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Abstract 1 

Aberrant patterns of cognition, perception, and behaviour seen in psychiatric disorders are thought to be 2 

driven by a complex interplay of neural processes that evolve at a rapid temporal scale. Understanding 3 

these dynamic processes in vivo in humans has been hampered by a trade-off between the spatial and 4 

temporal resolution inherent to current neuroimaging technology. A recent trend in psychiatric research has 5 

been the use of high temporal resolution imaging, particularly magnetoencephalography (MEG), often in 6 

conjunction with sophisticated machine learning decoding techniques. Developments here promise novel 7 

insights into the spatiotemporal dynamics of cognitive phenomena, including domains relevant to 8 

psychiatric illness such as reward and avoidance learning, memory, and planning. This review considers 9 

recent advances afforded by exploiting this increased spatiotemporal precision, with specific reference to 10 

applications the seek to drive a mechanistic understanding of psychopathology and the realisation of 11 

preclinical translation.  12 
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An important goal within cognitive neuroscience is to determine the precise neurophysiological features 13 

that contribute to the expression of psychiatric phenomena, with an ultimate goal to inform psychiatric 14 

diagnosis and treatment. Given the multitude of neuroimaging tools accessible to researchers today, it may 15 

seem surprising that neuroimaging research has had scant impact on clinical psychiatry (1,2). Several non-16 

competing explanations have been put forward (3), pointing to either the historical limitations of 17 

neuroimaging analyses and their interpretation (4–9), or to the restrictive, subjective, and arbitrary nature 18 

of clinical diagnosis (6,8,10). Here, we focus on the former. We argue that the utility of neuroimaging in 19 

psychiatry has reached an inflection point upon which recent methodological advancements can now 20 

dramatically improve the spatiotemporal precision of functional brain mapping, opening new approaches to 21 

elucidating the neurocognitive dynamics underlying complex human behaviour and psychopathology.  22 

Our ability to precisely capture spatiotemporal patterns of neural activity has, until recently, been limited by 23 

two primary obstacles. One relates to a trade-off between spatial and temporal resolution that is inherent 24 

to a reliance on non-invasive neuroimaging approaches. This limits the ability of any single methodology to 25 

provide a complete picture of both the “where” and “when” of the neural processes that underlie complex 26 

human cognition and behaviour, potentially obscuring core aspects of neural dynamics that play causal 27 

roles in the genesis of psychiatric illnesses.  28 

A second obstacle is the extent to which it is possible to ascribe precise mechanistic significance to in vivo 29 

recorded brain activity; in other words, the “what” and “how” of a neural process. For example, increased 30 

blood-oxygen-level dependent (BOLD) signal in the striatum after receipt of a reward is interpreted as 31 

indicating a functional role for this structure in reward processing, but this observation lacks specificity as 32 

to what that functional role actually is (11). Mechanistic specificity can be gained from designing highly 33 

controlled experiments that attempt to isolate a precise cognitive function, usually informed by a 34 

computational model, though this often entails reduced ecological validity and generalisability (12,13). 35 

The dynamic nature and real-world relevance of features that characterise psychiatric disorders mean that 36 

both spatiotemporal and functional precision are crucial to improving our understanding and, ultimately, 37 

guiding development of targeted treatments (14). In this review, we outline current trends in human 38 

neuroimaging that advance a quest for increased spatiotemporal precision. First, we provide an overview 39 

of the current spatiotemporal resolution achievable in neuroimaging. Second, we illustrate how to enhance 40 

spatiotemporal precision by extracting meaningful state representations from neuroimaging data, as well 41 

as how to track the dynamic reinstatement of these processes in the brain, taking recent breakthroughs in 42 
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the detection of hippocampal replay using magnetoencephalography (MEG) as a case example. Finally, 43 

we explore how uncovering the spatiotemporal dynamics of mechanistically-relevant neural activity can be 44 

combined with generative modelling of pathological behaviour and cognition, with specific relevance to the 45 

burgeoning field of computational psychiatry (15). 46 

Spatiotemporal precision of neuroimaging 47 

Non-invasive neuroimaging methods range from modern ultra-high-field MRI that delivers a spatial 48 

resolution as fine as 0.5 millimetres (16), to older technologies such as electroencephalography (EEG) and 49 

