor observations of a real-world object or event
can be inferred by maximising the marginal likelihood or by
maximising the evidence lower bound, that is, by increasing the
predictability of its subjective world. This concept is in line with
the idea of the free energy principle and the world model.

5.3. Probabilistic generative models for robots

Learning a world model as a probabilistic generative model
and inferring its latent variables are not limited to represen-
tation learning. Probabilistic generative models are a general
framework, not only as descriptive models of human and animal
cognitive processes, but also as engineering models for robotics.
The idea of ‘‘control as probabilistic inference’’ showed that many
reinforcement algorithms on Markov decision process (MDP) are
equivalent to probabilistic inference problems on an extended
MDP (Levine, 2018). The partially observable MDP (POMDP) is
a general probabilistic generative model for representing an au-
tonomous agent. A world model is mostly regarded as a forward
and observation model of POMDP. Reinforcement learning on
POMDP has been regarded as a Bayesian inference on POMDP
(Okada, Kosaka, & Taniguchi, 2020). As shown in Fig. 6, SpCoSLAM
is a type of structured POMDP. Therefore, following the concept
of control as probabilistic inference, path planning algorithms
based on spatial concepts that are formed in a bottom-up manner
can be derived. The probabilistic path planning method is called
SpCoNavi (Taniguchi, Hagiwara, Taniguchi, & Inamura, 2020b).
Accordingly, SpCoSLAM is also considered a computational model
for learning world models and their inference.

If a robot acquires a rich world model based on its multi-
modal sensorimotor experience, it performs many tasks using
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Fig. 6. Probabilistic generative model of SpCoSLAM and overview of a human–robot interaction experiment (Taniguchi et al., 2017).
he world model and its inference. For example, a robot can
nfer the haptic sensation of a target object through cross-modal
nterference using visual information with MLDA. A robot can
nfer the position represented by a word discovered from a user
tterance (e.g., ‘‘copy room’’) and plan the path to the position
hrough inference on SpCoSLAM. Intelligence is not a single pur-
ose and task-oriented function. Thus, multiple functions should
e identified as a variety of inferences in a world model.
The perspective of the world model is not limited to physical

ction learning. However, most studies related to world models
n artificial intelligence are physical sensorimotor learning. How-
ver, studies on symbol emergence in robotics have proposed
robabilistic generative models, which are trained to increase
he predictability of the world and can also achieve language
cquisition. Therefore, the world model and its inference have
uite a broad range in artificial intelligence and robotics.

.4. Cognitive architecture for real-world robots

Most studies on world models are still limited to abstract
odels in a simulation environment and simple physical tasks

e.g., driving a car in a simulation environment and playing a
imple game). The extent to which the idea of world model can
xplain human and animal intelligence should be tested in a real-
orld environment. Human and animal intelligence has evolved
o adapt to the real-world environment. This implies that artificial
ntelligence should be evaluated to clarify if the system can be-
ave appropriately in a physically and socially real environment.
n addition, a world model should be able to achieve a variety of
asks, including language acquisition and understanding.

If we intend to test if an artificial intelligence system is an
ppropriate model of human and animal intelligence, which has
volved to adapt to the real-world environment, we should place
t in the real world. This indicates that the validity of the world
odel should be tested on an artificial embodied system, that is,
robot. However, the number of studies of world models using
eal robots remains limited. Thus, more robotic studies on world
odels should be conducted.
Note that creating such robots is insufficient to test the accom-

