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palavras-chave 

 
Análise de movimento humano em 3-D, análise automatizada de marcha, 
câmara RGB-D, aprendizagem máquina, reconhecimento de atividades, 
identificação humana 

 

resumo 

 
Atualmente ainda é comum na prática clínica avaliar a marcha (ou o modo de 
andar) de uma certa pessoa através da observação visual e utilização de uma 
escala de classificação, o que é uma abordagem subjetiva. No entanto, existem 
sensores incluindo câmaras RGB-D, como a Microsoft Kinect, que podem ser 
usados para obter informação quantitativa que permite realizar a análise da 
marcha de um modo mais objetivo. Os resultados quantitativos da análise da 
marcha podem ser muito úteis, por exemplo, para apoiar a avaliação clínica de 
pessoas com doenças que podem afetar a sua marcha, como a doença de 
Parkinson. 

Assim, a principal motivação desta tese foi fornecer apoio à avaliação da marcha, 
permitindo realizar a análise quantitativa da marcha de forma automatizada. Este 
objetivo foi atingido usando dados em 3-D, fornecidos por uma única câmara 
RGB-D, para automaticamente selecionar os dados correspondentes a andar e, 
em seguida, detetar os ciclos de marcha executados pelo sujeito durante a 
marcha. Para cada ciclo de marcha identificado, obtemos vários parâmetros de 
marcha, que são usados em conjunto com medidas antropométricas para 
identificar automaticamente o sujeito que está a ser avaliado. 

A seleção automatizada de dados de marcha usa técnicas de aprendizagem 
máquina para reconhecer três atividades diferentes (andar, estar parado em pé 
e marchar), bem como duas posições diferentes do sujeito em relação à câmara 
(de frente para a câmara e de costas para ela). Para a deteção dos ciclos da 
marcha, desenvolvemos um algoritmo que estima os instantes correspondentes 
a determinados eventos da marcha. A identificação do sujeito com base na sua 
marcha é realizada usando uma solução que também foi desenvolvida com base 
em aprendizagem máquina. 

As soluções desenvolvidas foram integradas num sistema de análise 
automatizada de marcha, que demonstrámos ser uma alternativa viável a 
sistemas padrão de referência para obter vários parâmetros de marcha espácio-
temporais e alguns parâmetros angulares. Além disso, o sistema é adequado 
para uso em ambientes clínicos, bem como em cenários ambulatórios, pois 
depende de apenas de uma câmara RGB-D que não usa marcadores e é menos 
dispendiosa, mais portátil, menos intrusiva e mais fácil de configurar, quando 
comparada com os sistemas padrão de referência (múltiplas câmaras e vários 
marcadores colocados no corpo do sujeito). 
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abstract 

 
Nowadays it is still common in clinical practice to assess the gait (or way of 
walking) of a given subject through the visual observation and use of a rating 
scale, which is a subjective approach. However, sensors including RGB-D 
cameras, such as the Microsoft Kinect, can be used to obtain quantitative 
information that allows performing gait analysis in a more objective way. The 
quantitative gait analysis results can be very useful for example to support the 
clinical assessment of patients with diseases that can affect their gait, such as 
Parkinson’s disease. 

The main motivation of this thesis was thus to provide support to gait assessment, 
by allowing to carry out quantitative gait analysis in an automated way. This 
objective was achieved by using 3-D data, provided by a single RGB-D camera, 
to automatically select the data corresponding to walking and then detect the gait 
cycles performed by the subject while walking. For each detected gait cycle, we 
obtain several gait parameters, which are used together with anthropometric 
measures to automatically identify the subject being assessed. 

The automated gait data selection relies on machine learning techniques to 
recognize three different activities (walking, standing, and marching), as well as 
two different positions of the subject in relation to the camera (facing the camera 
and facing away from it). For gait cycle detection, we developed an algorithm that 
estimates the instants corresponding to given gait events. The subject 
identification based on gait is enabled by a solution that was also developed by 
relying on machine learning. 

The developed solutions were integrated into a system for automated gait 
analysis, which we found to be a viable alternative to gold standard systems for 
obtaining several spatiotemporal and some kinematic gait parameters. 
Furthermore, the system is suitable for use in clinical environments, as well as 
ambulatory scenarios, since it relies on a single markerless RGB-D camera that 
is less expensive, more portable, less intrusive and easier to set up, when 
compared with the gold standard systems (multiple cameras and several markers 
attached to the subject’s body). 
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1 Introduction 

The technology available nowadays enables capturing, gathering and processing of infor-

mation about the real world, including the human being. For example, human motion can be quanti-

fied using sensors that are becoming increasingly common in our daily lives, such as wearable sen-

sors (e.g., accelerometer, gyroscope) and vision-based sensors (e.g., RGB, infrared and RGB-D cam-

eras). The quantitative motion information provided by these sensors can be used for various appli-

cations, including activity recognition [1-4], human identification [5-9] and posture, balance, and/or 

motor function assessment [10-17], which are useful in different areas, such as sports, healthcare, 

security, human-interface interaction and entertainment [18-21]. 

Walking is a motor activity that can be affected by an injury or disease (e.g., neurological 

disease) [22]. Therefore, the analysis of human gait or way of walking is very important in the areas 

of sports and healthcare, since it can help in the prevention, diagnosis and monitoring/rehabilitation 

of injuries or diseases that affect the gait [13, 14, 23]. Nowadays, it is still common to use traditional 

rating scales for gait assessment in clinical practice, in which experts observe the patient’s gait and 

decide on its quality by assigning a score [23], which is a rather subjective method. However, this 

subjectivity can be overcome by using sensors to carry out gait analysis in a more objective way. 

RGB-D cameras provide both colour (RGB) images and depth information, which can be 

used to track the full-body movements of subjects in 3-D (three dimensions) without relying on any 

markers. The emergence of low-cost RGB-D cameras, such as the Microsoft Kinect, has led to a 

renewed interest regarding markerless motion analysis in the area of computer vision [24, 25]. A 

single RGB-D camera enables 3-D (three-dimensional) motion analysis, without requiring the con-

trol of the ambient lighting (indoors) or the colour of the background or subject’s clothing, which is 

not possible or is more complex when using a single RGB camera and no markers. 

Furthermore, RGB-D cameras are less expensive and more portable when compared to 

multi-camera marker-based systems. They are also less intrusive and their setup is less time-consum-

ing than systems that rely on markers/sensors attached to the subject’s body. In the specific case of 

gait, they allow to obtain more complete information than floor sensors (e.g., force plates, pressure-

sensitive mats/walkways). 
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1.1 Motivation 

In the context of an on-going collaboration with the Movement Disorders Unit of São João 

Hospital, Porto, Portugal (Rui Vaz, M.D. and Maria José Rosas, M.D.), and considering our previous 

work on sensor-based human monitoring and/or motion quantification and analysis [26-37], the fol-

lowing challenge was presented: using technology to support the clinical motor assessment of sub-

jects with diseases affecting their movement, such as Parkinson’s disease (PD). 

To address this challenge, it was firstly necessary to select a sensor that provides quantitative 

information that can be used to obtain human motion information. A single RGB-D camera enables 

full-body 3-D motion capture. Furthermore, it meets several of the requirements that are important 

in clinical scenarios, including low-cost, portability, minimal intrusiveness and quick setup. There-

fore, the RGB-D camera was our choice for motion quantification. 

It was also necessary to define the motor function to be assessed. From the motor tasks that 

are usually evaluated in PD, gait is a task that involves the whole body and does not require any 

intervention by the physicians (which could lead to occlusions) or the use of any object (e.g., chair). 

For this reason, we considered the assessment of a simple gait task: walking back and forth in front 

of the camera. 

In preliminary studies we carried out with PD patients, it became clear the need to avoid 

manual intervention as much as possible in the whole process of gait analysis. For a fully automated 

gait analysis, it is important to perform the following tasks automatically: selection of the sensor data 

corresponding to walking; detection of gait cycles carried out during the walking activity; extraction 

of relevant gait information for each gait cycle; identification of the subject being assessed. 

Although several studies relied on an RGB-D camera for activity recognition [4, 38-54], gait 

cycle detection [55-65] and human identification [66-75], there is no contribution that integrated the 

different solutions to enable gait analysis in an automated way, to the best of our knowledge. Thus, 

the main motivation of this thesis was to study and propose a solution for automated motion analysis 

during gait, which can be used to support the assessment of a given subject’s gait. 

1.2 Objectives 

The main objective of this thesis was to provide a tool for supporting the assessment of a 

subject’s gait, by enabling quantitative human gait analysis. This tool should be suitable for use in 

different scenarios, including clinical scenarios, i.e., it should portable, easy to set up and use, mini-

mally intrusive for the subjects being assessed, and not be very expensive. Regarding the process of 
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gait analysis, it should not require expertise knowledge and should be performed in the shortest time 

possible, by avoiding manual intervention in the different steps involved in the process. 

To achieve the defined objective, we investigated if the 3-D body joint data provided by a 

single RGB-D camera, namely a Kinect, can be used to carry out automated online gait analysis. This 

investigation was carried out by defining the following goals: 

 Explore the use of machine learning techniques and measures extracted from the 3-D 

data for online activity recognition, to enable the automated identification of data corre-

sponding to the walking activity; 

 Explore if a few measures extracted from the 3-D data can be used for estimating the 

instants corresponding to gait events, for enabling the online detection of gait cycles and 

associated phases in an automated way; 

 Ascertain if our gait analysis solution based on a single Kinect can be used as an alter-

native to a gold standard system (multi-camera marker-based system) for gait assess-

ment; 

 Explore the use of machine learning techniques, together with gait analysis results and/or 

other measures (e.g., anthropometric measures), for human identification, with the aim 

of enabling the automatic association between a gait assessment session and the identity 

of the corresponding subject. 

1.3 Main Contributions 

This thesis’ work contributed with different solutions (Figure 1.1) for enabling quantitative 

human gait analysis in an automated way. The developed solutions were integrated into a system for 

automated gait analysis, which was shown to be a viable alternative to a gold standard system (multi-

camera marker-based system) for obtaining several spatiotemporal and some kinematic gait param-

eters. These parameters can be used to support the gait assessment of subjects, including patients 

with diseases or injuries that affect their gait. 

The system is suitable for use in clinical settings, as well as ambulatory scenarios, since it 

relies on a single markerless RGB-D camera that is less expensive, more portable, less intrusive and 

easier to set up than the gold standard systems (multiple cameras and several markers attached to the 

subject’s body). 

Furthermore, our system allows saving time in the whole process of gait analysis when com-

pared with solutions requiring manual intervention. We enable fully automated gait analysis (except 
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for starting the data acquisition) by using the 3-D data provided by the RGB-D camera to automati-

cally select the data corresponding to walking and detect the gait cycles performed during the walking 

activity [76]. Furthermore, the gait parameters computed for each detected gait cycle are used to 

identify the associated subject [77]. 

 

 

Figure 1.1. Automated gait analysis using a single RGB-D camera, including data acquisition, activity 

recognition, gait parameter computation and subject identification. 

 

The data provided by the RGB-D camera, namely a Kinect (v1 or v2), are acquired from a 

given subject using the solution we developed for online visualization and acquisition of Kinect data 

[78]. For automated gait data selection, the walking activity is automatically recognized by relying 

on a predictive model that distinguishes between standing, walking and marching (while facing the 
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Kinect or facing away from it) [76]. This model was obtained using machine learning techniques, 

and depends only on measures extracted from the 3-D body joint data. 

For the identified gait data, several gait parameters are computed for each gait cycle per-

formed by the subject. The gait cycles are automatically detected by using an algorithm we developed 

for estimating the instants corresponding to relevant gait events [76]. Both solutions for activity 

recognition and gait cycle detection were developed having online gait analysis in mind. In contrast 

with an offline solution, online gait analysis allows defining of a minimum number of required gait 

cycles and automatically stopping the acquisition of data when the defined number of gait cycles has 

already been detected. 

The computed gait parameters provide information regarding the gait of the subject. In our 

system, these parameters are also used together with three anthropometric measures (length of the 

main body segments) to automatically identify the corresponding subject. This identification is car-

ried out using a predictive model also obtained relying on machine learning techniques. When con-

sidering healthy subjects, our proposed solution was able to identify the subjects using a single gait 

cycle with a higher overall accuracy comparing with similar contributions, while using a lower num-

ber of features [77].  

Another contribution that resulted from this thesis’ work was a study on the validity of the 

gait analysis results provided by our system, when compared with those obtained with a gold standard 

system. In this study, we found that the agreement between systems was overall better for spatiotem-

poral than kinematic gait parameters. Furthermore, the agreement was overall better when using: the 

second version of the Kinect (Kv2) instead of the first sensor version; data acquired while the subject 

is walking towards the Kinect (WF) rather than away from it (for Kv2); a physical configuration of 

the Kinect corresponding to a height of 1 m comparing with the heights of 0.6 m or 1.34 m (for Kv2 

and WF). When compared with similar contributions, our system outperformed the other proposed 

methods when considering all gait parameters. 

Some of the solutions described above were used to carry out preliminary studies on the use 

of the Kinect for supporting the clinical gait assessment of patients with diseases that can affect the 

ability to walk, namely PD [79-84] and Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP) 

disease [85]. The results of these studies show that gait information extracted from Kinect data can 

potentially be used to evaluate the severity of gait impairments and thus detect relevant changes in 

patients’ gait. Further studies with more data from a greater number of patients are needed to confirm 

the obtained results. 

The solutions for acquiring and reviewing Kinect data [78] have also been used in the clinical 

routine of the epilepsy monitoring unit of Klinikum Großhadern (Ludwig Maximilians University of 
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Munich, Germany) to continuously acquire data from epileptic patients [86, 87]. The data corre-

sponding to seizures were used in a study where we found that some parameters, which were obtained 

using another solution developed by our group, can possibly be used to distinguish between different 

types of seizures [86]. 

This work was supported by European Union funds through the Human Capital Operational 

Programme (POCH) and by national funds through the Portuguese Foundation for Science and Tech-

nology (FCT), in the context of the PhD scholarship SFRH/BD/110438/2015. 

1.4 Publications 

The results of this thesis’ research work have been reported in relevant journals, book chap-

ters and conferences. The published contributions are listed below. 

International Journals 

A. P. Rocha, H. M. P. Choupina, M. d. C. Vilas-Boas, J. M. Fernandes, and J. P. S. Cunha, 

"System for automatic gait analysis based on a single RGB-D camera," PLoS One, vol. 13, p. 

e0201728 (24 pages), Aug. 2018. DOI: 10.1371/journal.pone.0201728 [ISI Impact Factor 2017: 

2.766, Quartile 2017: Q1, Rank 2017: 15/64] 

J. P. S. Cunha, H. M. P. Choupina, A. P. Rocha, J. M. Fernandes, F. Achilles, A. M. Loesch, 

et al., "NeuroKinect: A novel low-cost 3Dvideo-EEG system for epileptic seizure motion quantifica-

tion," PLoS One, vol. 11, p. e0145669 (17 pages), Jan. 2016. DOI: 10.1371/journal.pone.0145669 

[ISI Impact Factor 2017: 2.766, Quartile 2017: Q1, Rank 2017: 15/64]  

Book chapters 

H. M. P. Choupina, A. P. Rocha, J. M. Fernandes, C. Vollmar, S. Noachtar, and J. P. S. Cunha, 

"NeuroKinect 3.0: Multi-Bed 3Dvideo-EEG System for Epilepsy Clinical Motion Monitoring," in 

Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth, D. K. 

Adrien Ugon, Gunnar O. Klein, Anne Moen, Ed., ed: IOS Press, 2018, pp. 46-50. DOI: 10.3233/978-

1-61499-852-5-46 

https://doi.org/10.1371/journal.pone.0201728
https://doi.org/10.1371/journal.pone.0145669
https://doi.org/10.3233/978-1-61499-852-5-46
https://doi.org/10.3233/978-1-61499-852-5-46
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International Conferences 

A. P. Rocha, J. M. Fernandes, H. M. P. Choupina, M. d. C. Vilas-Boas, and J. P. S. Cunha, 

"Subject Identification Based on Gait Using a RGB-D Camera," in Conference on Soft Computing 

and Pattern Recognition, Porto, Portugal, 2018 (to be published in Advances in Intelligent Systems 
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1.5 Thesis Outline 

This thesis is divided into eight chapters, excluding this one: 

 Chapter 2 introduces the main applications of quantitative human motion analysis, in-

cluding gait analysis. This chapter also describes the main sensors used for motion/gait 

analysis, with a greater focus on vision-based sensors, as well as the main steps and 

methods involved in the analysis. The sensors used for gait analysis are then described 

in more detail, along with a discussion of their main advantages and disadvantages, with 

a greater focus on vision-based sensors and particularly the Kinect (RGB-D camera). 

 Chapter 3 presents preliminary studies on the use of an RGB-D camera (Kinect) for 

supporting the clinical gait assessment of PD patients [79-84]. This chapter gives an 

overview of PD, including the associated symptoms and available treatments, as well as 

the methods used for clinical assessment. Then, the different studies carried out with PD 

patients and/or healthy subjects are described and the obtained results are presented and 

discussed. 
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 Chapter 4 describes the software applications KinectTracker (KiT) and Kinect Motion 

Analyzer (KiMA) [78], which enable the online visualization and acquisition of the mul-

timodal data provided by the Kinect camera (Kv1 or Kv2), as well as the review and 

selection of the acquired data for motion analysis, respectively. 

 Chapter 5 presents our solution for automated online gait cycle detection using a single 

RGB-D camera [76], which involves activity recognition for detecting the walking ac-

tivity and the estimation of gait event instants needed for computing gait parameters. 

This chapter also includes the results of the validation of both activity recognition and 

gait event detection solutions, when using data acquired from healthy subjects. 

 Chapter 6 includes the evaluation of the validity of our automated gait analysis system 

based on the Kinect camera against a gold standard system. The chapter presents the 

results obtained when comparing: the two versions of the Kinect; two different walking 

activities; three different physical configurations of the Kinect. 

 Chapter 7 describes the solution for subject identification relying on machine learning 

techniques, as well as the results provided by our gait analysis system and [76, 77]. This 

chapter also presents the results of the validation of the proposed solution, when consid-

ering different groups of subjects (healthy subjects and/or PD patients). 

 Chapter 8 presents the final system for automated gait analysis, which resulted from the 

integration of the developed solutions for data acquisition, activity recognition, gait pa-

rameter computation and subject identification. The chapter gives an overview of the 

system, as well as a more detailed description of the integration of the different solutions 

for automated online gait analysis. 

 Chapter 9 summarizes the main conclusions of this thesis, and discusses possible direc-

tions for future work. 
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2 Human Motion Analysis 

This chapter gives an overview of human motion analysis, including examples of its appli-

cations in different areas, as well as the different steps and methods involved in quantitative motion 

analysis relying on sensors, with a greater focus on vision-based sensors. The specific case of gait 

analysis is then presented, including the description of the main events that occur during gait, and 

the gait parameters that are traditionally computed. The sensors used for gait analysis are described 

in detail, with a greater focus on vision-based sensors and particularly the Microsoft Kinect camera. 

The main advantages and disadvantages of each type of sensor or sensor-based system are also pre-

sented and discussed. 

2.1 Motion Analysis 

Human motion analysis is the analysis of the human body’s movements. The first studies on 

human motion relied on naked-eye observations [88, 89], which is a rather subjective approach. 

Nowadays, the available technology allows obtaining quantitative motion-related information from 

the real world, including people, bringing more objectivity to motion analysis. Quantitative motion 

analysis based on sensors has been an active research topic in the past years due to its different 

possible applications in various areas, including biomechanics, sports, healthcare, security, entertain-

ment and human-computer interaction [18-21, 90-92]. 

Biomechanics is the study of the mechanical aspects of biological systems, including the 

human body and its movements [93, 94]. Quantitative motion analysis is thus very important in bio-

mechanics, since it contributes to a better understanding of the mechanics of the human body [92, 

95]. In sports, motion analysis involving professional athletes and sports activities in general has a 

great importance for personalized training, as well as injury detection or prevention [18, 20, 96]. 

In healthcare, motion analysis is especially important in the context of diseases or injuries 

that affect the movements of the patient. It can help in the diagnosis and/or assessment of patients 

with diseases that are characterized by abnormal and/or involuntary movements, the detection of 

movement-related injuries, and/or the physical rehabilitation of patients with movement impairments 

[26-30, 32, 58, 97-103]. Motion analysis can help detect relevant health-related events, such as falls 

in the elderly [55, 104-111]. 

In the security field, motion analysis can be useful for smart surveillance [18-21, 91] to au-

tomatically track subjects in a scene and/or detect abnormal behaviours, for example. It can also be 
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used for biometric identification for controlling the access to physical spaces, by using motion-re-

lated characteristics obtained from a given subject while performing a specific action or activity, 

such as walking [6-9, 18, 20]. 

Motion capture and analysis is also important in the areas of human-computer interaction 

and entertainment, which include the gaming and film industries [1, 18-20, 112-115]. Regarding 

human-computer interaction, gesture/action recognition can enable the interaction between people 

with computer applications through defined gestures/actions [20, 90, 91, 116, 117]. In the case of 

computer or video games, Microsoft has used a motion sensing device (Kinect camera) together with 

their Xbox video game console to allow interaction between players and video games using gestures, 

without requiring the players to hold any device [24]. In both the film and gaming industries, motion 

capture has also been used for digital character animation [112-115]. 

Quantitative human motion analysis relies on sensors, which measure physical quantities 

that can be used to detect and quantify human motion. The sensors most commonly used for motion 

analysis include wearable sensors, vision-based sensors, and floor sensors [13, 18-21, 23, 90, 91, 

110, 118], which are described in more detail below. 

Motion analysis based on wearable sensors usually involves the computation of measures 

over the data provided by sensor(s) attached to one or more parts of the body. Floor sensors (e.g., 

force plates or platforms, and pressure-sensitive mats or walkways) allow obtaining measures related 

with balance or gait when a subject stands or walks over them (they are installed or placed on the 

floor), based on ground reaction force or pressure data. Vision-based sensors provide colour (RGB), 

infrared (IR) or both RGB and IR/depth images (depth information is obtained relying on IR light). 

Systems based on vision-based sensors can be either marker-based or markerless (do not use mark-

ers), and rely either on a single or multiple cameras. 

In the case of markerless camera-based systems, the first step of motion analysis is human 

detection, i.e., the segmentation of the regions corresponding to people from the rest of the image 

[18]. For human detection, it is firstly necessary to segment the image regions corresponding to mov-

ing objects in the scene. In the case of RGB images, motion segmentation relies mostly on temporal 

or spatial information of the images. One of the most popular methods for motion segmentation is 

background subtraction, where moving objects are detected by differencing between the current im-

age and a reference background image (sensitive to changes in the background). Other approaches 

that are more adaptive to a dynamic environment include statistical methods, temporal differencing 

and optical flow [18]. 

When using depth data (i.e., distance between the camera and the object in the scene for each 

image pixel [91, 119]), motion segmentation is simpler when compared with RGB images, since the 
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objects in the scene can be easily segmented based on the depth information [91]. Since the depth 

information is obtained using IR light, segmentation is not affected by changes in the background, 

such as variations in lighting conditions. 

If there are other moving objects in the scene besides people, the next step of motion analysis 

is object classification, i.e., the recognition of which segmented regions correspond to people [18]. 

This recognition is usually performed using machine learning techniques based on shape or motion 

information, for example. If the moving regions are known to be people, the human recognition step 

is not necessary. 

For each region corresponding to a person, it is then necessary to track it over time [18]. 

Tracking usually involves matching objects in consecutive frames through features such as points, 

lines or blobs. Depending on the considered criteria, subject tracking can be divided into different 

groups: tracking of different body parts or whole body; single-, multi-, or omni-directional view; 2-D 

(two-dimensional) or 3-D (three-dimensional); indoors or outdoors; tracking of a single or multiple 

persons; moving or stationary camera. 

The tracking methods include tracking based on models, regions, active contouring or fea-

tures [18]. In model-based tracking, the geometric structure of the human body is represented as a 

stick figure (combination of line segments connected by joints), 2-D contour (2-D ribbons or blobs) 

or volumetric model (3-D volumes, such as elliptical cylinders, cones, and spheres). Region-based 

tracking consists of tracking a connected region (e.g., combination of blobs representing different 

body parts) associated with each moving person over time, using a cross-correlation measure. Active-

contour-based tracking tries to obtain a representation of the outline of the object relying on active 

contour models or snakes, and then dynamically update it over time. Feature-based tracking uses 

low-level features, such as points or lines, on the object for tracking. 

In the specific case of the Kinect (RGB-D camera), besides colour and/or IR images and 

depth information, it also provides silhouette information and the 3-D position of several body joints. 

Kinect’s tracking algorithm for joint position estimation (or pose estimation) is based on the research 

presented in [119]. Firstly, per-pixel body part recognition is performed over each silhouette (region 

corresponding to a person), using depth image features and machine learning techniques. Then, hy-

potheses of joint positions are estimated by finding local centroids of the body part probability mass 

using mean shift mode detection [24, 119]. Finally, a skeleton model (or stick figure) is fitted to the 

hypothesized joint positions, taking into account temporal and kinematic constraints [24]. 

For marker-based vison-based systems, motion analysis consists of detecting and tracking 

the position of markers attached to the subject’s body [120, 121]. There are two main types of mark-

ers: active and passive [92, 120, 121]. Active markers are light-emitting diodes (LED), which emit 
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light in the visible or infrared light spectrum, presenting a high contrast with the background. Each 

LED is activated at a time, enabling the automatic identification and tracking of each marker. Passive 

markers are retro-reflective markers, which reflect infrared light and thus present a high contrast with 

the background in infrared images. To deal with the presence of several markers at the same time in 

each image it is necessary to use labelling algorithms for identifying and tracking each marker [120]. 

For both types of markers, the high contrast between markers and background facilitates their seg-

mentation using thresholding [120, 122]. 

When the position of body joints is tracked, it is possible to extract measures that characterize 

the subject’s movements. Some examples of these measures are the velocity and acceleration of 

joints, the distance between adjacent or non-adjacent joints, and the angle at certain joints. 

Gait Analysis 

Human gait analysis is a special branch of human motion analysis, which involves the study 

of human walking [22, 95]. Gait analysis is also useful in different areas, including biomechanics, 

sports, healthcare and security [5-9, 13, 23, 92, 121]. In biomechanics, it helps to better understand 

the mechanics of the human body during the walking activity [92]. In sports, it can be used for im-

proving the performance of athletes, and injury prevention [13]. In healthcare, it can help to detect 

and/or assess gait impairments resulting from injuries or diseases, and evaluate the improvement or 

decline of gait function during treatment and/or rehabilitation [13, 23, 121]. In the security industry, 

gait information can be used for verifying the identity of a given subject [5-9], with the aim of smart 

surveillance or access control, for example. 

In clinical practice, it is still common to use traditional rating scales for gait assessment, in 

which experts observe the patient’s gait by asking them to walk and then decide on the gait quality 

by assigning a score [23]. This assessment method can be rather subjective. However, with the advent 

of sensors and their widespread use in our daily lives, systems based on sensors can be used to detect, 

track and quantify human motion during gait, allowing a more objective gait analysis. 

Quantitative human gait analysis usually relies on wearable sensors [13, 23, 123-125], vi-

sion-based sensors [23, 55-57, 65, 126-131] and/or floor sensors [23, 127-133]. These sensors are 

described in more detail below, along with a discussion of their main advantages and disadvantages. 

Gait analysis has some overlap with motion analysis, including the detection and tracking of 

people over time in the case of vision-based sensors and/or the computation of measures that char-

acterize motion. In the case of gait analysis, it also traditionally involves the computation of param-

eters for each gait cycle performed by the subject while walking. Therefore, when computing tradi-

tional gait parameters, it is firstly necessary to identify gait cycles. 
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A gait cycle or stride corresponds to the time interval between two successive occurrences 

of a repetitive gait event [22], such as the foot contact or heel strike, i.e., the instant when the foot 

makes contact with the ground. When considering this gait event, a left/right gait cycle is the time 

interval between two consecutive left/right heel strikes. A right gait cycle and associated heel strikes 

are illustrated in Figure 2.1. Each gait cycle includes two steps, where a step is the time interval 

between two consecutive heel strikes of opposite sides.  

 

 

Figure 2.1. Right gait cycle performed by a subject while walking, including the associated gait events 

and phases (adapted from the figures included in [134]). 

 

Other gait event that occurs during a gait cycle is the toe off, i.e., the instant at which the 

foot leaves the ground. The toe off events that occur during a right gait cycle are also shown in Figure 

2.1. Considering the heel strike and toe off events, a gait cycle can be divided in two main phases: 

stance and swing. The stance phase is the time interval between a heel strike and the following toe 

off associated with the same foot. The swing phase is the time interval between a toe off and the 

following heel strike associated with the same foot. 

A gait cycle can also be divided according to whether only one or both feet are in contact 

with the floor: single-limb and double-limb support phases, respectively. The single-support phase 

corresponds to the time intervals between each toe off and the following heel strike of the opposite 

feet. The double-support phase correspond to the time intervals between each heel strike and the 
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following toe off associated with the opposite feet. The different phases of a right gait cycle are also 

represented in Figure 2.1. 

The gait parameters traditionally computed include the following [22, 57, 60, 61, 64, 65]: 

 Spatiotemporal 

o Spatial 

 Stride length – distance between two consecutive placements of the same foot (see 

Figure 2.2 for a right stride) 

 Step length – distance between two consecutive placements of opposite feet (see 

Figure 2.2 for left and right steps) 

 Stride/Step width (or walking base) – side-to-side distance between the line of the 

two feet, usually considering the midpoint of the back of the heel (see Figure 2.2) 

o Temporal 

 Stride duration or time – duration of a gait cycle or stride 

 Step duration or time – duration of a step 

 Stance duration or time – duration of the stance phase of a gait cycle 

 Swing duration or time – duration of the swing phase of a gait cycle 

 Single-support duration or time – duration of the single-limb support phase of a 

gait cycle 

 Double-support duration or time – duration of the double-limb support phase of 

a gait cycle 

o Gait speed – distance covered by the whole body in a given time interval (for a gait 

cycle, it is computed as the stride length divided by the stride duration) 

o Cadence – number of steps taken in a given time (for a gait cycle, it is computed as 1 

divided by the stride duration) 

o Foot swing velocity – maximum velocity of the left/right foot during the swing phase 

of a left/right gait cycle 

 Kinematic 

o Peak hip flexion – maximum value for the left/right hip angle in the sagittal plane 

during hip flexion for a left/right gait cycle 

o Peak hip extension – minimum value for the left/right hip angle in the sagittal plane 

during hip extension for a left/right gait cycle 

o Total hip range of motion – difference between the maximum and minimum values 

for the left/right hip angle in the sagittal plane for a left/right gait cycle 

o Peak knee flexion – maximum value for the left/right knee angle in the sagittal plane 

during knee flexion for a left/right gait cycle 
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o Peak knee extension – minimum value for the left/right knee angle in the sagittal 

plane during knee extension for a left/right gait cycle 

o Total knee range of motion – difference between the maximum and minimum values 

for the left/right knee angle in the sagittal plane for a left/right gait cycle 

o Total ankle range of motion – difference between the maximum and minimum val-

ues for the left/right ankle angle in the sagittal plane for a left/right gait cycle 

 

 

Figure 2.2. Spatial gait parameters for a right gait cycle or stride (adapted from the figure included in 

[22]). 

2.2 Sensors for Gait Analysis 

The sensors most commonly used for gait analysis can be divided into the following three 

main groups [23]: 

 Wearable sensors (e.g., accelerometer, gyroscope, force sensor [2, 13, 23]); 

 Vision-based sensors (e.g., RGB, infrared and RGB-D cameras [91, 120, 122]); 

 Floor sensors (e.g., force plates/platforms, pressure-sensitive mats/walkway [23]). 

The main advantages and disadvantages of these sensors are included in Table 2.1. 

Wearable sensors are meant to be worn, by attaching them the body or placing them inside 

a pocket or the shoes, for example. These sensors include accelerometers, gyroscopes, force sensors, 

flexible goniometers and electromyography sensors, which measure acceleration, angular velocity, 

ground reaction forces, angles and muscle activity information, respectively [13]. These measure-

ments can be used to compute spatiotemporal and/or kinematic gait parameters. 
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Table 2.1. Sensors used for gait analysis, including their main advantages and disadvantages. 

Sensors Advantages Disadvantages 

Wearable sensors 
 Low-cost 

 Portable 

 Limited number of traditional gait 

parameters when using one sensor 

type  

 Intrusive and can restrict movements 

 Time-consuming setup (for a large 

number of sensors) 

 Need to be frequently charged 

Vision-

based 

sensors 

Marker-based 

multi-camera 

system 

 Gold standard for motion capture 

 3-D motion tracking 

 Less sensitive to self-occlusions than 

single-camera systems 

 Not sensitive to changes in the 

environment (e.g., lighting 

conditions) when using infrared 

cameras 

 Can be used to obtain all traditional 

gait parameters 

 Expensive 

 Not portable 

 Time-consuming setup (marker 

placement and calibration) 

 Intrusive and can restrict movements 

 Requires tight-fitting clothing 

RGB camera 

 Low-cost (comparing with marker-

based multi-camera systems) 

 Portable and fast to set up (single 

camera) 

 Minimally intrusive (markerless) 

 Can be used to obtain all traditional 

gait parameters 

 2-D motion tracking only (single 

camera); 3-D tracking possible but 

requires multiple cameras 

 Sensitive to self-occlusions (single 

camera) 

 May require the control of the 

environment (e.g., lighting 

conditions, background colour) and 

subject’s clothing 

RGB-D 

camera 

 Low-cost (comparing with marker-

based multi-camera systems) 

 Portable and fast to set up (single 

camera) 

 Minimally intrusive 

 3-D motion tracking with a single 

camera 

 Not sensitive to changes in the 

environment (e.g., lighting 

conditions) 

 Calibration not required (single 

camera) 

 Can be used to obtain all traditional 

gait parameters 

 Sensitive to self-occlusions (single 

camera) 

Floor 

sensors 

Force plates  Minimally intrusive 

 Expensive 

 Not portable (when installed on the 

floor) 

 Limited to spatiotemporal gait 

parameters 

Pressure-

sensitive 

mats/walkway 

 Portable 

 Minimally intrusive 

 Expensive 

 Limited to spatiotemporal gait 

parameters 
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From the sensors included in Table 2.1, only the wearable sensors are carried by the subject, 

allowing long-term continuous monitoring at any time and place [23]. They are also generally less 

expensive and more portable than non-wearable sensors. On the other hand, wearable sensors rely 

on a battery with limited capacity, which needs to be regularly charged (sometimes every day). More-

over, they can be uncomfortable to wear and restrict the natural movements, and their setup is time-

consuming when using a large number of sensors. Another disadvantage is that only a limited number 

of traditional gait parameters can be obtained when using only one type of wearable sensor. 

For regular or sporadic gait assessments, floor sensors or vision-based sensors are an alter-

native to wearable sensors. Floor sensors include force plates or platforms (e.g., Kistler [135], Bertec 

[136], AMTI [137]) and pressure-sensitive mats/walkways (e.g., GAITRite [138], Tekscan [139]), 

which have embedded force or pressure sensors and are installed or placed on the floor [23]. Force 

plates/platforms measure the ground reaction forces generated when a body stands or moves along 

them, and can be used to analyse balance and gait [23, 135-137]. A pressure-sensitive mat or walk-

way measures pressure, and can be used to study gait and foot pressure distribution [23]. 

Floor sensors are not as intrusive as systems using sensors or markers placed on the subject’s 

body. Pressure-sensitive mats or walkways, as well as some force plates, are portable. However, both 

types of systems only allow obtaining spatiotemporal gait parameters. Furthermore, commercial 

force plates are expensive (prices vary between US$ 10,000 and US$ 20,000 [140]). Although there 

is a commercial low-cost portable force platform, the Nintendo Wii balance board (less than US$ 

100), it was shown to have several limitations when compared with more expensive alternatives 

[140]. Pressure-sensitive mats/walkways are also expensive, with prices ranging from €4,000 to 

€54,000 depending on the number of sensors and specifications [23]. 

When compared with floor sensors, vision-based sensors can be used to track the position of 

joints from the whole body, allowing the computation of all traditional gait parameters described 

above. This type of sensors are described in more detail below.  

Vision-Based Sensors 

Vision-based sensors are image sensors included in cameras, which are able to detect and 

convert light within a spectral range (e.g., visible or IR light) into electronic signals [141]. These 

cameras include RGB, IR and RGB-D cameras [91, 120, 122]. RGB cameras have a sensor that is 

sensitive to visible light, providing images in the RGB (red, green, and blue) colour model. These  

cameras are the most commonly used in our daily life (e.g., digital and smartphone cameras). Nev-

ertheless, IR and RGB-D cameras have also been widely used for motion/gait analysis [22, 23, 90, 

91, 120, 121]. IR cameras have a sensor that is sensitive to infrared light, providing infrared image 
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sequences. RGB-D cameras include both type of sensors, being able to provide RGB images, as well 

as IR images and/or depth information [24, 91]. 

Vision sensor-based systems can be divided according to the type and number of used cam-

eras. They can also be divided according to the use or not of markers attached to the subject’s body: 

marker-based or markerless. It is also possible to divide them based on the number of dimensions in 

which they track movements: 2-D or 3-D. 

Regarding marker-based systems, there are two main types of markers: active and passive 

[120]. Active markers include light-emitting diode (LED) markers, which are usually connected with 

wiring to a control unit also placed on the subject’s body. Passive markers include retroreflective 

markers, i.e., markers that reflect IR light. There are several commercially available motion capture 

systems that rely on active LED markers, such as the systems by Northern Digital Inc. [142] and 

Codamotion [143]. Passive retroreflective markers are used in the systems by Vicon [144], OptiTrack 

[145] and Qualisys [146]. 

Marker-based systems usually rely on multiple cameras [142-146], allowing to minimize 

self-occlusions and obtain highly accurate 3-D marker trajectories [92, 147, 148]. For these reasons, 

these systems are often considered as the gold standard systems for motion capture, having been 

extensively used for validating other systems in the context of motion/gait analysis [12, 16, 55, 57, 

60-65, 98, 100, 131, 149-156]. 

However, the use of marker-based multi-camera systems is mainly limited to laboratories 

[60, 92, 148, 150], since they are quite expensive (prices vary between US$ 5,000 and US$ 250,000 

depending on the number of cameras [115]) and are not portable. Another disadvantage of these 

systems is that their setup is rather complex and time-consuming, since it requires not only the careful 

placement of markers at specific parts of the subject’s body, but also calibration [21, 22]. Moreover, 

the markers and/or wiring can be uncomfortable for the subject to wear and can even interfere with 

or restrict the natural movements [92].  

Single-camera systems are less expensive and more portable than multi-camera systems. 

They also have the advantage of not requiring calibration or synchronization between several cam-

eras. Markerless systems have the advantage over marker-based systems of being less intrusive for 

the subjects and having a less time-consuming setup, since there is no need to place markers on 

several parts of the body. 

Despite of the advantages referred above, markerless systems relying on a single RGB cam-

era have the disadvantage of only enabling 2-D motion analysis. Motion analysis in 3-D using RGB 

cameras is possible, but only if two or more cameras are used simultaneously. Another disadvantage 
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of RGB camera-based systems is that they can be sensitive to changes in the environment, requiring 

a careful control of certain aspects (e.g., ambient lighting, background and/or clothing colour [122]) 

or the use of motion analysis methods that are robust to those changes [18]. These limitations can be 

overcome by using a camera that relies on IR rather than visible light. 

RGB-D cameras provide colour images in a similar way to RGB cameras, as well as depth 

data and/or infrared images similarly to IR cameras. Systems based on RGB-D cameras commonly 

rely on the depth data obtained using an IR sensor for detecting subjects and tracking the position of 

their body joints, in a markerless way. Furthermore, a single RGB-D camera can be used for 3-D 

motion analysis, which is not possible when using a single RGB camera. 

Therefore, a system relying on a single RGB-D camera has most of the advantages of mark-

erless single-camera and marker-based multi-camera systems: motion capture in 3-D, low-cost, port-

able, fast to set up, minimally intrusive, and not sensitive to changes in the environment. However, 

it is sensitive to self-occlusions as other single-camera systems, and its joint position estimation can 

be less accurate comparing with marker-based multi-camera systems [17]. 

Although nowadays there are several available commercial RGB-D cameras, such as Intel’s 

RealSense depth cameras [157], VicoVR [158], Orbbec cameras [159] and Stereolabs’ ZED camera 

[160], the Microsoft Kinect was one of the first available low-cost RGB-D cameras. The Kinect was 

initially released as an add-on for Microsoft’s Xbox 360 gaming console, becoming the fast-selling 

consumer electronics device in a period of 60 days [161]. Since its release, the Kinect has been widely 

used for research in the area of computer vision [12, 14-17, 38, 39, 42, 55-73, 75, 98-100, 103, 106, 

107, 109, 149-152, 162-167]. 

Microsoft Kinect 

The Microsoft Kinect was initially released in 2010 (US$ 150 [168]) as an accessory for the 

Xbox 360 gaming console to allow users to play games based on gestures without holding any con-

troller (camera shown in Figure 2.3 (a)) [169]. In 2011, Microsoft released a beta version of a soft-

ware development kit (SDK) [170], which enabled the development of Kinect-based applications 

running on Windows computers for use in various fields other than gaming, such as healthcare, ro-

botics, retail, and education. 

In 2012, the “Kinect for Windows” was released at a suggested price of US$ 249 together 

with the version 1.0 of the SDK, which allowed the development of commercial applications [171]. 

The last version (1.8) of the SDK for the first generation of the Kinect was released in 2013 [172]. 

The second generation of the Kinect was released in 2013 for Xbox One (camera shown in Figure 
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2.3 (b)) [173]. The “Kinect for Windows v2” was made available in 2014, together with the version 

2.0 of the SDK, at a price of US$ 200 [174]. 

 

   
(a) 

 

(b) 

Figure 2.3. First (a) and second (b) generations of the Microsoft Kinect camera and associated coordi-

nate system (adapted from the figure included in [175] and obtained from [176], respectively). 

The origin of the coordinate system is located at the centre of the first Kinect version [177] and at the 

centre of the IR sensor of the second Kinect version [176]. 