MEG that provide measurements of mass neural activity at a millisecond resolution (17,18). Each of these 50 

modalities have strengths and weaknesses with regards to spatial and temporal resolution, in addition to 51 

factors such as tolerance in freedom of movement (19) and the precise physiological processes used to 52 

index neural activity.  53 

In psychiatry, it can be conjectured that processes underlying psychopathology encompass rapidly-evolving 54 

and spatially-specific neural dynamics. For example, disordered belief formation in schizophrenia has been 55 

ascribed to aberrant activity in prefrontal cortex and hippocampus related to reduced synaptic gain, causing 56 

an imprecise coding of prior beliefs which, in turn, influences neural responses to surprising stimuli as early 57 

as 50 ms post-stimulus onset (11). Similarly, depression has been thought of as a “disconnection” 58 

syndrome, where connectivity between anatomically-discrete brain regions is reduced (20,21) but where 59 

the rapid, dynamic evolution of this connectivity (i.e., sub-second transient changes in distinct spatial 60 

neuronal populations) differ between clinical subtypes (22,23), providing a potential biomarker for the 61 

efficacy of electroconvulsive therapy (24). Thus, despite apparent progress using conventional approaches 62 

it is nevertheless the case that fundamental research questions related to neural dynamics likely require a 63 

level of spatiotemporal precision that has historically been extremely difficult to realise (25).  64 

Multimodal imaging 65 

Considerable effort has been invested in attaining higher spatiotemporal precision by deriving converging 66 

results from separate neuroimaging methodologies with complementary spatial and temporal resolutions, 67 

either recorded simultaneously (e.g., simultaneous EEG-fMRI) or in separate sessions (e.g., MEG, followed 68 

by fMRI) (26). In many cases, this multimodal approach to neuroimaging has been informative about brain 69 

dynamics underlying psychopathology (27). For instance, the amplitude of a fast-latency signature of 70 
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reward processing detected with EEG correlates with BOLD signal in striatum and, together, this fast striatal 71 

reward responsivity is reported as blunted in a subtype of depression characterised by impaired mood 72 

reactivity (28). Thus, multimodal imaging has the potential to enhance detectability of subtle, neurobiological 73 

effects that would otherwise be difficult to detect through reliance on a single modality (26,29). Multimodal 74 

imaging studies, however, impose a significantly higher demand on resources, and a lack of a unifying 75 

model can lead to difficulties with interpreting convergent or discrepant multimodal findings (27,30). 76 

Increasing granularity using statistical learning 77 

A recently developed approach to enhancing spatiotemporal precision of a single neuroimaging modality 78 

involves the exploitation of machine (or “statistical”) learning, which harnesses a range of statistical 79 

techniques to distinguish between neural or behavioural states. This approach has demonstrated that even 80 

the most nuanced fluctuations in spatiotemporal neural data may contain relevant information (31). These 81 

nuances, such as small differences in the angle of neighbouring dipoles in MEG data, create statistically-82 

separable patterns that are identifiable using multivariate pattern classification algorithms. 83 

An early example of a machine learning approach to neuroimaging data involved decoding visual orientation 84 

from human visual cortex using multi-voxel pattern analysis (MVPA) of functional MRI data (32). Although 85 

orientation-selective cortical columns are much smaller than the spatial resolution of functional MRI (3 86 

mm3), orientation selectivity can be reliably estimated from signals generated by entire ensembles of voxels. 87 