anying model as a suitable human or animal cognition model.
f we have several models to explain the target behaviours, we
hould choose the most apt model by considering other sources
f evidence, e.g., biological and physiological constraints. We can
ivide the constructive approach to cognition exhibiting target
ehaviours into two parts. First, we need to create models that
an exhibit target behaviours in the real-world environment,
.e., making reasonable hypotheses from the viewpoint of be-
aviours. Second, we need to validate these models considering
ore detailed evidence with appropriate biological constraints. In
his section, we focused on the first challenge.
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The fusion of studies on cognitive architecture and the world
model is also expected. The events and tasks of a robot in the
daily environment should deal with diversity and uncertainty.
In many theoretical studies of world models, a relatively simple
and general graphical model (e.g., POMDP) have been considered.
However, if we intend to develop a robot that can perform a
variety of manipulation and navigation tasks, recognise objects
and events, and acquire and understand language, such a simple
model cannot make a robot work in a practical environment.
Similar to the human and animal brains with some structure,
an explicit design of the latent structure of the cognitive system
is required. Cognitive architecture refers to the entire cognitive
system that operates a robot, including visual and auditory, de-
cision making, and even emotion (Gonzalez-Billandon, Sciutti,
Sandini, & Rea, 2020; Vernon, Metta, & Sandini, 2007). Struc-
tured multimodal probabilistic generative models involving many
functions (e.g., SpCoSLAM) can be regarded as a type of cog-
nitive architecture; SpCoSLAM is considered as a world model
as well. Conversely, most studies on cognitive architecture in
cognitive and developmental robotics have limited online learn-
ing capability, although they modelled an integrative cognitive
system. Furthermore, studies on world models have not captured
a variety of cognitive functions that are sufficient for making a
robot work in a real-world environment. Fusing the two ideas
and creating an integrative cognitive architecture is a future
challenge.

To develop an integrative cognitive architecture based on the
idea of the world model, deep generative models are a promising
approach. However, suppose that we attempt to develop an in-
tegrative cognitive architecture; the deep generative model’s size
becomes large as it involves speech and visual recognition, plan-
ning, manipulation, reasoning, language understanding, among
others, in the real-world environment. This development incurs
high engineering costs. Therefore, a framework for the distributed
development of integrative cognitive architecture is necessary.
SERKET is a framework that enables us to compose and de-
compose probabilistic models to develop a cognitive architecture
efficiently (Nakamura, Nagai, & Taniguchi, 2018; Taniguchi et al.,
2020).

5.5. Towards world models for robotics

Implementing world model learning and inference in a robot
and enabling it to perform lifelong learning in our daily en-
vironment is a critical challenge. In contrast to a simulation
environment, the real daily environment is full of unexpected
uncertainty and complexity. Through the process of implemen-
tation and application, we will face new essential problems. This
will be crucial for examining the potential of a world model

learning-based approach. This section provides three challenges.
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The application to service robotics is a challenge. Service
robots (e.g., robots in a shop and a domestic environment) must
perform physical tasks and social tasks (e.g., communication with
a customer). The concept of a world model-based approach is
tested in a practical manner.

Multimodal language learning and understanding is another
challenge. In the real-world environment, the meaning of
language is interpreted in relation to multimodal sensorimotor
information. Thus, physical experience is crucial in language
acquisition by infants as well. However, most natural language
processing studies ignore such real-world information. Language
learning and understanding should be studied from a robot’s
subjective viewpoint. We believe that language learning and
understanding are also within the target domain of world model
learning.

Studying the world model learning of soft robots is also es-
sential. Unlike the objective world, the subjective world model
involves the agent’s body as a part of the forward dynamics. In
general, humans and animals take advantage of the physical and
dynamic characteristics of soft bodies. However, a soft body is
considered a source of uncertainty. Hence, world model learning
in soft robotics will be a challenge.

6. Building machines that learn, see, and think like people

6.1. Human intelligence and general-purpose AI

Many scientific and engineering researchers have been in-
volved in a joint enterprise between the science and the engi-
neering of intelligence to understand how intelligence arises in
the human mind and brain and to create more human-like forms
of machine intelligence. One of the best ways to understand how
the brain works and to build more human-like forms of artificial
intelligence is to build models of intelligence by a kind of reverse
engineering. Even though the current AI technologies, alternative
ways to realise the human-like intelligence, perform incredibly
well in some situations, like in the case of AlphaGo (Silver et al.,
2016) beating the world’s best players at the world’s oldest game,
they are still far from the flexible general-purpose intelligences
that can use to learn many tasks.