 

The Kinect camera includes a colour (RGB) camera, a depth sensor (composed of an IR 

projector or emitter and an IR camera) and a tilt motor (first camera version only) [24, 178, 179]. 

The depth sensor is used to provide depth information, which allows the extraction of the silhouette 

of the subjects in the scene, as well as the estimation of the 3-D position of their body joints relying 

on the proprietary algorithm running on the camera (described above) [119]. 

The main differences between the first and second versions of the Kinect (Kv1 and Kv2) are 

indicated in Table 2.2 [24, 178-181]. The provided data types are similar, with the difference that 

only the Kv2 allows the acquisition of both colour and IR images simultaneously [182]. The resolu-

tion of the data types is different when comparing the two Kinect versions (see Table 2.2), with the 

Kv2 providing colour data with better resolution (1920×1080 or Full HD) and depth data with slightly 

lower resolution than the Kv1. The maximum frame rate is of 30 Hz for both versions. 

 

Y

X

Z
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Table 2.2. Main differences between first and second versions of the Kinect (Kinect v1 and v2) [24, 

178-181, 183]. 

 Kinect v1 Kinect v2 

Data types Colour, depth and body joint data Colour, infrared, depth and body joint data 

Data resolution 

(frame rate) 

640×480 (30 Hz) or 1280×1024 (10 Hz) for 

colour, and 640×480 for depth data (30 Hz) 

1920×1080 for colour (30 Hz), and 512×424 

for infrared and depth data (30 Hz) 

Body data 

20 joints per subject 

(tracks up to six people, with full-body joint 

tracking for two subjects) 

25 joints per subject 

(full-body joint tracking for up to six 

subjects) 

Depth sensing 

approach 
Structured light Time-of-flight 

Depth range 
0.8–4 m (default mode); 0.4–3 m (near 

mode) 
0.5–8 m 

Field of view 
57.5 degrees horizontally and 43 degrees 

vertically 

70 degrees horizontally and 60 degrees 

vertically 

Tilt motor Yes (±27 degrees horizontally) No 

USB standard 2.0 3.0 

 

One of the most important differences between the two Kinects is the improvement of the 

subject/joint tracking in the second version over the first one [182]. The Kv1 uses the structured light 

approach, which obtains the depth information by projecting a known light pattern onto the scene 

and analysing the distortion of the reflected pattern [1, 91, 180, 181]. On the other hand, the Kv2 

relies on the time-of-flight approach, where the depth information is obtained by measuring the time 

that the light emitted by the IR projector takes to travel to an object in the scene and back to the 

camera, for each image pixel. The latter approach allows the Kv2 to provide better depth measure-

ments, and consequently more precise 3-D joint position estimations [181]. 

The Kv1 tracks up to two subjects simultaneously (full body) and 20 joints per subject, while 

the Kv2 is able to track a greater number of subjects and joints (maximum of 6 subjects, and 25 

joints). The additional body joints include the spine shoulder, thumbs and hand tips. The joints 

tracked by each Kinect version are illustrated in Figure 2.4. In this thesis, we use the Kv2 nomencla-

ture to refer to the joints. For each joint, the provided position is the estimated position in relation to 

the coordinate system associated the Kinect, which is illustrated in Figure 2.3. The Kv2 also provides 

the hand state (opened, closed, “lasso”). Moreover, the Kv1 has two different tracking modes (near 

and default modes), while the Kv2 has a single mode. 

Another difference between Kinect versions is their depth range (considering the default 

mode for Kv1): the maximum distance for Kv2 is twice as much as for Kv1 (8 m versus 4 m), and 

the minimum distance is smaller for Kv2 comparing with Kv1 (0.5 m versus 0.8 m). This leads to a 

considerably larger range for Kv2 (7.5 m) when compared with Kv1 (3.2 m). Moreover, Kv2 has a 
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wider field of view than Kv1. For this reason, the second version does not include a tilt motor, unlike 

the first version, which has a motor that can be used to adjust the camera’s tilt angle horizontally. 

 

 

Figure 2.4. Body joints tracked by Kinect v1 and v2.  

The Kinect v2 nomenclature is used in this thesis. 

2.3 Summary 

Quantitative analysis of human motion, including gait, has many applications in different 

areas, such as sports, healthcare, security and entertainment. The review of the main applications, 

which include activity recognition, motor function assessment and human identification, has allowed 

the identification of possible research directions for the thesis work.  

The sensors used for gait analysis include wearable sensors (e.g., accelerometer, gyroscope), 

vision-based sensors (e.g., RGB, infrared and RGB-D cameras) and floor sensors (e.g., force plates, 

pressure-sensitive walkways). In this chapter, we discussed the main advantages and disadvantages 

of each sensor type. This discussion contributed to the choice of a markerless RGB-D camera, namely 

the Microsoft Kinect, for enabling quantitative gait analysis. 

Body Joints

1 – Hip centre (v1) / Spine base (v2)

2 – Spine (v1) / Spine middle (v2)

3 – Shoulder centre (v1) / Neck (v2)

4 – Head

5 – Left shoulder

6 – Left elbow

7 – Left wrist

8 – Left hand

9 – Right shoulder

10 – Right elbow

11 – Right wrist

12 – Right hand

13 – Left hip

14 – Left knee

15 – Left ankle

16 – Left foot

17 – Right hip

18 – Right knee

19 – Right ankle

20 – Right foot

21 – Spine shoulder (only v2)

22 – Left hand tip (only v2)

23 – Left thumb (only v2)

24 – Right hand tip (only v2)

25 – Right thumb (only v2)
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Motion analysis based on markerless vision-based sensors involves human detection, recog-

nition and tracking. In the case of gait, the analysis also usually includes the identification of gait 

cycles and associated phases, as well as the computation of several parameters for each gait cycle. 

This chapter described the gait parameters that are traditionally computed during gait analysis, which 

have been considered for our objective of supporting gait assessment. 
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3 Preliminary Studies with Parkinson’s Disease 

Patients 

Parkinson’s disease (PD) is a neurodegenerative disease that can lead to several motor symp-

toms, including hand tremor, slowness of movement and gait impairments [184, 185]. These symp-

toms have a negative impact on the patient’s quality of life, but can be controlled using medication 

and/or surgical therapy (e.g., deep brain stimulation – DBS). In clinical practice, it is still common 

to assess the motor function of a PD patient using a rating scale [185, 186], such as the Unified PD 

Rating Scale (UDPRS), which can be rather subjective. This subjectivity can be overcome by using 

technology available today to obtain information that is more objective. 

In the context of a collaboration with the Movement Disorders Unit of São João Hospital, 

Porto, Portugal (Rui Vaz, M.D. and Maria José Rosas, M.D.), preliminary studies were carried out 

with PD patients treated with DBS, with the main aim of answering the following question: 

 Can a single RGB-D camera be used to support the clinical assessment of gait in PD? 

The studies relied on 3-D data acquired from PD patients and/or healthy subjects, while they 

performed a simple gait task in a hospital environment. To verify if the information extracted from 

the 3-D data can be used to evaluate the severity of gait impairments in PD patients treated with 

DBS, we explored if that information allows distinguishing between healthy subjects and PD patients 

in different DBS states. The obtained results are presented in [81-84]. 

Since the physicians typically use the UPDRS for assessing PD patients, we also explored 

the possibility of using the quantitative gait information for estimating UPDRS gait and motor sub-

scores. The results obtained with initial data acquisitions are presented in [79, 80]. 

The carried out studies additionally allowed verifying the suitability of our system based on 

an RGB-D camera for clinical environments. Moreover, they enabled the identification of desirable 

improvements regarding not only the software, but also the used setup and protocol. 

3.1 Parkinson’s Disease 

Parkinson’s disease is a progressive neurological disorder, which was firstly formally de-

scribed by James Parkinson in 1817 [184, 185, 187]. This disease is associated with the loss of brain 

cells in the substantia nigra (a brain structure) that produce dopamine (a neurotransmitter), which can 
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lead to a large number of symptoms. The primary cause of PD is still unknown. However, in a similar 

way to other neurodegenerative diseases, the main known risk factor is age [184]. Genetic and envi-

ronmental risk factors have also been associated with the disease. 

Parkinson’s disease is currently the second most common neurodegenerative disorder after 

Alzheimer’s disease [188, 189]. In 2000, it was estimated that PD had a prevalence of 1.8% in Eu-

ropean populations aged 65 or older, with an increase from 0.6% for ages between 65 and 69 to 2.6% 

for subjects aged between 85 and 89 years [190]. In 2005, it was estimated that there were over four 

million individuals worldwide with PD aged 50 or older, considering the five and ten most populous 

nations in Western Europe and the world, respectively [191]. This number is expected to double by 

2030 [191], due to ageing of western populations [184]. Individuals under 50 years of age can also 

suffer from PD. Parkinson’s disease in subjects with ages between 21 and 39 is called early or young 

onset PD, and it can correspond to 5–10% of PD patients [192]. 

3.1.1 Symptoms 

Parkinson’s disease symptoms can be divided into motor and non-motor symptoms [184, 

185, 193]. Motor symptoms include the following: 

 Bradykinesia (slowness or poverty of movement); 

 Muscular rigidity (increased resistance when stretching a muscle passively); 

 Rest tremor (tremor of head, upper and/or lower extremities when at rest); 

 Postural instability or balance impairment (loss of postural reflexes); 

 Festinating or shuffling gait (small shuffling steps); 

 Freezing of gait (sudden and transient inability to move, usually when initiating or dur-

ing walking or turning); 

 Flexed posture (flexed neck and trunk posture, and flexed elbows and knees); 

 Masked face (immobile and rigid facial expression); 

 Slow, quiet speech. 

Rest tremor, bradykinesia, rigidity and postural instability are generally considered the four 

cardinal symptoms of PD. Bradykinesia includes difficulties with planning, initiating and executing 

movement, and with performing sequential and/or simultaneous motor tasks, such as walking (usu-

ally with reduced arm swing). Postural instability, together with freezing of gait, is the most common 

cause of falls. 
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Gait impairments are one of the most important factors that contribute to a reduced quality 

of life in PD patients [194]. The assessment of gait should take into account several aspects, including 

the following: 

 Raising from chair (difficulty standing up and the need to use arms of the chair to stand 

up); 

 First step (difficulties taking the first step); 

 Posture while walking (more stooped than expected for age); 

 Speed (slower movement than expected for age – related to bradykinesia); 

 Stride length (shorter steps); 

 Turning (taking many steps to turn); 

 Steadiness (impaired balance – related to postural instability). 

3.1.2 Diagnosis and Follow-up 

The first step of the clinical process associated with PD is diagnosis. After a patient has been 

diagnosed with PD, is then important to monitor the disease’s progression and/or the outcome of the 

clinical therapeutic, to help the physician decide on the need or not to prescribe a new treatment 

and/or adjust the current treatment. Both diagnosis and follow-up assessment are typically carried 

out in a clinical environment by one or more physicians (e.g., neurologist, movement disorder spe-

cialist) [195]. 

Diagnosis 

There is no definitive test for the diagnosis of PD [185]. Therefore, PD diagnosis is generally 

based on clinical criteria. The most widely accepted PD diagnostic criteria are the United Kingdom 

PD Society Brain Bank clinical criteria of probable PD, which are grouped in three main steps [185, 

196]. The first step is the diagnosis of Parkinsonian syndrome, which involves the observation of the 

presence/absence of bradykinesia and at least muscular rigidity, 4–6 Hz rest tremor or postural insta-

bility. The second step is the exclusion of criteria for PD, including negative response to large doses 

of levodopa (medication), and a set of different symptoms, which can suggest an alternative diagno-

sis. The third step includes supportive prospective positive criteria for PD, such as asymmetric onset, 

excellent response to levodopa and clinical course of 10 years or more. 

Other PD diagnostic criteria exist, such as those introduced by the National Institute of Neu-

rological Disorders and Stroke [185], where symptoms or features are divided into two groups: char-
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acteristic of PD (rest tremor, bradykinesia, rigidity and asymmetric onset) and suggestive of alterna-

tive diagnoses (e.g., freezing of gait in the first three years). The criteria are divided into three groups: 

definite, probable and possible. 

Diagnosis may be difficult, especially early in the course of the disease, since some of the 

most characteristic PD symptoms may occur as a result of normal aging or other medical conditions 

[185]. 

Follow-up 

Parkinson’s disease clinical assessment during follow-up usually relies on a rating scale 

[185]. Several rating scales have been developed for the evaluation of motor impairment and/or dis-

ability of PD patients [186]. The scales considered as the most valid and reliable are the Columbia 

University Rating Scale (impairment only), Northwestern University Disability Scale (disability 

only) and Unified PD Rating Scale (both impairment and disability). Other scales include the Schwab 

and England Activities of Daily Living Scale (disability) and the Hoehn and Yahr Scale (severity of 

PD). 

The Unified PD Rating Scale (UPDRS) was developed due to the problem of variability of 

existing scales and their frequent modifications, which made it difficult to compare the studied pa-

tient population and the obtained results [197]. This scale is a compromise and combination of vari-

ous previous scales. Probably for this reason, it is broadly accepted for PD evaluation and has been 

used in many trials [186].  

The UPDRS consists of the following six sections, where most items are rated from zero 

(normal) to four (severely affected) according to interview and/or clinical observation [198]: 

I. Mentation, Behaviour and Mood – evaluation of intellectual impairment, thought disor-

der, depression and motivation/initiative. 

II. Activities of Daily Living – self-evaluation of thirteen activities of daily living, including 

speech, handwriting, falling and walking. 

III. Motor Examination – evaluation of motor function through fourteen items based on the 

Columbia University Rating Scale, including speech, facial expression, tremor at rest, 

rigidity, finger taps, leg agility, rising from chair, posture, gait, postural stability, body 

bradykinesia and hypokinesia. 

IV. Complications of Therapy – evaluation of therapy complications (dyskinesias, clinical 

fluctuations and other complications), which are rated as “yes” or “no”. 
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V. Modified Hoehn and Yahr Staging – modified version of the Hoehn and Yahr Scale, 

which divides the overall disease severity into eight stages (stage 0 corresponding to no 

signs of disease and stage 5 to wheelchair bound or bedridden unless assisted). 

VI. Schwab and England Activities of Daily Living Scale – measure of a person’s ability to 

perform daily activities in terms of speed and independence (0%–100%, with high per-

centages indicating a high level of independence, and low percentages indicating de-

pendence). 

3.1.3 Treatment 

Presently, PD has no cure, but available treatment can provide a considerable improvement 

of life quality and functional capacity [184]. The main treatment approaches are medication and sur-

gical therapy.  

Medication 

The main objective of the medication approach is to manage the motor symptoms, contrib-

uting to an improvement of the patient’s quality of life and functional capacity [184, 199]. Levodopa 

in combination with a peripheral dopa decarboxylase inhibitor (e.g., carbidopa) is considered the 

most effective medication available for treating PD motor symptoms [184, 199]. Motor symptoms 

usually initially improve by 20–70%, with some symptoms steadily improving between the first week 

or two and the following three months. This medication can be maintained over the first five years 

of the disease for most patients. 

Levodopa treatment has several possible side effects, including motor effects such as dyski-

nesias and motor fluctuations [184, 200]. Dyskinesia is the involuntary, erratic movement of the face, 

arms, legs and/or trunk, which tends to be more severe when increasing the dose of levodopa [189, 

200]. Motor fluctuations are related to the “on-off” phenomenon, i.e., the change between “on” and 

“off” states [201]. The “on” state refers to periods during which the PD patient responds to levodopa, 

and symptoms are generally well controlled. On the other hand, the “off” state corresponds to periods 

of poor patient response to levodopa during which previous symptoms are again experienced. 

Surgery 

The surgical therapy approach consists mainly in implanting stimulating electrodes in the 

brain [202-204]. These electrodes are connected to an impulse generator, typically placed in the chest 



3 Preliminary Studies with Parkinson’s Disease Patients 

 

 

32 

under the skin. The generator is used to produce high frequency pulses to perform deep brain stimu-

lation (DBS), through the stimulating electrodes. DBS can provide benefits for people with a variety 

of neurologic conditions, such as essential tremor and PD [202]. In the case of PD, DBS is used in 

patients whose motor symptoms have become difficult to manage with medication [204]. The best 

candidates are non-demented advanced PD patients with tremor, dyskinesia, significant motor fluc-

tuations with considerable “off” time and good response to levodopa in the “on” state [202-204]. 

Deep brain stimulation is likely to improve some PD motor symptoms (e.g. tremor, bradyki-

nesia and rigidity), as well as drug-induced dyskinesia and “off” states [202, 204]. On the other hand, 

it may worsen speech and cognition, and also involves inherent surgical risks [203]. In addition, as 

for the other treatments described above, DBS does not stop progression of the disease [204]. Fur-

thermore, in order to achieve optimal results, it requires the adjustment of the stimulation settings 

(e.g., impulse duration, frequency and voltage) according to the response of each patient. An opti-

mized electrode placement in the brain target is also necessary for achieving the best possible results. 

The benefit from surgery is usually maintained for at least four years [202]. 

3.2 Parkinson’s Disease Assessment Support Using an RGB-D 

Camera 

In the context of our collaboration with the Movement Disorders Unit of São João Hospital, 

preliminary studies were carried out to investigate if the quantitative data provided by a single 

RGB-D camera can be used to support the clinical gait assessment of PD patients treated with DBS.  

In these studies we explored if the information extracted from 3-D body joint data can be 

used to distinguish between healthy subjects and PD patients in two different DBS states, with the 

aim evaluating the severity of gait impairments in PD. Given that the physicians commonly use a 

rating scale such as the UPDRS for PD assessment, we also verified if the gait and/or motor sub-

score of UPDRS can be estimated using the same gait information. 

The studies were performed with three datasets acquired in different experiments involving 

PD patients treated with DBS and/or healthy subjects, where they performed a simple gait task in a 

hospital environment. The distinction between patients and healthy subjects was studied using initial 

acquisitions [81], as well as a larger dataset [82-84]. The estimation of UPDRS scores was also ex-

plored using initial acquisitions [79, 80], as well as a larger dataset. 

All experiments were conducted at São João Hospital (Porto, Portugal) and were approved 

by the hospital’s Ethics Committee. 
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3.3 Materials and Methods 

3.3.1 Subjects 

The demographics of the subjects that participated in each one of the three experiments 

(EXP1, EXP2 and EXP3) are presented in Table 3.1. The UPDRS scores assigned by one or two 

physicians to each PD patient before or after each data acquisition are presented in Table 3.2. In this 

table, the gait/motor score is indicated for each data acquisition session and each considered DBS 

state (stimulator switched on or off – Stim-on or Stim-off). For EXP3, one or more sessions were 

performed always in the Stim-on state. For some of those sessions, the scores are not indicated, since 

they were not available due to various reasons (e.g., the appointment with the physician did not take 

place in that day, or the scores were not included in the physician’s notes). 

3.3.2 Experimental Setup and Protocol 

Experiment EXP1 took place at a room in São João hospital (Porto, Portugal), which is 

shown in Figure 3.1 (a). The location of EXP2 was changed to a corridor in the same hospital (see 

Figure 3.1 (b)), due to the availability of more space, which allowed to increase the distance walked 

in each trial. Due to logistical limitations, the experiment EXP3 took place in another corridor in the 

hospital, which can be seen in Figure 3.1 (c). 

 

Table 3.1. Demographics of the subjects that participated in each experiment. 

SD, Min, Max and BMI stand for standard deviation, minimum, maximum and body mass index. 

  EXP1 EXP2 EXP3 

  
PD 

patients 

Healthy 

subjects 

PD 

patients 

Healthy 

subjects 

PD 

patients 

Gender (male/female) 2/1 2/1 9/2 4/4 8/3 

Age 

(years) 

Mean ± SD 54 ± 5 49 ± 4 61 ± 9 56 ± 13 59 ± 5 

[Min, Max] [47, 59] [46, 54] [43, 77] [40, 74] [50, 68] 

Height 

(m) 

Mean ± SD 1.68 ± 0.09 1.65 ± 0.06 1.67 ± 0.07 1.68 ± 0.13 1.68 ± 0.08 

[Min, Max] [1.59, 1.80] [1.58, 1.72] [1.50, 1.80] [1.45, 1.86] [1.57, 1.85] 

Weight 

(kg) 

Mean ± SD 82.7 ± 5.2 83.3 ± 26.4 81.6 ± 11.5 79.0 ± 12.7 70.3 ± 9.7 

[Min, Max] [78.0, 90.0] [54.0, 118.0] [59.0, 96.0] [65.0, 99.0] [60, 93] 

BMI 

(kg/m2) 

Mean ± SD 29.7 ± 3.7 30.4 ± 9.3 29.3 ± 4.5 28.0 ± 4.6 24.8 ± 2.8 

[Min, Max] [24.7, 33.5] [21.6, 43.3] [22.2, 37.8] [22.5, 38.0] [21.5, 30.7] 
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Table 3.2. UPDRS motor and gait scores assigned to the PD patients when the DBS stimulator is 

switched on (Stim-on) and off (Stim-off), for each experiment. 

Experiment 
PD 

patient 

Data 

acquisition 

session 

UPDRS score 

Motora Gaitb 

Stim-on  Stim-off  Stim-on  Stim-off  

EXP1 

1 

#1 

13 31 1 1 

2 7 26 1 1 

3 11 42 0 2 

EXP2 

1 

#1 

19 36 0 2 

2 12 50 0 2 

3 37 63 3 3 

4 9 22 1 2 

5 21 26 0 0 

6 9 27 0 1 

7 40 46 2 2 

8 16 24 2 2 

9 18 ― 1 ― 

10 26 ― 2 ― 

11 14 46 1 2 

EXP3 

1 

#1 1 

― 

0 

― 

#2 5 0 

#3 3 0 

2 

#1 9 1 

#2 11 0 

#3 16 1 

3 

#1 9 0 

#2 9 0 

#3 ― ― 

#4 ― ― 

4 
#1 12 0 

#2 30 0 

5 

#1 14 1 

#2 17 1 

#3 20 2 

6 

#1 ― ― 

#2 ― ― 

#3 7 0 

7 

#1 13 1 

#2 9 0 

#3 ― ― 

8 
#1 ― ― 

#2 ― ― 

9 
#1 12 0 

#2 ― ― 

10 
#1 3 0 

#2 ― ― 

11 #1 ― ― 

a Part III of UPDRS, with the score value ranging from 0 to 108 [198, 205]. 

b Item 29 of UPDRS, with the score value ranging from 0 (normal) to 4 (cannot walk) [198]. 
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 (a) (b) (c) 

Figure 3.1. Location of experiments EXP1 (a), EXP2 (b), and EXP3 (c), and used setup including a Ki-

nect v1 and/or a Kinect v2 mounted on a tripod and connected to laptop. 

 

In Figure 3.1, we can also see the setup used in each experiment. The setup of EXP1included 

a Kinect v1 mounted on a tripod and connected to a laptop. The setup of both EXP2 and EXP3 

included two Kinects, a Kinect v1 (Kv1) and a Kinect v2 (Kv2), connected to a laptop each. In EXP2, 

each Kinect was mounted on a tripod, while a single tripod was used in EXP3 for both Kinects (Kv1 

placed on top of the Kv2). 

An illustration of each experiment’s setup is presented in Figure 3.2, including the relevant 

distances, as well as the Kinects’ height (i.e., the distance between its base and the floor) and tilt 

angle (i.e., the angle between the z-axis associated with the camera and the horizontal plane perpen-

dicular to the gravity force). The approximate practical depth range for each Kinect (i.e., the distance 

range in relation to camera for which all body joints are tracked) is represented by the diagonal stripe 

pattern. This range depends on the associated height and tilt angle. 

In EXP1, the height and tilt angle of the Kv1 were chosen with the aim of maximizing the 

practical depth range of the sensor, while also taking into account the room dimension. In EXP2, the 

Kv1 and Kv2 were placed facing each other, with a distance of approximately 8 m between them. In 

EXP3, the used height of 1 m corresponds to an intermediate value in relation to the heights used for 

Kv1 and Kv2 in EXP2. The tilt angle for each Kinect was adjusted to maximize the practical depth 

range for the chosen height. 
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(a) 

 
(b) 

  
(c) 

Figure 3.2. Experimental setup used in experiment EXP1 (a), EXP2 (b) and EXP3 (c), including the 

height and tilt angle of the Kinect(s), the walking trajectory, and the relevant distances. 
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For all experiments, the protocol included a simple gait task: walking towards and then away 

from the Kinect, at a self-selected comfortable pace. The arrowed dashed line in Figure 3.2 represents 

the walking path for each experiment. The total covered distance was of 6 m for EXP1, and 16 m for 

EXP2 and EXP3. 

In EXP1, the task was performed once by the healthy subjects, and twice by the PD patients 

(first in the Stim-on state, and then about 15–18 min later in the Stim-off state). In EXP2, each subject 

carried out the gait task 2 to 15 times (8 ± 5 trials), depending on the gait difficulties. For the PD 

patients, the task was performed in both Stim-on and Stim-off states, with a time interval between 

acquisitions in the different states ranging from 8 min to 1h40 (39 ± 38 min). 

EXP3 included one or more data acquisitions with each patient, in different days, but always 

in the Stim-on state. An acquisition was carried out with each patient on the day of discharge from 

hospital, after undergoing DBS surgery. Whenever possible, we also performed an acquisition in each 

follow-up appointment, during the six months after surgery. The number of gait trials per acquisition 

varied between 1 and 12 (8 ± 2 trials), depending on the gait difficulties of each patient.  

3.3.3 Data Acquisition and Processing 

The datasets obtained in each experiment are presented Table 3.3, including the correspond-

ing number of days, number of subjects, DBS state for PD patients, number of data acquisitions per 

subject and number of gait trials per acquisition (mean and standard deviation for DS2 and DS3). 

For each acquisition, the Kinect data were acquired at an approximate frame rate of 30 Hz, using our 

KiT application [78]. 

 

Table 3.3. Datasets obtained in each experiment, including the number of days and subjects, DBS state 

for PD patients, and number of data acquisitions per subject and of gait trials per acquisition.  

Datasets 
Number 

of days 

Number of subjects DBS 

state for 

patients 

Number of data 

acquisitions per subject 

Number of 

gait trials per 

acquisition 
PD 

patients  
Healthy All 

DS1 1 3 3 6 
Stim-on 

and 

Stim-off 

1 for healthy subjects, and 

2 on the same day for 

patients (one in each DBS 

state) 

1 

DS2 

3 

(period of 

9 months) 

11 8 19 8 ± 5 

DS3 

19 

(period of 

12 months) 

11 ― ― Stim-on 
1 to 4 (3 ± 1), on different 

days 
8 ± 2 
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The first step of data processing consisted of converting the 3-D position of each joint 

 , ,x y z  into a coordinate system corresponding to a non-tilted camera (tilt angle of 0 degrees), for 

each body joint data frame. This coordinate conversion facilitates the comparison between the 3-D 

joint positions acquired using different camera tilt angles, and was performed for all studies presented 

in this thesis. 

Tilting the Kinect by rotating it around its x-axis leads to the effect illustrated in Figure 3.3. 

Assuming that the camera is placed in such a way that its z-axis is parallel to the horizontal plane 

(tilt angle of 0 degrees) where a vertical object is standing, two points A and B on this object will 

have the same value for the z-coordinate ( A Bz z  in the figure). However, if the Kinect is tilted 

around its x-axis, so that its z-axis rotates by an angle  relative to its horizontal position, then the 

coordinates of points A and B will have different values in the rotated coordinate system ' ' 'x y z  (

A B' 'z z  in the figure). In a similar way the 'y -coordinates will be different from the y-coordinates. 

 

 

Figure 3.3. Coordinate systems of a non-tilted and tilted Kinect, and the effect that the tilting has on 

the distance between the Kinect and a given object in the z-axis. 
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The next step of data processing consisted of identifying the gait cycles performed by the 

subjects during the gait trials. For the first studies, the gait cycles of DS1 and DS2 were manually 

selected, by identifying the instants corresponding to heel strikes relying on the acquired colour 

and/or depth data. In the case of DS2, the instants corresponding to heel strikes were saved in our 

KiMA application [78]. Only the data corresponding to walking towards the camera were considered, 

since we visually verified that the data acquired while walking away from the camera were much 

noisier. 

For the last study presented below, the gait cycles of DS2 and DS3 were automatically de-

tected using the solution described later in this thesis. We again considered only the data correspond-

ing to walking towards the camera, since we confirmed in a validation study also presented in this 

thesis that the data corresponding to walking away from the sensor leads to higher detection errors. 

The number of identified gait cycles for each dataset (manually for DS1 and DS2 and auto-

matically for DS3) is presented in Table 3.4. In the second day of EXP2, Kv2 data were not acquired 

since the camera was unavailable due to technical problems. In the third day of EXP2, it was not 

possible to acquire data from two patients in the Stim-off state. In addition, the battery of the DBS 

stimulator was low for another patient, so the acquisition carried out in the Stim-on state was not 

considered in the studies presented below. It was also not possible to acquire Kv2 data from another 

patient, due to difficulties of the camera in tracking the subject.  

 

Table 3.4. Number of gait cycles included in each dataset. 

The version of the used Kinect(s) and the associated number of subjects are also indicated. 

Dataset Kinect 
Number of 

subjects 

Number of gait cycles 

PD patients Healthy 

subjects 

All 

subjects Stim-on Stim-off 

DS1 Kv1 
3 healthy + 

3 PD patients  
5 6 6 17 

DS2a 

Kv1 
8 healthy + 

11 PD patients 
109 122 58 289 

Kv2b 
5 healthy + 

8 PD patients 
157 143 118 418 

DS3 
Kv1 

11 PD patients 
282 

― ― ― 
Kv2 667 

a For both Kv1 and Kv2, data were not acquired from two patients while in the Stim-off state. 

Additionally, the battery of the DBS stimulator was low for another patient. 

b Kv2 data were not acquired from one of the patients. 
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For each data frame of a left/right gait cycle, the following 34/43 measures (Kv1/Kv2) were 

computed: 

 Velocity of the head, neck, spine base and spine middle, the right/left shoulder, elbow, 

wrist and hand, and the left/right foot, ankle, knee and hip, using (3.4); 

 Velocity of the left/right hand tip and thumb, and the spine shoulder (Kv2 only), using 

(3.4); 

 Acceleration of the head, neck, spine base and spine middle, the right/left shoulder, el-

bow, wrist and hand, and the left/right foot, ankle, knee and hip, using (3.5); 

 Acceleration of the left/right hand tip and thumb, and the spine shoulder (Kv2 only), 

using (3.5); 

 Distance between the feet, ankles, knees, hands, wrists and elbows, using (3.6); 

 Distance between the hand tips and thumbs (Kv2 only), using (3.6); 

 Angle at the left/right knee (defined by hip, knee and ankle joints), right/left elbow (de-

fined by shoulder, elbow and wrist joints), neck (defined by head, neck and spine mid-

dle/shoulder joints) and spine middle (defined by neck/spine shoulder, spine middle and 

spine base joints), using (3.7). 

 Angle at the spine shoulder (defined by neck, spine shoulder and spine middle joints) 

(Kv2 only), using (3.7). 
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In (3.4), vx is the x-axis component of the velocity vector for a given joint, and Δx is the 

difference between the x-coordinate of the joint position for two consecutive frames. In (3.5), ax is 

the x-axis component of the acceleration vector for a given joint. Similar notations are used for the 

y- and z-axis. In (3.4) and (3.5), Δt is the time elapsed between two consecutive frames. In (3.6), P1 

and P2 refer to the 3-D position of two different joints. In (3.7), P1, P2 and P3 correspond to the 3-D 
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position of three different joints. In (3.6) and (3.7), i jPP  is the 3-D vector defined by the positions 

Pi and Pj. 

For each gait cycle, the mean, median, variance and normalized variance (variance divided 

by the mean) were computed over each measure. Four traditional gait parameters were also com-

puted: stride duration and length, gait speed and cadence.  

For some of the studies presented below, only a subset of the indicated parameters were 

considered. Moreover, in the last study on UPDRS estimation, only the following 22 traditional gait 

parameters were considered: 

 Stride, step, stance, swing, single support and double support duration; 

 Stride and step length; 

 Step width; 

 Gait speed and gait speed variability; 

 Foot and arm swing velocity; 

 Angle at neck, spine shoulder and spine middle; 

 Elbow angle minimum and maximum; 

 Knee angle minimum and maximum; 

 Hip and ankle angle range. 

The computation of these parameters are described in more detail in the study on Kinect 

validation presented later in this thesis. 

3.3.4 Statistical Analysis 

We explored the possibility of using the quantified gait parameters to distinguish between 

healthy subjects, PD patients in the Stim-on state and PD patients in the Stim-off state, by performing 

for each parameter the Kruskal-Wallis test over the values obtained for the three groups. 

The Kruskal-Wallis test is a non-parametric method (i.e., does not assume a normal distri-

bution) for determining whether three or more independent groups have the same distribution [206, 

207]. The null hypothesis is that the samples come from identical populations. One of the outputs of 

the hypothesis test is the p-value. The p-value is the probability of obtaining results at least as extreme 

as the result in the sample data, assuming that the null hypothesis is true [208]. Smaller p-values 

correspond to smaller probabilities of making a mistake by rejecting the null hypothesis. Therefore, 

if the p-value is small, one can reject the idea that the difference is due to random sampling and 

conclude instead that the populations have different distributions (null hypothesis is rejected).  
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To verify the possibility of estimating UPDRS sub-scores relying on the gait parameters, we 

computed for each parameter the Pearson’s correlation coefficient (r) between the parameter values 

and the associated motor/gait sub-scores assigned by the physicians. 

The Kruskal-Wallis test and computation of the Pearson’s correlation coefficient were car-

ried out in the R environment [209], using the “stats” package [210]. 

3.4 Results 

3.4.1 Distinction between Healthy Subjects and Parkinson’s Disease Patients 

To verify if the computed gait parameters can be used to distinguish between the three con-

sidered groups (healthy subjects, PD patients in the Stim-on state, and PD patients in the Stim-off 

state), we firstly considered the initial acquisitions corresponding to dataset DS1. The Kruskal-Wallis 

test results (p-value) for the gait parameters that presented a statistically significant difference (p-

value ≤ 0.05) between the three groups are included in Table 3.5. To investigate if filtering the 3-D 

joint data improves the distinction, the results were obtained for two different situations: unfiltered 

and filtered data.  

 

Table 3.5. Kruskal-Wallis test p-value for the gait parameters, computed for dataset DS1 (unfiltered 

and filtered data), presenting a statistically significant difference (p-value ≤ 0.05) between healthy sub-

jects and PD patients in Stim-on and Stim-off states. 

Parameter 

p-valuea 

Unfiltered 

data 

Filtered 

data 

Mean Acceleration Neck  
N.S. ≤ 0.05 

Variance 

Velocity 

Head 

Neck  ≤ 0.05 ≤ 0.01 

Shoulder N.S. 

≤ 0.05 Acceleration Neck  

≤ 0.05 Distance Elbows 

Angle Elbow N.S. 

Normalized 

variance 

Velocity 

Neck  ≤ 0.01 ≤ 0.01 

Shoulder N.S. 
≤ 0.05 

Elbow N.S. 

Acceleration Neck  

≤ 0.05 

≤ 0.01 

Distance Elbows 

≤ 0.05 Stride duration 

Cadence 

a N.S. stands for non-significant (p-value > 0.05). 
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For filtered data, the parameters were computed over measures extracted from 3-D data that 

were processed using a low-pass Butterworth filter. The values of the filter’s parameters (order and 

cut-off frequency) were chosen by exploring the values of 5 and 10 Hz for the cut-off frequency, 

taking into account the values typically used in other studies (6 to 10 Hz [16, 100, 211]). For 5 Hz, 

we explored the filter order values from 1 to 5 (integer values). The best overall result, when taking 

into account the Kruskal-Wallis test p-values, was achieved for order 1. We then explored the orders 

1 and 2 for the cut-off frequency of 10 Hz, which led to worse results than those obtained for 5 Hz. 

Therefore, we used a first order low-pass Butterworth filter with cut-off frequency of 5 Hz. 

With the same aim of distinguishing between three groups, a similar statistical analysis was 

performed using dataset DS2, which corresponds to a larger number of subjects and a greater amount 

of data per subject comparing with DS1. To verify if one of the two Kinect versions is more appro-

priate for the defined objective, we considered only the acquisition sessions for which we obtained 

data from both Kv1 and Kv2. Furthermore, only the mean and variance were computed for each 

measure (72 and 90 parameters for Kv1 and Kv2, respectively). 

The obtained Kruskal-Wallis p-values are presented in Table 3.6, where we can see that there 

is a statistically significant difference between the three groups (p-value ≤ 0.05) for all parameters 

when using Kv2, and for all parameters except three (variance of wrist, hand and foot acceleration) 

when using Kv1.  

The gait parameters were obtained from 3-D joint data processed using a third order low-

pass Butterworth filter with a cut-off frequency of 5 Hz. Taking into account the previous results 

regarding filtering, we explored different filter order values (integer value from 1 to 5), for a cut-off 

frequency of 5 Hz, when considering the Kv2 data. The best overall result considering the Kruskal-

Wallis test p-values was achieved for the third order. We then confirmed that the best cut-off fre-

quency is 5 Hz, when varying the cut-off frequency between 4 and 7 Hz (integer values). 

An example of the angle at the elbow versus the elapsed time is shown in Figure 3.4 for a 

gait cycle performed by a healthy subject and a PD patient in both Stim-on and Stim-off states. For 

this example, the mean and variance for the considered measure is higher for the healthy subject 

when compared with the PD patient. This difference was expected since patients with PD tend to 

have reduced arm movement amplitude. When comparing the two different DBS states for the PD 

patient, the mean value for Stim-on was slightly higher than for Stim-off, which was also expected 

because the stimulation treatment usually leads to an improvement of the patient’s motor symptoms. 
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Table 3.6. Kruskal-Wallis test p-value for the gait parameters, computed for dataset DS2 (Kv1 and 

Kv2), when comparing healthy subjects and PD patients in Stim-on and Stim-off states. 

Parameter 
p-valuea 

Kv1 Kv2 

Mean 

Acceleration 

Elbow 

≤ 0.01 ≤ 0.001 Wrist 

Foot 

Angle 

Neck ≤ 0.001 ≤ 0.05 

Spine middle ≤ 0.01 ≤ 0.01 

Knee ≤ 0.001 ≤ 0.05 

Variance 

Velocity 

Wrist ≤ 0.01 

≤ 0.001 Ankle 
≤ 0.05 

Foot 

Acceleration 

Spine middle 

≤ 0.01 

≤ 0.001 

Spine base 

Shoulder 

Elbow ≤ 0.05 

Wrist 
N.S. 

Hand 

Hip 
≤ 0.05 

Ankle 

Foot N.S. 

Angle 

Neck ≤ 0.05 ≤ 0.001 

Spine middle ≤ 0.001 ≤ 0.001 

Elbow ≤ 0.01 ≤ 0.001 

Knee ≤ 0.05 ≤ 0.05 

Stride duration 
≤ 0.01 ≤ 0.001 

Cadence 

All other parameters ≤ 0.001 ≤ 0.001 

a N.S. stands for non-significant (p-value > 0.05) 

 

 

Figure 3.4. Angle at the elbow computed over Kv2 data versus the elapsed time for a given gait cycle 

performed by a heathy subject and PD patient in both Stim-on and Stim-off states. 
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3.4.2 Estimation of UPDRS Scores 

With the objective of using gait parameters for estimating the UPDRS gait sub-score, the 

Pearson’s correlation coefficient (r) between the parameter values and the corresponding gait scores 

was obtained for each gait parameter, when considering DS1 (PD patients only). The velocity, ac-

celeration and angle parameters were computed for both left and right joints (in the case of symmet-

rical joints) from unfiltered data, and the traditional gait parameters were not taken into account. 

Table 3.7 presents the results obtained for the parameters for which |r| ≥ 0.7 (results for both 

left and right sides are included in the case of symmetrical joints). 

 

Table 3.7. Pearson’s correlation coefficient (r) results for the gait parameters for which |r| ≥ 0.7, when 

considering the parameter values versus the UPDRS gait scores. 

For symmetrical joints, the result is indicated for both the left and right sides. The values |r| ≥ 0.7 are 

indicated in bold. 

Parameter r 

Mean 

Velocity Left/Right hand −0.64 / −0.73 

Acceleration 
Left/Right wrist −0.66 / −0.71 

Left/Right hand −0.83 / −0.53 

Distance Ankles −0.85 

Median 

Velocity Left/Right ankle −0.26 / −0.85 

Distance Ankles −0.74 

Acceleration Left/Right hand −0.76 / −0.60 

Variance 

Velocity Left/Right ankle −0.77 / 0.46 

Acceleration Left/Right knee −0.72 / 0.02 

Angle Left/Right elbow −0.13 / −0.72 

Normalized 

variance 
Velocity Left/Right ankle −0.63 / 0.83 

 

Although the results suggest that some of the parameters may be used for UDPRS gait score 

estimation, it was necessary to confirm them with a larger dataset. Therefore, a similar analysis was 

performed using the data from both DS2 and DS3, which correspond to a greater number of patients 

and a greater amount of data per patient. Only Kv2 data were considered, since a greater number of 

gait cycles was obtained using Kv2 when compared with Kv1 (see Table 3.4). Moreover, we only 

took into account the acquisitions sessions for which the UPDRS scores were available. The explored 

parameters included the 22 traditional gait parameters referred above. Both gait and motor sub-scores 

were investigated. 

The r results ranged between –0.61 and 0.49 for the gait score, and between −0.48 and 0.47 

for the motor score. When considering the mean parameter value for each data acquisition, the results 
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improved in the case of the motor score, but were similar for the gait score: best r value of −0.64 for 

the gait speed variability (motor) and −0.62 for the foot swing velocity and hip angle range (gait). 

We further investigated if better results can be achieved when considering all parameters 

together, by using machine learning techniques to obtain a predictive model for estimating the con-

sidered UPDRS scores. For the gait sub-score, a classification task was considered, since there are 

only four possible values (0, 1, 2 and 3; 4 was excluded because it corresponds to the inability to 

walk). Several machine learning algorithms were explored: k-nearest neighbours (k-NN), decision 

tree, random forest, support vector machines (SVM), multilayer perceptron, and multilayer percep-

tron ensemble. The algorithms and considered evaluation metrics are the same as those used in other 

studies presented in this thesis (described in more detail in Chapter 5). 