Remarkably, orientation selectivity (33) and retinotopic maps in primary visual cortex (34) have now been 88 

reliably estimated from MEG data using support vector machine (SVM) classifiers, despite source-89 

reconstructed MEG having a resolution in the order of several millimetres at the cortical surface. This 90 

example demonstrates that modern analytic approaches can exploit subtle variation in coarse spatial or 91 

temporal information to detect, and classify, neural processes that unfold at a finer scale than the resolution 92 

of the imaging modality itself. Such a feat can be achieved by biology-agnostic machine learning methods 93 

that distil spatiotemporal information from rich sources of neuroimaging data (as just described), and also 94 

by biophysically-realistic models that utilise prior knowledge of neurophysiological activity (provided by 95 

other modalities; e.g., invasive electrophysiological recordings in animals), to capture traces of such 96 

processes present in non-invasive human neuroimaging data (e.g., dynamic causal modelling of fMRI and 97 

M/EEG; (35)). Thus, both biologically-informed models and biology-agnostic machine learning methods can 98 

be used to offset spatiotemporal constraints of current neuroimaging methodologies. 99 
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Hippocampal replay as a case example 100 

A striking example of the use of statistical learning to extract precise spatiotemporal information from MEG 101 

data comes from pioneering studies demonstrating hippocampal replay in humans (43). A central tenet of 102 

this review is that non-invasive measurement of hippocampal replay in humans is likely to represent a major 103 

advance not only for cognitive neuroscience but also biological psychiatry. The approach indicates that 104 

neuroimaging data can provide a sufficiently rich source of spatiotemporal information to signal rapid, 105 

dynamic, shifts in mental states, thereby allowing for a more precise estimate of when and where cognitive 106 

processes unfold in the brain. Below, we detail this approach and discuss how it has been, and can be, 107 

exploited to further the field of biological psychiatry. 108 

The methodological challenge of replay 109 

Replay was first observed in rodents in the 1990s where, during post-task rest, hippocampal place cells 110 

indexing the trajectory of an animal through an environment rapidly reactivated in the same order in which 111 

these locations were experienced, albeit with a pronounced temporal compression (44–46). This 112 

spontaneous and rapid unfolding activity pattern was subsequently shown to play a causal role in memory 113 

consolidation (47–50), and has been linked to higher-order cognitive functions such reward learning (51–114 

57) and planning (58–62). 115 

In humans, measuring hippocampal replay non-invasively presents a considerable methodological 116 

challenge, as one of its putative source (the hippocampus) is located deep within the brain, and the speed 117 

with which replay events unfold is extremely fast (in animals, the sequential reactivation of place cells 118 

indexing discrete locations is typically separated by tens of milliseconds). This challenge is shared by 119 

neuroimaging research in psychiatry, where there is often a need for both spatial and temporal precision. 120 

For example, in mood disorders, fast latency activity in deep brain structures, such as the amygdala, 121 

allegedly play a pivotal role in the genesis and maintenance of symptoms but is notoriously difficult to 122 

measure in vivo (25). Moreover, replay by its very nature involves reactivation of anatomically-specific 123 

neural populations (e.g., specific place cells) that represent specific mental states (e.g., different locations 124 

in space). Thus, measuring replay in humans from non-invasive neuroimaging data necessitates innovative 125 

approaches, such as the exploitation of statistical learning to extract fast sequential reactivation of state 126 

representations (37,63). 127 
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Measuring hippocampal replay 128 

An approach to quantifying replay from non-invasive neuroimaging data is Temporally Delayed Linear 129 

Modelling (TDLM) (37), which estimates evidence for sequential state reactivation. TDLM capitalises on the 130 

fact that reactivation of a particular state within the hippocampus causes a cascade of related activity across 131 

a distributed network that includes the entorhinal cortex (64), medial temporal cortex (65), visual cortex 132 

(66), and prefrontal cortex (67–70). Thus, while hippocampal activity can be challenging to identify from 133 

MEG recordings (but far from impossible: see 71,72), information related to a specific memory or state can 134 

be decoded from unique spatial patterns of neural activity to uncover rapid, sequential reactivation of prior 135 

experiences (63,73–79). This ability to detect subtle but relevant spatial information increases both temporal 136 

and representational precision (e.g., specific memories) even at relatively low spatial resolution. 137 