Recent machine-learning technologies, such as deep learning
and reinforcement learning, can be used for pattern recognition
in the real world. However, human intelligence is not just about
finding patterns (Lake, Salakhutdinov, & Tenenbaum, 2015; Lake,
Ullman, Tenenbaum, & Gershman, 2017). Intelligence is about
all the ways that we build models of the world through our
perceptual systems for learning and reasoning. For example, by
glancing at a photo of a basketball game, you can easily under-
stand the scene even though it was likely taken from a viewpoint
that is new to you. Scene understanding would be quite robust
and could be generalised even if the image quality is quite low,
such as old video game characters. On the other hand, a system
which has only been trained on a courtside view would find it
difficult to generalise its scene understanding. The development
of a generalisation capability is a grand challenge that we should
all try to pursue in this research field. How can we build systems
that understand scenes as well as goals, and that can generalise
their activities across different tasks without retraining?

6.2. Children’s learning of physical world

To tackle the problem outlined above, Tenenbaum’s group
(Tenenbaum et al., 2011; Ullman & Tenenbaum, 2020) has been
trying to reverse engineer the basic kinds of common-sense
present even in young children. For instance, when children play
with blocks or stacking up caps, they are using intuitive physics,
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a basic understanding of objects. In addition, intuitive psychol-
ogy was demonstrated in a famous experiment (Warneken &
Tomasello, 2009), in which infants (14∼18 months of age) helped
others to attain goals, such as opening cabinets without any
instruction; the results suggested natural altruism in infants. To
build machines that have the kinds of common senses present
even in infants, we should study complex multi-object scenes
because general-purpose intuitive physics is one of the earliest
building blocks of the kind of common sense for understanding
of the world.

How can we develop learning programs for the earliest build-
ing blocks? We would not have to build them from scratch
because the brain does not start from scratch, thanks to evolution.
That is, biological learning over one’s lifetime starts with a lot
of built-in evolutionally acquired structure. Researchers in devel-
opmental psychology (Saxe, Tenenbaum, & Carey, 2005; Spelke
& Kinzler, 2007) have shown that much of the high-level archi-
tecture of cognition seems to be in place, structurally and even
functionally in babies who are only a few months old. Their work
has inspired us to create learning algorithms that start with hav-
ing a lot of understanding about the physical world. Children from
a very young age may be able to understand concepts such as
object space, object persistence, and object-contact relationships,
but they would acquire a deep understanding of gravity, weight,
and force dynamics only through experience at later stages of the
developmental process. Therefore, apart from the problem how
the brain finds an appropriate structure and connections (Lake
et al., 2017), the abovementioned studies imply a possibility to
explain how the brain builds an intuitive physics engine in the
first several months of life by starting with a fully rich proto-
physics engine and by creating a program that modifies the
program according to experience.

6.3. Probabilistic programming language (PPL)

Probabilistic programs have been studied since the early 2000s.
They are a set of tools, mathematical formalisms, programming
languages, implemented systems, and platforms that allow us to
combine the best ideas from multiple areas of artificial intelli-
gence for both reverse engineering and engineering human-like
forms of intelligence. The probabilistic program concept includes
the neural networks for pattern recognition and function approx-
imation, and the original good idea of the field of AI symbolic
languages for representing and reasoning with abstract knowl-
edge, as well as probabilistic models and Bayesian inference for
reasoning about unobserved causes from sparse uncertain data.
There have been several generations of probabilistic program-
ming languages; here, we are especially interested in what we
call modern PPL, which are built on top of modern platforms such
as PyTorch and TensorFlow, for deep learning, and Gen that gives
you all the tools that you needed for symbolic abstract knowledge
representation, reasoning, and probabilistic inference.