Regarding the motor sub-score, regression was considered for estimating this score, since 

the value range is much larger (integer numbers from 0 to 108) and not all the values are represented 

in the used dataset. Besides the algorithms referred above, we explored other algorithms used for 

regression tasks, which are available in the “rminer” package [212]: multiple regression; multivariate 

adaptive regression splines; M5 rule-based model; relevance vector machine. To evaluate the 

model’s performance, we considered the mean error, mean absolute error, root mean squared error 

and Pearson’s correlation coefficient (r). 

For each algorithm, the associated model was validated by using a “leave-one-acquisition-

out” cross validation approach. In this approach, all data acquisitions except one are used for training 

the model, which is then tested using the gait cycles of the left out acquisition. This process is re-

peated for each acquisition. Besides estimating a score based on a single gait cycle, we also studied 

the possibility of estimating a single score for the acquisition when several gait cycles are available 

(mean value rounded to units, when considering the scores predicted for all gait cycles). 

The best result for the gait score when predicting the score relying on a single gait cycle was 

obtained by the k-NN model: overall accuracy of 69% and F1 score of 63 ± 19%. When taking into 

account all available gait cycles per acquisition, the best result was also achieved by the k-NN model: 

overall accuracy of 67% and F1 score of 64 ± 13%. For the motor score, the best trade-off between 

the considered metrics was achieved for the multiple regression model (all available gait cycles): 

mean error of 0.33, mean absolute error of 10, root mean squared error of 12 and r of 0.57. 
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3.5 Discussion 

3.5.1 Distinction between Healthy Subjects and Parkinson’s Disease Patients 

The results of the initial study on the distinction between healthy subjects and PD patients in 

Stim-on and Stim-off states show that some of the computed gait parameters may be used for distin-

guishing between the three groups (Table 3.5). The obtained results also indicate that filtering the 

data used to compute the parameters contributes to a better distinction between the groups (results 

overall better for filtered data than for unfiltered data). This was expected since the Kinect data can 

be rather noisy, and filtering the data removes some of that noise. 

The results obtained when considering a larger number of subjects, as well as a greater 

amount of data per subject provided by both versions of the Kinect (Kv1 and Kv2), confirm that the 

extracted gait information can possibly be used to distinguish between the three considered groups. 

If the value of one or a set of parameters can be used to predict the group to which a subject belongs, 

then it may also enable the evaluation of the gait impairment severity of a given PD patient treated 

with DBS. 

Overall, Kv2 is more appropriate than Kv1 for supporting PD patient assessment, since the 

percentage of parameters for which p-value ≤ 0.001 (Kruskal-Wallis test) is higher for Kv2 (96% 

versus 71%). Moreover, Kv2 has a larger practical depth range (see Figure 3.2), which allows to 

acquire a higher number of gait cycles for the same number of trials (mean of 29 and 11 gait cycles 

per subject using Kv2 and Kv1, respectively, in our study).  

3.5.2 Estimation of UPDRS Scores 

When considering UPDRS score estimation, the results of the initial study indicate that some 

of the gait parameters may be used for estimating the gait sub-score, with the best Pearson’s correla-

tion coefficient (r = −0.85) being achieved for the mean of ankle distance and median of right ankle 

velocity. It is interesting to note that most obtained r values are negative, indicating that lower pa-

rameter values correspond to higher gait sub-scores. This relationship was expected, since the motor 

symptoms of PD patients include slowness of movement, with reduced range of motion and smaller 

steps during gait. 

To confirm the achieved results, we explored the possibility of estimating the UPDRS gait 

score by relying on traditional parameters, which were computed over a greater amount of data ac-

quired from a larger number of patients. When considering each parameter separately, the correlation 
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between the computed values and the associated UPDRS gait scores assigned by physicians varies 

from poor to moderate (|r| < 0.75). Similar results were achieved for the motor score. When consid-

ering all parameters together, by using machine learning techniques to obtain a predictive model for 

score estimation, the obtained results suggest that the considered parameters cannot be used to esti-

mate gait/motor scores. 

The obtained moderate results can be due to different reasons. Firstly, the dataset used in the 

studies included only two data acquisitions with an associated gait sub-score value of 3, both belong-

ing to the same subject. Furthermore, the UPDRS items of the motor section are rated with a rela-

tively low level of granularity (discrete scores ranging from 0 to 4), and the assigned scores can be 

affected by subjectivity since they depend on the physician’s experience and opinion.  

3.5.3 Other Outcomes 

The initial carried out studies further led to the identification of some aspects regarding soft-

ware, setup and protocol that needed improvement, which were then taken into account for the fol-

lowing studies. Regarding the software, the improvements included changes related with the saved 

data (e.g., file format, relevant information on the camera and data) and the user interface (e.g., man-

agement of acquisition sessions, indication and visualization of events/instants of interest). As for 

the setup and protocol, the improvements mainly included changes for increasing the amount of data 

acquired from the subject in each acquisition session. 

We also identified the necessity of developing a solution to detect gait cycles in an automated 

way, since we verified that their manual selection is rather time-consuming, especially when a large 

amount of data needs to be analysed. For 54 data acquisitions (both Kv1 and Kv2) from the first two 

experiments, it was necessary at least 121 min or 2 h to manually select 724 gait cycles, assuming 

that it takes 10 s to identify and save one gait cycle (identification of heel strikes instants only). 

Although in a real practical situation gait analysis is performed for a single data acquisition at a time, 

the manual indication of several heel strikes is still tedious and is more prone to human error than 

automatic identification. 

3.6 Summary 

Our studies with Parkinson’s disease (PD) patients showed that there is potential in using an 

RGB-D camera, namely the Kinect, for supporting clinical gait assessment in PD. The obtained re-

sults suggest that gait parameters, extracted from 3-D data provided by the Kinect, can be used to 

distinguish between healthy subjects and PD patients with the DBS stimulator switched on and off. 
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Therefore, the quantitative gait information can possibly be used to evaluate the severity of gait im-

pairments in PD patients treated with deep brain stimulation (DBS). However, more data from a 

greater number of subjects is necessary to confirm the results. 

We were also able to verify that our system for gait analysis based on an RGB-D camera is 

suitable for a clinical environment, since it has been successfully used to acquire data from both 

healthy subjects and PD patients at different locations of a hospital. The initial studies also enabled 

the identification of important aspects related to the software, setup and protocol that needed im-

provement. Furthermore, it became clear the need for automated gait cycle detection to save time in 

the whole gait analysis process, since the manually identification of gait cycles was very time-con-

suming and tedious. 
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4 KiT and KiMA: RGB-D Camera Data Acquisition 

and Visualization 

The main objective of this thesis was to develop an inexpensive, portable and minimally 

intrusive solution for automated gait analysis to support the gait assessment of a given subject. To 

carry out human gait analysis, we relied on the quantitative motion information provided by a single 

low-cost, markerless vision-based sensor, namely the Microsoft Kinect (RGB-D camera). In our so-

lution, the online visualization and acquisition of the multimodal data provided by the Kinect is en-

abled by the KiT (KinecTracker) software application. 

Another application – KiMA (Kinect Motion Analyser) – was developed to enable offline 

visualization of the data acquired using KiT, as well as selection of relevant data or instants, which 

is useful for research in the context of motion/gait analysis (see Figure 4.1). Both KiT and KiMA 

have a version for each generation of the Kinect (Kv1 and Kv2). These applications were presented 

in the context of motion analysis in neurological diseases in [78]. 

 

 

Figure 4.1. Preview, acquisition, review and management of the multimodal data provided by the Ki-

nect camera, using KiT and KiMA software applications. 

4.1 KinecTracker (KiT) Application 

The main requirements that were defined for the KiT application are the following: 

1.1. Online visualization of data provided by a Kinect sensor, including the possibility of 

viewing two or more data types simultaneously; 

1.2. Acquisition of one or more data types provided by the Kinect, in a synchronous way; 

1.3. Possibility of saving a “label” associated with a given instant, during an acquisition; 

1.4. Management of different acquisition sessions; 
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1.5. Possibility of discarding the oldest data of the current acquisition, according to the 

available disk space or a given time duration indicated by the user; 

1.6. Selection of the sensor tilt angle (Kv1 only). 

Most of these requirements correspond the use cases illustrated in Figure 4.2. In a scenario 

where the data acquisition takes place at a clinical environment, the clinician (e.g., physician, nurse) 

is responsible for choosing the appropriate preferences, managing the acquisition sessions and car-

rying out the data acquisitions. The data are provided by a single Kinect camera, which is connected 

to the computer where KiT is running through a USB cable. The subject being assessed is involved 

in the data acquisitions by being in the field of view of the camera. In other scenarios, such as am-

bulatory monitoring, the patient itself, a relative or a caregiver performs the role of the clinician. 

 

 

Figure 4.2. Use case diagram associated with the KiT application. 

 

The graphical user interface (GUI) of the main window of KiT for Kv2 is shown in Figure 

4.3 (KiT for Kv1 is similar). There are two visualization areas corresponding to the primary and 
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secondary data sources. For each visualization area, it is possible to choose one of the available data 

types. For colour, IR, depth and body index data, it is also possible to have the body joint data drawn 

over the image (colour + body, depth + body, etc.). Therefore, KiT allows viewing up to three data 

types simultaneously (requirement 1.1). 

 

 

Figure 4.3. KiT’s main window GUI (Kv2), including the display of depth, body index and body data. 

 

Some preferences regarding data acquisition or the Kinect itself can be indicated in the “Pref-

erences” window, shown in Figure 4.4 for Kv1 and Kv2, which is opened when choosing the Prefer-

ences option in the Edit menu. The available options depend on the used Kinect version. For both 

versions, it is possible to choose the folder where the different sessions/acquisitions will be stored 

and define a storage buffer. The latter is defined by indicating the percentage of the disk space that 

can be used, or the acquisition duration in minutes/hours/days, until the oldest data starts being erased 

(requirement 1.5). This functionality is useful when the total duration of an acquisition is unknown 

(e.g., continuous monitoring of epileptic patients, where the relevant movements correspond to un-

predictable sporadic seizures). 

In Preferences, it is also possible to choose any combination of data types to be saved (re-

quirement 1.2). In the case of the Kv1, choosing not to save the body joint data (skeleton) corresponds 

to disabling joint tracking. Moreover, the user can select the resolution and frame rate of the colour 
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and depth data, choose to track only the upper body joints and define the camera tilt angle (last option 

corresponds to requirement 1.6). For the Kv2, the IR image brightness can be adjusted (for online 

preview only). 

 

 
(a) 

 
(b) 

Figure 4.4. Preferences window of KiT for Kinect v1 (a) and v2 (b). 

 

In the Options panel of the main window (below the Secondary Source drop down menu), 

the user can manage different acquisition sessions (requirement 1.4), facilitating the organization of 

the acquisitions according to the different subjects or days. The current session can be indicated by 

creating a new session or by selecting an existing session. These options are also presented to the 

user when KiT is opened. 
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In the Controls panel of the main window (below the Options panel), there are three options 

related to the acquisition of data. The first one (“Background” button) allows the acquisition of a 

single frame, which can be useful if we wish to carry out motion analysis by using a background 

subtraction technique over the colour data. The “Acquire” button starts a data acquisition (require-

ment 1.2). During the acquisition, the name button’s name changes to “Stop” and can be used to stop 

the current acquisition. 

The third option in the (“Label” button) is included in the Actions panel within the Controls 

panel, and is only available during an acquisition. When selected, it creates a label for the current 

instant (requirement 1.3), which consists of saving the timestamp and frame number associated with 

that instant. The user can indicate a name and an optional description through a dialog window. This 

option can be useful to indicate the beginning of a relevant movement (e.g., epileptic seizure), so it 

can be easily found when reviewing the acquisition in KiMA. 

Some additional features are available in the menu and/or tool bar: reset image display; flip 

image horizontally and vertically; show colour/IR data in full screen; open the last acquisition in 

KiMA; and quit application. Furthermore, the status bar presents information regarding subject track-

ing, application status, and current frame rate for each data type. 

KiT was implemented based on an existing application developed for Kv1, by performing 

the following main improvements: 

 Elimination of unnecessary data frame processing for visualization/acquisition (i.e., only 

the data types chosen for visualization and/or acquisition are processed); 

 Possibility of visualizing IR/depth and body data simultaneously (only body over colour 

was displayed in the original application); 

 Possibility of indicating the data types to be acquired, which in the case of the body joint 

data also corresponds to enabling/disabling subject tracking (Kv1 only); 

 Management of acquisition sessions through the application’s GUI; 

 Acquisition of data in a synchronized way (using an event provided by the Kinect SDK); 

 Acquisition of body joint data corresponding to one of the detected subjects as default 

(previously, body joint data were only acquired if a specific subject detected by Kinect 

was chosen by the user, which led to data loss if the subject left the camera’s depth range, 

since the ID attributed to the subject by the Kinect changes when this happens); 



4 KiT and KiMA: RGB-D Camera Data Acquisition and Visualization 

 

 

56 

 Use of a queue for storing the frames while they are not written to file (this prevents data 

frames loss in computers with less processing power and facilitates the creation of differ-

ent files every minute); 

 Increase of flexibility in the definition of the storage buffer, by adding the possibility of 

indicating any size (within the valid values) and choosing from different types (percent-

age of used disk, minutes, hours or days); 

 Modification of file format to facilitate parsing during video review and motion analysis, 

and addition of a header with relevant information (e.g., resolution, tilt angle, application 

version); 

 Addition of an option for saving a label, which replaced the option for saving an event 

corresponding to the last 3 minutes of data; 

 Possibility of changing the position of the overlay text (date, time, session folder path) 

vertically, and flipping the images both vertically and horizontally; 

 Option for opening the last acquisition (if any) in KiMA. 

Regarding the Kinect data, the SDK (v1.8 [213] and v2.0 [214] for Kv1 and Kv2, respec-

tively, in C#) provides the data frames as they become available. In KiT, for each frame and data 

type, the data itself and associated information (e.g., image size in the case of image frames) are 

extracted and then stored together with the associated timestamp (date and time when it became 

available).  

For the colour, IR, depth and body index, the data corresponds to image pixel information. 

For the body, the data includes the 3-D position of the tracked joints (i.e., body), as well as the asso-

ciated mapped colour and depth points. The latter information is used for displaying the body joints 

over the colour and depth images, respectively. The mapping is performed by relying on the “Coor-

dinateMapper” class provided by the Kinect SDK [176]. 

If a given data type is to be displayed, the corresponding stored data are firstly processed and 

then the corresponding image/body is drawn in the GUI. When the user starts an acquisition, a thread 

is started for each data type and the data of each new data frame are inserted in a FIFO (first-in-first-

out) queue (one queue per data type). The thread then gets the frames from the queue and saves the 

associated data to file. The same thread is responsible for creating a new file each minute. 

The format of the files used to store each data type is presented in Appendix A.1. The header 

of each file includes the tilt angle and height of the Kinect. These values are computed based on the 

clipping floor plane detected by the Kinect itself [213-215]. For each body joint data frame, the 
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Kinect provides a floor-clipping-plane vector  , , ,A B C D , where A, B, C and D are the coefficients 

of an estimated floor-plane equation 0Ax By Cz D    .  , ,A B C  is the unit vector correspond-

ing to the normal of the floor plane. D is the distance from the floor plane to the origin of the coor-

dinate system associated with the Kinect, i.e., the height of the camera from the floor (in meters). 

When the floor is not visible or detectable, the floor clipping plane is a zero vector. The tilt angle in 

radians is obtained using (4.1). 

 

 tilt angle = atan
C

B

 
 
 

  (4.1) 

 

The file extension used for the different data types are: “.kvid”, “.kir”, “.kdpt”, “.kbi”, and 

“.kpos”, for colour, IR, depth, body index, and 3-D body joint data, respectively. For each acquisition 

and data type, a new file is created every minute. The name of the file is the timestamp of the first 

frame followed by the “#” symbol and the number of the acquisition (it is possible to carry out several 

acquisitions per session). When using the Kv2, a file with information regarding coordinate mapping 

is also saved (extension “.kmap”), which can be used for offline mapping between depth and camera 

spaces (more details can be found in [176]). 

4.2 Kinect Motion Analyser (KiMA) Application 

To allow the review of the data acquired with KiT, as well as the indication of relevant move-

ments for motion analysis, we developed a different application: Kinect Motion Analyser or KiMA. 

The main requirements defined for KiMA are the following: 

2.1. Offline visualization of a data acquisition carried out in the KiT application, as a video, 

including the possibility of viewing two or more data types simultaneously; 

2.2. Selection of the session and acquisition to be reviewed (based on the same session 

organization used in KiT); 

2.3. Creation, edition and deletion of “labels” and “events” associated with a given instant 

and time interval, respectively; 

2.4. Exportation of events. 

These requirements corresponds to the use cases represented the diagram shown in Figure 

4.5. These use cases are carried out by the clinician in the clinical scenario, but can also be carried 

out by another person in other scenarios (e.g., ambulatory monitoring, research). 
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Figure 4.5. Use case diagram associated with the KiMA application. 

 

The GUI of KIMA’s main window is shown in Figure 4.6. The data acquired using KiT can 

be reviewed as a video in KiMA (requirement 2.1), by using the typical video manipulation controls 

(e.g., play, pause, stop, fast forward, rewind). It is also possible to define the speed of the video, and 

jump to the previous or next frame (when paused). The data are presented to the user in a similar way 

to KiT (i.e., up to three data types can be viewed at the same time). 

To review an acquisition, it is firstly necessary to choose the folder where the session is 

stored (Options panel). Then, it is possible to select one of the sessions available for the indicated 

folder. Finally, the user can chose one of the acquisition performed in the selected session (require-

ment 2.2). When an acquisition is chosen, the first frame of the video is shown. Only the data types 

available for that acquisition can be selected as primary and secondary sources. The video manipu-

lation (play, stop, etc.) involves obtaining the data from the files that corresponds to the current frame 

number, ensuring the synchronization between the different data types.  

KiMA also facilitates the creation, edition and deletion of tags (labels and events), which 

enable the identification of relevant movements that occur during an acquisition (requirement 2.3). 

A label has an associated frame number and timestamp, as well as a name and an optional description. 

An event is similar to a label, with the difference that it has a beginning and an ending instant.  

The information associated with tags created by the user is saved to an XML file, which can 

the be used in other application to carry out motion analysis taking into account the created tags. The 

used format is shown in the example included in Appendix A.2. 
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Figure 4.6. KiMA’s main window GUI, including the display of depth and body data, as well as labels 

and events. 

 

Tags can be created/deleted/edited by using the context menu shown in Figure 4.6, or the 

shortcuts indicted in the same menu. The tags are visually represented in the white bar above the 

video manipulation controls, and listed in the tree view below the Options panel (see Figure 4.6). 

The events can be exported as images or files (requirement 2.4), allowing to save only the data cor-

responding to relevant movements and discard uneventful data. This feature is especially useful for 

long term monitoring (several hours or days corresponding to several gigabytes of data), in which 

movements of interest only occur sporadically. 

4.3 Summary 

With the main aim of developing a solution for automated gait analysis, we relied on an 

RGB-D camera to obtain quantitative information regarding the movements of a given subject. The 

selected camera was the Microsoft Kinect, which provides both colour (RGB) and/or IR images and 

depth information. Furthermore, it also provides the 3-D position of several body joints, which is 

essential for our gait analysis solution. Therefore, we developed the KiT (KinecTracker) software 



4 KiT and KiMA: RGB-D Camera Data Acquisition and Visualization 

 

 

60 

application for enabling the online visualization and acquisition of the multimodal data provided by 

the Kinect (v1 or v2). The data acquired with KiT can be reviewed in our KiMA (Kinect Motion 

Analyser) application, which also allows the indication and/or exportation of instants or events of 

interest for further analysis. 

KiT has been used in the last few years for acquiring data in different scenarios: gait analysis 

in healthy subjects, Parkinson’s disease (PD) patients and Transthyretin Familial Amyloid Polyneu-

ropathy (TTR-FAP) patients; and seizure analysis in epileptic patients. KiMA was used to manually 

identify gait events in studies using the data acquired from PD patients and/or healthy subjects [79-

84] and TTR-FAP patients [85]. It was also used in studies with epilepsy patients to select data cor-

responding to relatively short and unpredictable seizure events in data acquisitions lasting several 

hours or days [86, 87]. 
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5 Automated Gait Cycle Detection Using an 

RGB-D Camera 

Our preliminary studies with Parkinson’s disease patients showed the need for automating 

the detection of gait cycles. A solution for detecting gait cycles in an automated way eliminates the 

step of manual identification, consequently leading to time savings in the gait analysis process. 

Therefore, the main objective of this chapter is to answer the following research question: 

 Can the 3-D data provided by a single RGB-D camera be used to automatically detect 

the different gait cycles performed by a given subject while walking? 

To answer this question, we designed and developed a solution for automated gait cycle 

detection using a Kinect (RGB-D camera), and validated it with data acquired from healthy subjects. 

In contrast with other contributions, our aim was to enable fully automatic gait analysis by automat-

ically selecting the data corresponding to walking, prior to gait cycle detection, relying on activity 

recognition. Therefore, it was also necessary to answer another question: 

 Can machine learning techniques, together with 3-D data provided by a single RGB-D 

camera, enable activity recognition? 

This chapter reflects the work presented in [76], with the following additional contributions: 

identification of different gait cycle phases by including the detection of one more type of gait event 

(toe off), and validation of the solution for the first version of the Kinect (besides the second version). 

5.1 Related Work 

5.1.1 Activity Recognition 

In the past years, RGB-D cameras have been used in several studies on human activity recog-

nition [4, 38-54, 216]. Most of these studies focus on the recognition of very specific daily life ac-

tivities (e.g., talking on the phone, drinking water, working on computer, cooking) [38, 39, 42, 43, 

48, 50] or gestures and/or gaming actions (e.g., wave, punch, kick, clap, jogging) [40, 44-46]. 

There are several publicly available RGB-D action/activity datasets [1, 4, 47, 217]. From 

single-view datasets, one of the first available was the MSR-Action3D dataset [46]. This dataset 

includes depth and body joint data (15 Hz) for 20 actions carried out 2 or 3 times by 10 subjects, 
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where the actions were chosen in the context of game console interaction (does not include walking). 

The MSRDailyActivity3D contains colour, depth and joint data (Kv1, colour and depth not synchro-

nized) collected from 10 subjects during 16 daily life activities, including walking [52].  

The RGBD-HuDaAct dataset also comprises daily life activities (12 activities; walking con-

sidered as a random activity) performed by 30 subjects [50]. However, it only has colour and depth 

data (Kv1, 30 Hz). The Cornell Activity Datasets (CAD-60 and CAD-120) also include several ac-

tivities (60 and 120 examples, respectively). The CAD-60 includes colour, depth and body joint data 

(Kv1, 15 joints only) acquired from 4 subjects during 12 activities (walking not considered) in 5 

different environments [38]. The CAD-120 is similar to CAD-60, with the difference that it includes 

more examples and more activities (10 high-level activities and 10 sub-activities, also not including 

walking) [48]. 

Other datasets that contain body joint data, and consider the walking activity, include the 

following: UTKinect (10 activities, 10 subjects, 2 repetitions, Kv1) [53]; IAS-Lab Action (15 activ-

ities, 12 subjects, 3 repetitions, Kv1) [49]; UPCV (10 activities, 20 subjects, 2 sessions, Kv1, joint 

data only) [51]; G3D (20 gaming actions, 10 subjects, 3 repetitions, Kv1) [45]; KARD (10 gestures 

and 8 activities, 10 subjects, 3 repetitions, Kv1, 15 joints only) [41]. 

Most studies relied on datasets with a relatively large number of activities (>10 activities), 

including the datasets described above. There are some studies that explored a smaller set of activi-

ties: Zhang et al. considered only five activities (standing, fall from sitting, fall from standing, sit on 

chair and sit on floor) [42] and Le et al. four postures/activities (standing, sitting, bending and lying) 

[54]. However, none of these two studies included the walking activity. Ballin et al. explored six 

activities, including standing, hand waving, sitting down, getting up, pointing and walking [216] 

(performed by six subjects only). 

5.1.2 Gait Cycle Detection 

In the context of gait analysis, different methods for gait cycle detection using the Kinect 

were proposed [55-65]. Cancela et al. implemented a finite-state machine that detects different gait 

cycles phases, based on the left and right foot position provided by the Kinect v1 (Kv1) [58]. For 

data corresponding to seventeen healthy subjects, the detection error (i.e., percentage of steps not 

detected) ranged between 6% and 75%, for different walking paths and rhythms, as well as different 

sensor heights. 

A state machine was also used by Gabel et al. for identifying gait cycles [56]. However, they 

used the output of a predictive model, which detects whether the foot is in contact with the ground 
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or not, as the input of the state machine. The model was built using the Multiple Additive Regression 

Trees algorithm, and features computed over Kv1 data acquired from twenty-three healthy subjects. 

The proposed solution achieved an estimation error of 8 ± 62 ms and 2 ± 46 ms for the duration of 

the left and right strides, respectively (actual duration obtained from pressure sensor data). The mean 

absolute error was of 45 and 32 ms, respectively. 

With the aim of measuring stride-to-stride gait variability for fall risk assessment, Stone et 

al. proposed a solution for computing gait parameters using Kv1 [55]. This solution includes the 

detection of left and right heel strikes, by finding the local minima and maxima of the time series of 

a correlation coefficient. The latter was computed over normalized ground plane projections of 3-D 

point cloud representing the subject’s silhouette. For data collected from three subjects, the proposed 

solution was able to compute the stride duration with an error of 7 ± 62 ms (ground truth obtained 

from Vicon data). 

Clark et al. and Mentiplay et al. proposed the identification of toe off/heel strike instants by 

finding the local minima of the foot/ankle velocity (in the anterior–posterior plane) immediately pre-

ceding/after the foot/ankle velocity first exceeding/dropping below a threshold of 0.1 m/s [57, 64]. 

The performance of the proposed method was evaluated for twenty-one subjects and thirty subjects 

when using the Kv1 and Kv2 (against a Vicon system), respectively. Clark et al. reported a mean 

estimation error of −200 ms for stride duration and −170 ms for step duration. Mentiplay et al. re-

ported a mean error of 0.03 to 0.04 s for step duration and 0.00 to 0.01 s for stance duration. 

Instead of relying on the position of the feet/ankles, Auvinet et al. proposed the detection of 

heel strikes by finding the local maxima of the distance between knees, along the longitudinal walk-

ing axis [59]. For the Kv1 sensor, the z-axis coordinate of the knees’ position was obtained from 

depth data using k-means clustering. An estimation error of 17 ± 24 ms was achieved, when consid-

ering data acquired from eleven healthy subjects during treadmill walking (actual instants obtained 

from Vicon data). The estimation error for stride duration was of 0 ± 12 ms. 

Xu et al. also used Kv1 data acquired during treadmill walking for evaluating the method 

they proposed for gait event detection, when compared with a gold standard system (Optotrak Certus 

system) [60]. In this method, heel strike and toe off instants are estimated by finding the local maxima 

of the anterior-posterior distance between the ankle of the front foot and the hip centre joint, and the 

distance between the ankle of the rear foot and hip centre, respectively. For data collected from 

twenty healthy subjects, the obtained estimation errors were of 5 ± 27 ms and 3 ± 22 ms (left and 

right heel strikes) and of −44 ± 62 ms and −38 ± 57 ms (left and right toe offs). For the stride duration, 

the error varied between 0 ± 19 ms and 2 ± 33 ms, depending on the walking speed of the subject. 
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Pfister et al. defined the duration of a gait cycle as the time elapsed between two consecutives 

peaks of the hip/knee angle during flexion for the same limb [65]. For Kv1 data acquired from twenty 

heathy subjects while walking in a treadmill at three different controlled speeds, the error for estima-

tion the stride duration varied between 118 ± 12 ms and 159 ± 24 ms (Vicon used as the gold standard 

system), with the mean error decreasing with an increase in speed. 

Eltoukhy et al. also explored the use of the Kv2 for gait event detection [63]. They firstly 

obtained the position of 26 joints relying on the provided depth data, as well as anthropometric mod-

els. Then, heel strikes and toe offs were detected by finding the local maxima and minima, respec-

tively, of the anteroposterior distance between the ankle and mid-posterior superior iliac spine. When 

comparing the Kv2 with a Vicon system, the true estimation error varied between 0.00 ± 0.01s and 

0.00 ± 0.02 s for stride duration, and between –0.03 ± 0.01 s and –0.02 ± 0.01 s for step duration. 

The absolute error ranged from 0.01 ± 0.01 s to 0.01 ± 0.02 s, and from 0.02 ± 0.01 s to 0.03 ± 0.01 s, 

respectively. 

The Kv2 was also used in the studies by Geerse et al. [61] and Müller et al. [62]. However, 

in contrast with the contributions described above, these studies considered the use of multiple Kinect 

cameras at the same time. Geerse et al. relied on four Kv2 sensors (Optotrak system as gold standard) 

and detected heel strikes and toe offs by finding the local maxima and minima, respectively, of the 

anterior-posterior distance between the ankle and the spine base. They achieved a mean estimation 

error 0.01 s for both stride and step duration, when considering a comfortable walking speed. Müller 

et al. considered a setup of six two-sided Kinects and identified heel strikes by finding the intersection 

between the left and right ankle trajectories in the walking direction. They were able to achieve a 

true error of 0.00 ± 0.03 s when estimating the step duration (Vicon system as gold standard).  

5.2 Materials and Methods 

5.2.1 Subjects 

An experiment was conducted at LABIOMEP, the Porto Biomechanics Laboratory (Porto, 

Portugal), with the participation of twenty healthy subjects: ten male and ten female. The de-

mographics of the participants are presented in Table 5.1.  

The participants were recruited from the community of the University of Porto (Porto, Por-

tugal). The only exclusion criterion for subject selection was the existence of any disease or injury 

that affected their gait (no limits were imposed regarding the age, height and weight). The experiment 
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was approved by the Ethics Committee of Santo António Hospital (Porto, Portugal) and all subjects 

signed an informed consent form. 

 

Table 5.1. Characterization of the subjects that participated in the experiment. 

SD, Min, Max and BMI stand for standard deviation, minimum, maximum and body mass index. 

  
All subjects 

(20) 

Male 

(10) 

Female 

(10) 

Age 

(years) 

Mean ± SD 31 ± 8 31 ± 9 31 ± 8 

[Min, Max] [23, 52] [24, 50] [23, 52] 

Height 

(m) 

Mean ± SD 1.71 ± 0.11 1.79  ± 0.08 1.63 ± 0.08 

[Min, Max] [1.50, 1.94] [1.68, 1.94] [1.50, 1.73] 

Weight 

(kg) 

Mean ± SD 67.9 ± 15.3 78.9 ± 13.0 56.9 ± 7.3 

[Min, Max] [48.0, 105.0] [63.0, 105.0] [48.0, 72.0] 

BMI 

(kg/m2) 

Mean ± SD 23.0 ± 3.3 24.6 ± 3.0 21.4 ± 2.7 

[Min, Max] [16.7, 31.0] [20.1, 31.0]  [16.7, 24.9] 

5.2.2 Experimental Setup 

The experimental setup, which is depicted in Figure 5.1, comprised three different systems, 

including two RGB-D cameras, namely a Kinect v1 (Kv1) and a Kinect v2 (Kv2), and a gold standard 

Qualisys system [218]. There is no interference between the three used systems, according to our 

study presented in Appendix B.  

The Kv2 was mounted on a tripod at a height of 1 m. The Kv1 was placed on top of Kv2, as 

can be seen from Figure 5.2. Each Kinect was connected to a portable computer. The tilt angle was 

of −10 degrees for Kv1 and −5 degrees for Kv2. For the used physical configuration, the practical 

depth range was of 1.8–2.1 m for Kv1 and 2.7 m for Kv2. 

The Qualisys system included twelve Oqus cameras and sixty-one retro-reflective markers, 

which were placed on different body landmarks as illustrated in Figure 5.3. The subjects were asked 

to wear tight-fitting clothing to allow a proper placement of the markers. 
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Figure 5.1. Experimental setup including two RGB-D cameras (Kv1 and Kv2) mounted on a tripod, 

and a Qualisys system with twelve infrared cameras (figure adapted from the image of the Qualisys 

setup provided by LABIOMEP). 

The calibrated volume for Qualisys is illustrated by the salmon-coloured blocks. The walking path car-

ried out by the subjects, for each task included in the protocol (T1, T2 and T3), is represented by the 

dashed arrowed lines. The relevant distances are also indicated. 

 

 

Figure 5.2. Physical configuration (height and tilt angle) of the RGB-D cameras (Kinect v1 and v2), 

which were mounted on a tripod and connected to a portable computer each. 
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Figure 5.3. Retro-reflective markers placed at the subject's body (image provided by LABIOMEP). 

5.2.3 Experimental Protocol 

The experimental protocol included three different tasks (T1, T2 and T3), which are de-

scribed in detail in Table 5.2. Both T1 and T2 consist of walking towards and away from the Kinect 

sensor, only differing in the distance covered (7 m for T1 and 5 m for T2) and the distance from the 

sensor at which the subjects turns around (outside and inside the Kinect’s practical depth range, 

respectively). Task T3 is similar to T1, but it also includes the activities of standing still and marching 

in place (see Table 5.2). The latter activities were included in the protocol, since in a real situation 

the subject may not always perform only the defined gait task. 

Each subject carried out the number of trials per task indicated in Table 5.2. For all tasks, 

walking was performed at a self-selected comfortable pace. For synchronization purposes, the exper-

imental protocol also included the action of dropping an extra marker on the floor, within the Kinects’ 

field of view, before the beginning of each trial. 
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Table 5.2. Tasks performed by the subjects. 

Task 

name 
Description 

Number 

of trials 

T1 
Walk towards the Kinects for 7 m; turn around at 1.2 m from the sensors (outside their 

practical depth range); walk away from the sensors for another 7 m. 
10 

T2 
Walk towards the Kinects for 5 m; turn around at 3.2 m from the sensors (within their 

practical depth range); walk away from the sensors for another 5 m. 
5 

T3 

Walk towards the Kinects for 5 m; stop at 3.2 m from the sensors and stand still for 5 

seconds; march in place (i.e., move the left and right feet up and down alternately, 

three times each); walk towards the sensors for 2 m; turn around at 1.2 m from the 

sensors; walk away from the sensors, repeating the same activities as for walking 

towards the sensors. 

5 

5.2.4 Data Acquisition and Pre-Processing 

Data provided by the Kinects were acquired at approximately 30 Hz, using our KiT software 

application [78]. Data provided by the Qualisys system were acquired at 200 Hz. The Kinect data 

included colour/IR (Kv1/Kv2), depth and 3-D body joint data. Each frame of the latter includes the 

3-D position of the tracked joints (Figure 2.4), as well as the tracking state of each joint (tracked, 

inferred or not tracked) and information regarding whether the subject’s body is outside the field of 

view or not (i.e., clipped edges’ information). The Qualisys data included the 3-D position of the 

markers, which was measured with an accuracy of at least 0.6 mm. 

For activity recognition, we manually selected the time intervals corresponding to the differ-

ent activities (walking, standing and marching), using our KiMA software application. Only the 

frames for which the subject was within the Kinect’s field of view were taken into account. We also 

distinguished between two different postures: facing the Kinect (front) or facing away from it (back). 

The following six activities were considered: 

 Walking towards the sensor (WF); 

 Walking away from the sensor (WB); 

 Standing still, while facing the sensor (SF); 

 Standing still, while facing away from the sensor (SB); 

 Marching (military style) in place, while facing the sensor (MF); 

 Marching (military style) in place, while facing away from the sensor (MB). 

We differentiated between facing the Kinect and facing away it, because the Kinect itself 

does not distinguish between these two positions of the subject in relation to the sensor. The Kinect 
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assumes that the subject is always facing the sensor, which means that when the subject is facing 

away from it, the left and right joints are interchanged. Therefore, the ability to distinguish between 

the two postures is important for gait analysis, when the acquired data includes both walking towards 

and away from the sensor. 

The number of selected frames is presented in Table 5.3, for each Kinect version, as well as 

for each and all activities. The table includes the total number for all subjects, as well as the mean 

and standard deviation values per subject. 

 

Table 5.3. Number of frames for the selected Kv1 and Kv2 data, for each and all activities, when con-

sidering all subjects and each subject (mean and standard deviation). 

Activity 

Number of frames 

All subjects Per subject 

Kv1 Kv2 Kv1 Kv2 

WF 15,459 22,439 773 ± 76 1,122 ± 96 

WB 17,547 23,899 877 ± 82 1,195 ± 104 

SF 12,555 12,558 628 ± 60 628 ± 60 

SB 12,197 12,198 610 ± 66 610 ± 67 

MF 13,285 13,280 664 ± 43 664 ± 44 

MB 13,459 13,443 673 ± 42 672 ± 42 

All 84,502 97,817 4,225 ± 258 4,891 ± 314 

 

For implementing and evaluating the algorithm for gait cycle detection, we used only the 

data corresponding to the walking activity performed during task T1 (more trials and more gait cycles 

per trial). For each gait trial, the time intervals during which the subject walked towards and away 

from the Kinects (WF and WB, respectively) were automatically selected based on the acquired Ki-

nect data (3-D position of the spine middle joint, tracking state of all joints and clipped edges’ infor-

mation), using the method described in detail in Appendix C.1. 

The total number of actual heel strikes and gait cycles is indicated in Table 5.4. The mean 

and standard deviation values per subject and per trial are also included. These results are indicated 

for both Kinects (v1 and v2), both walking activities (WF and WB), and for left, right and both heel 

strikes/gait cycles. 

To evaluate the performance of our algorithm, it was necessary to synchronize the data pro-

vided by the three used systems. Similar to other studies [60, 61, 63], synchronization was enabled 

by including in the protocol a specific action or movement before each gait trial. In our case, the 

following action was performed: dropping an extra marker on the floor. The instant the marker hits 
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the floor was used as a common time reference. That instant was identified by visualizing the ac-

quired colour/IR images in the case of Kv1/Kv2, and by finding the first local minima with value 

less than 20 cm for the y-coordinate of the extra marker’s position in the case of the Qualisys. 

 

Table 5.4. Number of actual heel strikes and gait cycles performed by all subjects, for all analysed WF 

and WB trials of task T1, when using Kv1 and Kv2. The mean and standard deviation values per sub-

ject and per trial are also included. 

The values are indicated for the left, right and both heel strikes/gait cycles. 

Kinect version Kv1 Kv2 

Walking activity WF WB WF WB 

All 

subjects 

and trials 

Heel 

strike 

Left 247 293 463 387 

Right 289 273 407 384 

Both 536 566 870 771 

Gait 

cycle 

Left 50 95 265 189 

Right 91 80 209 186 

Both 141 175 474 375 

Per 

subject 

Heel 

strike 

Left 12.4 ± 3.4 14.7 ± 2.7 23.1 ± 3.5 19.4 ± 2.0 

Right 14.4 ± 3.2 13.7 ± 3.9 20.4 ± 2.1 19.2 ± 3.2 

Both 26.8 ± 4.2 28.3 ± 4.1 43.5 ± 4.2 38.5 ± 4.8 

Gait 

cycle 

Left 2.5 ± 3.4 4.8 ± 2.6 13.3 ± 3.4 9.4 ± 1.9 

Right 4.5 ± 3.1 3.8 ± 3.9 10.4 ± 2.1 9.3 ± 3.1 

Both 7.0 ± 4.1 8.5 ± 4.0 23.7 ± 4.1 18.8 ± 4.6 

Per trial 

Heel 

strike 

Left 1.2 ± 0.5 1.5 ± 0.6 2.3 ± 0.6 2.0 ± 0.5 

Right 1.5 ± 0.5 1.4 ± 0.6 2.1 ± 0.5 1.9 ± 0.5 

Both 2.7 ± 0.6 2.9 ± 0.7 4.4 ± 0.9 3.9 ± 0.9 

Gait 

cycle 

Left 0.2 ± 0.5 0.5 ± 0.6 1.3 ± 0.6 1.0 ± 0.5 

Right 0.5 ± 0.5 0.4 ± 0.6 1.1 ± 0.5 0.9 ± 0.5 

Both 0.7 ± 0.6 0.9 ± 0.7 2.4 ± 0.9 1.9 ± 0.9 

 

For each trial, the synchronization was validated based on the joint data. For this validation, 

the Kinect data were resampled to a fixed frame rate of 200 Hz, so that the frame rate is the same for 

all systems. Then, we computed the Pearson’s correlation coefficient (r) between the signals for the 

Kinect and Qualisys corresponding to the sum of the three coordinates of the left and right ankle 

position (rla and rra, respectively). To ensure that only trials with good synchronization between sys-

tems were considered, the trials for which rla or rra was lower than 0.9 were not taken into account. 

The resampling of the Kinect data was performed only for confirming the synchronization 

between systems. Similar to the study presented in [63], we used the original data for each system to 

evaluate the performance of the gait cycle detection algorithm, to avoid introducing noise to the 

Kinect data when up-sampling it or losing resolution for the Qualisys data when down-sampling it.  
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5.2.5 Activity Recognition 

Our solution detects the time intervals corresponding to the walking activity by recognizing 

the following six activities or classes: walking towards and away from the camera (WF and WB); 

standing while facing the Kinect and facing away from it (SF and SB); marching while facing the 

Kinect and facing away from it (MF and MB). The activity recognition is carried out using a predic-

tive model and several features extracted from filtered 3-D body joint data. The different steps in-

volved detecting the walking activity are illustrated in Figure 5.4 by the second to fourth blocks. 

Feature Extraction 

The extracted features include the thirty and thirty-eight measures presented in Table 5.5, 

which were computed for each Kv1 and Kv2 data frame, respectively. The 3-D data were previously 

processed using a moving average filter with a window size of NF frames: for each axis, the filtered 

value of sample i is the mean value of all samples within the window (centred on sample i).  

 

Table 5.5. Measures computed over the 3-D body joint data and corresponding equations.  

Measure Jointsa Equation 

Velocity 
Head, neck, spine middle, spine base and spine shoulder 

(3.4) 
Shoulder, elbow, wrist, hand, hip, knee, ankle, foot, hand tip and thumbb 

Z-axis velocity Head, neck, spine middle, spine base and spine shoulder (5.1) 

Distance between 

symmetrical joints 

Left and right feet, ankles, knees, hands, wrists, elbows, hand tips and 

thumbs 
(3.6) 

Angle 
Neck, spine shoulder and spine middle  

(3.7) 
Knee and elbowb 

YZ-plane angle 
Neck, spine shoulder and spine middle 

(5.2) 
Knee and elbowb 

a the spine shoulder, hand tips and thumbs are only tracked by the Kv2. 

b corresponds to the mean between left and right joint measures, where the measure for each side is computed using the in-

dicated equation. 
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Figure 5.4. Solution for gait cycle detection, including activity recognition and gait event detection. 