Importantly, in psychiatry research, representational precision might often be considered more valuable 138 

than spatial precision, such as when investigating whether a therapeutic intervention instantiates a change 139 

in cognitive processes.  140 

How can specific states be isolated and captured? Investigators commonly use visual stimuli presented in 141 

a particular order to represent distinct “states”. A key idea here is that the brain organises information — 142 

spatial or otherwise — into “cognitive maps” constructed from information like conceptual associations or 143 

temporal-order relationships (39). By using visually- and conceptually-unique images, machine learning 144 

algorithms can accurately and reliably classify spatial patterns of neural activity associated with viewing 145 

each image (Fig. 1A). The sheer size of the visual system in the human brain means that visual stimuli can 146 

be classified from distributed spatiotemporal activity generated primarily from occipital and temporal 147 

cortices, with classification accuracy typically in the range of 37% to 50%, which is 3 to 8 times higher than 148 

what would be expected by chance (74,76,78,80). Classifiers are typically trained on neural activity patterns 149 

recorded during an initial functional localiser, when participants view images before learning about task-150 

related temporal-order relationships (37). Hence, this constitutes a “supervised” machine learning 151 

approach, where identity labels are known (e.g., whether participants were viewing image A or image B). 152 

The associated MEG sensor patterns then provide a reliable estimate of activity when these states are 153 

subsequently reactivated, for example during a cognitive task such as planning (online) or during a rest 154 

period (offline) (Fig. 2). Both hippocampus and medial temporal lobe, as well as visual cortex, have been 155 

identified as likely sources of such replay events in humans (74,75,78). 156 
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Overall, investigating replay in the human brain exemplifies how a rapidly-evolving neurophysiological 157 

signal can be detected and characterised at an extremely fine temporal resolution. More importantly, these 158 

studies provide a representational specificity (e.g., states in a cognitive map) that is not easily obtained 159 

using traditional neuroimaging analyses. This implies that a “representation-rich” characterisation of 160 

neuroimaging data can greatly enhance the granularity of observable neural dynamics (43), allowing 161 

exploration of more abstract neural processes underlying complex cognition.  162 

Mechanistic specificity 163 

Computational modelling of behaviour 164 

The ability to uncover hidden spatiotemporal dynamics of cognition from neuroimaging data has the 165 

potential to unlock crucial information about psychiatric disorders that might otherwise be undetectable from 166 

behaviour alone. As an example, consider the cognitive processes that contribute to planning. These 167 

include an ability to learn and retrieve a cognitive model of the environment that captures how states are 168 

connected, the consequences of taking different actions at different states, and the effective appraisal of 169 

prospective reward and loss (81). Computations such as these evolve dynamically over time, where one 170 

type of processing (e.g., the accessibility of an aversive memory) may influence another (e.g., the perceived 171 

probability of being punished) (82). These dynamics are pervasive in existing computational psychiatry 172 

models of behaviour, which reveal information about how specific cognitive mechanisms operate differently 173 

in psychiatric disorders (83).  174 

Spatiotemporally-precise neuroimaging can bestow cognitive models with biological plausibility, revealing 175 

how modelled dynamics of cognition (where cognition is either a construct, as in algorithmic models like 176 

reinforcement learning, or a biophysically-realistic process, as in synthetic models like attractor network 177 

models) are supported by the temporal profile of network activity (84). Therefore, it seems reasonable to 178 

conjecture that clinical translation of computational psychiatry may be catalysed by approaches to 179 

neuroimaging analysis that enhance spatiotemporal precision by: a) validating the dynamics of theory-180 

driven cognitive processes through convergent biological evidence, b) assigning a neurophysiological basis 181 

to modelled cognitive mechanisms, potentially revealing targets for treatment, and c) enhancing the 182 

informational content of models by revealing hidden states. Below, we describe recent studies that pair 183 

spatiotemporally-precise neuroimaging, such as sequential state reactivation during replay, with 184 

computational psychiatry models, with a particular focus on structural inference and reward learning.  185 
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Inferring environment structure 186 