Another technological idea is the ‘game engine in the head’,
i.e., the use of very fast approximate simulators for graphics
physics and planning, which can simulate complex physical sit-
uations in realistic ways and use those as a prototype for the
model in the agent’s head. It is something like an approximation
to the common-sense systems of understanding the world, that
evolution has built into our brains, and that even young babies
can use to explore the world. To model a range of different
cognitive capacities in intuitive physics and intuitive psychol-
ogy, Tenenbaum’s group developed an intuitive physics engine
almost ten years ago. They have used these models to capture a
range of intuitions in a block world setting (Battaglia, Hamrick, &
Tenenbaum, 2013; Ullman & Tenenbaum, 2020), and showed, for
instance, that they can capture reasonably well people’s sense of
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tability of a block tower. This idea has been embodied in a rapid
rial-and-error learning algorithm that enables us to understand
he cognitive foundations of how people come to use tools and
nderstand tools (Allen, Smith, & Tenenbaum, 2020). With this
robabilistic algorithm in which the prior is updated using a
imple policy gradient algorithm, the number of trials for learning
s pretty close to a human’s.

.4. Intuitive physics engine in the brain and its neural network
odels

Several fMRI studies (Fischer, Mikhael, Tenenbaum, & Kan-
isher, 2016; Schwettmann, Tenenbaum, & Kanwisher, 2019)
ave been conducted to determine where these computations
ccur in the brain. They revealed the involvement of the premotor
nd parietal regions in physical reasoning and for representing
asic physical quantities. The studies suggest that these areas
re the basis of the brain’s physics engine. However, these areas
ave been studied before in different contexts. In particular, they
verlap substantially with regions that have been thought to
e action planning and tool-use networks, which is reasonable
rom an evolutionary perspective. Our brain circuits, originally
eveloped to understand how to move our bodies through space,
nd then to move objects, can generalise their abilities to under-
tanding physical dynamics, even when we are not moving or not
oving anything. Recently, there have been several attempts to
evelop neural network models of intuitive physics. Mrowca et al.
2018) developed a hierarchical graph neural network that learns
he representations of the physics of different materials. Bear
nd colleagues (Bear et al., 2020) have tried to couple a sort of
ierarchical physical scene graph to a visual network. Their work
ombines a convolution neural network with special networks
hat dynamically translate between visual features with a flexible
ierarchical object based on a three-dimensional description of
he physical scene.

An example of neural networks that approximate inference in
probabilistic program is the efficient inverse graphics in bio-

ogical face processing (Tian, Ellis, Kryven, & Tenenbaum, 2020).
ince a deep neural network was trained to invert a 3D generative
raphics program that generates faces, efficient inverse graph-
cs network presented a good account of the representational
imilarity space at each of the last three stages of infratemporal
ortex processing in the primate brain for faces (Freiwald & Tsao,
010), and was much better than those generated by a traditional
omputer vision model, such as the VGG face model.

.5. Program-learning program

In addition to the generative models in the form of probabilis-
ic programs, we also need to have some learning algorithm that
s a program-learning program. Development of such algorithm
s a hard problem, because unlike the case of learning in a tra-
itional neural network, there is no nice smooth wait space that
e can just follow down to the local minimum with stochastic
radient descent. The space of programs is much rougher. One at-
empt at understanding how you can learn programs is a Bayesian
rogram learning (Lake et al., 2015) in which a learning program
ives a generative model for writing and drawing with strokes
nd then uses Bayesian inference to invert this relationship for
nferring a drawing program. This program in this case could
raw a new character after learning one instance and was able
o generalise its ability to other characters.

To get this idea to work for something like an intuitive physics
ngine, either to build one or to understand how you could
earn one and modify one from experience, you need learning
utcomes that are like program-writing programs. This idea is
585
described in a recent opinion ‘the child as hacker’ by Rule and
colleagues (Rule, Tenenbaum, & Piantadosi, 2020). The hacking
activities include more than tuning parameters of existing code
that is like what researchers performing gradient descent in the
neural network; for instance, they include writing new functions,
writing new libraries, refactoring your code or even writing whole
new languages. All of these hacking activities have analogies with
children’s learning. This is how we build our models of the world.