MAF stands for moving average filter. 
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The measures include the velocity of each tracked joint. The velocity of the trunk joints 

(head, neck, and spine middle, base and shoulder) may help distinguish between walking and the 

other two activities (standing and marching). The velocity of the remaining joints may help distin-

guish between standing and the other two activities (walking and marching). We also considered the 

z-axis velocity (i.e., the z-axis component of the velocity vector) of the trunk joints, since it should 

help distinguishing between walking towards and away from the sensor. 

We also computed the distance between symmetrical joints (e.g., left and right hands), since 

it varies for the walking and marching activities, while it is expected to not vary significantly for 

standing. Other extracted measure is the angle at given joints of the trunk, which should provide 

information regarding posture. For the body limbs (arms and legs), we computed the angle at the 

elbows and knees, since these should have the largest variation during walking. We also considered 

the YZ-plane angle (considers only the y- and z-component of the joints’ position), since its value 

indicates the direction of the angle in relation to the XY-plane, and can be useful for detecting if the 

subject is facing the sensor or facing away from it.  

Machine Learning Algorithms 

To obtain the best predictive model for activity recognition, the following machine learning 

algorithms were explored: 

 k-nearest neighbours (k-NN); 

 Decision tree; 

 Random forest; 

 Support vector machines (SVM); 

 Multilayer perceptron (MLP); 

 Multilayer perceptron ensemble (MLPE). 

These are some of the main supervised machine learning classification algorithms [22, 219], 

which are often used for activity recognition [2]. They correspond to different types of learning tech-

niques: instance-based or lazy learning (k-NN), decision tree learning, support vector machines, ar-

tificial neural networks (MLP) and classifier ensemble (random forest and MLPE). 

In our study, we used a weighted version of the k-NN algorithm [220, 221]. The number of 

considered nearest neighbours (k) was 7, the distance between two instances was computed using 

the Euclidean distance, and the weight of the k nearest neighbours was obtained using the “optimal” 

kernel function [222]. 
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For the decision tree, we used an implementation [223, 224] of the recursive partitioning 

method for building classification and regression trees (CART) [225]. The Gini index was used to 

compute the impurity of a node. The class frequency in the training set was considered as the class 

prior probability. In the used implementation, a split is not attempted if the node does not have a 

minimum of 20 instances, or if the split does not lead to an improvement by a factor of 0.01 (com-

plexity parameter) [223, 224]. 

For the random forest algorithm, we used an implementation [226] of Breiman's random 

forest [227]. The number of grown trees was 500, and the size of the feature subset selected for each 

node was n 
  , where n is the number of features in the training set. 

For the SVM algorithm, we used the C-SVM formulation, with a cost parameter value of 1. 

For the kernel function, we used the Gaussian radial basis function    2
, ' exp 'K   x x x x , 

where x and x' are two instances. In the used implementation of SVM [228, 229], the value of pa-

rameter σ is the median of the 0.1 and 0.9 quantile of the 
2

'x x  statistics for a sample of the 

training set [230]. The optimization problem is solved by relying on the sequential minimal optimi-

zation (SMO) algorithm [231]. For multi-class problems, the one-against-one approach is used. 

For the MLP algorithm, we used the implementation described in [232]. The activation func-

tion of the hidden neurons is the logistic function. For multi-class problems, the output layer has a 

linear neuron per class. The search for the best set of weights between nodes is carried out by the 

BFGS (Broyden–Fletcher–Goldfarb–Shanno) algorithm, which minimizes a fitting criterion (maxi-

mum likelihood, in the case of classification) [212, 232]. It is stopped when the error slope ap-

proaches zero or after a maximum number of iterations (we considered 100 iterations). The number 

of hidden neurons was set to 10. 

Since the training of a MLP model is not optimal, to avoid the dependence of the final solu-

tion on the choice of starting weights (chosen at random), a given number of different MLP models 

are built [212] (we considered three models). Then, the one with the lowest value of the fitting crite-

rion is selected. In the case of the MLPE, all built MLPs are used, and the output is the mean between 

the individual predictions. 

Model Evaluation 

For each algorithm, the performance of the corresponding model for activity recognition was 

evaluated using a stratified 10-fold cross-validation approach [233]. The used dataset corresponds to 

fifteen subjects, which were randomly chosen from the twenty subjects that participated in the study. 



5.2 Materials and Methods 

 

 

75 

This dataset includes 35,190/35,010 frames or instances and 30/38 different measures (Kv1/Kv2). It 

is a balanced dataset, which was obtained from the original dataset by randomly selecting 391/389 

instances per subject and activity (random under-sampling without replacement). The number of in-

stances per subject and activity corresponds to the minimum number of instances, when taking into 

account all subject-activity combinations in the original dataset. 

A final model was built using the algorithm that led to the model with best trade-off between 

the metrics described below. The performance of this model was then assessed using a dataset corre-

sponding to the five subjects whose data were not used for model training (“never seen” subjects), 

which includes 20,407/23,412 instances. 

The considered performance evaluation metrics included accuracy and F1 score. The class 

and overall accuracy were computed using (5.3) and (5.4), respectively. The class and overall F1 

score were computed using (5.5) and (5.6), respectively. The value of both accuracy and F1 score 

ranges between 0% and 100% inclusive, where a higher value is better. 
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In (5.3), (5.7) and (5.8), TP, TN, FP and FN correspond to: 

 True positives (TP): the number of instances correctly classified as belonging to the con-

sidered class; 

 True negatives (TN): the number of instances correctly classified as belonging to a class 

other than the one considered; 
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 False positives (FP): the number of instances incorrectly classified as belonging to the 

considered class; 

 False negatives (FN): the number of instances incorrectly classified as belonging to a 

class other than the one considered. 

In (5.6), C is the number of classes,  1F ic  is the F1 score for class ci, and  prev ic  is the 

prevalence of class ci given by 
icN N , where N and

icN  are the number of total instances and in-

stances of class ci, respectively, in the test set.  

As our objective is to develop an online solution for gait cycle detection, the model should 

be able to predict the activity in the shortest possible amount of time, besides achieving a high accu-

racy and F1 score. A low training time is also desirable. Therefore, we additionally considered the 

training time, as well as the prediction time for a single data frame and 1 min of data (≈1,800 frames). 

All predictive models were built and validated in the R environment [209], relying on the 

rminer package [212]. 

5.2.6 Gait Cycle Detection 

For the detection of gait cycles and associated phases, we developed an algorithm that auto-

matically identifies the instants corresponding to gait events. To evaluate this algorithm, we took into 

account the data corresponding to task T1, as described above. The algorithm implementation and 

evaluation were performed in Matlab (version R2015a) [234]. 

Figure 5.5 illustrates the different phases of a right gait cycle, which are defined by different 

gait events. The events include three consecutive heel strikes: an initial right heel strike  RHS k , a 

left heel strike  LHS 1k   and a final right heel strike  RHS 2k  . They also include two consecu-

tive toe offs: a left toe off  LTO k  and a right toe off  RTO 1k  , which occur between  RHS k  

and  LHS 1k   and between  LHS 1k   and  RHS 2k  , respectively. In the expressions used to 

indicate the gait events, k is the number of the detected heel strike/toe off. For a left gait cycle, the 

gait events and gait cycle phases are similar, but the left and right sides are interchanged. 

To find the best method for detecting heel strikes and toe offs using Kinect data, we firstly 

obtained the actual instants corresponding to those gait events. This identification was carried out 

based the feet vertical velocity extracted from the Qualisys data (ground truth), taking into account 

the findings of O’Connor et al. [128] (detailed description of our used method can be found in Ap-

pendix C.2). 
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Figure 5.5. Different phases of a right gait cycle, as well as the gait events that define them. 

 

The feet vertical velocity signal computed over Kinect data is rather noisy (even after filter-

ing), making it more difficult to detect the gait events based on this measure when using the Kinect. 

Therefore, we explored other measures that could be used for gait event detection. The explored 

measures involved the feet, ankles, knees and spine base joints. In the case of Qualisys, the position 

of these joints correspond to the position of the following markers: LFM2 (left foot), RFM2 (right 

foot), LLA and LMA (left ankle), RLA and RMA (right ankle), LLK and LMK (left knee), RLK and 

RMK (right knee) and HIP CENTER (spine base). For the left/right ankle and knee, the position is 

the mean of the coordinate values for the 3-D position of the two indicated markers. 

Heel Strike Estimation 

As referred above, we identified the actual heel strikes relying on the feet vertical velocity 

computed over Qualisys data. Figure 5.6 (a) shows an example of the left and right foot vertical 

velocity (Qualisys) versus the elapsed time, for a given subject and WF trial. The corresponding 

actual left and right heel strikes are also indicated. 

For the Kinect, we investigated other measures less affected by noise that can also be used 

for heel strike detection. We considered detecting heel strikes by finding the local maxima of the 

distance between knees, in a similar way to the method proposed by Auvinet et al. [59]. However, 

we verified that in most cases the actual heel strike instants are closer to the instants corresponding 

to the local maxima of the distance between ankles, when compared with the knee distance. An ex-

ample of both knee distance and ankle distance (Qualisys) versus the elapsed time is shown in Figure 

5.6 (b). The actual heel strike instants are also indicated. 
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(a)

 
(b)

 
(c) 

Figure 5.6. Filtered left and right foot vertical velocity (a), distance between ankles and between knees 

(b) and left and right ankle velocity (c), versus the elapsed time, computed over Qualisys data acquired 

from a given subject while walking towards the Kv2. 

The actual left and right heel strikes are also indicated in each plot. 

 

Taking the above observation into account, our solution estimates heel strike instants by 

finding the local maxima of the ankle distance. A sample i is identified as a heel strike if the associ-

ated ankle distance is maximum, when considering a window with size of ND1 samples (centred on 

sample i). Prior to this processing, a moving average filter with a window size of NF1 samples is 

applied to the ankle distance signal. Even after filtering, there can still be some noise, especially at 

the beginning/end of the trial. Therefore, to avoid false positives due to noise, we considered a local 

maximum as a heel strike only if the ankle distance increased for all frames of the first half of the 

window and decreased for all frames of the second half of the window. The main operations involved 

in heel strike detection are represented in Figure 5.4 by the fifth to seventh blocks. 

To identify the side (left or right) associated with each detected heel strike, we investigated 

the use of the velocity of the left and right feet. Figure 5.6 (c) shows the left and right foot velocity 

(Qualisys) versus the elapsed time, as well as the actual heel strike instants, for the same subject and 

trial as Figure 5.6 (a) and (b). As can been seen in Figure 5.6 (c), for each instant corresponding to a 
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left/right heel strike, the velocity of the left/right ankle is decreasing, while the velocity of the 

right/left ankle is increasing, as expected.  

Therefore, our algorithm identifies the side of a given heel strike by using the following 

decision rule:   

left right

0 left heel strike  

0 undefined         

0 right heel strike

v v

 


    
 

  

In this expression,    side side sidev v i N v i N     , where side is left or right,  sidev k  is 

the ankle velocity for sample k, i is the sample corresponding to the detected heel strike, and 

 1 2N ND2  , where ND2 is the size of the processing window. We considered the ankle joint 

instead of the foot joint, since we verified that the associated data are less noisy. The ankle velocity 

data are previously processed using a moving average filter with a window size of NF2 samples. The 

main operations related to side detection are illustrated in Figure 5.4 by the eighth to tenth blocks. 

To find the best values for NF1 and ND1, we explored the odd integer values ranging from 

1 to 9 inclusive and from 3 to 9 inclusive, respectively. From all window size pairs, we selected the 

one that we considered to have the best trade-off between precision, sensitivity and mean absolute 

error for estimating heel strike instants and stride/step duration. For the chosen NF1 and ND1 values, 

we then performed a similar selection for the window sizes NF2 and ND2 used for side identification. 

In this case, we chose the pair of values that led to the highest mean value for precision and sensitiv-

ity, where the precision/sensitivity value is the mean between the left and right sides. If more than 

one value pair led to the best result, then the lowest sizes were selected. 

Toe Off Estimation 

The actual toe off events were also estimated using the vertical velocity of the feet, as already 

explained above. Figure 5.7 (a) shows the left and right foot vertical velocity (Qualisys) versus the 

elapsed time, for the same subject and WF trial as Figure 5.6. The corresponding actual left and right 

toe offs are also shown in this figure. 

In a similar way to heel strikes, toe offs are difficult to detect based on feet vertical velocity 

when using Kinect data, due to noise. Other studies used measures such as the knee angle, ankle 

height, or foot velocity [57, 64, 165]. However, the proposed methods relied on thresholds, which 

makes them not very generalizable. Another measure that was used in other contributions, which 

does not require the use of thresholds, is the anterior-posterior distance between the left/right ankle 
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and spine base joints [60, 61, 63]. As can be seen in Figure 5.7 (b), the local maxima of the distance 

between those joints (in the xz-plane) occur before the actual toe offs. 

 

 
(a) 

 

(b) 

  
(c) 

Figure 5.7. Filtered left and right foot vertical velocity (a), xz-plane distance between left ankle and 

spine base and between right ankle and spine base (b), and left and right shank angle and absolute dif-

ference between left and right shank angle (c), versus the elapsed time, computed over Qualisys data 

acquired from the same subject and trial as Figure 5.6. 

The actual left and right toe offs are also indicated in each plot. 

 

We also explored the shank angle (i.e., the angle defined by the knee, ankle and the point 

with knee y-coordinate and ankle x- and z-coordinates). As we can see from Figure 5.7 (c), the local 

maxima for the shank angle are closer to the toe off instants, when compared with the distance be-

tween the ankle and spine base. Moreover, we verified that lower estimation errors are achieved 

overall for the absolute difference between the left and right shank angle comparing with the left/right 

shank angle. 

Therefore, for each detected gait cycle, our algorithm finds the instants corresponding to the 

left/right toe off by finding the maximum of the shank angle absolute difference, when considering 

the frames between the instants corresponding to the right/left heel strike and the following instant 
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when the ankle distance is minimum. If the estimated instant corresponds to the first or last frame of 

that interval, it is considered that the toe off was not successfully detected (false negative). 

The shank angle data are previously processed using a moving average filter with a window 

size of NF3 samples. To find the best value for NF3, we explored the odd integer values ranging 

between 1 and 11 inclusive, and selected the one that we considered to have the best trade-off be-

tween the estimation errors for stance, swing, single-limb support and double-limb support duration. 

The main operations involved in toe off detection are illustrated in Figure 5.4 by the eleventh to 

thirteenth blocks. 

Evaluation of the Gait Cycle Detection Algorithm 

The performance of the gait cycle detection algorithm was evaluated by obtaining the true 

and absolute estimation errors for each heel strike and toe off instant, using (5.9) and (5.10), respec-

tively. The estimated and actual values are the values obtained from the Kinect and Qualisys data, 

respectively. 

 

 true error estimated value actual value    (5.9) 

 absolute error estimated value actual value    (5.10) 

 

For each gait cycle, similar errors were obtained for six temporal gait parameters: duration 

of the gait cycle (or stride) and step, as well as of the stance, swing, single-limb support and double-

limb support phases. These parameters were computed using (5.11) to (5.16), respectively. In these 

equations, L/RHS  and L/RTO stand for left or right heel strike and toe off respectively, and k is the 

number of the detected heel strike or toe off. The left/right stance, swing, single support and double 

support are the corresponding phases of a left/right gait cycle. 

 

    L/R L/Rth left/right stride duration HS 2 HSk k k     (5.11) 

    L/R R/Lth left/right step duration HS 2 HS 1k k k      (5.12) 

    L/R L/Rth left/right stance duration TO 1 HSk k k     (5.13) 

    L/R L/Rth left/right swing duration HS 2 TO 1k k k      (5.14) 

          R/L R/L L/R L/Rth left/right single support duration HS 1 TO HS 2 TO 1k k k k k         (5.15) 

          R/L L/R L/R R/Lth left/right double support duration TO HS TO 1 HS 1k k k k k        (5.16) 
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We also considered the sensitivity (5.7) and precision (5.8) regarding the detection of heel 

strikes and the identification of the heel strike side. 

For the heel strike detection, TP, FN and FP correspond to: 

 True positives (TP): the number of estimated heel strike instants that fall in time interval 

 0.25, 0.25i it t   s, where ti is the instant of the actual heel strike i; 

 False negatives (FN): the number of actual heel strikes for which no heel strike is detected 

in time interval  0.25, 0.25i it t   s; 

 False positives (FP): the number of estimated heel strike instants that are not within any 

time interval  0.25, 0.25i it t   s. 

If more than one heel strike is detected within a given time interval  0.25, 0.25i it t   s, 

only the first one is considered as a true positive (the remaining are false positives). The value of 

0.25 s used above corresponds to half of 0.5 s, which is the mean for the step duration for our healthy 

dataset (see Appendix G). 

For heel strike side identification, when considering the left/right side as the positive class, 

TP, FP and FN correspond to: 

 True positives (TP): the number of actual left/right heel strikes correctly identified as 

left/right; 

 False positives (FP): the number of actual right/left heel strikes incorrectly identified as 

left/right; 

 False negatives (FN): the number of actual left/right heel strikes incorrectly identified as 

right/left. 

The sensitivity was also computed for toe off detection, where TP and FN correspond to: 

 True positives (TP): the number of actual toe offs that were successfully detected; 

 False negatives (FN): the number of actual toe offs that were not successfully detected. 
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5.3 Results 

5.3.1 Activity Recognition 

The overall accuracy and overall F1 score achieved by the models built using different ma-

chine learning algorithms are presented in Table 5.6, for both Kinect versions. The 3-D joint data 

were filtered using a window size (NF) of 17 frames. This was the chosen size because it led to the 

highest mean value for the overall accuracy of all explored algorithms (see Figure 5.8), when con-

sidering window sizes from 1 to 25 frames (odd integer numbers) and both Kinect versions. 

 

Table 5.6. Overall accuracy and overall F1 score achieved by the models built with different machine 

learning algorithms, for Kv1 and Kv2. 

Algorithm 

Kv1 Kv2 

Overall 

accuracy 

(%) 

Overall 

F1 score 

(%) 

Overall 

accuracy 

(%) 

Overall 

F1 score 

(%) 

k-NN 98.5 98.6 

Decision tree 93.8 95.1 

Random forest 98.4 98.6 

SVM 98.2 98.3 

MLP 98.2 98.3 

MLPE 98.4 98.4 

 

    

Figure 5.8. Mean value for the overall accuracy achieved by the models built with the different ma-

chine learning algorithms versus the size of the window used of the moving average filter used over the 

Kinect 3-D joint data. 
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The mean and standard deviation values for the models’ training time, when considering the 

training set and five runs, is presented in Table 5.7. This table also includes the mean and standard 

deviation values for the prediction time per frame, which were computed over the prediction time for 

all frames in the test set. The prediction time for 1,800 frames (≈ 1 min of data), when considering 

the mean prediction time per frame, is also indicated in the table. These results were obtained for 

Kv2 (higher number of features than Kv1) on a computer with an i7-4600U CPU (dual-core, 2.1 

GHz) and 8 GB RAM. 

 

Table 5.7. Mean and standard deviation values for the models’ training time (five runs) and prediction 

time per frame, as well as the associated prediction time for 1,800 frames (≈1 min of data). 

Algorithm 

Training 

time 

(min) 

Prediction time  

1 frame 

(ms) 

1,800 frames 

(min) 

k-NN 0.0 ± 0.0 349 ± 165 10.5 

Decision tree 0.1 ± 0.0 3 ± 7 0.1 

Random forest 3.3 ± 0.4 67 ± 44 2.0 

SVM 0.5 ± 0.0 10 ± 10 0.3 

MLP 1.7 ± 0.1 5 ± 8 0.2 

MLPE 1.5 ± 0.1 12 ± 9 0.4 

 

From the explored algorithms, we selected the MLP algorithm, since the associated model 

presented the best trade-off between all considered metrics (overall accuracy/F1 score, training and 

prediction time). Table 5.8 shows the accuracy and F1 score achieved by the final MLP model, when 

performing activity recognition over the dataset of five “never seen” subjects. 

 

Table 5.8. Accuracy and F1 score values achieved by the final MLP model over a dataset corresponding 

to five “never seen” subjects, when using the Kv1 and Kv2. 

The accuracy and F1 score for each activity were obtained using (5.3) and (5.5), respectively. The over-

all values were computed using (5.4) and (5.6), respectively.  

Activity 
Accuracy (%) F1 score (%) 

Kv1 Kv2 Kv1 Kv2 

WF 98.5 99.3 95.8 98.4 

WB 98.6 98.7 96.6 97.4 

SF 98.5 99.6 95.0 98.4 

SB 98.8 99.3 96.0 97.3 

MF 99.0 99.5 97.0 98.2 

MB 99.2 99.0 97.3 96.5 

Overall 96.3 97.7 96.3 97.7 
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5.3.2 Gait Cycle Detection 

The gait cycle detection algorithm uses different window sizes for ankle distance filtering 

(NF1), heel strike detection (ND1), ankle velocity filtering (NF2), heel strike side identification 

(ND2) and shank angle filtering (NF3). The used window sizes are included in Table 5.9, for both 

Kinect versions and both walking activities. The table also presents the precision and sensitivity 

achieved for heel strike detection and side identification and/or toe off detection, as well as the mean 

and standard deviation values for number of gait cycles detected for each WF/WB gait trial. 

 

Table 5.9. Size of the windows used for gait cycle detection, for both Kinect versions and both walking 

activities. The achieved precision and sensitivity results, as well as the number of gait cycles detected 

per WF/WB trial (mean and standard deviation), are also included. 

 

Table 5.10 and Table 5.11 present the obtained true and absolute errors, respectively, 

achieved by our algorithm for estimating heel strike and toe off instants, as well as the stride, step, 

stance, swing, single support and double support duration. These results are indicated as the mean 

and standard deviation values considering all gait events/cycles from all subjects and trials. 

 

 

Sensor Kv1 Kv2 

Walking activity WF WB WF WB 

Window 

size 

(number 

of frames) 

Ankle distance filtering (NF1) 5 7 5 5 

Heel strike detection (ND1) 7 7 9 5 

Ankle velocity filtering (NF2) 7 7 9 9 

Heel strike side identification (ND2) 3 9 3 5 

Shank angle filtering (NF3) 9 7 9 7 

Precision 

(%) 

Heel strike detection 99.6 97.7 99.8 98.6 

Side identification 
Left 100.0 99.3 100.0 99.7 

Right 99.3 100.0 100.0 100.0 

Sensitivity 

(%) 

Heel strike detection 92.4 91.7 96.4 97.7 

Side identification 
Left 99.6 100.0 100.0 100.0 

Right 100.0 100.0 100.0 99.7 

Toe off detection 94.6 98.1 99.7 100.0 

Number of detected gait cycles 

per trial 

Left 0.2 ± 0.4 0.4 ± 0.5 1.3 ± 0.5 1.0 ± 0.3 

Right 0.4 ± 0.5 0.4 ± 0.5 1.1 ± 0.3 1.0 ± 0.5 

Both 0.6 ± 0.6 0.8 ± 0.5 2.4 ± 0.6 2.0 ± 0.6 
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Table 5.10. True errors achieved by the gait cycle detection algorithm, for Kv1 and Kv2 and for WF 

and WB. 

The results are presented as mean and standard deviation values when considering all detected gait 

events/cycles, for the estimation of heel strike and toe off instants, as well as the stride, step, stance, 

swing, single support and double support duration. 

 True error (ms) 

Kinect Kv1 Kv2 

Walking activity WF WB WF WB 

Heel 

strike 

instant 

Left 8.9 ± 19.0 20.4 ± 22.5 14.2 ± 24.7 12.6 ± 24.1 

Right 8.6 ± 19.3 20.6 ± 21.2 12.4 ± 18.6 11.7 ± 20.8 

Both 8.7 ± 19.2 20.5 ± 21.9 13.4 ± 22.0 12.2 ± 22.5 

Toe off 

instant 

Left 17.5 ± 32.1 19.6 ± 27.9 13.4 ± 23.5 16.6 ± 98.7 

Right 23.5 ± 26.0 20.2 ± 24.4 11.7 ± 21.2 12.4 ± 115.0 

Both 20.4 ± 29.3 19.9 ± 26.0 12.5 ± 22.3 24.9 ± 24.4 

Stride 

duration 

Left 0.5 ± 25.2 −4.2 ± 28.0 8.9 ± 27.5 0.9 ± 23.7 

Right 4.1 ± 25.4 −6.0 ± 25.3 −0.5 ± 17.3 −0.9 ± 23.3 

Both 2.5 ± 25.4 −5.6 ± 26.7 4.8 ± 24.0 −0.1 ± 23.6 

Step 

duration 

Left 0.6 ± 24.1 −1.4 ± 24.4 4.4 ± 26.3 2.0 ± 25.2 

Right 0.8 ± 22.5 −2.2 ± 24.1 2.9 ± 20.0 −1.2 ± 24.3 

Both 0.7 ± 23.3 −1.8 ± 24.2 3.6 ± 23.2 0.4 ± 24.8 

Stance 

duration 

Left −9.0 ± 44.3 −3.0 ± 32.3 4.1 ± 22.9 11.7 ± 28.0 

Right 19.7 ± 26.1 −5.3 ± 31.6 0.6 ± 20.8 11.2 ± 26.6 

Both 11.4 ± 34.7 −4.2 ± 31.9 2.5 ± 22.0 11.8 ± 27.3 

Swing 

duration 

Left 8.3 ± 43.4 −3.2 ± 26.7 5.1 ± 29.8 −10.1 ± 29.2 

Right −16.0 ± 22.5 −1.1 ± 29.7 −1.2 ± 22.7 −12.0 ± 26.0 

Both −8.9 ± 31.9 −2.1 ± 28.2 2.2 ± 27.0 −11.5 ± 27.7 

Single 

support 

duration 

Left 12.6 ± 54.8 −3.7 ± 43.0 7.3 ± 38.5 −26.1 ± 39.1 

Right −21.6 ± 45.4 −2.1 ± 50.7 −3.9 ± 33.8 −26.6 ± 43.0 

Both −12.8 ± 41.9 −1.6 ± 40.7 2.5 ± 35.7 −29.9 ± 37.4 

Double 

support 

duration 

Left −13.9 ± 55.7 −2.4 ± 47.6 1.7 ± 34.5 27.9 ± 39.8 

Right 24.6 ± 50.8 −5.2 ± 51.5 2.9 ± 31.9 26.2 ± 42.8 

Both 13.8 ± 54.8 −3.8 ± 49.3 2.3 ± 33.4 27.6 ± 41.1 
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Table 5.11. Absolute errors achieved by the gait cycle detection algorithm, for Kv1 and Kv2 and for 

WF and WB. 

The results are presented as mean and standard deviation values when considering all detected gait 

events/cycles, for the estimation of heel strike and toe off instants, as well as the stride, step, stance, 

swing, single support and double support duration. 

 Absolute error (ms) 

Kinect Kv1 Kv2 

Walking activity WF WB WF WB 

Heel 

strike 

instant 

Left 17.6 ± 11.4 25.4 ± 16.8 21.4 ± 18.7 21.4 ± 16.7 

Right 17.0 ± 12.5 23.7 ± 17.7 17.9 ± 13.4 19.0 ± 14.5 

Both 17.3 ± 12.0 24.6 ± 17.2 19.8 ± 16.5 20.2 ± 15.7 

Toe off 

instant 

Left 27.4 ± 24.1 28.0 ± 19.4 19.8 ± 16.8 37.6 ± 92.7 

Right 28.1 ± 20.9 26.7 ± 17.0 19.0 ± 16.8 38.9 ± 108.9 

Both 27.7 ± 22.5 27.3 ± 18.1 19.4 ± 16.8 28.7 ± 19.8 

Stride 

duration 

Left 20.6 ± 14.2 21.6 ± 18.1 20.6 ± 20.3 18.2 ± 15.2 

Right 19.6 ± 16.6 20.0 ± 16.4 13.4 ± 10.9 17.1 ± 15.8 

Both 19.8 ± 15.9 21.0 ± 17.4 17.5 ± 17.2 17.7 ± 15.5 

Step 

duration 

Left 18.0 ± 16.0 19.2 ± 15.0 19.9 ± 17.7 19.6 ± 15.9 

Right 18.1 ± 13.3 19.1 ± 14.7 15.8 ± 12.5 18.4 ± 15.8 

Both 18.0 ± 14.7 19.2 ± 14.8 17.7 ± 15.3 19.1 ± 15.8 

Stance 

duration 

Left 29.2 ± 34.1 25.4 ± 19.9 21.3 ± 16.7 24.6 ± 17.7 

Right 25.8 ± 20.0 24.2 ± 20.8 18.9 ± 15.2 22.7 ± 17.7 

Both 26.8 ± 24.8 24.8 ± 20.3 20.0 ± 16.0 23.9 ± 17.8 

Swing 

duration 

Left 29.9 ± 32.1 20.8 ± 16.8 18.3 ± 14.3 25.1 ± 18.0 

Right 22.7 ± 15.7 24.0 ± 17.2 15.9 ± 13.3 23.3 ± 16.5 

Both 24.8 ± 21.8 22.5 ± 17.0 17.2 ± 13.9 24.4 ± 17.4 

Single 

support 

duration 

Left 43.4 ± 34.8 32.4 ± 28.1 21.5 ± 21.2 39.5 ± 25.4 

Right 41.2 ± 28.5 40.9 ± 29.6 17.8 ± 14.1 43.0 ± 26.5 

Both 34.4 ± 27.2 32.7 ± 24.3 19.8 ± 18.5 39.5 ± 27.1 

Double 

support 

duration 

Left 44.1 ± 35.8 35.0 ± 32.0 28.9 ± 26.5 40.4 ± 26.9 

Right 44.7 ± 34.2 39.9 ± 32.6 27.4 ± 20.0 41.9 ± 27.4 

Both 44.5 ± 34.5 37.3 ± 32.3 27.1 ± 23.4 41.4 ± 27.0 

 

Figure 5.9 (a) shows the ankle distance computed from both unfiltered and filtered Kinect 

v2 data, versus the elapsed time, for the same subject and trial of Figure 5.6. It also shows the heel 

strike instants estimated by our algorithm, as well as the actual heel strikes instants. The identification 

of the side (left or right) associated with the detected heel strikes is indicated in Figure 5.9 (b). This 

figure is similar to Figure 5.9 (a), with the difference that it presents the left and right ankle velocity, 

which were used for side identification. 
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(a) 

 
(b) 

 
(c) 

Figure 5.9. Distance between ankles (a), velocity of left and right ankles (b) and angle of left and right 

shanks and corresponding absolute difference (c), computed over unfiltered and filtered Kv2 data, ver-

sus the elapsed time, for the same subject and WF trial of Figure 5.6. 

The heel strike instants estimated by our algorithm and the corresponding actual instants are indicated 

in (a). The left and right heel strikes detected by our algorithm are indicated in (b). The toe off instants 

estimated by our algorithm and the corresponding actual instants are indicated in (c). 

 

Figure 5.9 (c) presents the left and right shank angle (unfiltered and filtered) versus the 

elapsed time, for the same situation as (a) and (b). The same figure shows the absolute difference 

between the two angles, which was used for toe off detection, as well as the toe off instants estimated 

by our algorithm and the associated actual toe off instants. The last toe off for the trial is not indicated 

in the figure, since our algorithm only attempts to detect a toe off when two consecutive heel strikes 

have been detected. 
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5.4 Discussion 

5.4.1 Activity Recognition 

Our study on activity recognition showed that machine learning techniques can be used to 

recognize three activities (walking, standing and marching) and two positions of the subject in rela-

tion to the camera (facing it and facing away from it), relying on measures extracted from 3-D joint 

data provided by a single RGB-D camera. From the different explored algorithms, the MLP led to 

the predictive model that presented the best trade-off between the considered metrics (overall accu-

racy, overall F1 score, training and prediction time). The final built model was able to recognize the 

considered activities with an overall accuracy of 96% for Kv1 and 98% for Kv2. 

Regarding the impact that filtering the 3-D joint data has on the model’s performance, a 

higher mean value for the overall accuracy of all considered algorithms was achieved when filtering 

the data (Figure 5.8) comparing with no data filtering (window size of 1 frame). This trend was 

observed for both Kinect versions, with the best result being achieved for a window size between 17 

and 25 frames for Kv1 (97.6% instead of 95.3% for non-filtered data), and between 13 and 19 frames 

for Kv2 (97.9% instead of 96.4% for non-filtered data). When taking into account both Kinects, the 

best result was obtained for a size of 15 to 21 frames. Between the two intermediate sizes (17 and 21 

frames), we chose the smallest one, i.e., 17 frames, to filter the data for activity recognition. 

When comparing the models built with the different explored algorithms, all achieved a high 

overall accuracy and overall F1 score (≥ 93.8% for Kv1 and ≥ 95.1% for Kv2 – see Table 5.6). Nev-

ertheless, the decision tree model had the poorest performance. All other models achieved similar 

results (98.2–98.5% for Kv1 and 98.3–98.6% for Kv2). 

Although the k-NN model does not require any training (mean training time of 0 min), the 

associated mean prediction time for a single data frame (349 ms) was much higher than for the other 

models (Table 5.7). The random forest not only had the highest training time (3 min), but also had a 

high prediction time (67 ms per frame) comparing with the remaining models. The time required to 

predict the activity for 1 minute of data for the last two models was of 11 and 2 min, respectively, 

which makes them not suitable for online activity recognition. 

From the remaining algorithms, the SVM has the lowest training time (0.5 min), while the 

MLP had the lowest prediction time (5 ms per frame). Since a low prediction time is desirable for 

online activity recognition, and the training time for the MLP model is still reasonable (1.7 min), we 

considered that this model presents the best trade-off between the considered metrics, being the most 

adequate for online activity recognition. 
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When using the final MLP model to predict activities for a dataset corresponding to five 

“never seen” subjects, the obtained overall accuracy and F1 score values (96% for Kv1 and 98% Kv2) 

are similar to those obtained when comparing the different algorithms. When considering the differ-

ent activities, accuracy and F1 score were always higher than 98.5% and 95.0%, respectively (Table 

5.8). 

5.4.2 Gait Cycle Detection 

To verify if Kv1 and Kv2 can be used interchangeably for gait cycle detection, the developed 

algorithm was validated for both Kinect versions. The obtained results show that Kv2 is more appro-

priate than Kv1 for detecting gait cycles, since it presented a higher sensitivity for detecting gait 

events, enabled the detection of a higher number of gait cycles per gait trial, and achieved overall 

lower estimation errors for gait event detection and temporal gait parameter estimation. These results 

were expected since, according to Microsoft, the Kv2 has a larger depth range and improvements 

regarding joint tracking when compared with Kv1 [182]. 

We also investigated if all data acquired during each gait task can be used for gait analysis, 

by validating our algorithm for both WF and WB activities. For Kv2, results were overall better for 

WF than WB, with the biggest error differences being verified for the estimation of single and double 

support duration. This difference between using WF and WB was also to be expected. The Kinect 

assumes the subject is always facing the camera, since it was originally intended for gaming, and 

thus it is expected that the data acquired when the subject faces away from the camera are noisier 

than when the subject faces it. 

The detection of gait cycles involves the detection of gait events, such as heel strikes and toe 

offs. In the case of heel strikes, we found that filtering the used measures led to a better precision and 

sensitivity overall than when the data were not filtered (Tables D.1, D.4, D.7 and D.10, Appendix 

D.1). However, larger window sizes (NF1) led to larger estimation errors in most cases. 

When detecting the instants corresponding to heel strikes, we verified that larger window 

sizes (ND1) led to a higher precision. However, they also led to a lower sensitivity, which means that 

less actual heel strikes and consequently less actual gait cycles are detected. Nevertheless, a higher 

precision is more important than a higher sensitivity, since the detection of heel strikes that do not 

correspond to actual heel strikes (i.e., false positives) leads to the incorrect identification of gait 

cycles and consequently to the incorrect computation of gait parameters. Therefore, the choice of the 

window size pair for each Kinect version and walking activity took into account the best trade-off 

between precision, sensitivity and mean absolute estimation errors. 
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For identifying the heel strike side, precision and sensitivity did not vary considerably when 

using different window sizes (NF2 and ND2), except in the case of NF2 = 1 frame and ND2 = 3 

frames, for which the results were much lower comparing with the other explored window size pairs 

(Tables D.2, D.5, D.8 and D.11, Appendix D.1). The window size pair chosen for each Kinect version 

and walking activity took into account the highest mean value for precision and sensitivity (lowest 

sizes selected when there is more than one value pair led to the best result). 

Regarding toe off detection, it is important to note that the lowest error for estimating the toe 

off instants did not always lead to the lowest error for estimating the duration of gait cycle phases 

(Tables D.3, D.6, D.9 and D.12, Appendix D.1). This happens because the computation of these pa-

rameters also depends on the heel strike instants, which are also detected by our algorithm with a 

given error. The NF3 value that presented the best trade-off between the sensitivity and the mean 

absolute estimation errors was of 9 frames for WF and 7 frames for WB (both Kinects). 

For the chosen window sizes (Table 5.9), the precision for heel strike detection is high in all 

cases (≥ 97.7%), with higher values for WF trials (≈100%). The sensitivity is also relatively high in 

all cases (≥ 91.7%), with higher values for Kv2 (≥ 96.4%). A high sensitivity for heel strike detection 

is desirable, since it means that a greater number of actual gait cycles are detected for the same 

amount of data. This is useful when we wish to perform gait analysis based on a minimum number 

of gait cycles, because it allows saving time during the process of data acquisition and analysis. 

However, a higher precision is more important, since false positives lead to the incorrect identifica-

tion of gait cycles and consequently an incorrect computation of gait parameters. 

The precision and sensitivity for identifying the heel strike side were also high in all cases 

(≥ 99.3%). Regarding toe off detection, our algorithm achieved a high sensitivity. However, it was 

lower for Kv1 and WF (94.6%) when compared with the other cases (≥ 98.1%). This difference is 

probably due to the fact that the Kv1 data were noisier at the beginning of the WF trials of some 

subjects, when compared with the other cases. 

The number of detected gait cycles per trial was quite different for Kv1 and Kv2, especially 

when considering WF trials: mean of 0.6 gait cycles and 2.4 gait cycles, respectively (Table 5.9). 

Although the sensitivity for heel strike detection was higher for Kv2 when compared with Kv1, the 

main reason for the observed difference is that the practical depth range for Kv2 (2.7 m) is larger 

than for Kv1 (1.8 m), leading to a larger number of actual gait cycles per gait trial (Table 5.4). There-

fore, using the Kv2 instead of Kv1 has the advantage of requiring a smaller number of gait task 

repetitions to obtain a given number of gait cycles, consequently saving time in the whole gait anal-

ysis process. 
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Regarding the estimation of gait event instants, the mean true error for heel strikes ranged 

between 8 and 21 ms (Table 5.10). Although the best result was achieved for Kv1 (WF), this sensor 

also led to the worst error (WB). On the other hand, the Kv2 had similar errors for both walking 

activities (mean value of 13 ms for WF and 12 ms for WB). Therefore, the Kv2 has a better balance 

when considering both WF and WB. 

The mean error when estimating toe offs instants varied between 12 and 25 ms. The results 

are similar in the case of Kv1. However, the result was better for WF than WB when using the Kv2. 

The standard deviation for the true error was much higher for Kv2 and WB, which may be because 

the shank angle signals were noisier for the WB trials of some subjects when using the Kv2, com-

paring with the other cases. Nonetheless, the estimation of the duration of gait phases, which depends 

on the toe off instants, was not greatly affected (standard deviation values are similar for all cases). 

The absolute errors we obtained ranged between 17 ms and 29 ms. When considering both 

types of gait events, the best results were achieved for Kv2 and WF: 20 ms for heel strikes and 19 

ms for toe offs. Regarding these absolute estimation errors, it is important to note that there is a 

maximum intrinsic error of 17 ms (half of the time interval between two consecutive frames) associ-

ated with the Kinect, assuming a constant frame rate of 30 Hz.  

When estimating the duration of a gait cycle and its different phases, the errors varied de-

pending on the Kinect version and walking activity. The mean absolute error for the stride, step, 

stance and swing duration ranged between 17 and 27 ms (both sides). The error was higher for the 

single support and double support duration (19–45 ms), which was expected since these durations 

are computed based on four gait events, while the stride, step, stance and swing duration are com-

puted based on only two gait events. 

Overall, the Kv2 and WF data led to lowest absolute errors. For this case, the percentage of 

the mean error in relation to the mean duration of the temporal parameter was of 2% for stride dura-

tion, 3% for step, stance and single support duration, 5% for swing duration and 10% for double 

support duration. The values used for the mean parameter duration are those presented in Table G.1 

(Appendix G.1) for Qualisys in the case of Kv2. 

5.4.3 Comparison with the State of the Art 

In contrast with other studies, we evaluated the performance of our algorithm for both Kv1 

and Kv2, as well as for the two different activities of walking towards (WF) and walking away (WB) 

from the Kinect. Since the obtained results were overall better for Kv2 and WF, our results presented 

below are for this combination. 
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The true errors we obtained when estimating heel strike and toe offs are presented in Table 

5.12, together with the results reported in other studies. For heel strikes, our mean true error is lower 

than the value obtained by Auvinet et al. [59], but is higher when compared to Xu et al [60]. However, 

it is important to note that the other studies considered treadmill walking, while our results were 

obtained for overground walking. The last situation is more challenging, since the distance between 

the subject and Kinect varies within each gait trial, while it remains constant when walking on a 

treadmill. 

 

Table 5.12. Comparison between our algorithm and the methods proposed in other contributions, re-

garding the true error for estimating heel strike and toe off instants.  

  True error (ms) 

Method Oura 

Auvinet 

et al., 

2015 [59] 

Xu et al., 

2015 [60]b 

Heel 

strike 

instant 

Left 14.2 ± 24.7 
― 

5.0 ± 26.7 

Right 12.4 ± 18.6 3.0 ± 21.7 

Both 13.4 ± 22.0 17 ± 24 ― 

Toe off 

instant 

Left 13.4 ± 23.5 

― 

−43.5 ± 61.7 

Right 11.7 ± 21.2 −37.5 ± 56.7 

Both 12.5 ± 22.3 ― 

a Results for Kv2 and WF. 

b values converted from number of frames (the frame rate was of 60 

Hz, so an error of 1 frame corresponds to an error of 17 ms). 

