131 research outputs found

    Dance Sport Movement Therapy in the Metaverse: a new frontier for alternative mental health therapies

    Get PDF
    This paper delves into the innovative integration of Dance Movement Therapy (DMT) within extended reality (XR) environments, exploring its potential as a non- pharmacological intervention for mental health conditions. The study employed a blend of qualitative evidence synthesis and meta-analyses of primary quantitative data, focusing on the therapeutic implications of dance in virtual, augmented, and mixed realities. Utilising wearables and sensors, real-time data on participants' movements, physiological responses, and emotional feedback were collected and analysed using AI/ML algorithms, including Random Forest, SVM, CNNs, and RNNs. The research highlighted the importance of data privacy and ethical considerations, emphasising the need for securely storing metadata to ensure user trust and legal compliance. Findings underscored the potential of XR environments like the Metaverse in transforming mental health practices, offering efficient, engaging, and effective therapeutic interventions. The study also introduced the novel concept of Physical Intensity Matching and the significance of personalised exercise selection. Despite its ground-breaking insights, the research acknowledged potential biases introduced by wearables and the challenges of ensuring data accuracy. This paper is a foundational exploration into the convergence of DMT, XR, and AI, paving the way for future interdisciplinary research in mental health and technology

    Sistema para análise automatizada de movimento durante a marcha usando uma câmara RGB-D

    Get PDF
    Nowadays it is still common in clinical practice to assess the gait (or way of walking) of a given subject through the visual observation and use of a rating scale, which is a subjective approach. However, sensors including RGB-D cameras, such as the Microsoft Kinect, can be used to obtain quantitative information that allows performing gait analysis in a more objective way. The quantitative gait analysis results can be very useful for example to support the clinical assessment of patients with diseases that can affect their gait, such as Parkinson’s disease. The main motivation of this thesis was thus to provide support to gait assessment, by allowing to carry out quantitative gait analysis in an automated way. This objective was achieved by using 3-D data, provided by a single RGB-D camera, to automatically select the data corresponding to walking and then detect the gait cycles performed by the subject while walking. For each detected gait cycle, we obtain several gait parameters, which are used together with anthropometric measures to automatically identify the subject being assessed. The automated gait data selection relies on machine learning techniques to recognize three different activities (walking, standing, and marching), as well as two different positions of the subject in relation to the camera (facing the camera and facing away from it). For gait cycle detection, we developed an algorithm that estimates the instants corresponding to given gait events. The subject identification based on gait is enabled by a solution that was also developed by relying on machine learning. The developed solutions were integrated into a system for automated gait analysis, which we found to be a viable alternative to gold standard systems for obtaining several spatiotemporal and some kinematic gait parameters. Furthermore, the system is suitable for use in clinical environments, as well as ambulatory scenarios, since it relies on a single markerless RGB-D camera that is less expensive, more portable, less intrusive and easier to set up, when compared with the gold standard systems (multiple cameras and several markers attached to the subject’s body).Atualmente ainda é comum na prática clínica avaliar a marcha (ou o modo de andar) de uma certa pessoa através da observação visual e utilização de uma escala de classificação, o que é uma abordagem subjetiva. No entanto, existem sensores incluindo câmaras RGB-D, como a Microsoft Kinect, que podem ser usados para obter informação quantitativa que permite realizar a análise da marcha de um modo mais objetivo. Os resultados quantitativos da análise da marcha podem ser muito úteis, por exemplo, para apoiar a avaliação clínica de pessoas com doenças que podem afetar a sua marcha, como a doença de Parkinson. Assim, a principal motivação desta tese foi fornecer apoio à avaliação da marcha, permitindo realizar a análise quantitativa da marcha de forma automatizada. Este objetivo foi atingido usando dados em 3-D, fornecidos por uma única câmara RGB-D, para automaticamente selecionar os dados correspondentes a andar e, em seguida, detetar os ciclos de marcha executados pelo sujeito durante a marcha. Para cada ciclo de marcha identificado, obtemos vários parâmetros de marcha, que são usados em conjunto com medidas antropométricas para identificar automaticamente o sujeito que está a ser avaliado. A seleção automatizada de dados de marcha usa técnicas de aprendizagem máquina para reconhecer três atividades diferentes (andar, estar parado em pé e marchar), bem como duas posições diferentes do sujeito em relação à câmara (de frente para a câmara e de costas para ela). Para a deteção dos ciclos da marcha, desenvolvemos um algoritmo que estima os instantes correspondentes a determinados eventos da marcha. A identificação do sujeito com base na sua marcha é realizada usando uma solução que também foi desenvolvida com base em aprendizagem máquina. As soluções desenvolvidas foram integradas num sistema de análise automatizada de marcha, que demonstrámos ser uma alternativa viável a sistemas padrão de referência para obter vários parâmetros de marcha espácio-temporais e alguns parâmetros angulares. Além disso, o sistema é adequado para uso em ambientes clínicos, bem como em cenários ambulatórios, pois depende de apenas de uma câmara RGB-D que não usa marcadores e é menos dispendiosa, mais portátil, menos intrusiva e mais fácil de configurar, quando comparada com os sistemas padrão de referência (múltiplas câmaras e vários marcadores colocados no corpo do sujeito).Programa Doutoral em Informátic