Decoded state representations shed light on how we learn, store, and retrieve structured representations 187 

of our environment. The spontaneous reactivation of sequences — both experienced and imagined — is 188 

implicated in constructing and utilising internal representations of the environment. For instance, an ordered 189 

reactivation of previously-experienced states during a post-task rest period has been shown to correspond 190 

not to an experienced structure, but instead to an inferred structure that participants abstracted based on a 191 

learned task rule (76,78). This sensitivity of reactivated state representations to inferred structural features 192 

implies that MEG-decoded replay can provide a neurobiological signature of an ability to structurally 193 

reorganise our model of the world. 194 

A breakdown in structural inference has been conjectured to underlie psychiatric symptoms that indicate 195 

inflexible or repetitive thinking, including compulsive behaviour in obsessive-compulsive disorder, 196 

detrimental drug consumption in addiction disorders, and incoherent thought in schizophrenia (85–89). This 197 

accords with findings of relatively stronger evidence for model-free decision-making (i.e., habitual behaviour 198 

that disregards environment structure), compared to model-based control (i.e., deliberate behaviour that 199 

grants flexibility and accuracy at the cost of increased cognitive load) (89), in these clinical populations.  200 

In schizophrenia, we can ask whether a putative deficit in structural inference is reflected in spontaneous 201 

neural replay. After completing a task in which the temporal order of a stimulus sequence needs to be 202 

inferred, even though the “true” order is never experienced, patients with schizophrenia show weaker 203 

evidence for reorganisation of ordered state reactivation during rest compared with healthy controls, an 204 

effect that localises to hippocampus and corresponds with behaviour (78). This finding is consistent with a 205 

theory of reduced synaptic gain in schizophrenia, which is thought to significantly impact synaptic plasticity 206 

and attractor dynamics within hippocampus (90–92). This points to a link between an observable cognitive 207 

process (impaired structural inference, possibly manifesting as incoherent thought) and a previously 208 

unobservable neurophysiological process (replay of an inferred cognitive map in hippocampus) that might 209 

guide prognosis, as well as pharmacological and therapeutic treatment (90). 210 

Making inferences under uncertainty 211 

A feature of several psychiatric disorders is an impaired ability to update beliefs about the structure of an 212 

environment when something changes unexpectedly. For instance, behavioural modelling of decision-213 

making has shown that paranoia and delusions can be explained by having a general expectation that 214 
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stimulus-outcome contingencies will change more frequently, resulting in poorer learning in volatile 215 

environments (93–97). This translates to an overweighting of unlikely explanations (i.e., paranoid 216 

delusions), the quality of which depends on a complex interplay of other parameters such as mood, prior 217 

habits, and whether beliefs pertain to social interaction (95).  218 

Dysfunctional belief updating is a target of cognitive behavioural therapy (CBT), which reports success in 219 

correcting beliefs about risk and uncertainty in the context of obsessive-compulsive (OCD) disorder (98), 220 

as well as in reducing negative beliefs in depression through “cognitive restructuring” methods (99). There 221 

are, however, instances where CBT inexplicably fails, such as with the long-term persistence of paranoid 222 

delusions (100) and with treatment resistance in specific subtypes of OCD (101), even when administered 223 

alongside pharmacotherapy. The ability to derive a precise neural signature of how beliefs evolve over time, 224 

much in the same way that state representations are decoded to indicate neural replay (37), can in principle 225 

help reveal whether cognitive restructuring in CBT is having a significant impact on generative processes 226 

throughout the course of treatment, potentially serving also as a post-treatment predictor of relapse.  227 