 

For toe offs, our solution was able to estimate the corresponding instants with a mean true 

error between 11 and 14 ms. This is considerably lower than the mean errors reported by Xu et al. 

(−44 ms and −38 ms), corresponding to a difference of 26 to 30 ms when considering the absolute 

value of the mean true error. The difference when considering the standard deviation is even larger. 

These results indicate that the measure we relied on for toe off detection (shank angle absolute dif-

ference) is more appropriate for this purpose than the one used by Xu et al. (distance between the 

ankle and hip centre). The solution proposed by Auvinet et al. does not include toe off detection. 

Although other contributions proposed a method for detecting gait events, the associated 

estimation error was not reported. Nevertheless, the error for estimating the stride, step, stance, swing 

and/or double support duration was presented. The true and absolute estimation errors for these pa-

rameters achieved by our algorithm, as well as other proposed methods, are presented in Table 5.13 

and Table 5.14, respectively. For the contributions that explored different walking speeds, the indi-

cated results are for the speed(s) closer to the mean gait speed for our study (approximately 1.2 m/s). 
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For the studies that reported the errors in seconds with only two decimals places, the values of 0.00 

s are indicated as ]–5, 5[ ms. 

A direct comparison between our results and the results achieved in the other studies is not 

possible, due to the use of a different experimental setup and/or protocol (e.g., first version of the 

Kinect [55-57, 59, 60, 65], multiple Kinects [61, 62], treadmill walking [59, 60, 63, 65]). Neverthe-

less, it is interesting to see how our results stand in relation with those reported in other contributions. 

 

Table 5.13. Comparison between our algorithm, and the methods proposed in other contributions, re-

garding the true error for estimating stride, step, stance, swing and double support duration.  

 True error (ms) 

Method Oura 

Stone et 

al., 2011 

[55]b 

Gabel et 

al., 2012 

[56] 

Clark et 

al., 2013 

[57] 

Pfister 

et el., 

2014 

[65]c 

Auvinet 

et al., 

2015 

[59] 

Xu et al., 

2015 

[60]d 

Mentiplay 

et al., 

2015 [64]e 

Geerse 

et al., 

2015 

[61] 

Eltoukhy 

et al., 2017 

[63]f 

Müller et al., 

2017 [62]f 

Stride 

duration 

Left 8.9 ± 27.5 
― 

8 ± 62 
― 

157 ± 31 
― ― 

― 

― ― 

― Right −0.5 ± 17.3 2 ± 46 153 ± 28 

Both 4.8 ± 24.0 7.47 ± 62.2 ― −200 ± 66 ― 0 ± 12 
1 ± 25 / 

0 ± 19 
10 ]–5, 5[ ± 10 

Step 

duration 

Left 4.4 ± 26.3 

― ― 

― 

― ― 

― ― ― ― 
−10 ± 15 

Right 2.9 ± 20.0 ]–5, 5[ ± 15 

Both 3.6 ± 23.2 −170 ± 71 
0 ± 26 / 

0 ± 19 

]–5, 5[ / 

−10 
10 −20 ± 10 ]–5, 5[ ± [0, 5[ 

Stance 

duration 

Left 4.1 ± 22.9 

― 

−8 ± 110 

― ― ― 

― ― 

― ― ― Right 0.6 ± 20.8 −20 ± 90 

Both 2.5 ± 22.0 ― 
−48 ± 55 / 

−36 ± 58 
30 / 40 

Swing 

duration 

Left 5.1 ± 29.8 

― 

6 ± 115 

― ― ― 

― 

― ― ― ― Right −1.2 ± 22.7 27 ± 104 

Both 2.2 ± 27.0 ― 
46 ± 57 / 

35 ± 57 

Double 

support 

duration 

Both 2.3 ± 33.4 ― ― ― ― ― 
−45 ± 54 / 

34 ± 57 
― ― ― ― 

a Results for Kv2 and WF. 

b Results for the second (#2) Kinect. 

c Results for the hip time and a controlled speed of 1.30 m/s.  

d Results for the controlled speeds of 1.07 m/s and 1.30 m/s. 

e Results for days 1 and 2 (comfortable pace). 

f Results for a controlled speed of 1.30 m/s. 

g Results for the mean of the parameter value for left/right/both gait cycles per subject. 
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Table 5.14. Comparison between our algorithm, and the methods proposed in other contributions, re-

garding the absolute error for estimating stride, step, stance, swing and double support duration.  

  Absolute error (ms) 

Method Our 

Gabel et 

al., 2012 

[56] 

Eltoukhy 

et al., 

2017 [63]a 

Stride 

duration 

Left 20.6 ± 20.3 45 
― 

Right 13.4 ± 10.9 32 

Both 17.5 ± 17.2 ― 10 ± 10 

Step 

duration 

Left 19.9 ± 17.7 

― 
― 

Right 15.8 ± 12.5 

Both 17.7 ± 15.3 20 ± 10 

Stance 

duration 

Left 21.3 ± 16.7 70 

― Right 18.9 ± 15.2 67 

Both 20.0 ± 16.0 ― 

Swing 

duration 

Left 18.3 ± 14.3 71 
― 

Right 15.9 ± 13.3 70 

a Results for a controlled speed of 1.30 m/s. 

 

 

When considering the parameters included in the tables, we were able to achieve lower true 

and absolute estimation errors overall. Our solution outperformed the other studies regarding the 

estimation of parameters that involve both types of gait events, i.e., the stance, swing and double 

support duration. For stance and swing duration, not only the mean true error is overall lower when 

compared with the study by Gabel et al. [56], but the associated standard deviation is also consider-

ably lower (21 to 30 ms versus 90 to 115 ms). The mean absolute error is also much lower (16 to 21 

ms versus 67 to 71 ms). Our mean true error (2 to 3 ms, both sides) is also much lower when com-

pared with the studies by Xu et al. [60] (−48 or 46 ms) and Mentiplay et al. [64] (30 to 40 ms for the 

stance). For double support duration, our mean true error is also much lower when compared with 

the study by Xu et al. (2 ms versus −45 ms). 

As for stride and step duration, our true error results (5 ± 24 ms and 4 ± 23 ms) are consid-

erably better than those obtained by Clark et al. [57] (−200 ± 66 ms and −170 ± 71 ms) and by Pfister 

et al. [65] (153 ± 28 ms and 157 ± 31 ms for the stride). When compared with the studies by Gabel 

et al. and Stone et al. [55], although the mean error for stride duration is similar, our standard devia-

tion considerably lower (less than half). Some of the other studies presented slightly lower mean true 

errors than ours for stride and step duration. However, the maximum difference was of 5 ms. Fur-

thermore, in those studies the data were collected during treadmill walking [59, 60], which is a more 

controlled situation than over ground walking, as explained above.  
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5.5 Summary 

We enabled automated gait analysis of a given subject using a single RGB-D camera (Ki-

nect), by avoiding any manual intervention in the whole analysis process (besides starting the data 

acquisition) [76]. Firstly, the sensor data corresponding to walking is automatically selected. Then, 

gait events that occur during this activity are automatically detected. Finally, gait parameters are 

computed taking into account the detected gait events. This automated data selection and event de-

tection allows time savings when compared with the manual identification of data/events. 

The automated selection of gait data relies on a predictive model that recognizes three dif-

ferent activities (walking, standing and marching), as well as two different positions of the subject in 

relation to the camera (facing it and facing away from it), with a high overall accuracy (96% and 

98% for the first and second Kinect versions, respectively). When walking is detected, the gait cycles 

and associated phases are identified using an algorithm that estimates the instants corresponding to 

two different types of gait events (heel strikes and toe offs). This algorithm outperformed other meth-

ods proposed in the literature regarding the estimation of toe off instants and consequently the esti-

mation of the duration of gait cycle phases. 

The developed solutions for activity recognition and gait cycle detection enable online gait 

analysis, which allows defining the minimum number of gait cycles required for analysis and auto-

matically stopping the acquisition only when the defined number of gait cycles has been detected. 

An online solution can also allow additional time savings when compared with offline solution. 

For each gait cycle (or stride), several spatiotemporal and kinematic gait parameters (e.g., 

stride duration and length, gait speed, elbow angle minimum and maximum) are computed over the 

3-D body joint data, taking into account the detected gait events. The validity of these gait parameters 

is evaluated in the next chapter. 
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6 Validation of an RGB-D Camera for Gait 

Analysis 

The body joint positions estimated from the depth data provided by a single markerless 

RGB-D camera can be less accurate than those obtained with a multi-camera marker-based system 

(gold standard for motion capture). For this reason, it is important to verify if the information pro-

vided by a given RGB-D camera is reliable for the aim of assessing gait, by evaluating its validity 

against a gold standard system. 

The main objective of this chapter is thus answering the following question: 

 Can a single RGB-D camera be used as an alternative to gold standard systems for sup-

porting gait assessment?  

To the best of our knowledge, there is no study that validates both versions of the Kinect 

simultaneously, or explores the impact of the Kinect configuration (height and tilt angle) on its va-

lidity, in the context of gait analysis (overground walking, frontal-plane view). In addition, most 

studies that consider a frontal-plane view do not validate the Kinect for walking towards and away 

from the sensor separately. 

According to Microsoft, the second version of the Kinect has improvements over the first 

version, including improved body tracking [180]. Therefore, it is important to answer the following 

question: 

 Can the first and second versions of the Kinect be used interchangeably for gait analysis? 

In our studies, the gait task performed by the subjects includes walking towards and away 

from the Kinect. The use of the data acquired during both walking activities would allow to minimize 

the required number of task repetitions and consequently the duration of each data acquisition. How-

ever, the Kinect’s joint tracking algorithm assumes that the subject is always facing the camera. For 

this reason, it is also important to answer another question: 

 Can both the data acquired while the subject walks towards and away from the sensor 

be used for gait analysis? 
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After some modifications regarding the physical configuration of the Kinect in the prelimi-

nary studies, due to changes in the location of the associated experiments, the following question 

also emerged: 

 Is there a given Kinect configuration that is more appropriate for gait analysis? 

To answer the different questions, we studied the agreement between the Kinect and a gold 

standard system (marker-based multi-camera Qualisys system) for several gait parameters, when 

considering both Kinect versions, both walking activities and three different Kinect configurations. 

6.1 Related Work 

Several studies were carried out on the validity of the Kinect for estimating joint locations 

[17, 152], as well as for assessing gait [14, 56, 57, 60-65], postural control and/or standing balance 

[15, 163, 164, 166, 167], upper and/or lower body movements [16, 98, 100, 149, 150] and clinically 

relevant activities [12, 151]. In the specific case of gait, initial studies evaluated the validity of the 

first version of Kinect (Kv1) [56, 57, 60, 65], while the most recent studies validated its second 

version (Kv2) [61-64]. 

The approach used in the studies is not uniform due to the use of different setups (e.g., single 

or multiple Kinects, front- or side- view) and/or protocols (e.g., overground or treadmill walking, 

self-selected or controlled walking speed). The gait parameters explored in each study also varied. 

Nevertheless, most studies verified that the Kinect is a valid option for obtaining most spatiotemporal 

parameters, but is not appropriate for measuring most kinematic parameters. 

Clark et al. studied the validity of Kv1 for obtaining spatiotemporal gait parameters (step 

duration and length, stride duration and length, gait speed and foot swing velocity) [57]. The validity 

results were obtained over data collected from twenty-one healthy adults, considering overground 

walking at a self-selected pace and a frontal-plane view (i.e., Kinect with an angle of 0 degrees in 

relation to the walking path). They verified that gait speed, step length and stride length have excel-

lent agreement between the Kinect and a gold standard system (Vicon). For the remaining parame-

ters, relative agreement was excellent for foot swing velocity and step duration, while it was only 

modest for stride duration. Absolute agreement was modest for foot swing velocity and poor for 

stride and step duration. The achieved mean error was of −200 ms and −170 ms for stride and step 

duration, −4.2 mm and 11.5 mm for stride and step length, −0.01 m/s for gait speed and 0.43 ms/s 

for foot swing velocity. 

The Kv1 was also used by Gabel et al. to obtain temporal gait parameters, including the left 

and right stride, stance and swing duration [56]. They obtained a mean true error between −20 and 



6.1 Related Work 

 

 

99 

27 ms, standard deviation for the true error between 46 and 115 ms, and a mean absolute error be-

tween 32 and 71 ms, when considering the values obtained with in-shoe pressure sensors as the 

ground truth. These results were achieved for data collected from eleven subjects, with the Kinect 

placed at 45 degrees to the middle of the walking path line and at a height of 30–60 cm.  

Other studies with Kv1 considered treadmill walking at various controlled speeds [60, 65]. 

Xu et al. explored both spatiotemporal parameters (step, stride, stance, swing and double support 

duration and step width) and kinematic parameters (knee flexion angle and hip flexion and extension 

angle), for three different gait speeds (0.85 m/s, 1.07 m/s and 1.30 m/s) [60]. The agreement between 

the Kinect and a gold standard system (Optotrak) was assessed using data acquired from twenty 

healthy subjects, with the Kinect positioned in front of the subject (frontal view). For the spatiotem-

poral parameters, the stride and step duration and the step width achieved the best results overall, 

while the stance, swing and double support duration had the worst agreement results. The kinematic 

parameters presented relatively high mean errors (varying between −39 and 7 degrees). Statistically 

significant differences between at least two of the gait speeds were detected for the stance, swing and 

double support duration, as well as for the hip flexion and extension angle. 

Pfister et al. also validated the Kv1 for obtaining temporal and kinematic parameters (stride 

duration and flexion and extension angle for left and right hip and knee), during treadmill walking at 

three different speeds (≈1.3, 2.0 and 2.5 m/s) [65]. Data were acquired from twenty healthy subjects, 

using a Kv1 placed at 43 cm from the floor and at 45 degrees relative to the treadmill, as well as a 

Vicon system as the gold standard. For the kinematic parameters, results were overall better for the 

knee than the hip. The best relative agreement between systems was achieved for the intermediate 

speed, while the lowest mean error was obtained for the lowest speed. For stride duration, the best 

relative agreement was achieved when using the knee angle, considering all three speeds. The mean 

error were better for the highest speed (118–121 ms).  

More recently, several validation studies were carried out for Kv2 [61-64]. Mentiplay et al. 

acquired data from thirty young, injury-free subjects, while they performed overground walking at 

comfortable and fast paced speeds, using the Kv2 with a frontal-plane view and a Vicon system [64]. 

They then computed several spatiotemporal parameters (e.g., step and stance duration, step length 

and width, gait speed and gait speed variability, and foot swing velocity) and kinematic parameters 

(knee flexion and adduction angle, and ankle and hip flexion angle range). They verified that the 

relative agreement between systems was excellent for most spatiotemporal parameters, but it varied 

between modest and poor for the kinematic parameters.  

Another study using the Kv2 considering a frontal view was performed by Eltoukhy et al., 

but for treadmill walking at two different controlled speeds (1.3 and 1.6 m/s) [63]. They evaluated 
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the validity of Kv2 against a Vicon system, for computing spatiotemporal parameters (e.g., stride and 

step duration, step length and width, and foot swing velocity) and kinematic parameters (total hip, 

knee and ankle range of motion). They verified that the difference between systems is statistically 

significant for the step duration, length and width, foot swing velocity, total hip and ankle range of 

motion (both speeds). The mean error varied between −0.03 s and 0.00 s for stride and step duration, 

0.04 m and 0.10 m for step length and width, and −2.27 and 20.63 degrees for the kinematic param-

eters. Similar to the studies previously described, the agreement was overall better for spatiotemporal 

than kinematic parameters.  

Some studies on the validity of Kv2 for gait analysis relied on multiple Kinect cameras sim-

ultaneously. In a study carried out by Geerse et al., four Kv2 cameras were placed at a height of 0.75 

m with a 70 degrees angle relative to the walkway direction, on the same side of the walkway [61]. 

The data provided by the Kinects and a gold standard Optotrak system were collected from twenty-

one healthy subjects, while they walked at two speeds (comfortable and maximum walking speed). 

The agreement between systems was evaluated for seven spatiotemporal gait parameters: gait speed, 

cadence, step and stride length, step width, step and stride duration. All parameters presented a high 

agreement, with the exception of the step width. When comparing the two explored gait speeds, the 

cadence led to the highest difference considering the mean estimation error. 

Müller et al. studied two different setups using multiple Kv2: three one-sided cameras and 

six two-sided cameras [62]. All cameras were placed at 35 degrees angle relative to the walking 

direction. A Vicon system was used as the gold standard system. For both setups, the step duration, 

stride and step length and step width were computed over data acquired from ten healthy subjects, 

while they performed overground walking at a comfortable pace. The validity of the multi-Kinect 

system was evaluated considering all left and right gait cycles separately, the mean value for left and 

right gait cycles per subject, and the mean value for all gait cycles per subject. The agreement be-

tween systems was overall better for the mean of all gait cycles, and for the two-sided setup when 

compared with the one-sided setup. 

6.2 Materials and Methods 

The dataset used to validate both Kinect versions for gait assessment is similar to the dataset 

used to evaluate our gait cycle detection solution. More details on the subjects, experimental setup 

and protocol, as well as data acquisition and pre-processing, can be found in Section 5.2. For com-

paring between different Kinect configurations, additional data were acquired with two new different 

configurations. The three considered configurations correspond to a Kinect height of 0.6 m, 1 m and 

1.34 m. 
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6.2.1 Subjects 

The subjects are the same twenty healthy subjects that participated in the experiment carried 

out for the study on gait cycle detection. 

6.2.2 Experimental Setup and Protocol 

The experimental setup included the two Kinect versions (Kv1 and Kv2) and a Qualisys 

system (twelve cameras and sixty-one retro-reflective markers). As referred above, three different 

physical configurations of the Kinect (KC1, KC2 and KC3) were considered. The height and tilt 

angle associated with each configuration are indicated in Table 6.1. The height for KC2 is the rec-

ommended minimum height for the Kinect [235, 236] and for KC3 is the tripod’s maximum height. 

The height for KC1 corresponds to an intermediate height between KC2 and KC3. The method used 

to choose the tilt angle for each height and Kinect version is described in Appendix E. 

 

Table 6.1. Height and tilt angle associated with each explored physical configuration of the Kinect 

(KC1, KC2 and KC2), for both Kv1 and Kv2. 

Kinect 

configuration 

Height 

(m) 

Tilt angle (degrees) 

Kv1 Kv2 

KC1 1 −10 −5 

KC2 0.6 0 5 

KC3 1.34 −18 −15 

 

The protocol included ten trials (KC1) or five trials (KC2 and KC3) per subject of the fol-

lowing gait task: walking towards and then away from the Kinects for a total of 14 m, at a self-

selected comfortable pace. 

6.2.3 Data Acquisition and Pre-Processing 

The Kinect data (colour/IR, depth and 3-D body joint data) were acquired at 30 Hz, while 

the Qualisys data (3-D position of markers) were acquired at 200 Hz. The time intervals correspond-

ing to walking towards and away from the Kinects (WF and WB) were automatically selected (see 

Appendix C.1). The data provided by the different systems were synchronized using the method 

described in Section 5.2.  
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6.2.4 Gait Parameter Computation 

For each subject and WF/WB trial, the performed gait cycles were automatically detected 

using Kinect data by relying on our gait cycle detection algorithm (same window sizes as those used 

in the study presented in the previous chapter). The corresponding actual gait cycles were automati-

cally identified using Qualisys data relying on the method described in Appendix C.2. 

For each gait cycle, we computed the 13 spatiotemporal gait parameters (i.e., parameters 

involving time and/or distance) included in Table 6.2, and the 8/9 (Kv1/Kv2) kinematic gait param-

eters (i.e., parameters involving angles) included in Table 6.3. For each parameter, we then obtained 

the mean value per subject, when taking into account N gait cycles (chosen randomly if the number 

of gait cycles for a subject is higher than N). 

For Qualisys, the 3-D position of each body joint used for gait parameter computation was 

calculated from the 3-D position of the relevant markers, as indicated in Table 6.4. The 3-D joint data 

were then processed using a zero-lag low-pass fourth order Butterworth filter with a cut-off fre-

quency of 15 Hz. The filter parameter values were chosen by taking into account the frequency con-

tent of the signals. 

For Kinect, the velocity, distance and angle signals were processed using a zero-lag low-pass 

Butterworth filter. For each gait parameter, we explored the filter order values of 2, 4 and 6, and cut-

off frequency values between 1 and 9 Hz inclusive (integer values). We then chose the value for the 

filter parameters that minimized the mean absolute error between Kinect and Qualisys. 

For each gait parameter, we excluded the gait cycles with outliers for the associated measure 

obtained from Qualisys data. For velocity and distance measures, we considered as outliers the 

frames with value above 5 m/s and 2 m, respectively. For all measure types, we also considered as 

outliers the frames for which the value is more than 40 scaled median absolute deviations away from 

the median for the following signal: sum of absolute difference of the joint position between consec-

utive frames in each axis. 

All signal processing and analysis, including outlier detection, filter optimization, gait cycle 

detection and gait parameter computation, were performed in Matlab (version R2015a) [234]. 

https://www.mathworks.com/help/matlab/ref/isoutlier.html#bvolfgk
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Table 6.2. Spatiotemporal gait parameters computed over 3-D joint data, including a description and 

the equation used for its computation. 

Spatiotemporal 

gait parameter 
Definition Equation 

Stride duration Duration of the gait cycle or stride. (5.11) 

Step duration 
Duration of the left/right step, when considering a 

left/right gait cycle. 
(5.12) 

Stance 

duration 
Duration of the stance phase. (5.13) 

Swing duration Duration of the swing phase. (5.14) 

Single support 

duration 
Duration of the single-limb support phase. (5.15) 

Double support 

duration 
Duration of the double-limb support phase. (5.16) 

Stride length 

Distance (in the xz-plane) between the position of 

the left/right ankle at the beginning and end of the 

left/right gait cycle. The distance is computed using 

(3.6), where P1 and P2 correspond 

to the position of the ankle (in the 

xz-plane) at the two considered 

instants. Step length 

Distance (in the xz-plane) between the position of 

the left/right ankle at the instant during the swing 

phase when the ankle distance is minimum, and at 

the instant corresponding to the end of the left/right 

gait cycle. 

Step width 
Minimum of the ankle distance (in the xz-plane) 

during the swing phase. 

The ankle distance is computed 

for each frame using (3.6), where 

P1 and P2 correspond to the 

position of the left and right ankle 

(in the xz-plane), respectively. 

Gait speed 

Mean of the trunk velocity (mean of velocity of the 

head, neck, spine shoulder, spine middle, and spine 

base joints). 

The velocity of each joint is 

computed for each frame using 

(3.4). 

Gait speed 

variability 

Standard deviation of the trunk velocity (mean of 

velocity of the head, neck, spine shoulder, spine 

middle, and spine base joints). 

Foot swing 

velocity 

Maximum of the left/right ankle joint velocity 

during the swing phase, when considering a 

left/right gait cycle. 

Arm swing 

velocity 

Maximum of the left/right hand velocity (mean of 

velocity of the left/right wrist and hand joints) 

during the stance phase, when considering a 

left/right gait cycle. 
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Table 6.3. Kinematic gait parameters computed over 3-D joint data, including a description and the 

equation used for its computation. 

Kinematic gait 

parameter 
Definition Equation 

Neck angle 
Mean of the angle at neck (defined by the head, neck and spine base 

joints). 

The angle was 

computed for 

each frame 

using (3.7).  

Spine shoulder 

anglea 

Mean of the angle at spine shoulder (defined by the head, spine shoulder 

and spine base joints). 

Spine middle 

angle 

Mean of the angle at spine middle (defined by the head, spine middle 

and spine base joints). 

Elbow angle 

minimum 

Minimum of angle at the left/right elbow during the stance phase, when 

considering a left/right gait cycle. The angle at the elbow is defined by 

the corresponding shoulder, elbow, and wrist joints. 

Elbow angle 

maximum 

Maximum of angle at the left/right elbow during the stance phase, when 

considering a left/right gait cycle. 

Knee angle 

minimum 

Minimum of angle at the left/right knee during the swing phase, when 

considering a left/right gait cycle. The knee angle is defined by the 

corresponding hip, knee, and ankle joints. 

Knee angle 

maximum 

Maximum of angle at the left/right knee during the stance phase, when 

considering a left/right gait cycle. 

Hip angle 

range 

Difference between maximum and minimum value of the left/right hip 

angle, during the stance and swing phases respectively, when 

considering a left/right gait cycle. The hip angle is defined by the 

corresponding knee joint, hip joint, and point with knee y-coordinate 

and hip x- and z-coordinates. 

Ankle angle 

range 

Difference between maximum and minimum value of the angle at the 

left/right ankle, during the swing and stance phases respectively, when 

considering a left/right gait cycle. The angle at the ankle is defined by 

the corresponding knee, ankle, and foot joints. 

a Kinect v2 only 

 

Table 6.4. Computation of the 3-D position of joints from Qualisys data. 

Joint(s) tracked by Kinect Joint(s) position computed from Qualisys markersa 

Head P = PHEAD 

Neck P = PNECK 

Spine shoulder P = PIJ 

Spine middle P = PPX 

Spine base P = PHIP CENTER 

Left and right shoulder Pleft = PLAC and Pright = PRAC 

Left and right elbow Pleft = (PLLELB + PLMELB)/2b
 and Pright = (PRLELB + PRMELB)/2b 

Left and right wrist Pleft = (PLULN + PLRAD)/2b
 and Pright = (PRULN + PRRAD)/2b 

Left and right hand Pleft = PLHAND and Pright = PRHAND 

Left and right hip Pleft = PLASIS and Pright = PRASIS 

Left and right knee Pleft = (PLLK + PLMK)/2b
 and Pright = (PRLK + PRMK)/2b 

Left and right ankle Pleft = (PLLA + PLMA)/2b
 and Pright = (PRLA + PRMA)/2b 

Left and right foot Pleft = PLFM2 and Pright = PRFM2 

a The labels associated with each marker placed on the subject’s body are indicated in Figure 5.3. 

b The joint position is the mean of the coordinate values for the 3-D position of the two indicated markers. 
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6.2.5 Kinect Validation 

The agreement between the Kinect and Qualisys (gold standard) was evaluated for each gait 

parameter by obtaining the Bland-Altman’s mean difference and 95% limits of agreement (LoA), as 

well as the Pearson’s and concordance correlation coefficients and associated 95% confidence inter-

val (CI). 

The Bland-Altman’s mean difference (or bias) is the mean of the differences between the 

measurements obtained by two different methods ( d ) [237, 238]. The lower and upper 95% limits 

of agreement correspond to 1.96d s  and 1.96d s  respectively, where s is the standard deviation 

for the differences between paired measurements. 

The presence of fixed bias, i.e., a constant difference in measurements between systems, was 

verified by carrying out a one-sample t-test on the differences between Kinect and Qualisys [239]. 

There is no fixed bias if the mean differences is indistinguishable from zero (p-value ≤ 0.05). Pro-

portional bias is present when the difference in measurements from two methods increases or de-

creases in proportion to the mean values [239]. The presence of proportional bias was detected by 

performing a OLS (ordinary least squares) regression analysis [239, 240]. There is proportional bias 

if the OLS regression line fitted to the plot of the differences versus the means has a slope that differs 

significantly from zero (p-value ≤ 0.05). 

The Pearson’s correlation coefficient (r) indicates the strength of linear relationship between 

variables, i.e., their relative agreement [238]. The concordance correlation coefficient (rc) indicates 

the absolute agreement between variables, by measuring not only how far each observation deviates 

from the line fit to the data (precision), but also how far this line deviates from the 45 degrees line 

through the origin (accuracy) [241]. The value of both r and rc ranges between −1 and 1, where −1 

means perfect disagreement, 0 corresponds to an independence situation and 1 indicates perfect 

agreement [242]. Based on the guidelines given by Portney and Watkins [243], correlation thresholds 

were set as poor (<0.5), moderate (≥0.5 and <0.75), good (≥0.75 and <0.9) and excellent (≥0.9). 

For the mean difference or estimation error, a statistically significant difference between the 

two Kinect versions, the two walking activities and the three Kinect configurations, was verified by 

performing a one-way repeated-measures analysis of variance (ANOVA). For configuration compar-

ison, if a significant difference was detected (p-value ≤ 0.05), a post-hoc Tukey test was then carried 

out to find which situations have significantly different errors. 

All the analyses described in this section were performed in the R environment (version 

3.2.3) [209], using code implemented for performing the validation studies. The stats package [210] 

was used to compute the Pearson’s correlation coefficient and associated 95% CI and p-value, as 
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well as for performing the t-test and OLS regression analysis. The concordance correlation coeffi-

cient and associated 95% CI were obtained using the cccrm package [244]. The Tukey’s test and 

ANOVA were performed using the agricolae [245] and car [246] packages, respectively. 

6.3 Results 

To verify if the two Kinect versions can be used interchangeably for gait analysis, the vali-

dation study was firstly carried out for both Kv1 and Kv2, when considering WF data and configu-

ration KC1. In this study, we only took into account the WF activity, since the Kinect’s joint tracking 

algorithm assumes that the subject is always facing the camera. 

To investigate if data acquired during both WF and WB activities can be used for gait anal-

ysis, a similar validation study was carried out for the two different activities when using the Kinect 

version that led to the best overall result in the first validation study. 

Furthermore, we explored if the physical configuration used for the Kinect has any effect on 

the computed gait parameter values, by performing the validity study for configurations KC2 and 

KC3 besides KC1, when taking into account the Kinect version and walking activity that achieved 

the best overall result in the studies described above. 

The complete results of the optimization carried out for the parameters (order and cut-off 

frequency) of the low-pass zero-lag Butterworth filter, which was used for filtering the measures 

extracted from Kinect data, are included in Appendix F. The results obtained for each Kinect version 

and each walking activity are presented in Appendix F.1. The results obtained for the three Kinect 

configurations are presented in Appendix F.2. These results do not include the spatiotemporal gait 

parameters for which the computation only depends on time instants and/or the position of a body 

joint at those instants: stride, step, stance, swing, single support and double support duration, and 

stride length. 

For each one of the remaining parameters, the order and cut-off frequency values were cho-

sen for Kv1 and Kv2 separately, by taking into account the mean estimation error for both WF and 

WB. We chose not to filter the measures used to compute the step width and gait speed, as well as 

most of the kinematic parameters, since the mean error did not decrease or decreased only slightly 

when filtering the data. The selected values for the filter’s parameters are indicated in Table 6.5 for 

each Kinect version.  
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Table 6.5. Butterworth filter’s order and cut-off frequency values for each gait parameter, when using 

Kv1 and Kv2. 

Gait parameter 

Kv1 Kv2 

Order 

Cut-off 

frequency 

(Hz) 

Order 

Cut-off 

frequency 

(Hz) 

Step length 6 5 6 3 

Step width 
Not filtered 

Gait speed 

Gait speed variability 2 1 2 2 

Foot swing velocity 4 3 6 4 

Arm swing velocity 2 1 4 2 

Neck angle Not filtered 

Spine shoulder angle — Not filtered 

Spine middle angle No filtering 

Elbow angle maximum 6 1 Not filtered 

Elbow angle minimum 

Not filtered 
Knee angle maximum 

Knee angle minimum 

Hip angle range 

Ankle angle range 6 1 6 1 

 

The filter parameters values that led to the best results for each considered Kinect configu-

ration were the same as the ones included in Table 6.5, except for the step length. However, the mean 

error values for step length were similar. Therefore, the values of Table 6.5 were used in all studies 

for simplicity. 

For each study, the results presented below include the practical depth range, number of 

actual gait cycles and validation results, for each considered situation. The practical depth range is 

the difference between the largest and smallest distance between the subject and the Kinect for which 

all joints are tracked (minimum and maximum distance). The depth range value was obtained for 

each gait trial, by taking into account the WF/WB data selected automatically. 

The number of actual gait cycles is the number of gait cycles identified by relying on Qual-

isys data, when considering the practical depth range of the Kinect. The results include the number 

of left, right and both gait cycles, and are indicated for all subject and trials, as well as for each 

subject and each trial (mean and standard deviation).  

The validation results were obtained for each gait parameter and situation. They include the 

Bland Altman’s mean difference (Mean diff), Pearson's correlation coefficient (r) and concordance 

correlation coefficient (rc). If there is a statistically significant difference between the considered 
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situations (one-way repeated-measures ANOVA, p-value ≤ 0.05), when taking into account the esti-

mation error for all subjects, the lowest mean difference is indicated in bold. The r and rc values are 

indicated using the following colours: green (≥ 0.9), yellow (≥ 0.75 and < 0.9), orange (≥ 0.5 and < 

0.75), and red (< 0.5). Moreover, the r values that are statistically significant (p-value ≤ 0.05) are 

indicated using the * symbol. 

6.3.1 Kinect Version Comparison 

Table 6.6 includes the mean and standard deviation values for the practical depth range of 

each Kinect version (WF, KC1), as well as the associated minimum and maximum distances, when 

considering all subjects and trials. We can see that the mean depth range for Kv2 is almost 1 m longer 

than for Kv1. 

 

Table 6.6. Mean and standard deviation values for the practical depth range of both Kinect versions 

(Kv1 and Kv2), when considering the WF activity and configuration KC1. 

 WF, KC1 

Kinect version Kv1 Kv2 

Practical depth rangea (m) 1.84 ± 0.13 2.71 ± 0.08 

Minimum distanceb (m) 1.89 ± 0.12 1.63 ± 0.08 

Maximum distancec (m) 3.73 ± 0.05 4.34 ± 0.03 

a Difference between maximum and minimum distances. 

b Shortest distance between the subject and Kinect for which all body joints are tracked. 

c Longest distance between the subject and Kinect for which all body joints are tracked. 

 

The number of actual gait cycles for all subjects and trials, as well as per trial and per subject 

(mean and standard deviation), is presented in Table 6.7 for both Kinects (WF, KC1). As expected, 

the Kv2 allowed the acquisition of a greater number of gait cycles per trial due to the larger depth 

range, which led to a number of gait cycles for all subjects and trials that is three times greater than 

for Kv1. 
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Table 6.7. Number of actual gait cycles for each Kinect version (Kv1 and Kv2), when considering the 

WF activity and configuration KC1. 

The values are indicated for left, right, and both gait cycles, when considering all subjects and trials, as 

well as each trial and each subject (mean and standard deviation). 

  Number of actual gait cycles 

(WF, KC1, 10 trials) 

Kinect version Kv1 Kv2 

All 

subjects 

and trials 

Left 50 265 

Right 91 209 

Both 141 474 

Per 

subject 

Left 2.5 ± 3.4 13.3 ± 3.4 

Right 4.5 ± 3.1 10.4 ± 2.1 

Both 7.0 ± 4.1 23.7 ± 4.1 

Per trial 

Left 0.2 ± 0.5 1.3 ± 0.6 

Right 0.5 ± 0.5 1.1 ± 0.5 

Both 0.7 ± 0.6 2.4 ± 0.9 

 

The validation results are presented in Table 6.8 (complete results in Appendix G.1). These 

results were obtained using a single gait cycle for each subject, since there is a subject for which it 

was only possible to obtain one valid gait cycle for most parameters, when using the Kv1. 

Overall, Kv2 led to lower estimation errors than Kv1 (mean difference was lower when using 

Kv2 for 6 out of 8 parameters with a statistically significant difference between Kinects). The Kv2 

also presented a better overall agreement with Qualisys than Kv1 (relative/absolute agreement was 

good or excellent for 13/12 parameters versus 9/4 parameters). 

There was no statistically significant difference regarding estimation error (or mean differ-

ence) between Kv1 and Kv2 for all 13 spatiotemporal parameters, except for the stride length, gait 

speed and arm swing velocity (lowest error for Kv2). For kinematic parameters, most presented a 

significant difference between Kinects (5 out of 8 parameters). The exceptions were the spine middle 

angle and the elbow angle minimum and maximum. 

When using Kv2, relative and absolute agreement (r and rc) was good or excellent for all 

spatiotemporal parameters, except the swing and single support duration (poor and moderate agree-

ment, respectively). On the other hand, relative and absolute agreement for Kv1 was good/excellent 

for only 7 and 3 spatiotemporal parameters, respectively. For kinematic parameters, most presented 

poor or moderate agreement. The only exceptions are the neck angle (good relative agreement for 

Kv1), elbow angle minimum (good relative and absolute agreement for both Kinects) and knee angle 

minimum (good relative agreement for Kv2). 
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Table 6.8. Validation results for each gait parameter and Kinect version (Kv1 and Kv2), when consider-

ing the WF activity and configuration KC1. 

The results include the Bland Altman’s mean difference (Mean diff), Pearson's correlation coefficient 

(r) and concordance correlation coefficient (rc). The r and rc values are highlighted in green (≥0.9), yel-

low (≥0.75 and <0.9), orange (≥0.5 and <0.75), and red (<0.5). 

Parametera 
Mean diffb rc rc 

Kv1 Kv2 Kv1 Kv2 Kv1 Kv2 

Stride duration 

(s) 
0.003 0.000 0.87* 0.95* 0.87 0.94 

Step duration 

(s) 
−0.003 0.000 0.82* 0.88* 0.81 0.87 

Stance duration 

(s) 
0.014 −0.003 0.69* 0.91* 0.66 0.91 

Swing duration 

(s) 
−0.010 0.003 0.42 0.49* 0.36 0.49 

Single support duration 

(s) 
−0.009 −0.002 0.42 0.67* 0.31 0.67 

Double support duration 

(s) 
0.012 0.002 0.24 0.79* 0.19 0.78 

Stride length 

(mm) 
12.9 0.6 0.93* 0.99* 0.56 0.99 

Step length 

(mm) 
1.7 −0.7 0.80* 0.88* 0.77 0.88 

Step width 

(mm) 
1.8 1.3 0.84* 0.95* 0.62 0.85 

Gait speed 

(m/s) 
0.128 0.012 0.98* 1.00* 0.59 0.99 

Gait speed variability 

(m/s) 
0.001 0.005 0.60* 0.84* 0.40 0.83 

Foot swing velocity 

(m/s) 
0.128 0.021 0.78* 0.91* 0.73 0.91 

Arm swing velocity 

(m/s) 
0.251 0.004 0.67* 0.98* 0.53 0.98 

Neck angle 

(deg. ) 
5.9 17.4 0.77* 0.42 0.61 0.07 

Spine middle angle 

(deg.) 
6.1 5.2 0.09 0.50* 0.04 0.16 

Elbow angle maximum 

(deg.) 
−0.3 −0.6 0.43 0.61* 0.43 0.61 

Elbow angle minimum 

(deg.) 
1.4 0.6 0.81* 0.89* 0.81 0.88 

Knee angle maximum 

(deg.) 
0.9 −2.6 −0.42 −0.21 0.00 0.00 

Knee angle minimum 

(deg.) 
13.6 4.0 0.58* 0.75* 0.11 0.53 

Hip angle range 

(deg.) 
−4.7 −1.3 0.61* 0.24 0.27 0.13 

Ankle angle range 

(deg.) 
12.2 1.3 0.13 0.55* 0.05 0.43 

a The units indicated for each parameter only apply to the “Mean diff” column. 

b The lowest error (Mean diff) for each parameter is indicated in bold, when there is a statistically 

significant difference between the two Kinect versions (one-way repeated-measures ANOVA, p-

value ≤ 0.05). 

c The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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6.3.2 Walking Activity Comparison 

Given the results of the previous study, the Kv2 was considered for the assessment of the 

validity of the Kinect when comparing the two considered walking activities (WF and WB). 

The mean and standard deviation values for the practical depth range of Kv2, as well as the 

associated minimum and maximum distances, when considering all subjects and trials, are indicated 

in Table 6.9 for both walking activities. The number of actual gait cycles corresponding to WF and 

WB data is included in Table 6.10, for all subjects and trials, as well as per trial and per subject (mean 

and standard deviation). The depth range and consequently the number of gait cycles per trial is 

similar for the two walking activities. 

 

Table 6.9. Mean and standard deviation values for the practical depth range of Kv2 for both walking 

activities (WF and WB), when using configuration KC1. 

 Kv2, KC1 

Walking activity WF WB 

Practical depth rangea (m) 2.71 ± 0.08 2.66 ± 0.32 

Minimum distanceb (m) 1.63 ± 0.08 1.71 ± 0.23 

Maximum distancec (m) 4.34 ± 0.03 4.37 ± 0.15 

a Difference between maximum and minimum distances. 

b Shortest distance between the subject and Kinect for which all body joints are tracked. 

c Longest distance between the subject and Kinect for which all body joints are tracked. 

 

Table 6.10. Number of actual gait cycles for Kv2 in the case of both walking activities (WF and WB), 

when using configuration KC1. 

The values are indicated for left, right, and both gait cycles, when considering all subjects and trials, as 

well as each trial and each subject (mean and standard deviation values). 

  Number of actual gait cycles 

(Kv2, KC1, 10 trials) 

Walking activity WF WB 

All 

subjects 

and trials 

Left 265 189 

Right 209 186 

Both 474 375 

Per 

subject 

Left 13.3 ± 3.4 9.4 ± 1.9 

Right 10.4 ± 2.1 9.3 ± 3.1 

Both 23.7 ± 4.1 18.8 ± 4.6 

Per trial 

Left 1.3 ± 0.6 1.0 ± 0.5 

Right 1.1 ± 0.5 0.9 ± 0.5 

Both 2.4 ± 0.9 1.9 ± 0.9 

 



6 Validation of an RGB-D Camera for Gait Analysis 

 

 

112 

When considering WF and WB data for Kv2 only, the minimum number of gait cycles avail-

able per subject, when considering all subjects and both walking activities, was of 11 gait cycles. To 

verify the effect that the number of gait cycles, which is used to compute gait parameters’ value for 

each subject, has on the validity of Kv2, we obtained the mean difference, r and rc when varying the 

number of gait cycles between 1 and 11. The complete results are presented in Appendix G.4. 

The mean r and rc values considering all gait parameters and both walking activities, versus 

the number of used gait cycles, are shown in Figure 6.1. Both r and rc tend to improve with the 

increase of the number of gait cycles. However, the difference between 1 gait cycle (r = 0.61 and rc 

= 0.54) and 7 gait cycles (r = 0.67 and rc = 0.58) is not considerable. Nevertheless, all 11 available 

gait cycles were used to obtain the results presented below. 