    Accurate telemonitoring of Parkinson's disease symptom severity using nonlinear speech signal processing and statistical machine learning

    Get PDF
    This study focuses on the development of an objective, automated method to extract clinically useful information from sustained vowel phonations in the context of Parkinson’s disease (PD). The aim is twofold: (a) differentiate PD subjects from healthy controls, and (b) replicate the Unified Parkinson’s Disease Rating Scale (UPDRS) metric which provides a clinical impression of PD symptom severity. This metric spans the range 0 to 176, where 0 denotes a healthy person and 176 total disability. Currently, UPDRS assessment requires the physical presence of the subject in the clinic, is subjective relying on the clinical rater’s expertise, and logistically costly for national health systems. Hence, the practical frequency of symptom tracking is typically confined to once every several months, hindering recruitment for large-scale clinical trials and under-representing the true time scale of PD fluctuations. We develop a comprehensive framework to analyze speech signals by: (1) extracting novel, distinctive signal features, (2) using robust feature selection techniques to obtain a parsimonious subset of those features, and (3a) differentiating PD subjects from healthy controls, or (3b) determining UPDRS using powerful statistical machine learning tools. Towards this aim, we also investigate 10 existing fundamental frequency (F_0) estimation algorithms to determine the most useful algorithm for this application, and propose a novel ensemble F_0 estimation algorithm which leads to a 10% improvement in accuracy over the best individual approach. Moreover, we propose novel feature selection schemes which are shown to be very competitive against widely-used schemes which are more complex. We demonstrate that we can successfully differentiate PD subjects from healthy controls with 98.5% overall accuracy, and also provide rapid, objective, and remote replication of UPDRS assessment with clinically useful accuracy (approximately 2 UPDRS points from the clinicians’ estimates), using only simple, self-administered, and non-invasive speech tests. The findings of this study strongly support the use of speech signal analysis as an objective basis for practical clinical decision support tools in the context of PD assessment.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF
    A new attribute measuring the contour smoothness of 2-D objects is presented in the context of morphological attribute filtering. The attribute is based on the ratio of the circularity and non-compactness, and has a maximum of 1 for a perfect circle. It decreases as the object boundary becomes irregular. Computation on hierarchical image representation structures relies on five auxiliary data members and is rapid. Contour smoothness is a suitable descriptor for detecting and discriminating man-made structures from other image features. An example is demonstrated on a very-high-resolution satellite image using connected pattern spectra and the switchboard platform

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Unveiling the impact of neuromotor disorders on speech: a structured approach combining biomechanical fundamentals and statistical machine learning