This concept has been recently embedded in a model of
Bayesian program learning, named DreamCoder (Ellis et al., 2020)
shown in Fig. 7, by which knowledge is interpreted and gener-
alised. This method was inspired by the wake-sleep algorithm
(Dayan et al., 1995; Hinton, Dayan, Frey, & Neal, 1995). The
DreamCoder has two different sleep phases, one that grows
its library to discover best compressed programs found during
waking (named Abstraction in Fig. 7) and another which trains
a neural recognition model to find patterns in data that help
to guide program search in wake phase (named Dreaming in
Fig. 7). Therefore, it is a kind of neuro symbolic learning to
program algorithms. For example, when you give it towers, it has
to learn how to build or how to draw. Starting from just saying a
basic logo like drawing language, it can learn new programming
primitives for drawing primitives (See Ellis et al., 2020 for details).
Tian et al. (2020) developed a naturalistic drawing task to study
how humans rapidly acquire structured prior knowledge, and
developed a model that can account for actual human behaviour
in which humans are given different kinds of training tasks of
learning languages for drawing. The model starts off with a very
simple drawing language and it learns to enrich its expressibility.
This idea of learning new programming libraries actually seems
to describe how humans learn to draw.

In summary, we described recent attempts trying to build ma-
chines that learn, see, and think like human beings. By extending
the presented approaches and toolkits, we may be able to fulfil
AI researchers’ oldest dream of building a machine that grows
intelligence in the way a human being does, as well as to better
understand how our minds are built.

7. General conclusion

Understanding information processing in the brain and cre-
ating a general-purpose artificial intelligence are long-standing
dreams of many researchers—and are two complementary sides
of the same coin. One could argue that a world model is a key
construct to progress synergetic studies of natural and artificial
intelligence, i.e., the science and engineering of cognition, un-
dertaken collaboratively and harmoniously. The ideas of world
model learning and inference provide a formal (i.e., mathemat-
ical) calculus for describing cognitive dynamics. In Section 6, we
described the challenges to building machines that learn, see, and
think like people. Despite the impressive progresses in artificial
intelligence, current systems are still limited to a narrow range of
cognitive capabilities. In contrast, human cognitive systems can
build rich models of the world through our sentience, learning
and reasoning.

So—from the perspective of neuroscience and human
intelligence—what are the outstanding challenges for artificial
intelligence? There are clearly many avenues one could pursue.
The particular focus of things like predictive processing and rad-
ical constructivism (Glasersfeld, 2002) highlight three key areas.
The first is confronting the problem of epistemics in world mod-
elling; namely, building objective functions for inference, learning
and action that properly (optimally) balance the imperatives
to reach goals, while—at the same time—resolving uncertainty
about the context in which those goals are attained. From a
normative (optimality) perspective, this rests on combining the
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Fig. 7. The architecture of DreamCoder, which serves to perform approximate Bayesian inference for the graphical model shown in the middle. The system observes
rogramming tasks while jointly inferring a latent library capturing cross-program regularities. (Ellis et al., 2020).
rinciples of optimal Bayesian design (Lindley, 1956) and decision
heory (Berger, 2011). In other words, scoring the plausibility
f policies in terms of their ability to generate the right kind
f outcomes that afford the greatest information gain, under
onstraints afforded by various loss or reward functions. In the
active inference) neurosciences, this is achieved by absorbing
oals into prior preferences and to create objective functions
hat have both pragmatic and epistemic affordance (Bruineberg &
ietveld, 2014; Cisek, 2007; Gibson, 1977). In machine learning, a
imilar direction of travel is emerging in the form of generalised
L divergence and free energy functionals; e.g., Hafner et al.
2020).