  

  

Figure 6.1. Mean value for Pearson’s correlation coefficient (r) and concordance correlation coefficient 

(rc) when considering all gait parameters and both walking activities, versus the number of gait cycles 

used to compute the parameters’ value for each subject. 

 

The validation results are presented in Table 6.11 (complete results in Appendix G.2). Over-

all, lower estimation errors were achieved when using WF data comparing with WB data (mean 

difference was lower when using WF for the 11 out of the 13 parameters with significant difference 

between the two walking activities). Moreover, a better overall agreement between the Kinect and 

Qualisys was achieved for WF when compared with WB (relative/absolute agreement was good or 

excellent for 16/14 parameters versus 12/8 parameters). 
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Table 6.11. Validation results for each gait parameter and walking activity (WF and WB), when consid-

ering Kv2 and configuration KC1. 

The results include the Bland Altman’s mean difference (Mean diff), Pearson's correlation coefficient 

(r) and concordance correlation coefficient (rc). The r and rc values are highlighted in green (≥0.9), yel-

low (≥0.75 and <0.9), orange (≥0.5 and <0.75), and red (<0.5). 

Parametera 
Mean diffb rc rc 

WF WB WF WB WF WB 

Stride duration 

(s) 
0.005 0.003 0.99* 0.99* 0.98 0.99 

Step duration 

(s) 
0.002 0.002 0.97* 0.95* 0.97 0.95 

Stance duration 

(s) 
0.001 0.013 0.97* 0.93* 0.96 0.89 

Swing duration 

(s) 
0.003 −0.009 0.79* 0.80* 0.79 0.72 

Single support duration 

(s) 
0.001 −0.027 0.81* 0.75* 0.81 0.60 

Double support duration 

(s) 
0.003 0.031 0.85* 0.46 0.77 0.32 

Stride length 

(mm) 
1.2 0.2 1.00* 0.98* 0.99 0.98 

Step length 

(mm) 
0.5 −2.1 0.97* 0.88* 0.97 0.80 

Step width 

(mm) 
1.4 0.9 0.92* 0.82* 0.73 0.72 

Gait speed 

(m/s) 
0.013 0.020 1.00* 1.00* 0.99 0.98 

Gait speed variability 

(m/s) 
0.006 0.000 0.90* 0.84* 0.84 0.83 

Foot swing velocity 

(m/s) 
−0.063 −0.108 0.91* 0.65* 0.89 0.62 

Arm swing velocity 

(m/s) 
0.026 0.050 0.99* 0.94* 0.98 0.91 

Neck angle 

(deg. ) 
17.6 9.1 0.37 0.11 0.04 0.05 

Spine shoulder angle 

(deg.) 
18.1 14.3 0.63* 0.12 0.05 0.02 

Spine middle angle 

(deg.) 
5.2 5.3 0.53* −0.07 0.15 0.00 

Elbow angle maximum 

(deg.) 
−0.7 7.4 0.81* 0.15 0.81 0.04 

Elbow angle minimum 

(deg.) 
1.2 12.9 0.95* 0.88* 0.93 0.22 

Knee angle maximum 

(deg.) 
−3.4 −2.1 −0.26 −0.21 0.00 0.00 

Knee angle minimum 

(deg.) 
4.3 5.1 0.85* 0.05 0.55 0.03 

Hip angle range 

(deg.) 
−1.6 −4.4 0.12 0.28 0.11 0.15 

Ankle angle range 

(deg.) 
3.5 18.0 0.68* 0.17 0.51 0.03 

a The units indicated for each parameter only apply to the “Mean diff” column. 

b The lowest error (Mean diff) for each parameter is indicated in bold, when there is a statistically 

significant difference between the two Kinect versions (one-way repeated-measures ANOVA, p-value 

≤ 0.05). 

c The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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There was a statistically significant difference regarding estimation error between WF and 

WB for 13 out of the 22 parameters. For these parameters, WF presented the lowest error for most 

of them (11 parameters).  

When considering WF, the agreement between systems was good or excellent for all spatio-

temporal parameters except the step width (excellent relative agreement, but moderate absolute 

agreement). In the case of WB, 8 out of 13 spatiotemporal parameters presented good or excellent 

relative and absolute agreement. All kinematic parameters presented poor or moderate agreement for 

both walking activities, with the exception of the elbow angle maximum (good agreement for WF 

only), elbow angle minimum (excellent agreement for WF and good relative agreement for WB) and 

the knee angle minimum (good relative agreement for WF only). 

6.3.3 Kinect Configuration Comparison 

Taking into account the results of the previous studies, the effect that the physical configu-

ration of the Kinect has on its validity for gait analysis was studied only for Kv2 and WF. 

Table 6.12 presents the mean and standard deviation values for the practical depth range of 

Kv2, as well as the associated minimum and maximum distances, when considering all subjects and 

trials, for each considered configuration (KC1, KC2 and KC3). The corresponding number of actual 

gait cycles is indicated in Table 6.13 for all subjects and trials, as well as for each subject and each 

trial. From these tables, we can see that the depth range, and consequently the number of gait cycles 

per trial, is similar for all three configurations. 

 

Table 6.12. Mean and standard deviation values for the practical depth range of Kv2, when consider-

ing the WF activity, for configurations KC1, KC2 and KC3. 

 Kv2, WF 

Kinect configuration KC1 KC2 KC3 

Practical depth rangea (m) 2.72 ± 0.08 2.77 ± 0.11 2.74 ± 0.09 

Minimum distanceb (m) 1.62 ± 0.08 1.57 ± 0.11 1.57 ± 0.09 

Maximum distancec (m) 4.34 ± 0.03 4.35 ± 0.03 4.31 ± 0.04 

a Difference between maximum and minimum distances. 

b Shortest distance between the subject and Kinect for which all body joints are tracked. 

c Longest distance between the subject and Kinect for which all body joints are tracked. 
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Table 6.13. Number of actual gait cycles for each Kinect configuration (KC1, KC2, and KC3), when 

using the Kinect v2 and WF data. 

The values are indicated for left, right, and both gait cycles, when considering all subjects and trials, as 

well as each subject and each trial (mean and standard deviation). 

 
  

Number of actual gait cycles 

(Kv2, WF, 5 trials) 

Kinect configuration  KC1 KC2 KC3 

All 

subjects 

and trials 

Left 131 158 147 

Right 105 130 123 

Both 236 288 270 

Per 

subject 

Left 6.5 ± 2.1 7.9 ± 2.3 7.3 ± 2.0 

Right 5.3 ± 1.3 6.5 ± 1.9 6.2 ± 2.0 

Both 11.8 ± 2.8 14.4 ± 2.8 13.5 ± 2.7 

Per trial 

Left 1.3 ± 0.7 1.6 ± 0.5 1.5 ± 0.6 

Right 1.1 ± 0.5 1.3 ± 0.5 1.2 ± 0.5 

Both 2.4 ± 1.0 2.9 ± 0.7 2.7 ± 0.8 

 

The window sizes used for gait cycle detection over Kv2 and WF data are indicated in Table 

6.14 for each Kinect configuration. These values were chosen using the same criteria described in 

Section 5.2. The number of gait cycles detected by our algorithm for each trial (mean and standard 

deviation) is also included in the table. 

 

Table 6.14. Window sizes used for detecting gait cycles using Kinect v2 (Kv2) data acquired while the 

subject walked towards the camera (WF), for each considered configuration (KC1, KC2 and KC3). 

The mean and standard deviation of the number of detected gait cycles per gait trial are also included. 

 Kv2, WF (5 trials) 

Configuration KC1 KC2 KC3 

Window 

size 

(number 

of frames) 

Ankle distance filtering (NF1) 5 5 5 

Heel strike detection (ND1) 9 7 9 

Ankle velocity filtering (NF2) 7 9 5 

Heel strike side identification (ND2) 3 3 7 

Shank angle filtering (NF3) 9 7 11 

Number of detected gait cycles per 

trial 

Left 1.3 ± 0.5 1.5 ± 0.5 1.4 ± 0.6 

Right 1.1 ± 0.3 1.2 ± 0.4 1.1 ± 0.3 

Both 2.4 ± 0.6 2.7 ± 0.6 2.5 ± 0.7 

 

The validation results obtained for the three configurations are presented in Table 6.15 (com-

plete results can be found in Appendix G.3). These results were obtained considering 7 gait cycles 

per subject for gait parameter computation, since it was the minimum number of gait cycles available 

per subject when considering all configurations. 
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Table 6.15. Validation results for each gait parameter and Kinect configuration (KC1, KC2 and KC3), 

when using the Kinect v2 (Kv2) and data corresponding to walking towards the camera (WF). 

The results include the Bland Altman’s mean difference (Mean diff), Pearson's correlation coefficient 

(r) and concordance correlation coefficient (rc). The r and rc values are highlighted in green (≥0.9), yel-

low (≥0.75 and <0.9), orange (≥0.5 and <0.75), and red (<0.5). 

Parametera 
Mean diffb rc rc 

KC1 KC2 KC3 KC1 KC2 KC3 KC1 KC2 KC3 

Stride duration 

(s) 
0.003 0.007 0.005 0.99* 0.98* 0.99* 0.99 0.97 0.99 

Step duration 

(s) 
0.000 0.006 0.005 0.98* 0.92* 0.97* 0.97 0.89 0.95 

Stance duration 

(s) 
0.003a −0.006b 0.001a,b 0.96* 0.92* 0.91* 0.95 0.89 0.91 

Swing duration 

(s) 
0.000b 0.013a 0.004b 0.78* 0.58* 0.56* 0.76 0.42 0.56 

Single support duration 

(s) 
0.000b 0.016a 0.004a,b 0.79* 0.69* 0.62* 0.77 0.58 0.62 

Double support duration 

(s) 
0.003a −0.009b 0.001a,b 0.81* 0.49* 0.66* 0.74 0.45 0.66 

Stride length 

(mm) 
1.0 0.9 1.6 1.00* 1.00* 0.99* 1.00 0.99 0.98 

Step length 

(mm) 
0.2 −0.5 0.7 0.96* 0.97* 0.95* 0.96 0.95 0.95 

Step width 

(mm) 
1.3a 0.8b 1.5a 0.91* 0.86* 0.89* 0.69 0.80 0.61 

Gait speed 

(m/s) 
0.012 0.011 0.014 1.00* 1.00* 1.00* 0.99 0.99 0.99 

Gait speed variability 

(m/s) 
0.007 0.004 0.004 0.82* 0.91* 0.83* 0.76 0.89 0.80 

Foot swing velocity 

(m/s) 
−0.036a −0.057a −0.197b 0.91* 0.86* 0.91* 0.89 0.80 0.76 

Arm swing velocity 

(m/s) 
0.027 −0.015 0.020 0.98* 0.99* 0.97* 0.98 0.99 0.97 

Neck angle 

(deg. ) 
17.7a,b 18.9a 17.2b 0.45 0.57* 0.45 0.06 0.08 0.06 

Spine shoulder angle 

(deg.) 
18.3b 19.4a 17.8b 0.67* 0.68* 0.66* 0.06 0.06 0.06 

Spine middle angle 

(deg.) 
5.3a,b 6.1a 5.0b 0.56* 0.55* 0.62* 0.17 0.14 0.19 

Elbow angle maximum 

(deg.) 
−0.7a,b −0.3a −1.3b 0.87* 0.83* 0.83* 0.86 0.82 0.78 

Elbow angle minimum 

(deg.) 
1.3a −0.9b 1.0a 0.95* 0.91* 0.90* 0.93 0.90 0.87 

Knee angle maximum 

(deg.) 
−3.5b −2.1a −3.1b −0.30 −0.31 −0.24 0.00 0.00 0.00 

Knee angle minimum 

(deg.) 
4.6b 6.3a 4.1b 0.86* 0.71* 0.81* 0.52 0.31 0.48 

Hip angle range 

(deg.) 
−1.8 −1.5 −2.7 0.10 0.14 0.31 0.09 0.13 0.26 

Ankle angle range 

(deg.) 
3.4b −4.3c 9.2a 0.75* 0.37 0.32 0.60 0.29 0.13 

a The units indicated for each parameter only apply to the “Mean diff” column. 

b For each parameter, the superscript a, b and c letters indicate statistically significant differences between KC1, KC2 and/or KC3 

from post-hoc Tukey test (configurations with different letters are significantly different). The lowest Mean diff value is indicated 

in bold, when there is a statistically significant difference between one of the configurations and the other two. 

c The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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Overall, none of the configurations outperforms the other regarding estimation errors. How-

ever, KC1 led to the best overall agreement between Kinect and Qualisys (relative/absolute agree-

ment is good or excellent for 17/13 parameters for KC1, 12/12 parameters for KC2, and 13/11 pa-

rameters for KC3). 

When comparing the estimation errors for the three configurations, there is a statistically 

significant difference between at least two of the configurations for 14 of the 23 parameters. For 

these parameters, using KC1, KC2 and KC3 led to the lowest error for 5, 4 and 3 parameters, respec-

tively. 

Relative agreement was good or excellent for all 13 spatiotemporal parameters, except for 

the swing, single support and double support duration when using KC2 and KC3 (poor or moderate). 

Absolute agreement was also good or excellent for all spatiotemporal parameters, except the swing 

duration (poor for KC2, moderate for KC3), single support duration (moderate for KC2 and KC3), 

double support duration (moderate for KC1 and KC3, poor for KC2) and step width (moderate for 

KC1 and KC3). 

All 8 kinematic parameters presented poor or moderate agreement for all configurations, 

with some exceptions: elbow angle maximum (good agreement); elbow angle maximum (excellent 

agreement, except for KC3 which had good absolute agreement); knee angle minimum (good relative 

agreement for KC1 and KC3); ankle angle range (good relative agreement for KC1 only). 

6.4 Discussion 

6.4.1 Kinect Version Comparison 

For comparing the two Kinect versions, we considered not only the agreement between each 

version and a gold standard Qualisys system (Table 6.8), but also the practical depth range and num-

ber of actual gait cycles that can be obtained with each Kinect (Table 6.6 and Table 6.7). We verified 

that the depth range is larger for Kv2 than Kv1 (2.7 m vs 1.8 m). The larger range allowed obtaining 

data including three times the number of actual gait cycles per trial (mean of 2.4 gait cycles versus 

0.8 gait cycles). In practice, this means that the duration of data acquisitions will be lower if the Kv2 

is used instead of Kv1. 

Besides the advantage of enabling the acquisition of more gait cycles, Kv2 is also more ap-

propriate for supporting gait assessment than Kv1, since the obtained results show that its data can 

be used to estimate gait parameters with overall lower errors and better agreement with the gold 
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standard. Therefore, the results confirm the claims by Microsoft that the Kv2 was improved over the 

Kv1 regarding not only the depth range, but also the body joint position estimation [182]. 

Regarding the mean difference between Kinect and Qualisys (or Kinect estimation error), 

we found that there is a statistically significant difference between Kinects for 8 out of 21 parameters 

(3 out of 13 spatiotemporal and 5 out of 8 kinematic). For these parameters, the lowest mean error 

was achieved when using the Kv2. Therefore, both Kinects can be used for estimating the parameters’ 

value for most of the considered parameters. However, Kv2 leads to lower estimation errors overall, 

when taking into account all parameters. 

Regarding the relative and absolute agreement between Kinect and Qualisys (r and rc), the 

Kv2 outperforms the Kv1 for 10 out of 13 spatiotemporal parameters. The biggest differences were 

observed for seven of those parameters: stance duration, double support duration, stride length, gait 

speed, gait speed variability, foot and arm swing velocity. For the kinematic parameters, although 

there are some difference when comparing the Kinects, the agreement is poor or moderate for most 

of them, with only a few exceptions: elbow angle minimum (good for both Kinects), neck angle (best 

for Kv1) and knee angle minimum (best for Kv2). 

For both Kinect versions, the spatiotemporal parameters led to better results when compared 

with kinematic parameters. In the case of the Kv2, the only spatiotemporal parameters with poor or 

moderate agreement were the swing and single support duration. On the other hand, the relative 

and/or absolute agreement was poor or moderate for all kinematic parameters, except for the elbow 

angle minimum (good relative and absolute agreement). Nevertheless, Kv2 presented a better agree-

ment with the gold standard system overall. 

6.4.2 Walking Activity Comparison 

For Kv2, we further compared the two considered walking activities (WF and WB). Since a 

larger number of gait cycles was available for Kv2 comparing with Kv1, we firstly investigated if 

the number of gait cycles used to compute the gait parameters’ value, for each subject, affects the 

gait analysis results. We verified that the agreement between the Kv2 and the gold standard system 

improves when the number of gait cycles increases (until a maximum of 11 gait cycles). However, 

the improvement is not considerable (see Figure 6.1). 

Regarding the practical depth range, it is similar for both walking activities (Table 6.9). 

Therefore, the number of actual gait cycles is also similar (Table 6.10). However, the obtained vali-

dation results show that the parameters are estimated with lower errors and better agreement between 

Kinect and Qualisys when using WF data comparing with WB data (Table 6.11). This result suggests 
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that the Kinect’s joint tracking algorithm has more difficulties in estimating the joints’ position when 

the subject walks away from the sensor, which was expected since the Kinect assumes that the subject 

is always facing the sensor.  

When considering the mean difference or estimation error, there was a statistically signifi-

cant difference between the two walking activities for most considered parameters (13 out of 22 

parameters). For these parameters, the lowest error was achieved when considering WF in most cases 

(11 parameters). Therefore, using WF data for estimating gait parameters leads to lower errors over-

all. 

The use of WF data also led to better results than WB data, when considering the agreement 

between Kv2 and Qualisys for all considered parameters. The biggest differences were verified for 

the following parameters: double support duration, foot swing velocity, elbow angle minimum and 

maximum and knee angle minimum. For spatiotemporal parameters, agreement was always good or 

excellent in the case of WF (only exception is the absolute agreement for the step width, which is 

moderate), while relative and/or absolute agreement is poor or moderate for 5 out of 13 spatiotem-

poral parameters when considering WB. 

On the other hand, all kinematic parameters presented poor agreement for WB (except for 

the elbow angle minimum, which has a good relative agreement), while the use of WF data led to a 

good or excellent agreement for two parameters (elbow angle minimum and maximum) and a good 

relative agreement for another (knee angle minimum). Overall, using WF data leads to a better agree-

ment with the gold standard system than WB data. 

6.4.3 Kinect Configuration Comparison 

To study the effect that the configuration of the Kinect has in its validity for gait analysis, 

we considered only the Kv2 and WF combination, taking into account the previous results. The three 

considered configurations (KC1, KC2 and KC3) correspond to a Kinect height of 1 m, 0.6 m, and 

1.34 m, respectively. 

The obtained results show that none of the three configurations has an advantage over the 

others regarding the amount of acquired data, since the number of actual gait cycles per trial was 

similar for all configurations (mean of 2.4 to 2.7 gait cycles – see Table 6.14), due to a similar prac-

tical mean depth range of 2.7–2.8 m (Table 6.13). As for the validation results (Table 6.15), the most 

appropriate configuration for supporting gait assessment is KC1, which corresponds to the interme-

diate height of 1 m and a tilt angle of −5 degrees for Kv2, since it led an overall better agreement 

between the Kinect and the gold standard system, when compared with the other two configurations. 
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The obtained results show that there is no difference between three explored configurations 

(similar estimation error and agreement between systems) for some gait parameters, such as the stride 

duration, stride and step length, gait speed, arm swing velocity and hip angle range. However, there 

is a statistically significant difference between at least two of the configurations for 14 out of the 23 

parameters. For these parameters, there is a significant difference between one of the configurations 

the other two for 8 parameters, with KC1 leading to the lowest mean error for a slightly larger number 

of gait parameters (5 parameters) when compared with KC2 and KC3 (4 and 3 parameters, respec-

tively). 

Regarding the agreement between systems, the results are similar among the different con-

figuration for most parameters. However, there are differences for a few parameters. The largest 

differences were observed for the swing, single support and double support duration, where KC1 led 

to a moderate or good agreement (0.78 ≤ r ≤ 0.81 and 0.74 ≤ rc ≤ 0.77), while the agreement was 

only moderate or poor for KC2 and KC3 (0.49 ≤ r ≤ 0.69 and 0.42 ≤ rc ≤ 0.66). Although the config-

uration KC1 has a better relative agreement than KC2 and/or KC3 for the knee angle minimum and 

ankle angle range, the absolute agreement was only moderate (poor for KC2 and KC3). Overall, the 

configuration KC1 leads to a better agreement between Kv2 and Qualisys when considering all gait 

parameters. 

6.4.4 Comparison with the State of the Art 

In contrast with other similar studies, we assessed the validity of both versions of the Kinect 

simultaneously. For the Kinect version with the best overall results, we further explored the two 

different activities of walking towards the sensor (WF) and walking away from it (WB). Most con-

tributions considering a frontal view considered only WF data or did not study the two activities 

separately [55, 57, 60, 63-65]. We also investigated the influence of the physical configuration of the 

Kinect on the gait analysis results. To the best of our knowledge, no other contribution considering 

overground walking and a frontal view has studied different Kinect configurations (in terms of height 

and tilt angle). 

Table 6.16 and Table 6.17 present the results obtained for spatiotemporal and kinematic gait 

parameters, respectively, when using our gait analysis solution, as well as other methods proposed 

in the literature. Our results indicated in the tables correspond to the use of a single Kv2 camera 

(configuration KC1) and WF data, considering overground walking at a self-selected comfortable 

pace, frontal view and 7 gait cycles per subject for parameter computation. For the contributions that 

explored different walking speeds, the presented results correspond to the speed(s) closer to the mean 

gait speed for our study (approximately 1.2 m/s). 
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Table 6.16. Comparison between our gait analysis solution (Kv2, WF, KC1) and methods proposed in 

the literature, regarding the validity of the Kinect for computing spatiotemporal gait parameters. 

Gait 

parameter 
Metric Oura 

Stone 

et al., 

2011 

[55]b 

Gabel 

et al., 

2012 

[56]c 

Clark 

et al., 

2013 

[57] 

Pfister et 

al., 2014 

[65]d 

Xu et al., 

2015 [60]e 

Mentiplay 

et al., 

2015 [64]f 

Geerse 

et al., 

2015 

[61] 

Eltoukhy 

et al., 

2017 

[63]g 

Müller 

et al., 

2017 

[62]h 

Stride 

duration 

Mean diff 

(s) 
0.003 0.007 

0.008 / 

0.002 
−0.20 

0.157 / 

0.159 

0.001 / 

0.000 
— 

0.01 0.00 

— 
r 0.99 

— — 
0.69 0.91 / 0.92 0.92 / 0.95 

— 
0.97 

rc 0.99 0.14 — 0.92 / 0.95 0.97 

Step 

duration 

Mean diff 

(s) 
0.000 

— — 

−0.17 

— 

0.000 / 

0.000 

0.00 / 

−0.01 
0.01 0.02 0.00 

r 0.98 0.82 0.77 / 0.85 0.92 
— 

0.96 1.00 

rc 0.97 0.23 0.75 / 0.84 0.75 0.75 — 

Stance 

duration 

Mean diff 

(s) 
0.003 

— 

−0.008 / 

−0.020 
— — 

−0.048 / 

−0.036 
0.03 / 0.04 

— — — 
r 0.96 

— 
0.57 / 0.60 0.91 

rc 0.95 0.37 / 0.45 0.90 

Swing 

duration 

Mean diff 

(s) 
0.000 

— 

0.006 / 

0.027 
— — 

0.046 / 

0.035 
— — — — 

r 0.78 
— 

0.43 / 0.30 

rc 0.76 0.21 / 0.16 

Double 

support 

duration 

Mean diff 

(s) 
0.003 

— — — — 

−0.045 / 

−0.034 
— — — — 

r 0.81 0.24 / 0.20 

rc 0.74 0.10 / 0.09 

Stride 

length 

Mean diff 

(mm) 
1.0 −3.2 

— 

−4.2 

— — — 

1 

— 

2 

r 1.00 
— 

0.99 
— 

1.00 

rc 1.00 0.99 — 

Step 

length 

Mean diff 

(mm) 
0.2 

— — 

11.5 

— — 

−20 / −10 −1 −100 3.8 

r 0.96 0.99 0.90 
— 

0.93 1.00 

rc 0.96 0.97 0.13 0.58 — 

Step 

width 

Mean diff 

(mm) 
1.3 

— — — — 

0 / 0 −60 / −70 −13 −40 3.9 

r 0.91 0.82 / 0.79 0.94 
— 

0.73 0.91 

rc 0.69 0.82 / 0.79 0.00 0.38 — 

Gait speed 

Mean diff 

(m/s) 
0.012 −0.004 

— 

−0.01 

— — 

0.01 / 0.02 0.011 

— — 
r 1.00 

— 
0.95 0.99 

— 
rc 0.99 0.93 0.90 

Gait speed 

variability 

Mean diff 

(m/s) 
0.007 

— — — — — 

0.04 / 0.04 

— — — 
r 0.82 0.75 

rc 0.76 0.00 

Foot 

swing 

velocity 

Mean diff 

(m/s) 
−0.036 

— — 

0.43 

— — 

−0.49 / 

−0.46 
— 

−0.43 

— 
r 0.91 0.93 0.79 0.35 

rc 0.89 0.54 0.11 0.05 

a Results for Kv2, WF and KC1. 

b Results for the second (#2) Kinect. 

c Results for left and right sides, in the case of experiment 1. 

d Results for left and right sides at a controlled speed of ≈1.34 m/s (using knee angle). 

e Results for controlled speeds of 1.07 m/s and 1.30 m/s. 

f Mean difference results for days 1 and 2 (comfortable pace). 

g Results for a controlled speed of 1.30 m/s. 

h Results for the mean of the parameter value for all gait cycles per subject, considering the mean between left and rights sides. For the spatial pa-

rameters, the presented results are for the two-sided situation. 
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Table 6.17. Comparison between our gait analysis solution (Kv2, WF, KC1) and methods proposed in 

the literature, regarding the validity of the Kinect for computing kinematic gait parameters. 

Gait 

parameter 
Metric Oura 

Pfister et al., 

2014 [65]b 

Xu et al., 

2015 [60]c 

Mentiplay et 

al., 2015 [64]d 

Eltoukhy et 

al., 2017 [30]e 

Knee 

angle 

maximum 

Mean diff 

(deg.) 
−3 −1.11 / 0.452 

— 

1 / 2 

— 
r −0.30 0.69 / 0.77 −0.07 

rc 0.00 — 0.00 

Knee 

angle 

minimum 

Mean diff 

(deg.) 
5 −9.14 / −6.93 −38.1 / −38.1 −37 / −35 

— 
r 0.86 0.43 / 0.71 

— 
−0.05 

rc 0.52 — −0.02 

Ankle 

angle 

range 

Mean diff 

(deg.) 
3 — 

— 

7 / 2 −19.76 

r 0.75  0.11 0.03 

rc 0.60  0.01 0.01 

a Results for Kv2, WF and KC1. 

b Results for left and right sides at a controlled speed of ≈1.34 m/s. 

c Results for controlled speeds of 1.07 m/s and 1.30 m/s. 

d Mean difference results for days 1 and 2 (comfortable pace). 

e Results for a controlled speed of 1.30 m/s. 

 

Our results cannot be directly compared with the results reported in the other contributions, 

due to differences regarding the experimental setup and/or protocol: first version of the Kinect [55-

57, 60, 65]; multiple Kinects [61, 62]; Kinect placed with a given angle in relation to the walking 

path [56, 61, 62, 65]; treadmill walking with controlled speed(s) [60, 63, 65]. Different data pro-

cessing methods (e.g., Kinect data resampling [57, 60-62, 64]) were also used in some studies. None-

theless, it is interesting to see how our results stand in relation with those achieved in similar studies.  

Our study is the most complete in terms of the number of investigated gait parameters (22 

spatiotemporal and kinematic parameters). All other considered studies explored a smaller set of 

spatiotemporal and/or kinematic parameters, with only a few exploring both types of parameters [60, 

63-65]. Furthermore, most contributions that studied kinematic parameters focused on angles asso-

ciated with the lower limbs, while we also investigated angles for the trunk and upper limbs. It is 

interesting to note that the only kinematic parameters for which we were able to achieve a good or 

excellent relative and absolute agreement (elbow angle minimum and maximum) are usually not 

explored in studies on the Kinect validity for gait analysis. 

Overall, we achieved a better agreement between the parameter values obtained relying on 

the Kinect and a gold standard system, when compared with the other studies. For all compared 

spatiotemporal parameters, we obtained results of r ≥ 0.78 and rc ≥ 0.69, while the values reported 
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in the other studies are often lower, especially when considering rc (absolute agreement). For the 

kinematic parameters, we obtained a poor agreement for the knee angle maximum. However, our 

results for the knee angle minimum and ankle angle range were much better than those reported in 

other contributions (see Table 6.17). 

When considering the estimation error (Mean diff), as well as both relative and absolute 

agreement (r and rc, respectively), we achieved considerably better results for some parameters. For 

example, we obtained a mean errors ranging from 0 to 3 ms for stance, swing and double support 

duration, while Xu et al. reported values varying between −48 and −36 ms (stance) 35 and 46 ms 

(swing) and −45 and −34 ms (double support) [60]. Our relative and absolute agreement results are 

also better: r between 0.78 and 0.96 and rc between 0.74 and 0.95, versus r between 0.20 and 0.60 

and rc between 0.10 and 0.45). The difference between these results can be because the gait events 

used for computing the considered parameters were estimated using different methods. 

For the foot swing velocity, our mean difference (−0.04 m/s) is much lower than those 

achieved in the studies by Clark et al. [57], Mentiplay et al. [64] and Eltoukhy et al. [63] (−0.49 to 

−0.43 m/s, 0.43 m/s and −0.43 m/s). The absolute agreement is also better (rc = 0.89 instead of rc 

ranging from 0.05 to 0.54). The differences between our study and the study by Eltoukhy et al. can 

be because they did not use the 3-D joint data provided by the Kinect, using instead their own method 

for tracking the joints relying on the depth data. The differences between our study and the studies 

by Clark et al. and Mentiplay et al. can be due to the fact that they used the same filter over the 3-D 

data used for computing all parameters, while we used a different optimized filter for each parameter.  

The mean difference we obtained for the ankle angle range (3 degrees) is much lower than 

that obtained by Eltoukhy et al. (−20 degrees). Although our achieved agreement results were not 

very high (r = 75 and rc = 0.60), they were higher than those reported by Mentiplay et al. and Eltoukhy 

et al (r and rc ranging from 0.00 to 0.11). For the knee angle minimum, our mean difference (5 

degrees) was much lower than the one obtained by Xu et al. (−38 degrees), as well as Mentiplay et 

al. (−37 to −35 degrees). Moreover, our agreement results (r = 0.86 and rc = 0.52) were considerably 

better than those obtained by Mentiplay et al. (r = −0.05 and rc = −0.02). The reasons for these 

differences in results are probably the same that were already discussed above. 

From the studies that explored the use of multiple Kinects, Geerse et al. [61] reported mean 

difference values that are higher for stride and step duration and step length and width, and similar 

for stride length and gait speed, when compared with our study. The results reported by Müller et al. 

[62] are similar or slightly worse than our results. Therefore, there seems to be no great advantage in 

using multiple side-view sensors comparing with a single front-view camera. 
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6.5 Summary 

The results of the performed validation studies show that our automated gait analysis solu-

tion using a single Kinect can be used as an alternative to the gold standard systems for obtaining 

several gait parameters (most of the spatiotemporal parameters and a few of the considered kinematic 

parameters). Overall, our solution outperformed the solutions proposed in other contributions, with 

a Pearson’s correlation coefficient (r) ≥ 0.78 and a concordance correlation coefficient (rc) ≥ 0.69 for 

all compared spatiotemporal parameters. 

When comparing the two versions of the Kinect, the second version (Kv2) is more appropri-

ate for gait assessment than the first version (Kv1). Overall, Kv2 not only led to lower estimation 

errors and higher agreement with a gold standard system, but also allowed obtaining three times as 

much gait cycles per gait task repetition as for Kv1.  

Although the use of all acquired gait data would be desirable to minimize the duration of 

each data acquisition, our results show that it is best to discard the data corresponding to walking 

away from the Kinect (WB). When using the Kv2, the estimation error and/or agreement were con-

siderably worse for WB than for walking towards the camera (WF) in the case of some parameters 

(e.g., double support duration, foot swing velocity, elbow angle maximum). 

For the combination of Kv2 and WF, we verified that although the use of a greater number 

of gait cycles per subject for gait parameter computation leads to better validation results, the im-

provement is not considerable. Furthermore, from three explored Kinect configurations (sensor 

height of 0.6 m, 1 m and 1.34 m), the one corresponding to the intermediate height led to the best 

validation results overall. 
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7 Human Identification Based on Gait Using an 

RGB-D Camera 

Biometric identification, i.e., the determination of a given subject’s identity relying on bio-

logical characteristics (e.g., face, fingerprint, iris, vital signs, voice, gait) [7, 8], is being increasingly 

used in various situations, such as access control to restricted areas, identity confirmation at a security 

checks and smart surveillance at high risks areas [75]. Human identification based on gait using 

markerless vision-based sensors has the advantage of not being as intrusive as the other methods, 

since it does not require the attention or cooperation of the subject being identified [8]. Furthermore, 

gait is difficult to hide, steal or fake [7]. 

In a scenario of gait assessment, multiple assessments can be carried out for each person in 

a group of subjects. Therefore, automated subject identification is also useful in this scenario, since 

it allows saving time by avoiding the manual indication of the subject associated with each data 

acquisition. Given that our gait analysis solution based on an RGB-D camera already provides sev-

eral gait parameters for a given data acquisition with a subject, the main aim of this chapter was to 

answer the following question: 

 Is it possible to identify a given subject using features extracted from gait data provided 

by a single RGB-camera? 

To answer this question, we explored if machine learning techniques can be used to obtain a 

predictive model for human identification, based on gait parameters and anthropometric measures 

extracted from the 3-D joint data provided by an RGB-D camera, namely the second version of the 

Kinect. 

We investigated this possibility firstly for healthy subjects only, and then for patients with a 

disease that can affect their gait, in this case Parkinson’s disease (PD). Furthermore, we studied the 

impact that considering both healthy subjects and PD patients together has on identification. These 

studies were carried out using data from the same acquisition per subject for model training and 

testing. An initial study with healthy subjects is presented in [77]. 

We also explored the identification of PD patients over time, by considering data acquired 

in different days or states for model training and testing. This situation corresponds to one of the 

most challenging ones, since PD patients can have considerable changes in gait within relatively 

short intervals of time (e.g., a few months or days). 
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7.1 Related Work 

Several studies on human identification based on gait have been carried out relying on vi-

sion-based sensors [66, 67, 69-74, 247-250]. The methods used for gait recognition from image se-

quences can be divided in two main groups: model-free and model-based [5, 8]. The model-free 

approaches rely on the analysis of the subject’s silhouette shape or the whole motion of the human 

body. Many of the studies that relied on RGB or IR cameras used the subject’s binary silhouette 

extracted from the colour or IR images [247-250]. 

The model-based approaches obtain static or dynamic body features by modelling or tracking 

body segments or joints. These approaches typically have the advantage of being viewpoint and scale 

invariant [8]. The most recent studies mainly relied on the 3-D positions of body joints provided by 

RGB-D cameras, such as the Kinect camera [66, 67, 69-74]. Most of these studies considered both 

anthropometric measures (e.g., subject’s height, length of body segments) and gait parameters ex-

tracted from the 3-D data for subject identification [66, 69, 70, 72, 73]. 

Preis et al. investigated 11 anthropometric measures and 2 spatiotemporal gait parameters 

(step length and gait speed) extracted from 3-D data provided by the Kinect v1 (Kv1), which were 

acquired from nine subjects (side-view) [70]. From the three considered machine learning algorithms 

(one rule, C4.5 decision tree, and Naïve Bayes), the best performance was achieved for the Naïve 

Bayes when using 7-fold cross-validation approach: success rate of 91% when using 4 of the 11 

anthropometric features (height, leg, torso and left upper arm length). 

Ball et al. studied the possibility of recognizing subjects using the k-means algorithm for 

unsupervised clustering, as well as 18 kinematic gait parameters (minimum, maximum, and standard 

deviation for lower limb angles) computed for each step (half gait cycle) [74]. For Kv1 data obtained 

from four subjects while they performed arbitrary walking paths, a mean accuracy of 44% was 

achieved (accuracy per subject ranged between 29% and 74%). 

Sinha et al. also used the Kv1 to acquire joint data from ten subjects (side-view) and obtain 

several features for each step [73]. These features included the 12 anthropometric measures and 20 

gait parameters proposed by Preis et al. [70] and Ball et al. [74]. The authors also proposed 14 new 

features: two related with body area and the remaining corresponding to the distance between each 

joint and upper body centroid. The best performance for subject identification was achieved when 

using the adaptive neural network algorithm with feature selection (mean F1 score of 62%). 

Andersson et al. acquired Kv1 joint data from 140 subjects, while they walked over a semi-

circle (camera on a spinning dish) [72]. Then, 20 anthropometric measures and 60 spatiotemporal 

and kinematic gait parameters were extracted from the collected data. The 10-fold cross-validation 
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technique was used to evaluate the performance of the models obtained using the following three 

algorithms: k-nearest neighbour (k-NN); multilayer perceptron (MLP); support vector machine 

(SVM). The best result was achieved when using all features (overall accuracy of 88% for k-NN). 

When varying the number of subjects between 5 and 140, the overall accuracy of the k-NN model 

decreased from ≈97% to ≈88%. It was also verified that performance improves when the number of 

examples increases: overall accuracy of 65–70% for 1 example and 85–90% for 4 examples. 

In another study relying on the Kv1, Jiang et al. proposed the use of the nearest neighbour 

approach, together with 5 anthropometric features and 4 kinematic gait measures (lower and upper 

limbs angles), for subject identification [69]. For each anthropometric feature, the Euclidean distance 

was used as a distance measure between two examples. For each angle measure, the distance between 

two time series was computed using dynamic time warping (DTW). When using both types of fea-

tures, a single score of similarity between two feature vectors was computed as the mean of the 

normalized distance score for each feature. For data acquired from ten subjects (side-view), an over-

all accuracy of 82% was reported (half of the examples for training and the other half for testing). 

A similar approach to the one used by Jiang et al. (nearest neighbour approach, and fusion 

of different types of features) [69] was also used by Nambiar et al. [66]. They obtained a single score 

of similarity by summing the normalized Euclidean distance for each feature. The considered features 

included 7 anthropometric measures, as well as 35 gait parameters (stride length and duration, gait 

speed, as well as mean and variance of angles, distance and position measures). The proposed method 

was evaluated using the leave-one-out validation technique over examples obtained from twenty 

subjects using the Kinect v2 (Kv2). The achieved overall accuracy was of 92%, when considering 

the best match only and frontal direction (63 to 72% for lateral, left and right diagonal directions). 

The performance improved when a larger number of matches was considered (100% for the eight 

best matches). When the test set included a different viewpoint than the one considered in the training 

set, the overall accuracy ranged between 15% and 48% (best match) and between 83% and 97% (ten 

best matches). 

Ahmed et al. also used the Kv2 to collect gait data from twenty subjects [67]. For each gait 

cycle, the distance and angle for all joint pairs were computed. The authors proposed the use of DTW 

as a measure of similarity between two examples of a given measure, and rank-level fusion based on 

majority voting to identify a subject taking into account all measures. A subset of the measures was 

selected relying on a genetic algorithm. The proposed method achieved a recognition rate of 92% (3-

fold cross-validation) when considering the best match (100% for the four best matches). 

Rahman et al. investigated the use of the mean and variance of the distance for each joint 

pair obtained for each gait cycle [71]. The performance of the models obtained for this set of 760 
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features, when using two different algorithms (k-NN and SVM), was evaluated relying on the 2-fold 

cross-validation technique. An overall accuracy of 93% (k-NN) was achieved, when considering a 

dataset obtained from thirty subjects using the Kv1. For a dataset obtained from twenty subjects using 

the Kv2, a slightly higher overall accuracy was reported: 95% for both k-NN and SVM. 

Regarding identification over time, Gianaria et al. carried out a study where Kv1 gait data 

acquired from ten subjects were used to train a predictive model with the SVM algorithm [68]. The 

same subjects were then identified by relying on that model using data acquired three years later. The 

considered features included the mean for the distance between adjacent and non-adjacent joints, as 

well as the mean and mean absolute deviation for the sway of each joint in the x- and y-axis. A subset 

of these features was selected using principal component analysis. Taking into account the acquisi-

tions where the subjects walked towards the camera and did not carry any object, all cases were 

correctly classified for 70% of the subjects, and 50% or more cases were correctly classified for 90% 

of the subjects. When comparing walking towards and away from the Kinect, the results are overall 

better for the first situation. 

7.2 Materials and Methods 

The datasets we used for studying subject identification were obtained from data acquired in 

different experiments: second and third experiments at São João hospital (HSJ), which are associated 

with the preliminary studies with PD patients; experiment at LABIOMEP, which is associated with 

the studies related with automated gait analysis. 

7.2.1 Subjects 

We considered the 20 healthy subjects that participated in the experiment carried out at 

LABIOMEP (LBMP), as well as from 5 healthy subjects and 18 PD patients treated with deep brain 

stimulation (DBS) that participated in the second and third experiments at the hospital (HSJ2 and 

HSJ3). Table 7.1 includes the demographics of the subject groups associated with each experiment, 

as well as for all subjects. 
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Table 7.1. Characterization of the subjects considered for studying subject identification. 

SD, Min, Max and BMI stand for standard deviation, minimum, maximum and body mass index. 

7.2.2 Experimental Setup and Protocol 

Regarding the experimental setup, we considered only one RGB-D camera, namely the sec-

ond version of the Kinect (Kv2). The physical configuration of the camera was the same for all ex-

periments (height of 1 m and tilt angle of −5 degrees), with the exception of the second experiment 

at the hospital (height of 0.6 m and tilt angle of 0 degrees). 

The experimental protocol included the same gait task for all experiments: walking towards 

and away from the Kinect, at a self-selected comfortable pace. In each data acquisition, the task was 

repeated 10 times by the healthy subjects at LBMP, between 6 and 15 times (11 ± 3 repetitions) by 

the healthy subjects at HSJ2, and between 1 and 16 times (8 ± 4 repetitions) by the PD patients. 