    Get PDF
    Speech has been shown to convey clinically useful information in the study of Neurodegenerative Disorders (NDs), such as Parkinson’s Disease (PD). Traditionally the use of speech as an exploratory tool in People with Parkinson’s (PwP) has focused on the estimation of acoustic characteristics and their study at face value, analysing the physio-acoustical markers and using them as features for the differentiation between Healthy Controls (HC) and PwP. The present work takes a step further, given the intricate interoperation between neuromotor activity, responsible for both planning and driving the system, and the production of the acoustic speech signal; by the study of speech, this relationship may be properly exploited and analysed, providing a non-invasive method for the diagnosis, analysis, and observation of NDs. This work aims to introduce a working model that is capable of linking both domains and serves as a projection tool to provide insights about a speaker’s neuromotor state. This is based on a review of the neurophysiological background of the structure and function of the nervous system, and a review of the main nervous system dysfunctions involved in PD and other related neuromotor disorders. The role of the respiratory, phonatory, and articulatory systems is reviewed in the production of voice and speech under normal and pathological circumstances. This setting might allow for speech to be considered a useful trait within the precision medicine framework, as it provides a personal biometric marker that is innate and easy to elicit, can be recorded remotely with inexpensive equipment, is non-invasive, cost-effective, and easy to process. The problem can be divided into two main categories: firstly, a binary detection task distinguishing between healthy controls and individuals with NDs based on the projection model and phonatory estimates; secondly, a progression and tracking task providing a set of quantitative indices that enable clinically interpretable scores. This study aims to define a set of features and models that help to characterise hypokinetic dysarthria (HD). These incorporate the neuroscientific knowhow semantically and quantitatively to be used in clinical decision support tools that provide mechanistic insight on the processes involved in speech production, incorporating into the algorithmic element neuromotor considerations that add to better interpretability, consequently leading to improved clinical decisions and diagnosis. An overview of the acoustic signal processing algorithms for use in speech articulation and phonation system inversion regarding neuromotor disorder assessment is provided. An algorithmic methodology for model inversion and exploration has been proposed for the functional characterization and system inversion of each subsystem involved under the neuro-biomechanical foundations exposed before. A description of the vocal fold biomechanics using the glottal source, and formant dynamics provides the base for specific mapping to articulation kinematics. The statistical methods used in performance evaluation are based on three-way comparisons and transversal and longitudinal assessment by classical hypothesis testing. Three related experimental studies are shown to empirically illustrate the potential of phonation and articulation analysis: the characterization of PD from glottal biomechanics based on the amplitude distributions of the glottal flow and on the vocal fold body stiffness in assessing the efficiency of transcranial magnetic stimulation, and the description of PD dysarthria through an articulation projection model. The results from the biomechanical analysis of phonation showed that the behaviour of glottal source amplitude distributions from PD and healthy controls using three-way comparisons and hierarchical clustering were essentially distinguishable from those from normative young participants with the best accuracy scores produced by SVM classifiers of 94.8% (males) and 92.2% (females). Nevertheless, PD participants were barely separable from age-matched controls, possibly pointing to confounding factors due to age. The outcomes from using vocal fold stiffness in assessing the efficiency of transcranial magnetic stimulation showed mixed results, as some PD participants reflected clear improvements in phonation stability after stimulation, whereas some others did not. Some cases of sham controls experienced also minor improvements of unknown origin, possibly expressing a placebo effect. The overall results on the efficiency of stimulation showed an accuracy global score of 67% over the 18 cases studied. The results from articulation projection modelling showed the possibility of formulating personalised models for PD and control participants to transform acoustic formant dynamics into articulation kinematics. This might open the possibility of characterising PD dysarthria based on speech audio records. The most remarkable findings of the study include the determination of the glottal source amplitude distribution behaviour of normative and PD participants; the impact of age effects in phonation as a confounding factor in neuromotor disorder characterization; the importance of ensuring that the classification of speech dysarthria is based on principles that can be explained and interpreted; the need of taking into account the effects of medication when framing new classification experiments; the potential of using EEG-band decomposition to analyse vocal fold stiffness correlates, as well as the possibility of using these descriptions in longitudinal monitoring of treatment efficiency; the feasibility of establishing a relationship between acoustic and kinematic variables by projection model inversion; and the potential of these descriptions for estimating neuromotor activities in midbrain related to phonation and articulation activity. The most important outcome to be brought forth from the thesis is that the methodology used throughout the project uses a bottom-up approach based on speech model inversion at the acoustical, biomechanical, and neuromotor levels allowing to estimate glottal signals, biomechanical correlates, and neuromotor activity from speech alone, establishing a common neuromechanical characterisation framework on its own