Research on healthy participants has demonstrated that dynamic belief updating can indeed be detected 228 

via spatiotemporal decoding of MEG data. Weiss et al. (2021) investigated the computational and neural 229 

mechanisms underlying structural inference in uncertain environments with and without an ability to control 230 

how information was sampled (102). They found that being able to choose which information to sample 231 

made environments appear more stable, echoing beliefs people with OCD hold about compulsive and 232 

repetitive behaviours (103). Moreover, MEG pattern classification revealed crucial temporal and spatial 233 

dynamics of how evidence was evaluated against current beliefs during information gathering. Specifically, 234 

activity in temporal and visual cortex encoded how consistent each piece of evidence was with current 235 

beliefs, revealing changes of mind that occurred throughout a trial prior to making a response. These 236 

changes of mind were delayed when participants had control over information sampling, consistent with 237 

participants reportedly viewing these environments as being more stable. This work elegantly demonstrates 238 

how neural pattern classification can reveal temporally-precise trajectories of beliefs with a neuroanatomical 239 

grounding, which could provide novel information about such cognitive processes in conditions such as 240 

OCD (102,104). 241 

Tracking the dynamics of reward learning 242 

Disordered belief updating leads to dysfunctional decision-making, which is a cause of disruption to 243 

everyday life in people with certain psychiatric disorders (88). In mood disorders, a bias towards using 244 
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negative information to update beliefs (which we can consider analogous to “learning”) (105) can be 245 

computationally deduced (e.g., by reinforcement learning models) from patterns of dysfunctional decision-246 

making, such as increased risk aversion in anxiety and reduced reward-seeking behaviour in depression 247 

(88). Neuroimaging can complement such computational models of decision-making in psychopathology 248 

by measuring a “reward prediction error” signal (i.e., the difference between the reward that was received 249 

and the reward that was expected), a key computational component in reinforcement learning and active 250 

inference models (106). Reward prediction error signals localise to specific neurochemical circuitry (e.g., 251 

dopaminergic pathways) and are observable in both M/EEG (107,108) and fMRI (109).  252 

Reward prediction error signals, detected with fMRI, accurately predict response to CBT in depression, 253 

where an increased responsivity of amygdala and striatum to unexpected rewards has been interpreted as 254 

indicating a susceptibility to subsequent belief updating during cognitive restructuring during CBT (110). In 255 

contrast, reward prediction errors derived from computational modelling of behaviour alone have not yet 256 

been shown to predict treatment response, highlighting the power of mechanism-focused neuroimaging 257 

analysis for detecting subtle but clinically relevant effects. Extending this, we might consider that belief 258 

updating occurs not only at outcome receipt (when reward prediction errors occur) but also in anticipation 259 

of an event (e.g., worrying about the future in anxiety) (82) and when recollecting and re-interpreting past 260 

events (e.g., rumination in depression or “post-event processing” in social anxiety) (82,111). Uncovering 261 

hidden temporal dynamics of belief updating could broaden our understanding of how events are evaluated 262 

and deliberated upon before and after decision-making, potentially enabling a closer mapping to specific 263 

symptoms such as rumination and worry.  264 

In animals, understanding the temporal dynamics of reward learning has benefited from machine learning. 265 

An elegant example is that of Rich and Wallis (2016), who used linear discriminant analysis (LDA) to capture 266 

patterns of neural firing in OFC corresponding to four potential choice options, each represented by unique 267 

images. While the animals deliberated on their choice, neural activity patterns in OFC alternated 268 

approximately every 230 ms between the chosen and unchosen option at each trial, with the chosen option 269 

becoming increasingly decodable across deliberation time. This also corresponded to fewer switches 270 

towards an unchosen option, as well as faster decision-making and less deliberation (112). Building on this, 271 

recent studies have classified patterns of activity in OFC that represent not only the dynamics of outcome 272 

representations, but also features such as task structure (e.g., preconditioned associations between states, 273 

predictions of upcoming states) and the expected reward value of each state (113–115).  274 
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Tracking representations of reward over time provide added value to computational models of decision-275 

making. For example, Eldar et al. (2018) investigated whether a person’s mood relates to differences in 276 

receptivity to reward, a process thought to play a significant role in the onset of depression and bipolar 277 

disorder (116–118). Here, reinforcement learning models suggested two underlying mechanisms of reward 278 

learning: a fast learning process that rapidly forgot, and a slower learning process that persisted across 279 

multiple days. This model then formed the basis for a parameterised data set containing trial-by-trial 280 

estimates of the prediction errors produced by fast and slow learning rates and where a statistical learning 281 

analysis showed these two types of prediction errors were decodable from heart rate and EEG data 282 