Another key outstanding challenge is the structure learning
roblem (Tervo et al., 2016): namely, optimising the structure
nd form of world models through active engagement with the
ensorium. As mentioned in Section 6, the brain does not start
rom scratch; rather, the seeds of intelligence and the architec-
ure of cognition are inherently embedded in an infant’s brain
etwork. In order to overcome the limitations of current models,
e need to further elucidate the learning algorithms, models,
nd functions that humans have acquired during the evolution-
ry process and that even infants are born with. Specifically, in
rder to precisely describe variations in human behaviour and
o examine the fitness of the underlying world models, it is
ecessary to examine their scalability and versatility by inte-
rating hierarchical structures in predictive processing, intrinsic
otivations driving continuous development, and factors and
arameters altering prior distributions in the brain, etc. In artifi-
ial intelligence research, one can imagine two approaches here.
he first starts with an overcomplete structure that is weakly
arameterised and then prunes redundant model parameters to
inimise model complexity, without sacrificing accuracy or pre-
ictive performance, e.g., Smith, Schwartenbeck, Parr, and Friston
586
(2019). The alternative would be to consider growing models
through its some principled exploration of model space—of the
sort entertained by nonparametric Bayes. And the capacity to
model a potentially infinite number of world states (Gershman
& Blei, 2012; Goldwater, 2006; Teh, Jordan, Beal, & Blei, 2006).
At present, this is a problem confronted by both developmental
robotics and computational linguistics. From a neurobiological
perspective, the hierarchical co-evolution of world models at
evolutionary and developmental timescales may hold important
clues here; especially in relation to evolutionary psychology and
the important role of culture (Dennett, 2017; Hauser, Chomsky,
& Fitch, 2002; Heyes, 2018). It is entertaining to think about
self-assembly in robotics, where robots build robots, with ever
increasing finesse.

This brings us to a final challenge nicely illustrated by the
treatment of self modelling and autism on the one hand, and
the special role of language on the other. This challenge speaks
to artificial intelligence with minimal selfhood that may be nec-
essary for linguistic (and non-linguistic) communication. From
the perspective of world or generative models, this suggests that
the generative model should include a hypothesis that ‘‘I am
an agent’’. As exemplified in Sections 3 and 4, various classes
of human actions and cognitive development have been inter-
preted within the theoretical foundations of world model learn-
ing based on generative models, called FEP. The probabilistic
generative model is also an essential factor of world-model in
cognitive robotics, as described in Section 5. Importantly, human
agents or advanced robot agents—that evince rich interactions
with environments—should be included in any framework, as
noted in Sections 3 and 5, because the manner of interaction
may define the limits and nature of intelligence. So, what licences
the complexity of world models that include a model of selfhood
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Ainley et al., 2016; Fotopoulou & Tsakiris, 2017; Limanowski &
lankenburg, 2013; Seth, 2013). One obvious answer here is to
isambiguate between self and other—to provide the necessary
ontext for communication. In turn, this speaks to the potential
mportance of encultured artificial intelligence, with a special
mphasis on the dyadic interactions and the learning of requisite
orld models.
As we discussed throughout this paper, we again stress that

orld model learning and inference are crucial concepts in brain
nd cognitive science, as well as in AI and robotics. World model
earning is a fundamental mechanism of human and artificial
ognitive systems and contributes to a wide range of cogni-
ive capabilities, e.g., pattern recognition, action selection, social
ognition, language learning, and reasoning. In contrast to the
istinct development of functional intelligent modules—e.g., vi-
ual and speech recognition, machine translation systems, which
re trained independently for each functional module—a human
rain develops as a whole, while interacting with the body and
urrounding environments, i.e., the world. This suggests that we
eed to explore computational models for world model learning
nd inference to build both a human-like intelligence and to un-
erstand the human brain. By developing models and algorithms
nd by testing through biological, computational, and robotic
xperiments, we aspire to a better understanding of the two sides
f the same coin; namely, intelligence.
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