For the second experiment at the hospital, two acquisitions were carried out with each PD 

patient: one with the DBS stimulator switched on (Stim-on) and another with the stimulator switched 

off (Stim-off). For two of the patients, it was not possible to acquire data in the Stim-off state. For 

the third experiment at the hospital, one or more acquisitions were carried out with each patient 

always in the Stim-on state. 

7.2.3 Datasets 

Four different datasets (DS4, DS5, DS6 and DS7) were considered for studying subject iden-

tification. In the case of healthy subjects, we used dataset DS4 corresponding to twenty healthy sub-

jects (one acquisition per subject, all acquisitions at the same location). In the case of PD patients, 

 
20 healthy 

subjects 

(LBMP) 

5 healthy 

subjects 

(HSJ2) 

25 healthy 

subjects 

(LBMP + 

HSJ2) 

7 PD 

patients 

(HSJ2) 

11 PD 

patients 

(HSJ3) 

18 PD 

patients 

(HSJ2 + 

HSJ3) 

All 43 

subjects 

Gender (male/female) 10/10 3/2 13/12 7/0 8/3 15/3 28/15 

Age 

(years) 

Mean ± SD 31 ± 8 54 ± 14 35 ± 13 63 ± 7 59 ± 5 61 ± 6 46 ± 17 

[Min,  Max] [23, 52] [40, 74] [23, 74] [49, 77] [50, 68] [50, 77] [23, 77] 

Height 

(m) 

Mean ± SD 1.71 ± 0.11 1.73 ± 0.08 1.71 ± 0.10 1.67 ± 0.08 1.68 ± 0.08 1.69 ± 0.07 1.71 ± 0.09 

[Min,  Max] [1.50, 1.94] [1.62, 1.86] [1.50, 1.94] [1.50, 1.80] [1.57, 1.85] [1.57, 1.85] [1.50, 1.94] 

Weight 

(kg) 

Mean ± SD 67.9 ± 15.3 77.6 ± 11.8 69.8 ± 14.8 80.3 ± 11.5 70.3 ± 9.7 74.9 ± 12.4 71.8 ± 14.1 

[Min,  Max] [48, 105] [65, 99] [48, 105] [59, 96] [60, 93] [59, 96] [48, 105] 

BMI 

(kg/m2) 

Mean ± SD 23.0 ± 3.3 25.7 ± 2.6 23.6 ± 3.3 28.8 ± 4.5 24.8 ± 2.8 26.1 ± 3.5 24.5 ± 3.6 

[Min,  Max] [16.7, 31.0] [22.5, 28.6] [16.7, 31.0] [22.2, 37.8] [21.5, 30.7] [21.5, 33.2] [16.7, 33.2] 
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we used dataset DS5 corresponding to eleven patients (one acquisition in Stim-on state per patient, 

all acquisitions at the same location). 

To verify if identification is also possible when considering both healthy subjects and PD 

patients, we used dataset DS6, which includes data acquired from thirty-seven subjects with and 

without the PD. This dataset corresponds to DS4 and DS5 with the addition of data from two more 

healthy subjects and four more PD patients (HSJ2). 

For exploring the identification of PD patients at different points in time, we further consid-

ered dataset DS7, which includes data from nine PD patients acquired in two different days (same 

DBS state). This dataset also includes data from five PD patients in the two DBS states (same day), 

since it simulates changes in gait over time. 

More details on the four different datasets can be found in Table 7.2, including the number 

of subjects, the state of the PD patients and the number of both acquisitions and gait cycles.  

 

Table 7.2. Datasets used for studying subject identification based on gait. 

Dataset 
Number of 

subjectsa 
Stateb 

Number of data 

acquisitions per 

subject 

Number of 

acquisitions 

Number of gait 

cycles 

(per subject and 

acquisition) 

DS4 
20 healthy subjects 

(LBMP) 
— 

1 

20 420 (21) 

DS5 
11 PD patients 

(HSJ3) 
Stim-on 11 165 (15) 

DS6c 

22 healthy subjects 

(LBMP + HSJ2) 
— 

37 370 (10) 
15 PD patients 

(HSJ2 + HSJ3) 
Stim-on 

DS7d 

5 PD patients 

(HSJ2) 

Stim-on 

and off 
2 (same days) 

28 168 (6) 
9 PD patients 

(HSJ3) 
Stim-on 2 (different days) 

a LBMP, HSJ2 and HSJ3 stand for LABIOMEP, second and third location in São João hospital, respectively. 

b The state refers to the DBS state (stimulator on or off) in the case of PD patients only.  

c For DS6, we did not consider the subjects with less than 10 detected gait cycles (see Appendix H). 

d For DS7, we did not consider the subjects with a single acquisition or less than 5 detected gait cycles for at 

least one of the acquisition (see Appendix H). 

 

More than one acquisition was carried out with some of the eleven patients at HSJ3. There-

fore, a single acquisition per patient was selected for DS5, where the chosen acquisition was the one 

with highest number of gait cycles for that patient. In the case of DS7, two consecutive acquisitions 
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were chosen for the patients with more than two acquisitions. The time interval between the two 

selected acquisitions varied between 26 and 281 days (125 ± 93 days). 

For all datasets, only the gait cycles corresponding to walking towards the Kinects were 

taken into account, considering the results of the validation studies presented above, as well as the 

fact that the number of gait cycles detected for walking away from the Kinect was much lower than 

for walking towards it in most cases. The number of gait cycles obtained per subject and acquisition 

is included in Appendix H. 

Each dataset was balanced by randomly selecting the same number of gait cycles for each 

subject and acquisition. This resulted in a balanced dataset with S×A×G gait cycles or instances, 

where S is the number of subjects or classes, A is the number of acquisitions per subject and G is the 

number of gait cycles selected for each subject and acquisition. For each dataset, the value of G is 

indicated in the last column of Table 7.2. 

For all datasets, 25 features were computed for each gait cycle or instance. The features 

include the 22 gait parameters provided by our gait analysis solution (Table 6.2 and Table 6.3). The 

other three features are anthropometric measures, namely the trunk, arm and leg length. These 

measures were computed as the mean of the sum of the distances between adjacent joints of the trunk, 

arm and leg, respectively, for all gait cycle frames. The arm/leg length is the mean between the left 

and right arms/legs. 

7.2.4 Subject Identification 

The following machine learning algorithms were explored with the aim of obtaining a pre-

dictive model for subject identification: k-nearest neighbours, decision tree, random forest, support 

vector machines, multilayer perceptron, and multilayer perceptron ensemble. More details on the 

used algorithms, including the values used for the associated parameters, can be found in Section 

5.2.  

When considering only one acquisition per subject (DS4, DS5 and DS6), the model was built 

using half of the instances (or gait cycles) for each class (or subject). Then, the model’s performance 

was evaluated using the remaining instances. For identification over time, considering two acquisi-

tions per subject (DS7), the model was trained using the gait cycles from one acquisition and then 

evaluated using the same number of gait cycles from the other acquisition. In both cases, the proce-

dure was repeated 20 times (20 evaluation runs). The instances used for training and testing were 

randomly selected in each run (DS4, DS5 and DS6 only). 
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The performance of a model was evaluated by considering the following metrics: overall 

accuracy (5.4), class accuracy (5.3) and class F1 score (5.5). We also obtained the associated training 

and prediction time, on a computer with an i7-4600U CPU (dual-core, 2.1 GHz) and 8 GB RAM. 

The training time should be as low as possible, since it will be necessary to re-train the model every 

time there is information from a new subject. A low prediction time is also desirable for online sub-

ject identification. 

When considering only healthy subjects (DS4) or PD patients (DS5), we investigated the 

performance of each model when relying on a single gait cycle and on all available gait cycles for 

identification. In the latter case, the decision on the subject’s identity was performed by taking the 

following steps:  

1. For each gait cycle, obtain the subject or class prediction; 

2. Choose the class that occurs more often, considering all gait cycles; 

3. If more than one class was chosen in step 2, randomly select one of the classes that occur 

more often. 

To help decide on the minimum number of gait cycles that should be acquired in each data 

acquisition for enabling subject identification, we studied the model’s performance when varying the 

number of gait cycles per subject, used for both training and prediction, between 1 and the maximum 

number of available gait cycles. This study was performed for the algorithm that led to the best trade-

off between the considered evaluation metrics in the previous studies. 

When considering both subjects with and without PD (DS6), as well as identification of PD 

patients over time (DS7), the performance of each model was evaluated using all available gait cy-

cles. For the algorithm that led to the best trade-off between the considered evaluation metrics, we 

further explored the possibility of using only one of the following feature subsets: anthropometric 

measures; gait parameters; spatiotemporal gait parameters; kinematic gait parameters. 

All studies presented in this chapter were carried out in the R environment [209], including 

dataset balancing, selection of training and test set, and subject identification from predicted proba-

bilities. The rminer package [212] was used to train the models and obtain the predictions. The caret 

package [251] was used to compute the performance evaluation metrics. 

7.3 Results 

The results presented in Table 7.3 to Table 7.13 include the mean value for the overall accu-

racy considering the 20 evaluation runs. They also include the mean and standard deviation values 
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for the class accuracy and class F1 score, which were computed over the mean values for all subjects 

when considering the 20 runs. The training time and prediction time per gait cycle (mean and stand-

ard deviation for 20 runs) are also indicated. For the prediction time, the value for a given run is the 

mean value for all gait cycles from all subjects. 

To verify if there is a statistically significant difference between the different algorithms, 

number of gait cycles or feature subsets, we performed the Wilcoxon signed rank over the results for 

all evaluation runs, in the case of the overall accuracy, training time and prediction time. For class 

accuracy and class F1 score, the same statistical test was carried out over the results for all subjects 

(mean of all runs per subject). The test was performed for the case(s) with the best result and each 

one of the remaining cases. In the tables, we indicated in bold not only the best result, but also the 

other results not presenting a significant difference (p-value > 0.05) in relation with the best result. 

7.3.1 Identification of Healthy Subjects 

The results obtained for the twenty healthy subjects (DS4), when using a single gait cycle 

for identification, are presented in Table 7.3. The highest performance metric values (overall accu-

racy, class accuracy and class F1 score) were achieved when using the random forest algorithm.  

 

Table 7.3. Results for identification of healthy subjects (DS4) considering a single gait cycle. 

The results are indicated for each machine learning algorithm, when using 10 gait cycles per subject 

for model training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Algorithm 

DS4, single gait cycle for identification 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 91.5 95.6 ± 3.6 91.4 ± 5.2 0.0 ± 0.0 9.6 ± 0.7 

Decision tree 80.3 89.6 ± 7.1 77.7 ± 12.4 0.0 ± 0.0 4.3 ± 1.8 

Random forest 98.3 99.1 ± 1.3 98.3 ± 1.3 0.3 ± 0.0 5.6 ± 1.4 

SVM 92.6 96.1 ± 2.5 92.5 ± 4.6 0.3 ± 0.1 51.8 ± 2.2 

MLP 74.1 86.4 ± 5.2 73.7 ± 8.8 0.9 ± 0.3 8.0 ± 3.4 

MLPE 86.9 93.1 ± 4.1 86.7 ± 6.4 0.9 ± 0.3 14.6 ± 4.8 

 

The results achieved when deciding on the subjects’ identity based on all available gait cy-

cles are included in Table 7.4. In this case, the best performance was obtained for k-NN, random 

forest, SVM and MLPE. In both situations, the lowest training time was for k-NN and decision tree, 

and the lowest prediction time was for the decision tree. 
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Table 7.4. Results for identification of healthy subjects (DS4) considering all gait cycles available per 

subject. 

The results are indicated for each machine learning algorithm, when using 10 gait cycles per subject 

for model training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Algorithm 

DS4, all gait cycles per subject for identification 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 99.5 99.7 ± 0.8 99.3 ± 1.6 0.0 ± 0.0 9.2 ± 1.5 

Decision tree 91.5 95.5 ± 6.6 88.7 ± 12.8 0.0 ± 0.0 3.4 ± 0.8 

Random forest 100 100.0 ± 0.0 100.0 ± 0.0 0.3 ± 0.1 5.1 ± 0.6 

SVM 100 100.0 ± 0.0 100.0 ± 0.0 0.2 ± 0.1 56.7 ± 15.7 

MLP 97.2 98.6 ± 2.5 96.3 ± 5.1 0.7 ± 0.2 5.8 ± 1.7 

MLPE 100 100.0 ± 0.0 100.0 ± 0.0 0.8 ± 0.3 11.1 ± 2.0 

 

Table 7.5 presents the results achieved by the random forest model (best trade-off between 

the considered metrics), when varying the number of gait cycles used for both training and testing 

between 1 and 10. The model’s performance improved when the number of gait cycles increased. 

However, the results are similar from 4 gait cycles. This trend can be seen in Figure 7.1 (a) and (b), 

which show the mean and standard deviation respectively for the class accuracy and class F1 score 

versus the number of gait cycles.  

 

Table 7.5. Results for identification of healthy subjects (DS4) considering all gait cycles available per 

subject, when varying the number of gait cycles used for model training/testing. 

The results correspond to the random forest algorithm. The best result(s) for each evaluation metric 

are indicated in bold.  

Number 

of gait 

cycles per 

subject 

DS4, all gait cycles per subject for identification, random forest 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

1 54.0 75.8 ± 10.2 46.0 ± 18.4 0.0 ± 0.0 3.5 ± 2.4 

2 84.8 92.0 ± 6.0 80.7 ± 11.2 0.1 ± 0.0 3.6 ± 0.8 

3 98.0 98.9 ± 1.9 97.3 ± 3.5 0.1 ± 0.0 4.1 ± 1.5 

4 99.8 99.9 ± 0.6 99.7 ± 1.2 0.1 ± 0.0 4.5 ± 1.0 

5 100 100.0 ± 0.0 100.0 ± 0.0 0.2 ± 0.1 5.9 ± 3.0 

6 100 100.0 ± 0.0 100.0 ± 0.0 0.2 ± 0.0 4.6 ± 1.6 

7 100 100.0 ± 0.0 100.0 ± 0.0 0.2 ± 0.0 4.8 ± 1.2 

8 100 100.0 ± 0.0 100.0 ± 0.0 0.3 ± 0.0 5.1 ± 1.2 

9 100 100.0 ± 0.0 100.0 ± 0.0 0.3 ± 0.1 5.1 ± 1.2 

10 100 100.0 ± 0.0 100.0 ± 0.0 0.3 ± 0.1 5.1 ± 0.6 
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 (a) (b) 

Figure 7.1. Mean (a) and standard deviation (b) values for the class accuracy and class F1 score (DS4 

and random forest) versus the number of gait cycles per subject used for training/testing, when using 

all gait cycles available for identification. 

7.3.2 Identification of Parkinson’s Disease Patients 

The results obtained when considering PD patients (DS5) are presented in Table 7.6 to Table 

7.8. The best performance was achieved with the random forest algorithm, when considering a single 

gait cycle for identification. When using all gait cycles available per subject, all algorithms except 

the decision tree achieved a similar performance (mean overall accuracy ≥ 99%). In both cases, the 

lowest training time was for k-NN, decision tree and/or SVM, and the lowest prediction time was for 

decision tree and random forest (mean value of 3 or 4 ms). The random forest model’s performance 

improved when increasing the number of used gait cycles (similar results from 3 gait cycles). 

 

Table 7.6. Results for identification of PD patients (DS5) considering a single gait cycle. 

The results are indicated for each machine learning algorithm, when using 7 gait cycles per subject for 

model training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Algorithm 

DS5, single gait cycle for identification 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 97.9 98.8 ± 1.8 97.8 ± 2.3 0.0 ± 0.0 8.3 ± 2.0 

Decision tree 50.3 72.7 ± 15.9 37.9 ± 25.2 0.0 ± 0.0 3.2 ± 0.2 

Random forest 99.7 99.9 ± 0.3 99.7 ± 0.4 0.1 ± 0.0 3.2 ± 0.5 

SVM 98.2 99.0 ± 1.3 98.2 ± 2.2 0.0 ± 0.0 14.9 ± 1.0 

MLP 94.5 97.0 ± 1.9 94.4 ± 2.9 0.2 ± 0.0 5.4 ± 1.3 

MLPE 97.1 98.4 ± 1.4 97.0 ± 2.6 0.2 ± 0.0 11.6 ± 4.0 
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Table 7.7. Results for identification of PD patients (DS5) considering all gait cycles available per sub-

ject. 

The results are indicated for each machine learning algorithm, when using 7 gait cycles per subject for 

model training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Algorithm 

DS5, all gait cycles per subject for identification 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 100 100.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 12.4 ± 5.3 

Decision tree 57.7 76.8 ± 16.6 43.9 ± 25.4 0.0 ± 0.0 4.3 ± 1.5 

Random forest 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 3.5 ± 0.7 

SVM 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 18.8 ± 6.8 

MLP 99.1 99.5 ± 1.0 98.8 ± 2.0 0.2 ± 0.1 6.2 ± 2.2 

MLPE 100 100.0 ± 0.0 100.0 ± 0.0 0.2 ± 0.1 13.8 ± 5.3 

 

Table 7.8. Results for identification of PD patients (DS5) considering all gait cycles available per sub-

ject, when varying the number of gait cycles used for model training/testing. 

The results correspond to the random forest algorithm. The best result(s) for each evaluation metric 

are indicated in bold. 

Number 

of gait 

cycles per 

subject 

DS5, all gait cycle per subjects for identification, random forest 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time (s) 

Prediction 

time per 

gait cycle 

(ms) 

1 85.9 92.2 ± 4.6 81.7 ± 8.7 0.0 ± 0.0 3.4 ± 1.2 

2 98.2 99.0 ± 1.2 97.6 ± 2.2 0.0 ± 0.0 3.3 ± 0.8 

3 100 100.0 ± 0.0 100.0 ± 0.0 0.0 ± 0.0 2.9 ± 0.4 

4 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 3.2 ± 0.8 

5 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 3.8 ± 1.2 

6 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 3.9 ± 1.0 

7 100 100.0 ± 0.0 100.0 ± 0.0 0.1 ± 0.0 4.1 ± 1.8 

Identification of Subjects with and without Parkinson’s Disease 

The results obtained for both PD patients and healthy subjects (DS6), when using all gait 

cycles available per subject for identification, are presented in Table 7.9. We can see that the random 

forest algorithm led to the model with the best performance. Training time was the lowest for k-NN 

and prediction time was the lowest for decision tree and MLP. 
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Table 7.9. Results for identification of both healthy subject and PD patients (DS6) considering all gait 

cycles available per subject. 

The results are indicated for each machine learning algorithm, when using 5 gait cycles per subject for 

model training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Algorithm 

DS6, all features 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 97.6 98.8 ± 3.2 96.8 ± 6.6 0.0 ± 0.0 16.2 ± 6.5 

Decision tree 40.9 69.7 ± 18.2 24.9 ± 22.5 0.1 ± 0.0 6.2 ± 1.8 

Random forest 99.7 99.9 ± 0.6 99.6 ± 1.2 0.5 ± 0.1 8.2 ± 1.4 

SVM 97.3 98.6 ± 3.5 96.4 ± 7.7 1.0 ± 0.4 213.8 ± 22.9 

MLP 82.4 91.0 ± 7.2 77.9 ± 15.1 1.5 ± 0.2 7.4 ± 2.2 

MLPE 95.8 97.8 ± 2.8 94.5 ± 6.1 1.8 ± 0.5 18.6 ± 5.5 

 

Table 7.10 includes the results obtained with the random forest algorithm for DS6, when 

considering different feature sets. The best performance was achieved when using all 25 features 

(overall accuracy of 100%), but a good performance was also obtained when using the 22 gait pa-

rameters or the 3 anthropometric measures (overall accuracy ≥ 97%). As expected, the lowest train-

ing and prediction time corresponded to the smallest feature set (3 anthropometric measures). 

 

Table 7.10. Results for identification of both healthy subject and PD patients (DS6) considering all gait 

cycles available per subject, for different feature subsets. 

The results correspond to the random forest algorithm, when using 5 gait cycles per subject for model 

training/testing. The best result(s) for each evaluation metric are indicated in bold. 

Features 

DS6, random forest 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

3 anthropometric 

measures 
96.6 98.3 ± 3.4 95.5 ± 7.8 0.2 ± 0.0 4.1 ± 0.6 

13 spatiotemporal 

gait parameters 
85.0 92.3 ± 12.1 81.6 ± 24.9 0.3 ± 0.1 6.1 ± 1.6 

9 kinematic gait 

parameters 
92.0 95.9 ± 6.1 89.6 ± 12.7 0.3 ± 0.1 5.7 ± 1.2 

22 gait 

parameters 
97.6 98.8 ± 4.7 96.8 ± 9.4 0.5 ± 0.1 7.3 ± 1.9 

All 25 features 99.7 99.9 ± 0.6 99.6 ± 1.2 0.5 ± 0.1 8.2 ± 1.4 
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Identification of Parkinson’s Disease Patients Over Time 

Table 7.11 presents the results obtained for DS7, where the model was trained and then tested 

using data from two different acquisitions per patient corresponding to two different states or two 

different days. The k-NN, random forest and SVM algorithms led to the models with the best overall 

performance.  

 

Table 7.11. Results for identification of PD patients over time (DS7) considering all gait cycles availa-

ble per subject. 

The results are indicated for each machine learning algorithm, when using 6 gait cycles per subject for 

model training and testing acquired in two different days or PD states. The best result(s) for each eval-

uation metric are indicated in bold. 

Algorithm 

DS7, all features, no outlier removal 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 64.3 80.8 ± 24.5 56.0 ± 46.0 0.0 ± 0.0 9.3 ± 0.6 

Decision tree 30.7 62.7 ± 21.0 20.1 ± 33.2 0.0 ± 0.0 3.5 ± 0.4 

Random forest 68.2 82.9 ± 20.8 61.2 ± 38.9 0.1 ± 0.0 3.8 ± 0.4 

SVM 67.9 82.7 ± 22.5 62.3 ± 42.1 0.1 ± 0.0 26.5 ± 1.5 

MLP 48.6 72.3 ± 16.6 39.4 ± 28.0 0.2 ± 0.0 5.9 ± 0.3 

MLPE 57.5 77.1 ± 18.2 48.4 ± 31.1 0.2 ± 0.0 11.7 ± 0.9 

 

To investigate if the performance results could be improved, the same study was carried out, 

with the difference that outliers were removed prior to dataset balancing. For each patient and acqui-

sition, we excluded the instances for which the values for at least 25% of the features corresponded 

to outliers. For each feature, a value was considered as an outlier if was lower than Q1−1.5×IQR or 

higher than Q3−1.5×IQR, where Q1 and Q3 are the first and third quartiles and IQR is the interquartile 

range (Q3−Q1). The first and third quartile is the median of the values to the left and right of the 

median value, respectively, when all considered values are sorted in ascending order. The results 

achieved when removing outliers are included in Table 7.12, where we can see that the best overall 

performance was achieved by the SVM model. 

The results obtained with the SVM algorithm when considering different feature sets (DS7, 

outlier removal) are included in Table 7.13. Besides the different types of features (anthropometric 

measures, spatiotemporal and/or kinematic gait parameters), we also explored a subset of features 

selected using the correlation-based feature selection (CFS) method. This feature subset included the 

following 12 features: 5 spatiotemporal gait parameters (stride and swing duration, stride length, step 
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width and gait speed), 4 kinematic gait parameters (spine middle angle, elbow angle minimum, knee 

angle minimum and maximum) and the 3 anthropometric measures. Overall, the best performance 

was achieved when using the subset of 12 features. 

 

Table 7.12. Results for identification of PD patients over time (DS7) considering all gait cycles availa-

ble per subject, with outlier removal. 

The results are indicated for each machine learning algorithm, when using 6 gait cycles per subject for 

model training and testing acquired in two different days or PD states. The best result(s) for each eval-

uation metric are indicated in bold. 

Algorithm 

DS7, all features, outlier removal 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

k-NN 71.4 84.6 ± 23.8 66.0 ± 44.8 0.0 ± 0.0 8.9 ± 1.4 

Decision tree 24.3 59.2 ± 20.2 16.3 ± 32.1 0.0 ± 0.0 3.3 ± 0.5 

Random forest 67.9 82.7 ± 22.1 62.3 ± 41.5 0.1 ± 0.0 4.3 ± 1.3 

SVM 73.6 85.8 ± 23.2 71.1 ± 42.8 0.1 ± 0.0 23.1 ± 1.9 

MLP 51.4 73.8 ± 16.2 43.8 ± 27.0 0.3 ± 0.1 6.0 ± 1.4 

MLPE 61.4 79.2 ± 18.0 54.8 ± 31.6 0.2 ± 0.0 10.5 ± 1.7 

 

Table 7.13. Results for identification of PD patients over time (DS7) considering all gait cycles availa-

ble per subject (outlier removal), for different feature subsets. 

The results correspond to the SVM algorithm, when using 6 gait cycles per subject for model training 

and testing acquired in two different days or PD states. The best result(s) for each evaluation metric 

are indicated in bold. 

Features 

DS7, outlier removal, SVM 

Overall 

accuracy 

(%) 

Accuracy 

(%) 

F1 score 

(%) 

Training 

time 

(s) 

Prediction 

time per 

gait cycle 

(ms) 

3 anthropometric 

measures 
64.3 80.8 ± 23.7 57.2 ± 43.7 0.1 ± 0.0 18.4 ± 1.2 

13 spatiotemporal 

gait parameters 
50.0 73.1 ± 20.6 40.9 ± 34.0 0.1 ± 0.0 21.2 ± 2.7 

9 kinematic gait 

parameters 
47.1 71.5 ± 24.8 40.4 ± 44.6 0.1 ± 0.0 19.0 ± 2.5 

22 gait 

parameters 
65.7 81.5 ± 24.6 61.5 ± 44.6 0.1 ± 0.0 21.9 ± 4.0  

All 25 features 73.6 85.8 ± 23.2 71.1 ± 42.8 0.1 ± 0.0 23.1 ± 1.9 

12 selected 

features 
77.5 87.9 ± 20.7 70.3 ± 40.2 0.1 ± 0.0 20.8 ± 2.2 
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The confusion matrix corresponding to the SVM model when using the 12 selected features 

is presented in Figure 7.2, where we can see that identification is correct in all evaluation runs for 9 

patients and in most runs for 11 patients of the 14 considered patients. 

 

 

Figure 7.2. Confusion matrix for identification of PD patients over time (DS7) considering all gait cy-

cles available per subject (outlier removal). 

The results correspond to the SVM algorithm and the feature subset of 12 features, when using 6 gait 

cycles per subject for model training and testing acquired in two different days or PD states. 

7.4 Discussion 

7.4.1 Identification of Healthy Subjects 

For healthy subjects (DS4), the random forest model achieved the best performance, when 

performing identification based on a single gait cycle: overall accuracy of 98% and F1 score of 98 ± 

1% (Table 7.3). The training time was the lowest (0 s) for k-NN and decision tree. However, it was 

also low for the remaining algorithms (mean value between 0.3 and 0.9 s). The decision tree had the 

lowest prediction time (mean of 4 ms per gait cycle), followed by the random forest (6 ms). There-

fore, we considered that the random forest led to the model with the best trade-off between all con-

sidered evaluation metrics. 

When relying on the class probabilities predicted for all available gait cycles to identify a 

subject, the performance improved for all algorithms (Table 7.4), when compared with the use of a 

single gait cycle, as expected. Most of the algorithms (k-NN, random forest, SVM and MLPE) 

achieved an overall accuracy of ≈100%. From these algorithms, the random forest had the lowest 

prediction time. Therefore, this algorithm was again considered as the one with best trade-off be-

tween the different metrics. 
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For the random forest model, we found that the performance improved when increasing the 

number of gait cycles used for model training and testing until 4 gait cycles (similar results for 4 or 

more gait cycles – see Table 7.5). The difference between using a single gait cycle or more than 3 

gait cycles was considerable (overall accuracy of 65% or 100%). Therefore, it is important to use at 

least 4 gait cycles to perform a correct identification, but there is no advantage in using more than 

that number of gait cycles. 

7.4.2 Identification of Parkinson’s Disease Patients 

The results obtained for PD patients (DS5) are similar to those obtained for healthy subjects 

(DS4), with a few differences. For identification based on a single gait cycle (Table 7.6), the perfor-

mance metric values were higher for the patients (overall accuracy of 100% versus 98%). This may 

be because a lower number of subjects was considered (11 patients instead of 20 healthy subjects). 

It can also be because it should be easier to correctly identify PD patients, since it is expected to be 

greater differences in gait among PD patients than between healthy subjects. 

When considering all available gait cycles, the results were the same for most algorithms 

(the only exception was the decision tree): overall accuracy of 100% and F1 score of 100 ± 0% (Table 

7.7). As expected, training and prediction time were overall lower for DS5, since it has less subjects 

and less gait cycles per subject than DS4. For both datasets, performance improved when increasing 

the number of used gait cycles. However, the number of gait cycles required to achieve an overall 

accuracy over 99% was slightly lower for PD patients than healthy subjects (3 instead of 4 gait cy-

cles), which may be due to the same reasons referred above. 

Identification of Subjects with and without Parkinson’s Disease 

When considering both PD patients and healthy subjects (DS6), the algorithm that led to the 

model with best trade-off between the evaluation metrics was the same as for the two subject groups 

separately (DS4 and DS5): random forest. The model’s performance was similar for the three da-

tasets, when taking into account the same number of gait cycles (5 gait cycles): overall accuracy of 

100% and F1 score of 100 ± 1%. 

This result suggests that the presence of both subjects with and without PD does not have an 

impact on identification. It also suggests that performance is not affected when increasing the number 

of subjects. As expected, both training and prediction time were higher when considering a higher 

number of subjects/instances. Nevertheless, they were still relatively low (mean value of 0.5 s and 8 

ms, respectively, for random forest – see Table 7.9). 
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The results obtained when comparing different feature types showed that the best perfor-

mance was obtained when using all features (Table 7.10), which indicates that all types of features 

are important for subject identification. The 13 spatiotemporal gait parameters led to the lowest over-

all accuracy (85%). When using a smaller subset of 9 kinematic gait parameters, the overall accuracy 

was much higher (92%). The value was even higher when using the 3 anthropometric measures or 

the 22 gait parameters (97–98%). Although the best result was achieved when using all features 

(100%), it is interesting to note that a similar performance can be achieved when using only 3 an-

thropometric measures (half of training and prediction time).  

Identification of Parkinson’s Disease Patients Over Time 

Regarding identification of PD patients over time, the best performance was achieved by the 

models built using the k-NN, random forest and SVM algorithms (overall accuracy ≥ 64% – see 

Table 7.11). When compared with PD patient identification using data from the same acquisition for 

model training and testing, there is decline in performance. This decline was expected, since the gait 

of PD patients can vary considerably over the course of some months or even days, due to the evo-

lution of the disease, a new treatment and/or treatment adjustments. 

However, we verified that performance improves for most models when removing outliers 

within each acquisition. The best overall accuracy achieved was of 74% for SVM (Table 7.12). Alt-

hough the SVM model has the highest prediction time per gait cycle (mean of 23 ms), it is still 

corresponds to identifying a subject in less than one second (0.23 s) assuming that each acquisition 

has 10 gait cycles. Therefore, we considered that the SVM model is the most appropriate for PD 

patient identification over time. 

Similar to dataset DS6, the feature subsets corresponding to the 3 anthropometric measures 

and the 22 gait parameters led to a similar model performance in the case of DS7. However, there is 

a greater difference between these two subsets and the use of both feature types together, for DS7 

(overall accuracy of 64–66% versus 74%). This result shows that the two types of features are both 

important for identification. 

Nevertheless, performance can be further improved when relying on a subset of 12 features 

obtained using a feature selection method, which includes features from all three considered types. 

With this feature subset, the model carries out identification over time with an overall accuracy of 

78%, which corresponds to a correct identification in all evaluation runs for 64% of the patients and 

in most runs for 79% of the patients (see Figure 7.2). 
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When comparing the identification relying on data from the same and different acquisitions, 

in the context of PD, worse results were expected for identification over time when using gait pa-

rameters only, due to the reasons explained above. On the other hand, the results for anthropometric 

measures should be similar, since these measures (e.g., leg length) are not expected to change for a 

given subject (with or without PD). However, the results are also worse for anthropometric measures, 

which can be explained by the fact that the values of these measures estimated by the Kinect change 

for some of the patients. These differences may be due to differences in the patients’ posture and/or 

different acquisitions conditions, including small variations in the Kinect configuration. Therefore, 

a more detailed study is required to understand if the Kinect is suitable for human identification over 

time. 

7.4.3 Comparison with the State of the Art 

The results achieved by our proposed method and methods proposed in other contributions, 

which also rely on gait information extracted from Kinect data for subject identification, are com-

pared in Table 7.14. Our indicated results correspond to the dataset of twenty healthy subjects, since 

the other studies included in the table considered healthy subjects only. 

The results cannot be directly compared due to the use of different experimental setups and 

protocols, as well as datasets corresponding to a different number of subjects. Despite those differ-

ences, a comparison with the state of the art allows to understand how our results compare to those 

reported in other studies. 

When using a single gait cycle for identification, we achieved a mean class accuracy of 99%, 

while Ball et al. reported a much lower value of 44% using a single step [74]. However, in the latter 

study, the authors used the first version of the Kinect while we used the second version. Furthermore, 

they relied on the k-means algorithm and kinematic gait parameters only, while our best result was 

obtained using the random forest algorithm together with anthropometric measures and both spatio-

temporal and kinematic gait parameters. Additionally, the study of Ball et al. considered arbitrary 

walking paths, which is a more challenging situation than walking always in the same direction. 

When compared with the study by Sinha et al. [73], we obtained a much higher mean F1 

score (98% considering a single gait cycle versus 62% considering a single step). This difference 

may be due to different reasons, including the use of the Kv2 instead of Kv1 and a frontal instead of 

a side view (occlusions may occur for the latter). Moreover, Sinha et al. only investigated the k-

means, adaptive neural network and Naïve Bayes algorithms (our best result was obtained with ran-

dom forest). 
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Table 7.14. Subject identification results reported in different contributions using the Kinect camera, 

when considering gait and healthy subjects. 

Method Kinect 

Number 

of 

subjects 

Features 
Overall 

accuracy 

Mean 

accuracy 

Mean F1 

score 

Our 

proposed 

method 

v2 

(front-view) 
20 

3 anthropometric 

measures, and 22 

spatiotemporal and 

kinematic gait 

parameters 

98% (1 gait 

cycle) / 100% 

(5 gait cycles) 

99% (1 

gait cycle) 

/ 100% (5 

gait 

cycles) 

98% (1 

gait cycle) 

/ 100% (5 

gait 

cycles) 

Nambiar 

et al. 

(2017) [66] 

v2 

(four views) 
20 

7 anthropometric 

measures, and 35 

spatiotemporal and 

kinematic gait 

parameters 

92% (best 

match) / 100% 

(eight best 

matches) for 

front-view only 

— — 

Ahmed et 

al. (2015) 

[67] 

v2 20 

25 joint relative 

distances, and 15 joint 

relative angles 

92% (best 

match) / 100% 

(four best 

matches) 

— — 

Rahman 

et al. 

(2017) [71] 

v1/v2 30/20 
760 spatial gait 

parameters 
93% / 95% — — 

Andersson 

et al. 

(2014) [72] 

v1 

(side-view) 
140 

20 anthropometric 

measures, and 60 

spatiotemporal and 

kinematic gait 

parameters  

88% (≈96% for 

20 subjects) 
— — 

Jiang et 

al. (2015) 

[69] 

v1 

(side-view) 
10 

5 anthropometric 

measures, and 4 

kinematic gait 

parameters  

82% (68% for 

gait parameters 

only) 

— — 

Sinha et 

al. (2013) 

[73] 

v1 

(side-view) 
10 

Selected features from 

12 anthropometric 

measures, 20 

spatiotemporal and 

kinematic gait 

parameters, and other 

14 features 

— — 62% 

Preis et al. 

(2012) [70] 

v1 

(side-view) 
9 

4 anthropometric 

measures / 2 

spatiotemporal gait 

parameters 

91% / 55% — — 

Ball et al. 

(2012) [74] 

v1 

(arbitrary 

paths) 

4 
18 kinematic gait 

parameters 
— 44% — 

 

Our overall accuracy when using a single gait cycle (98%) is higher than the values reported 

in all other studies included in Table 7.14. Preis et al. obtained a value of 91%. However, this result 

was achieved when using 4 anthropometric measures only [70]. Nevertheless, we were able to obtain 

a higher value when using only 3 anthropometric measures (97% – see Table 7.10) for a much greater 
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number of subjects (37 versus 9 subjects). In addition, Preis et al. used a side-view plane of the 

walking path in relation with the Kinect, while we considered a front-view plane. 

Jiang et al. reported a much lower result (overall accuracy of 82%), but they relied only on 

9 features [69], while we used 25 features. Andersson et al. reported an overall accuracy of ≈96% for 

20 subjects [72], which is similar to our result. However, we used a much lower number of features 

(25 instead of 80 features). The result obtained by Rahman et al. when using the Kv2 (95% [71]) is 

also similar to ours, but they used a much larger number of features (760 features). Ahmed et al. [67] 

and Nambiar et al. [66] both reported an overall accuracy of 92%. We obtained a better result (98%) 

with a lower number of features (25 features versus 40 or 42 features/measures). 

Regarding subject identification over time, Gianaria et al. carried out a study with the Kv1, 

where they were able to correctly classify all cases for 70% of the subjects [68]. However, their 

results cannot be compared with ours, since they used data acquired from healthy subjects, while our 

study involved PD patients, which is a more challenging situation. To the best of our knowledge, 

there is no other study on subject identification based on gait using the Kinect involving PD patients. 

7.5 Summary 

Our results show that healthy subjects can be identified using the gait parameters provided 

by our automated gait analysis solution, as well as three additional anthropometric measures, with 

an overall accuracy of 100% when relying on at least four gait cycles per subject. When compared 

with other contributions, our proposed method led to a predictive model with better performance 

while using a lower number of features (identification based on a single gait cycle). 

For Parkinson’s disease (PD) patients, we verified that identification is also possible with an 

overall accuracy of 100%, when using at least three gait cycles. Furthermore, the same overall accu-

racy was achieved when considering both subjects with and without PD. This last result also suggests 

that increasing the number of subjects does not have an impact on identification. 

For identification over time in the case of PD patients, the performance results declined when 

compared with identification using data from the same acquisition for model training and testing. 

However, it was possible to build a model that achieved an overall accuracy of 78%, when perform-

ing outlier removal and feature selection. The selected feature subset included 12 features from the 

three considered feature types (anthropometric measures, spatiotemporal gait parameters and kine-

matic gait parameters), showing that they are all important for subject identification. 
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8 Gait Assessment Support System 

One of the main results of this thesis is a system for gait assessment support. The initial 

motivation for developing this system was to support the clinical assessment of gait in Parkinson’s 

disease (PD). However, the evolution of the thesis’ work led to a more generic system, which can be 

used to analyse the gait of any subject, and not only PD patients. The results of the gait analysis 

provided by our system can be useful in different scenarios such as sports, healthcare and security. 

The final user of the system depends on the considered scenario. For example, in the case of 

a clinical environment (e.g., a hospital), the user can be a clinician (e.g., physician, nurse). When 

considering an ambulatory scenario (i.e., at the home of a subject), the user can be the subject being 

assessed, a relative or a caregiver. The subject being assessed also interacts with the system, by walk-

ing in front of the RGB-D camera. 

Our gait assessment support system, which is depicted in Figure 8.1, enables automated 

online gait analysis of a given subject. When compared with a manual and/or offline solution, it 

allows time savings, since it avoids any manual intervention in the whole analysis process (except 

for starting the acquisition of data). 

The system relies on a single RGB-D camera, namely the first or second version of the Mi-

crosoft Kinect (Kinect v1 or v2). This camera provides colour and/or IR images, depth information 

and 3-D body joint data, which are acquired using our KiT application running on a portable com-

puter. 

For each data acquisition, gait analysis is performed in an automated way, i.e., without re-

quiring any manual intervention except for starting the data acquisition in KiT. Firstly, the system 

automatically detects whether the subject is walking, by relying on several measures extracted from 

the 3-D joint data. For the data corresponding to the walking activity, the different gait cycles are 

automatically detected using only three types of measures also extracted from the 3-D data. 

When the number of gait cycles to be acquired is indicated by the user, the acquisition is 

automatically stopped when that number of cycles has been detected. For each gait cycle, several 

gait parameters are computed, which can be used to support the assessment of the subject’s gait. 

These parameters are also used to automatically identify the subject. 
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Figure 8.1. System for supporting the assessment of a given subject’s gait. 

The system includes an RGB-D camera (Kinect v1 or v2) that provides multimodal data, including 3-D 

body joint data. The camera is connected to a laptop where the automated gait analysis is performed.  

8.1 System Integration 

To implement the system for gait assessment support, the automatic gait cycle detection (in-

cluding walking detection relying on activity recognition) and subject identification solutions were 

integrated into the KiT application, for enabling online gait analysis of a given subject. For research 

purposes, offline gait analysis is also enabled for a given data acquisition in the KiMA application, 

and for one or more acquisitions using a program written in Python.  
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8.1.1 Online Gait Analysis 

To enable automated online gait analysis using a single software application, the solutions 

indicated above were integrated into KiT. In this application, the user can choose to perform gait 

analysis by using the checkbox that was added to the “Preferences” window, as shown in Figure 8.2. 

 

 

Figure 8.2. Preferences window of the KiT application (Kv2) after the integration of gait analysis. 

 

When the “gait analysis” option is selected,  the GUI of the main window of KiT is changed 

to include only the options and information that are relevant for gait analysis. The “Controls” group 

box (below the “Secondary Source” combobox) includes only the button that allow to start/stop the 

acquisition. There is also a “Gait Analysis” group box, which includes a text box that allows the 

indication of the minimum number of gait cycles that are required for gait analysis, as it can be seen 

in Figure 8.3. 

When the user starts a data acquisition with a given subject, the activity (walking, standing 

or marching, while facing the Kinect or facing away from it) performed by the subject is recognized 

for each data frame. As explained above, when walking is detected, the carried out gait cycles are 

identified. The number of gait cycles that has been detected since the beginning of the acquisition is 

indicated in the “Gait Analysis” group box, as can be seen in Figure 8.4. 
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Figure 8.3. KiT’s main window GUI (Kv2) after the integration of automated online gait analysis, 

where it is possible to indicate the number of minimum gait cycles required for analysis. 