(recorded from a single wearable electrode) collected over the course of the experiment. Crucially, these 283 

physiological representations of prediction error accurately predicted self-reported mood at short and long 284 

timescales, revealing a relationship not evident from behaviour alone (119). 285 

An increasing number of studies now use decoded state representations to investigate how reward is 286 

algorithmically processed, with considerable potential for understanding mood disorders such as 287 

depression and anxiety (120). One formulation of value-guided decision-making is the “successor 288 

representation”(121), which describes how we build a predictive map of state values. Recent decoding of 289 

functional MRI data has shown that, during decision-making, the successor representation predicts which 290 

states are reactivated in the brain more accurately than other behavioural models (122). In a similar vein, 291 

MEG investigations have shown that neural reactivation of outcomes during choice deliberation is 292 

modulated by both the subjective value and probability of an outcome (123), and predicts subsequent 293 

choice behaviour (124).  294 
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Conclusion 296 

We highlight a recent trend in the application of statistical learning to neuroimaging data, particularly MEG, 297 

where the goal has been to uncover rapid reactivation of state representations that might otherwise go 298 

undetected, either due to spatiotemporal limitations of neuroimaging modalities or the complexity of the 299 

evolving state representation. These decoded representations can serve as rich and dynamic support for, 300 

or latent variables within, computational models of complex cognitive processes, allowing investigation of 301 

a range of candidate processes that may go awry in psychiatric disorders. When combined with 302 

neurophysiological recordings, such as MEG, pattern classification provides a level of spatiotemporal 303 

precision that is virtually impossible to gain from behaviour-only models or from conventional neuroimaging 304 

analyses. In turn, combining neural decoding of states with computational models of behaviour or cognition 305 

provides a level of representational precision not easily attained using conventional neuroimaging analysis 306 

alone. Moreover, by classifying holistic mental states, researchers can access highly temporally-resolved 307 

signatures of disorder-related representations, opening new avenues for examining cognition and 308 

behaviour in ecological contexts that involve a high degree of representational complexity, including 309 

indexing the impact of treatments.  310 
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Figure legends 578 

Figure 1. Capturing mental states using statistical learning. (A) Mental states, such as viewing an image, can be 579 

differentiated by the unique patterns of evoked spatiotemporal brain activity, captured with MEG. These spatiotemporal 580 

state classifiers can then be applied to MEG data during a task of interest (e.g., decision-making), revealing the time-581 

course of state reactivation associated with specific aspects of cognition and behaviour. (B) Visual orientation can be 582 

classified from MEG and EEG sensor data due to unique configurations of angled dipoles along the cortical surface. 583 

Adapted from Stokes et al. (2015). (C) Different mental states may also evoke different neural network configurations, 584 

producing unique patterns of activity across MEG sensors.  585 
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 587 

Term Definition 

Machine learning A methodological approach in which an algorithm (e.g., a support vector machine) is 

iteratively improved to capture relationships between variables in a training data set 

(43). The optimised algorithm is then applied to a test data set to predict the same 

relationships. Machine learning may be supervised or unsupervised, and is generally 

model-agnostic. 

Statistical learning A branch of machine learning in which a suitable statistical model (e.g., logistic 

regression) is deliberately selected and fit to a training data set in order to infer 

relationships between variables, in accordance with the assumptions of the selected 

model (44). The optimised model may then be used to predict relationships in a test 

data set. 

Multi-voxel pattern 

analysis (MVPA) 

A supervised classification problem that captures the relationship between spatial 

patterns of BOLD signal across voxels and a particular experimental condition in a 

training data set (43). These spatial patterns can then be detected by applying 

classifiers to a test data set. 