    Experimental and Model-based Approaches to Directional Thalamic Deep Brain Stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. September 2016. Major: Biomedical Engineering. Advisor: Matthew Johnson. 1 computer file (PDF); xii, 181 pages.Deep brain stimulation (DBS) is an effective surgical procedure for the treatment of several brain disorders. However, the clinical successes of DBS hinges on several factors. Here, we describe the development of tools and methodologies in the context of thalamic DBS for essential tremor (ET) to address three key challenges: 1) accurate localization of nuclei and fiber pathways for stimulation, 2) model-based programming of high-density DBS electrode arrays (DBSA) and 3) in vivo assessment of computational DBS model predictions. We approached the first challenge through a multimodal imaging approach, utilizing high-field (7T) susceptibility-weighted imaging and diffusion-weighted imaging data. A nonlinear image deformation algorithm was used in conjunction with probabilistic fiber tractography to segment individual thalamic sub-nuclei and reconstruct their afferent fiber pathways. We addressed the second challenge by developing subject-specific computational model-based algorithms built on maximizing population activating function values within a target region using convex optimization principles. The algorithms converged within seconds and only required as many finite-element simulations as the number of electrodes on the DBSA being modeled. For the third challenge, we recorded (in two non-human primates) unit-spike data from neurons in the vicinity of chronically implanted thalamic DBSAs before, during and after high-frequency stimulation. A novel entropy-based method was developed to quantify the degree and significance of stimulation-induced changes in neuronal firing pattern. Results indicated that neurons modulated by thalamic DBS were distributed and not confined to the immediate proximity of the active electrode. For those that were modulated by DBS, their responses increasingly shifted from firing rate modulation to firing pattern modulation with increased stimulation amplitude. Additionally, strong low-pass filtering effect was observed where <4% of DBS pulses produced phase-locked spikes in cells exhibiting significant excitatory firing pattern modulation. Finally, we quantified the spatial distribution of neurons modulated by DBS by developing a novel spherical statistical framework for analysis. Together, these tools and methodologies are poised to improve our understanding of DBS mechanisms and improve the efficacy and efficiency of DBS therapy

    Functional Organization of the Human Brain: How We See, Feel, and Decide.

    Get PDF
    The human brain is responsible for constructing how we perceive, think, and act in the world around us. The organization of these functions is intricately distributed throughout the brain. Here, I discuss how functional magnetic resonance imaging (fMRI) was employed to understand three broad questions: how do we see, feel, and decide? First, high-resolution fMRI was used to measure the polar angle representation of saccadic eye movements in the superior colliculus. We found that eye movements along the superior-inferior visual field are mapped across the medial-lateral anatomy of a subcortical midbrain structure, the superior colliculus (SC). This result is consistent with the topography in monkey SC. Second, we measured the empathic responses of the brain as people watched a hand get painfully stabbed with a needle. We found that if the hand was labeled as belonging to the same religion as the observer, the empathic neural response was heightened, creating a strong ingroup bias that could not be readily manipulated. Third, we measured brain activity in individuals as they made free decisions (i.e., choosing randomly which of two buttons to press) and found the activity within fronto-thalamic networks to be significantly decreased compared to being instructed (forced) to press a particular button. I also summarize findings from several other projects ranging from addiction therapies to decoding visual imagination to how corporations are represented as people. Together, these approaches illustrate how functional neuroimaging can be used to understand the organization of the human brain
    • …
    corecore