Neural representation A spatiotemporal pattern of neural activity that is reliably evoked by a specific mental or 

physical state, indicating that the pattern “encodes” the state (45). 

Cognitive map A neural representation of how different states relate to each other (46). 

Structural inference The ability to infer how an environment is structured, given previous experience of 

state-to-state transitions, as well as any higher-order information (46). In other words, 

the ability to construct, utilise, and update a cognitive map. 

Replay A neurophysiological phenomenon whereby neural representations of states are 

reactivated in a specific order, indicating their relationships within a cognitive map (47). 

Computational 

psychiatry 

A field of research in which generative mathematical models are constructed to explain 

the relationships between behaviour, cognition, environment, and underlying 

neurobiology of psychiatric disorders (17). 

Reinforcement learning A computational model describing how decision-making is influenced by past 

experiences of reward (48).  

Cognitive behavioural 

therapy (CBT) 

A talking therapy that aims to reduce symptoms of mental disorders by challenging 

dysfunctional beliefs (cognition) and their associated behaviours (49).  

Table 1. Key terms and definitions588 
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Research question Existing data Potential use cases 

What are the fine-grained 

neurobiological causes of 

psychiatric symptoms, and 

can knowledge of this 

assist with prognosis 

and/or treatment? 

Schizophrenia: Disorganised replay suggests a neurophysiological 

basis for impaired structural inference, implying abnormal NMDA 

receptor function in hippocampus (85,98). 

Schizophrenia: Multimodal imaging shows a coupling of 

computationally-derived belief updates with BOLD signal in striatum that 

relates to dopamine receptor functionality measured with positron-

emission tomography (PET) (132). 

Depression: Functional connectivity measured with fMRI in depression 

is markedly reduced at rest (27,28). Sub-second transient changes in 

microstates of functional connectivity detected with EEG is significantly 

different between clinical subtypes of depression (29,30). 

Schizophrenia: Replay of reorganised state sequences 

may be used as an indicator of the efficacy of 

dopaminergic antagonists on increasing synaptic gain in 

hippocampus, supporting structural inference 

capabilities. 

Depression: MEG may be used as a more spatially-

precise measure of rapid changes in microstates of 

functional connectivity, a measure that could help to 

predict patient-specific efficacy of electroconvulsive 

therapy (31). 

How can we better 

estimate the efficacy of 

CBT in restructuring 

dysfunctional beliefs? 

Depression: Reward prediction error signals related to learning in 

amygdala and striatum (measured with fMRI) predict response of 

depressed patients to CBT (117). 

General: The perceived congruence between current evidence and 

prior beliefs can be decoded from MEG activity and used to indicate the 

time course of belief updating and subsequent decision-making (109). 

Depression: By using decoding to track how rewarding 

outcomes are neurally represented during choice 

deliberation, we could assess the efficacy of CBT in 

increasing representation of reward in a manner that 

relates to improved choice behaviour. 

 

OCD: Neural signatures of belief updating could indicate 

how acting on an environment to sample information (as 

is the case in compulsive behaviour) influences beliefs 

about uncertain environments, and whether this is 

influenced by CBT (109). 

How do thought patterns 

(conscious or unconscious) 

differ between clinical 

subtypes, and can this 

guide personalised 

therapy? 

Anxiety: Replay supports flexible avoidance of potential threat by 

simulating inferred trajectories to threat (133). 

General: Replay reflects an ability to infer trajectories that lead to future 

reward in changing environments (81). 

Anxiety: Patients with anxiety may differ in whether they 

anxiously anticipate the future or ruminate on the past, 

which could reflect different magnitudes of forwards 

replay of paths leading to threat versus backwards 

replay after outcome receipt. These signatures, if 

present, could therefore serve as biological markers of 

anxiety subtypes.  

Table 2. Outstanding questions in psychiatry that may be addressed by using increasing spatiotemporal resolution of neuroimaging data590 
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