 

 

Figure 8.4. KiT’s main window GUI (Kv2) after the integration of automated online gait analysis, 

where the number of detected gait cycles since the beginning of the acquisition is displayed. 
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When the indicated number of gait cycles is achieved, the acquisition stops and several gait 

parameters are computed for each detected gait cycle. The obtained parameter values are then used 

to identify the corresponding subject. Since an incorrect identification can occur, especially when 

there are changes in the subject’s gait, the user is asked to confirm if the identification is correct. If 

it is correct, no further action is needed. Otherwise, the user can select a subject from the list of 

existing subjects or indicate a new subject by inserting the corresponding information (name, ID, 

birth of date, weight, and height). 

Finally, the mean value for each parameter is computed over all acquired gait cycles. This 

final results are presented to the user as shown in Figure 8.5, for both left and right gait cycles (col-

umn “Both” of the table within the “Gait Analysis Results” group box, below the subject infor-

mation), as well as for left and right cycles separately to help detect asymmetries during gait. 

 

 

Figure 8.5. Results of gait analysis shown in the KiT application, including the subject’s information 

and the mean value of the gait parameters for left, right and both gait cycles. 

 

Regarding the system implementation, when the option of performing gait analysis is se-

lected in KiT, the predictive models previously built for activity recognition and subject identification 

are loaded. Since the KiT application was written in C# and the models were built in the R environ-

ment using the rminer package, the R.NET C# library was used to load the required R package and 

run the R code that enables the use of the models in C#. 
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For online activity recognition, the 3-D joint data are filtered using a moving average filter 

with a window of 17 frames. For each frame, the measures used for recognition are computed over 

the filtered data and then used as input to the predictive model for activity recognition (relying again 

on the R.NET library). If walking is recognized, the following steps are carried out: 

1. Verify if the frame corresponds to a heel strike, relying on the ankle distance measure; 

2. If it is considered as a heel strike, identify the associated side (left or right), relying on 

the left and right ankle velocity; 

3. If the time elapsed between the current and previous (if any) heel strikes of the same 

side is less than twice the defined maximum gait cycle duration, verify if the gait cycle 

defined by the those heel strike instants corresponds to walking towards or away from 

the camera; 

4. If the gait cycle was performed while walking towards the camera, find the frames cor-

responding to the left and right toe offs, relying on the absolute difference between left 

and right shank angles; 

5. If both toe off events are detected (i.e., the estimated toe off instants are different from 

the heel strike instants), the detected gait cycle and associated gait events are added to 

the gait cycle list, and the number of gait cycles is updated in KiT’s GUI (Figure 8.4). 

All the measures used for the detection heel strike and toe off are filtered with a moving 

average filter, using a window with the size previously chosen for each type of measure (Table 5.9). 

The detection of heel strikes and associated side is also carried out using a window centred on the 

considered frame with the size previously selected for each case (Table 5.9).  

The maximum gait cycle duration, used to decide if two consecutive heel strike of the same 

side constitute a gait cycle, was defined as 2 s. Since the system is to be used with any subject (with 

or without gait impairments), we found the maximum stride duration for all data acquisitions we 

performed with both healthy subjects and PD patients: 1.5 s and 1.6 s, respectively. Taking this into 

account, we choose the value of 2 s considering some tolerance to allow gait analysis for subject with 

more severe gait difficulties. 

In third step above, the gait cycle is only considered if the whole body of the subject is being 

tracked (i.e., all body joints are tracked, without any clipped edges) for all of its frames. Otherwise, 

the detected gait cycle is not considered for analysis. 

In the fourth step above, only the data corresponding to walking towards the Kinect are con-

sidered, since the results achieved in the first validation study were overall better when using data 

acquired while the subjects walked towards the sensor when compared with walking away from it. 
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Nevertheless, both walking activities can be taken into account for gait analysis with a small change 

in the code. 

As explained above, when at least half of the defined minimum number of gait cycles (M) 

has been detected for each side (left and right), the acquisition is automatically stopped (it can also 

be manually stopped beforehand by the user). For this reason, it is required that the indicated M value 

is even integer number. 

Furthermore, only an M value greater or equal to 4 is accepted. This value was chosen by 

taking into account the studies presented above. In the second validation study (WF vs WB for Kv2), 

it was observed that the agreement between the Kinect and the gold standard system tends to improve 

when varying the number of gait cycles from 1 to 11 (Figure 6.1). Moreover, in the study on subject 

identification, performance improved when using a larger number of gait cycles (best from 4 gait 

cycles for healthy subjects and from 3 gait cycles for PD patients). Therefore, we considered 4 gait 

cycles to be a good choice for the minimum number of gait cycles that should be used for gait anal-

ysis. 

When the acquisition ends, all activity and gait information is saved to an XML file (example 

presented in Appendix A.2), where the intervals corresponding to a given activity are saved as events 

and the heel strike and toe off instants are saved as labels. This information is saved so that it can 

reviewed offline together with the associated acquisition in KiMA. 

When more than 2M  left/right gait cycles have been detected, 2M  left/right gait cycles 

are randomly chosen, so that the number of gait cycles for each side is the same. Then, for each gait 

cycle, the gait parameters (Table 6.2 and Table 6.3) are computed over the 3-D joint data considering 

the estimated heel strike and toe off instants, and saved to a CSV file. 

For some of the parameters, the measure used to compute its value is filtered using a zero-

lag Butterworth filter (order and cut-off frequency values indicated in Table 6.5). The signal pro-

cessing carried out in the validation studies presented above was carried out in Matlab using the 

“filtfilt” function for zero-phase digital filtering and the “butter” function for Butterworth filter de-

sign, from the Signal Processing Toolbox [252]. To the best knowledge, there are no similar functions 

implemented in C#. However, both functions are implemented in Python in the scipy library [253]. 

Therefore, the required data filtering using a Butterworth filter is performed in KiT by run-

ning Python code as a new process in C#. All the measures that need to be filtered are saved to a 

temporary text file together with the associated filter order and cut-off frequency values. The infor-

mation required to start the process includes the path of the Python interpreter and the command to 
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be executed. The command includes the path of the file with the Python code, as well as the name of 

the temporary file with the data to be filtered and the filter parameter values (command arguments).  

The resulting gait parameter values are used as input of the predictive model for subject 

identification. The R.NET library was again used to execute R code for: reading the contents of the 

CSV file with the gait analysis results; obtaining the probabilities provided by the predictive model 

for each gait cycle; choosing one of the subjects based on the probabilities using the method described 

in the study on subject identification. 

Once the subject has been identified, all files including Kinect data, activity and gait infor-

mation, and gait analysis results, which were saved to a temporary folder, are moved to a folder 

corresponding to the current date inside a folder corresponding to the subject’s ID. Furthermore, the 

gait analysis results are added to a CSV file that includes the latest results for all subjects. If the 

subject already exists in this dataset, the associated data are replaced. Then, a new predictive model 

is built using the updated dataset (relying again on the R.NET library), with the aim of minimizing 

incorrect identifications due to gait changes over time. 

8.1.2 Offline Gait Analysis 

In the context of research, it may necessary to perform gait analysis offline, when there is one 

or more acquisitions for which online gait analysis was not performed (e.g., acquisitions acquired 

before the implementation of our final system). In the future, an offline solution can also be useful 

to validate possible changes made to our solutions for activity recognition, gait cycle detection and/or 

gait parameter computation. 

Offline gait analysis can be carried out for a given data acquisition opened in our KiMA appli-

cation, by choosing the “Perform Gait Analysis” option in the context menu. A video showing the 

analysis being carried out for the three different tasks considered in Chapter 5 can be found on the 

following link: https://doi.org/10.1371/journal.pone.0201728.s001. The integration of gait analysis 

into KiMA was similar to the integration described above for KiT, with the difference that both ac-

tivity recognition and gait cycle detection are performed offline. Another difference is that subject 

identification is not performed, since we assume that in the context of research the identity of the 

subject is already know. Nonetheless, the ability of identifying the subject can be easily integrated in 

the same way as for KiT. 

To enable offline analysis for more than one acquisition without the need to open them one by 

one in KiMA, we also provide the possibility of carrying out offline gait analysis using code imple-

mented in Python. The activity recognition relies on the implemented R code, which is accessed 

https://doi.org/10.1371/journal.pone.0201728.s001
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using the rpy2 package. The parsing of Kinect data files and the computation and filtering of 

measures for gait cycle detection rely on C# methods through DLLs (dynamic link libraries), which 

are accessed using the pythonnet package. This code was used in a Python program that carried out 

automated gait analysis over all acquisitions in the last preliminary study with PD patients, as well 

as in the studies on subject identification. 

8.2 Summary 

The thesis’ work resulted in different solutions that were integrated into a system for gait 

assessment support. In contrast with other systems, our system allows carrying out fully automated 

gait analysis (except for starting the data acquisition), by relying on activity recognition, gait cycle 

detection and subject identification using only measures extracted from 3-D data provided by a single 

RGB-D camera and machine learning techniques. 

Firstly, the data corresponding to the walking activity are automatically identified by relying 

on activity recognition using machine learning techniques and measures extracted from the 3-D body 

joint data provided by a single Kinect v1 or v2 camera (acquired using our KiT application). For the 

identified gait data, the performed gait cycles are automatically detected. This detection is performed 

online, which allows to automatically stop the acquisition of data only when a defined number of 

gait cycles has been detected. Several parameters are computed for each detected gait cycle, which 

are then used to identify the associated subject, avoiding thus the manual indication of the subject’s 

identity. 
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9 Conclusion and Future Work 

This chapter presents the main conclusions of the performed work, as well as some possible 

future work directions. 

9.1 Conclusion 

The main objective of this thesis work was to provide a tool for supporting gait assessment, 

by studying, designing and developing solutions that enable quantitative human motion analysis dur-

ing gait in an automated way. The developed solutions were integrated into a system for automated 

online gait analysis, which is presented in Chapter 8. The system acquires the 3-D body joint data 

provided by a single RGB-D camera from a given subject. Then, these data are used to automatically 

identify gait data, detect the performed gait cycles, stop the acquisition when a defined number of 

gait cycles has been detected, compute several gait parameters per gait cycle and identify the corre-

sponding subject based on the obtained values. Therefore, our system allows saving time in the whole 

process of gait analysis when compared with an offline solution requiring manual selection of the 

relevant data and events and indication of the subject’s identity.  

Our system was shown to be a viable alternative to gold standard motion capture systems for 

obtaining several spatiotemporal parameters and a few kinematic parameters, which can be used to 

support gait assessment. Furthermore, the system is suitable for use in different environments, in-

cluding clinical environments, since it relies on a single markerless RGB-D camera that is less ex-

pensive, more portable, less intrusive and easier to set up than the gold standard systems (multiple 

cameras and several markers attached to the subject’s body). Although our system relies on a Kinect 

camera, other RGB-D cameras can be used with some adjustments to our data acquisition solution. 

The solutions for automated gait analysis and subject identification do not need any modification, as 

long as the 3-D position of the considered body joints are provided. 

Although nowadays there are sensors that enable motion quantification, the clinical motor 

assessment in Parkinson’s disease (PD) still relies mainly on ratings scales, such as the Unified PD 

Rating Scale (UPDRS). The UPDRS includes an item for evaluating gait relying on visual observa-

tion (subjective approach). The initial motivation of our work was thus to investigate if the quantita-

tive data provided by an RGB-D camera can be used to support clinical gait assessment in PD. Pre-

liminary studies carried out with data acquired in a hospital environment showed that gait infor-

mation extracted from the 3-D data provided by a single Kinect could potentially be used to evaluate 
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the severity of gait impairments in PD patients treated with deep brain stimulation [79-84] (Chapter 

3). Furthermore, the studies showed that the manual identification of gait data and events is very time 

consuming and prone to human errors. 

Therefore, the need to automate the whole process of gait analysis was the focus of the re-

maining research presented in this thesis. Other contributions on quantitative gait analysis consider 

that the acquired data include only gait data and propose a method for automated gait event detection 

only [55-65]. In contrast with these studies, we enable fully automated gait analysis by carrying out 

the different steps involved in gait analysis (except for starting the data acquisition) in an automated 

way, relying on the 3-D data provided by a single RGB-D camera, as described above. 

The data provided by the RGB-D camera, namely a Kinect (first or second version), are 

acquired using our KiT software application [78] (Chapter 4). The gait data are then automatically 

selected by detecting the walking activity using a predictive model for activity recognition, which 

was obtained using machine learning techniques [76] (Chapter 5). Based on measures extracted from 

3-D body joint data, the model recognizes three different activities (walking, standing and marching), 

as well as two different positions of the subject in relation to the camera (facing the camera or facing 

away from it), with an overall accuracy ≥ 96%. The latter ability is important if we wish to use only 

the data corresponding to one of the considered walking activities (walking towards and away from 

the Kinect), or analyse the movements of left and right joint separately for both activities.  

When walking is detected, the performed gait cycles and associated phases are automatically 

detected, by estimating the instants corresponding to relevant gait events, relying only on a few 

measures extracted from 3-D data [76] (Chapter 5). We were able to reduce the estimation error for 

one of the gait events, and consequently for the duration of gait phases, when compared with other 

methods proposed in the literature. Moreover, both activity recognition and gait cycle detection can 

be carried out online, enabling automated online gait analysis. Therefore, a minimum number of gait 

cycles required for gait analysis can be defined and the data acquisition will be stopped only when 

the defined number of gait cycles has been detected. 

For each detected gait cycle, several gait parameters are computed. The validity of the gait 

analysis results obtained by our system was evaluated against a gold standard system (multi-camera 

marker-based Qualisys system), for a group of healthy subjects. The results of this study (Chapter 6) 

show that the best overall agreement between systems was achieved when using the second version 

of the Kinect, data corresponding to walking towards the camera, and a Kinect configuration corre-

sponding to a height of 1 m. For this combination, most spatiotemporal parameters obtained with our 

system can be used for gait assessment support, while only a few kinematic parameters (elbow angle 

minimum and maximum) can be used for that purpose. When compared with the state of the art, we 
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considered a more complete set of parameters, including some kinematic parameters (elbow angles) 

that are usually not explored. Moreover, our solution had a better overall performance than other 

proposed methods in terms of agreement with a gold standard. 

The gait analysis results provided by our system contain information regarding the gait of 

the subject being assessed, which can be useful not only for supporting gait assessment, but also for 

identifying the subject according to previous work [66, 69, 70, 72]. Therefore, to avoid the manual 

indication of the subject’s identity, we explored the use of the obtained gait parameters and three 

anthropometric measures, together with machine learning techniques, for automatically identifying 

the corresponding subject (Chapter 7). This identification relies on a predictive model, which is re-

trained after each new session with the latest information to avoid incorrect identifications due to 

change in gait, for example. 

Our proposed method compares favourably with the state of the art, achieving a higher over-

all accuracy while using a lower number of features, when identifying healthy subjects using a single 

gait cycle and the second version of the Kinect [77]. For identification based on all available gait 

cycles, the overall accuracy was ≈100% when considering healthy subjects and PD patients sepa-

rately and together (model training/testing using gait cycles from the same data acquisition for each 

subject). When considering the more challenging situation of identifying PD patients over time, the 

overall accuracy decreased. This decrease was expected for gait parameters, but not for anthropo-

metric measures, since PD patients can have considerable changes in gait over short intervals of time, 

but their anthropometric measures should not change. Therefore, it would be interesting to further 

explore in the future the identification of subjects over time based on gait using the Kinect. 

9.2 Future Work 

The conducted research work can be further improved by enhancing the solutions proposed 

in this thesis and exploring other possible research directions. Some improvements over the devel-

oped solutions include the following: 

 Recognition of more activities: the solution for activity recognition can be enhanced by 

considering a greater number of activities that are relevant in the context of clinical motor 

assessment (e.g., sitting down and standing up from a chair, lateral trunk flexion, shoul-

der/elbow flexion). The inclusion of more activities/tasks would allow not only perform-

ing regular or sporadic gait assessments, but also monitoring the gait of a subject more 

continuously at home, for example. Furthermore, it would enable automated analysis of 

other motor tasks besides gait.  
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 Enhancement of subject identification: explore if the identification of PD patients over 

time can be improved, by investigating new features (e.g., new gait parameters and/or 

anthropometric measures). Another possibility is to investigate the computation of a sim-

ilarity measure between two gait cycles using, for example, dynamic time warping 

(DTW) over measures extracted from 3-D body joint data, which is an approach that has 

been used in studies on subject identification [67, 69]. Our subject identification solution 

could be further improved by avoiding incorrect identifications when the subject does not 

yet exist in our system. A possibility would be to detect these cases relying on probabili-

ties provided by the predictive model and a threshold. 

 Enhancement of gait assessment support: to enable the use of all considered gait pa-

rameters for gait assessment support, it would be important to investigate if the agreement 

between our system and a gold standard system can be improved for kinematic gait pa-

rameters (agreement was found to be moderate or poor for most of these parameters – 

Chapter 6). This improvement could be achieved by exploring, for example, the removal 

of outliers over the time series corresponding to measures extracted from 3-D data and/or 

the use of other data filtering techniques. 

Previous research work can also be extended by acquiring new or larger datasets correspond-

ing to healthy subjects and/or patients with gait impairments, to allow the validation of the solutions 

proposed in this thesis for the following different situations: 

 Identification of healthy subjects over time: investigate if our method proposed for 

human identification can be used for identifying healthy subjects over time. The results 

of this study can help to better understand the reasons of the decrease in overall accuracy 

observed for PD patients, when comparing the use of data from a new acquisition session 

and the same session for identification (Chapter 7). 

 Gait assessment support in PD: extend the preliminary studies on the use of an RGB-D 

camera supporting the clinical gait assessment of PD patients treated with DBS (Chapter 

3). It would be interesting to explore the use of machine learning techniques together with 

gait information to obtain a model that provides the probability of a patient belonging to 

each one of three different groups (healthy subjects, PD patients in Stim-on state, and PD 

patients in Stim-off state). It would also be interesting to confirm the obtained results 

regarding the estimation of UPDRS scores and further investigate if those results can be 

improved, by considering other gait parameters or the use of DTW to obtain a similarity 

measure between gait patterns. 
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 Automated gait analysis for subjects with gait impairments: evaluate the validity of 

the activity recognition solution and the gait parameters provided by our automated gait 

analysis solution, when considering patients with diseases that can affect the gait, such as 

PD and TTR-FAP. 

There are also new research directions that can be explored in the context of motor function 

assessment, including the following: 

 Integration of multimodal data: develop solutions for representing, integrating, persist-

ing and querying the available multimodal data (e.g., personal, clinical and quantitative 

data). A possibility is to rely on ontologies and/or graph databases, which also enable the 

addition of new data (e.g., new sensors for motion quantification, motor tasks, quantita-

tive and clinical information) if necessary. 

 Extraction of new knowledge from the multimodal data: explore the use of machine 

learning techniques to obtain new information from the multimodal data described above 

for a group of patients, such as the best treatment or the most adequate rehabilitation 

exercises for a given patient, considering the previous treatment or rehabilitation out-

comes. This new knowledge can further help the physicians in their decisions during pa-

tient follow-up. 

 Support the assessment of other motor functions besides gait: provide support to the 

assessment of other motor tasks (e.g., exercises involving the arms and/or legs), posture 

and/or balance, facial expression and speech, relying on the same Kinect sensor used for 

gait analysis. New sensors could also be used to enable the analysis of more fine-grained 

movements involving the hands/fingers (e.g., opening and closing the hands, pronation-

supination movements of the hands, tremor of the hands, and finger tapping). Some sen-

sors that could be appropriate for analysing these movements are other vision-based sen-

sors that specifically tracks hands/fingers (e.g., Leap Motion sensor [254]), wearables 

sensors (e.g., accelerometer, gyroscope) and/or the touchscreen of smart devices (e.g., 

smartphone, smartwatch). 

The solutions and sensors described above could be integrated into the system presented in 

this thesis, to enhance the support to clinical assessment of motor function and patient follow-up. 

An aspect that may need to be taken into account in the future is the extension of our system 

so it can be used with other RGB-D cameras besides the Kinect, due to the discontinuation of this 

camera. The alternative suggested by Microsoft [255] for developers that have worked with the Ki-

nect are the Intel’s RealSense depth cameras [157]. Other alternatives include the VicoVR [158], 

Orbbec cameras [159], and Stereolabs’ ZED camera [160]. There is also the possibility of using a 
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new generation of the Kinect, which has been announced as part of the Project Kinect for Azure 

[256]. The major necessary changes or additions to our system would be related to the connection 

between the new camera and the computer, as well as the processing of the data provided by the new 

camera for data acquisition/visualization. As long as the position of the body joints that we use for 

gait analysis can be obtained, no modifications are required to our automated gait analysis solution. 

With the current technological advances, we envision the use of only a smartphone to support 

the assessment of various motor tasks, including gait. There are already a number of smartphones 

that include a depth camera [257-259], but its use is usually limited to facial recognition or blurring 

the background of a photograph. Recently, Vivo announced they are developing 3-D sensing tech-

nology for smartphones based on the time-of-flight technique (same approach used in the second 

version of the Kinect) [260], which enables the 3-D mapping of objects located up to a distance of 3 

m. A smartphone with this capability can potentially be used to visualize and acquire full-body 3-D 

motion data, carry out motion analysis, and access the current and previous assessment results, using 

a single device that we carry with us on a daily basis. Another advantage of using a smartphone is 

that it also includes other sensors (e.g., microphone, accelerometer, and gyroscope) that can be used 

to complement the motor function assessment of a subject. 
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Appendix A KiT and KiMA File Format 

This appendix includes the format of the files created by the KiT and KiMA software appli-

cations to store Kinect data, as well as label and event information associated to the data acquisitions. 

A.1 File Format for Kinect Data 

The file format used to save the Kinect data is presented below, for each Kinect version (v1 

and v2) and each data type (colour, infrared, depth and/or 3-D body joint data). The file extension 

used for each data type is also indicated. Each file includes a header with relevant information, such 

as the sensor name, resolution, height and tilt angle of the Kinect, depending on the data type. Fol-

lowing the header, there is a line for each data frame, including the corresponding timestamp and the 

data itself. 

Kinect v1 (KiT version 2.6.1) 

Colour (.kvid extension) 

Sensor=sensorName;SensorID=uniqueKinectID;Version=2.3;KinectSDK=KinectSDKVersion 

Resolution=WxH;Tilt=A;Height=KH 

timestamp1>frame1 

… 

timestampN>frameN 

 

sensorName = Kinect_v1 

W = frame width in pixels 

H = frame height in pixels 

A = Kinect tilt angle 

KH = Kinect height (if available) 

frame = bytes corresponding to pixel data 

Depth (.kdpt extension) 

Sensor=sensorName;SensorID=uniqueKinectID;Version=2.3;KinectSDK=KinectSDKVersion 

Resolution=WxH;Tilt=A;Height=KH 

timestamp1>frame1 
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… 

timestampN>frameN 

 

sensor_name = Kinect_v1 

W = frame width in pixels 

H = frame height in pixels 

A = Kinect tilt angle 

KH = Kinect height (if available) 

frame = bytes corresponding to pixel data (it is necessary to convert them to shorts) 

3-D body joint (.kpos extension) 

Sensor=sensorName;SensorID=uniqueKinectID;Version=2.3;KinectSDK=KinectSDKVersion 

ColorResolution=WxH;DepthResolution=WxH;Tilt=A;Height=KH 

timestamp1>frame1 

… 

timestampN>frameN 

 

sensor_name = Kinect_v1 

W = frame width in pixels 

H = frame height in pixels 

A = Kinect tilt angle 

KH = Kinect height (if available) 

frame = 

skeletonTrackingState;skeletonCenter;skeletonCenterColor;skeletonCenterDepth;clippedEdges;join

t1;joint1Color;joint1Depth;joint1TrackingState;…;joint20;joint20Color;joint20Depth;bone1Quater

nionAboslute;bone1MatrixAbsolute;bone1QuatenionHierarchical;bone1MatrixHierarchical;…;bon

e20QuaternionAbsolute;bone20MatrixAbsolute;bone20QuatenionHierarchical;bone20MatrixHiera

rchical 

skeletonTrackingState = “PositionOnly” or “Tracked” 

skeletonCenter = [x;y;z] 

skeletonCenterColor = [x;y] 

skeletonCenterDepth = [x;y] 

clippedEdges = “None” or “Top, Bottom, Right, Left” (can be a combination of any of the four)  

jointN = [x;y;z] 

jointNColor = [x;y] 
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jointNDepth = [x;y] 

jointNTrackingState = “Tracked”, “Inferred” or “NotTracked” 

boneNQuaternionAbsolute = [x;y;z;w] 

boneNMatrixAbsolute = [M11;…;M14;M21;…;M24;M31;…;M34;M41;…;M44] 

boneNQuatenionHierarchical = [x;y;z;w] 

boneNMatrixHierarchical = [M11;…;M14;M21;…;M24;M31;…;M34;M41;…;M44] 

 

Kinect v2 (KiT version 1.6.0) 

Color, Infrared, Depth, and Body Index (.kvid, .kir, .kdpt, .kbi extensions) 

Sensor=sensorName;SensorID=uniqueKinectID;Version=version;KinectSDK=KinectSDKVersion 

Resolution=WxH;Tilt=A;Height=KH 

timestamp1>frame1 

… 

timestampN>frameN 

 

sensor_name = Kinect_v2 

version = 1.5 

W = frame width in pixels 

H = frame height in pixels 

A = Kinect tilt angle (if available) 

KH = Kinect height (if available) 

frame = bytes corresponding to pixel data 

3-D body joint (.kpos extension) 

Sensor=sensorName;SensorID=uniqueKinectID;Version=version;KinectSDK=KinectSDKVersion 

ColorResolution=WxH;DepthResolution=WxH;Tilt=A;Height=KH 

timestamp1>frame1 

… 

timestampN>frameN 

 

sensor_name = Kinect_v2 

version = 1.5 

W = frame width in pixels 
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H = frame height in pixels 

A = Kinect tilt angle (if available) 

KH = Kinect height (if available) 

frame = 

isRestricted;clippedEdges;joint1;joint1Color;joint1Depth;joint1TrackingState;…;joint25;joint25Co

lor;joint25Depth;bone1Orientation;…;bone25Orientation;engaged;handLeftState;handLeftConfide

nce;handRightState;handRightConfidence;lean;leanTrackingState 

isRestricted = 0 (false) or 1 (true) 

clippedEdges = “None” or “Top, Bottom, Right, Left” (can be a combination of any of the four)  

jointN = [x;y;z] 

jointNColor = [x;y] 

jointNDepth = [x;y] 

jointNTrackingState = “Tracked”, “Inferred” or “NotTracked” 

boneNOrientation = [x;y;z;w] 

engaged = “Unknown”, “No”, “Maybe”, “Yes” 

handLeft/RightState = “Unknown”, “NotTracked”, “Open”, “Closed”, “Lasso” 

handLeft/RightConfidence = 0 (high) or 1 (low) 

lean = [x;y]  number between −1 (leaning left or back) and 1 (leaning right or front); leaning left 

and right corresponds to X movement and leaning forward and back corresponds to Y movement. 

leanTrackingState = “Tracked”, “Inferred” or “NotTracked” 

 



A.2 File Format for Label and Event Information 

 

 

181 

A.2 File Format for Label and Event Information 

KiT and KiMA allow the indication/selection of given instants and time intervals for a data 

acquisition, which are saved as labels and events. The associated information is saved to an XML 

file, which is generated using the format shown in the following example: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<Tags> 

  <Event> 

      <Start> 

         <FrameNumber>266</FrameNumber> 

         <Timestamp>20160617151131940</Timestamp> 

      </Start> 

      <End> 

         <FrameNumber>358</FrameNumber> 

         <Timestamp>20160617151135041</Timestamp> 

      </End> 

      <Name>Walk front</Name> 

  </Event> 

  <Label> 

      <FrameNumber>293</FrameNumber> 

      <Timestamp>20160617151132840</Timestamp> 

      <Name>Right heel strike (front)</Name> 

   </Label> 

   <Label> 

      <FrameNumber>309</FrameNumber> 

      <Timestamp>20160617151133373</Timestamp> 

      <Name>Left heel strike (front)</Name> 

   </Label> 

   <Label> 

      <FrameNumber>326</FrameNumber> 

      <Timestamp>20160617151133941</Timestamp> 

      <Name>Right heel strike (front)</Name> 

   </Label> 

   <Label> 

      <FrameNumber>297</FrameNumber> 

      <Timestamp>20160617151132974</Timestamp> 

      <Name>Left toe off (front)</Name> 

   </Label> 

   <Label> 

      <FrameNumber>313</FrameNumber> 

      <Timestamp>20160617151133507</Timestamp> 

      <Name>Right toe off (front)</Name> 

   </Label> 

</Tags> 
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Appendix B Study on Interference between Motion 

Capture Systems 

This appendix presents a study on the interference between the three different systems we 

used in our studies: first version of the Kinect (Kinect v1 – Kv1), second version of the Kinect (Kinect 

v2 – Kv2) and Qualisys system. 

Each Kinect version relies on a different depth sensing method: Kv1 uses a structured light 

approach, while the Kv2 is based on the time-of-flight principle [180]. Therefore, there should be no 

interference between them. However, to the best of our knowledge, this has not been verified before. 

For this reason, we performed a study to ensure that the use of the considered systems simultaneously 

does not introduce additional noise to the acquired data. 

The study was performed using data acquired from five healthy subjects while they stood as 

still as possible during 5 seconds (three trials per subject), for the following different situations: 

1. Only Kv1 switched on; 

2. Only Kv2 switched on; 

3. Both Kinects switched on (Kv1+Kv2); 

4. Both Kinects and Qualisys switched on (Kv1+Kv2+Q). 

The subjects corresponded to five of the twenty subjects that participated in the experiment 

performed for the studies on the validity of the Kinect for gait analysis. The setup was also the same 

as the one used in that experiment, with the Kinects at a height of 1 m, with a tilt angle of −10 degrees 

for Kv1 and −5 degrees for Kv2 (KC1). Each subject performed the standing still activity while 

facing the Kinect, at a distance of approximately 3 m. The time intervals corresponding to the activity 

of interest were manually selected for each subject and trial, using KiMA [78]. 

For each situation, subject, trial, body joint and axis (x-, y-, and z-axis), we obtained the 

standard deviation of the joint position provided by Kv1 and/or Kv2. This measure was considered 

as a measure of noise. The mean and standard deviation of the noise measure, when considering all 

subjects and trials, are presented in Table B.1 for each body joint (all axes) and all body joints (each 

axis and all axes). 

The obtained results show that the noise of Kv1/Kv2 data does not vary considerably be-

tween the different situations: mean value of 4.0–4.4 mm for Kv1 and 4.1–4.6 mm for Kv2 (all joints 

and all axes). Furthermore, a statistical test (repeated-measures ANOVA) performed over the mean 
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noise measure values (all joints and all axes) for all subjects showed that there is no statistically 

significant difference between the three situations (p-value > 0.05), for both Kv1 and Kv2. 

 

Table B.1. Mean and standard deviation values for the noise measure computed over Kv1 and Kv2 

data acquired from subjects while standing still, with only Kv1/Kv2 switched on, both Kv1 and Kv2 

switched on (Kv1+Kv2) and both Kinects and Qualisys system switched on (Kv1+Kv2+Q). 

The results are presented for each joint (all axes) and all joints (each axis and all axes). 

Body 

segment 
Body joint Axis 

Noise measure (mm)a 

Kv1 Kv2 

Kv1 Kv1+Kv2 Kv1+Kv2+Q Kv2 Kv1+Kv2 Kv1+Kv2+Q 

Trunk 

Head 

 

4.1 ± 3.2 3.4 ± 2.4 3.2 ± 2.1 3.7 ± 3.9 2.8 ± 2.1 2.5 ± 1.9 

Neck 2.8 ± 2.0 2.6 ± 1.8 2.7 ± 1.6 3.3 ± 3.5 2.5 ± 1.9 2.3 ± 1.6 

Spine shoulder ― ― ― 3.0 ± 3.3 2.3 ± 1.8 2.2 ± 1.5 

Spine middle 2.0 ± 1.5 2.2 ± 1.9 1.8 ± 1.5 2.4 ± 2.8 1.8 ± 1.6 1.8 ± 1.2 

Spine base 2.0 ± 1.4 2.3 ± 2.1 1.8 ± 1.5 2.0 ± 2.2 1.6 ± 1.3 1.6 ± 1.1 

Upper 

limbs 

Left shoulder 2.5 ± 1.6 2.4 ± 1.8 2.7 ± 1.7 2.9 ± 3.0 2.4 ± 1.8 2.2 ± 1.3 

Right shoulder 2.7 ± 1.8 2.9 ± 2.1 2.7 ± 1.8 2.8 ± 3.1 2.4 ± 1.7 2.2 ± 1.4 

Left elbow 3.2 ± 1.7 2.7 ± 1.6 3.2 ± 1.8 2.9 ± 2.7 2.3 ± 1.8 2.4 ± 1.5 

Right elbow 2.5 ± 1.7 2.8 ± 1.7 3.0 ± 1.7 2.9 ± 2.9 2.5 ± 1.4 2.3 ± 1.3 

Left wrist 4.8 ± 2.5 4.8 ± 3.5 5.2 ± 3.8 3.3 ± 2.0 2.8 ± 1.9 2.9 ± 1.4 

Right wrist 3.6 ± 3.3 4.1 ± 3.0 3.7 ± 2.4 4.1 ± 3.0 4.3 ± 4.9 4.2 ± 4.4 

Left hand 6.3 ± 3.6 5.0 ± 2.8 6.9 ± 4.5 5.0 ± 2.1 4.9 ± 3.4 5.0 ± 2.8 

Right hand 6.6 ± 4.7 6.3 ± 3.8 7.1 ± 4.4 5.0 ± 3.0 4.8 ± 3.1 4.9 ± 3.5 

Left hand tip ― ― ― 10.8 ± 2.7 10.6 ± 3.9 10.1 ± 3.1 

Right hand tip ― ― ― 16.9 ± 9.4 15.4 ± 7.9 14.4 ± 8.2 

Left thumb ― ― ― 11.4 ± 4.4 8.5 ± 3.5 10.0 ± 3.9 

Right thumb ― ― ― 14.5 ± 7.6 17.0 ± 8.4 17.0 ± 9.8 

Lower 

limbs 

Left hip 2.1 ± 1.4 2.2 ± 2.1 1.8 ± 1.6 2.0 ± 2.2 1.6 ± 1.3 1.7 ± 1.1 

Right hip 2.0 ± 1.3 2.4 ± 2.2 1.8 ± 1.5 2.0 ± 2.2 1.7 ± 1.4 1.7 ± 1.1 

Left knee 3.1 ± 2.4 2.2 ± 1.4 2.3 ± 1.4 1.8 ± 1.4 1.5 ± 0.9 1.4 ± 0.5 

Right knee 2.6 ± 1.8 2.2 ± 1.1 2.5 ± 1.4 1.8 ± 2.0 1.7 ± 0.9 1.7 ± 1.1 

Left ankle 3.8 ± 3.3 3.6 ± 3.2 4.1 ± 3.6 1.8 ± 2.0 1.6 ± 1.2 1.7 ± 1.8 

Right ankle 3.9 ± 2.6 4.0 ± 3.0 3.3 ± 2.2 1.1 ± 0.8 1.1 ± 0.9 1.3 ± 1.2 

Left foot 17.4 ± 8.8 10.4 ± 8.9 11.9 ± 10.1 7.2 ± 10.5 3.8 ± 6.6 1.8 ± 1.8 

Right foot 10.3 ± 7.9 11.0 ± 8.2 9.7 ± 8.1 1.3 ± 0.8 3.1 ± 6.6 3.1 ± 6.0 

All 

x 2.5 ± 2.2 2.2 ± 1.5 2.5 ± 2.0 3.4 ± 5.5 3.1 ± 5.2 3.4 ± 5.6 

y 5.2 ± 5.9 4.5 ± 5.1 4.6 ± 5.7 4.2 ± 5.3 4.1 ± 5.4 4.1 ± 5.2 

z 5.5 ± 5.5 5.3 ± 4.7 5.0 ± 4.8 6.3 ± 6.3 5.3 ± 5.7 4.7 ± 5.1 

All 4.4 ± 5.0 4.0 ± 4.3 4.1 ± 4.6 4.6 ± 5.8 4.2 ± 5.5 4.1 ± 5.3 

 a The noise measure corresponds to the standard deviation for the joint position. The presented values are the mean and stand-

ard deviation of the noise measure when considering all subjects and trials. 
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These results indicate that there is no interference between the two versions of the Kinect, 

which was expected due to the use of different depth sensing approaches. Furthermore, there is also 

no interference between the Kinects and Qualisys system, which is an important result since the data 

used in some studies presented in this thesis were acquired using the three systems simultaneously. 

Although the main aim of this study was to verify whether there is interference between the 

used systems or not, it also allowed verifying if there is any difference regarding noise between the 

different body joints tracked by the Kinect, the two Kinect versions and the three axes. 

It is interesting to note that the joints at the extremities of the body segments have the most 

noise: head for the trunk; hands and/or thumbs and hand tips for the upper limbs; and feet for the 

lower limbs. However, the mean noise values for these joints are not considerably different from the 

remaining ones, with the exception of the feet for Kv1 and the hand tips and thumbs for Kv2. 

The difference among the three axes regarding noise is not considerable (slightly less noise 

for the x-axis). Furthermore, the noise measure results are similar for the two versions of the Kinect, 

when considering all joints and axes. However, if only the joints tracked by both versions are con-

sidered, the data provided by the Kv2 is less noisy than Kv1 (mean noise measure of 2.4–3.0 mm vs 

4.0–4.4 mm). This happens because the hand tips and thumbs, which are only tracked by the Kv2, 

are the joints that present the highest noise measure value for this sensor (mean of 8.5–17.0 mm). In 

addition, the lower limb joints have less noise for Kv2 than Kv1 (mean noise measure of 1.1–7.2 mm 

vs 1.8–17.4 mm).  
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Appendix C Additional Information Regarding 

Gait Cycle Detection 

This appendix describes the method used to automatically select the time intervals corre-

sponding to walking towards and away from the Kinect, for each gait trial. It also includes the de-

tailed description of the method used to automatically identify the actual gait events relying on Qual-

isys data. 

C.1 Selection of Walking Towards and Away from the Kinect 

For each gait trial, the time intervals during which the subject was walking towards and away 

from the Kinect (WF and WB) were automatically selected taking into account the acquired Kinect 

data, by carrying out the following steps: 

1. Select the frames for which all joints are being tracked or inferred; 

2. Considering only the frames selected in step 1, identify the instant when the subject 

turns around, i.e., the frame for which the distance between the spine middle joint and 

the Kinect (on the z-axis) is minimum; 

3. Considering only the frames before/after (WF/WB) the instant detected in step 2, find 

the first and last frames for which the number of tracked joints is higher or equal to N−5 

(N is the total number of joints) and none of the joints are outside the field of view 

(according to the clipped edges information provided by the Kinect), or all joints are 

tracked except the head.  

C.2 Identification of the Actual Gait Events from Qualisys 

Data 

For the selected WF and WB data, the actual heel strike and toe off events were identified 

using the left and right feet vertical velocity computed from Qualisys data. For a given frame, the 

vertical velocity of a joint is computed using the equation vy ≈ y/t, where y is the difference 

between the joint y-coordinate for the current and previous frames, and Δt is the time elapsed between 

the same frames. 
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To aid in the identification of the gait events, we additionally computed the feet velocity 

using 
2 2 2

2

x y z
v

t

    



. 

The foot velocity signals were processed using a fourth order zero-lag low-pass Butterworth 

filter with a cut-off frequency of 8 Hz, with the aim of removing some noise that could make it more 

difficult to correctly detect the considered events. The cut-off frequency value of the filter was chosen 

by taking into account the frequency content of the signals. 

Taking into account the findings of O’Connor et al. [128], left/right heel strikes were identi-

fied by performing the following steps: 

1. Find the local minima of the left/right foot vertical velocity (using the “findpeaks” 

Matlab function over the negative signal); 

2. For each local minimum, it was considered as an actual heel strike if all the following 

conditions are met: 

a. The vertical velocity of the considered foot is less than or equal to the vertical 

velocity of the opposite foot; 

b. The absolute difference between the vertical velocity of both feet is greater than or 

equal to 0.1 m/s; 

c. The velocity of the considered foot is greater than or equal to the velocity of the 

opposite foot; 

d. The velocity of the considered foot is less than or equal to 2 m/s; 

e. The acceleration of the considered foot (computed from the foot velocity considering 

the current frame i and frame i+15) is non-positive; 

f. The difference between the ankle distance for the current frame i and frame i−25 is 

non-negative. 

The left/right toe offs were identified by performing the following steps: 

1. Find the local maxima of the left/right foot vertical velocity (using the “findpeaks” 

Matlab function); 

2. For each local maximum, it corresponds to an actual toe off if all the following 

conditions are met: 
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a. The vertical velocity of the considered foot is greater than or equal to the vertical 

velocity of the opposite foot; 

b. The velocity of the considered foot is greater than or equal to the velocity of the 

opposite foot; 

c. The vertical velocity of the considered foot is greater than or equal to 0.2 m/s; 

d. The difference between the ankle distance for consecutive frames between frames 

i−5 and i+5, where i is the number of the current frame, is non-positive. 

Even after filtering the feet vertical velocity signal, there was still some noise for some trials, 

which led to the identification of two toe off events instead of just one. Therefore, if the time interval 

between two consecutive identified toe offs was lower than or equal to 0.25 s (approximately half 

the mean step duration for healthy subjects – see Appendix G), they were both ignored. 
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Appendix D Window Size Selection for Gait Cycle 

Detection 

This appendix includes the results obtained for different sizes for the windows used to detect 

gait cycles, including the estimation of heel strike instants, identification of the heel strike side and 

estimation of toe off instants. The results obtained for Kinect v1 (Kv2) and Kinect v2 (Kv2) and for 

WF and WB trials, using configuration KC1, are presented in Tables D.1 to D.12. The results ob-

tained for Kv2 and WF trials, using configurations KC1, KC2 and KC3, are presented in Tables D.13 

to D.21. For each table, the results corresponding to the chosen window size are indicated in bold. 
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D.1 Results for Both Kinect Versions and Walking Activities 

Kv1 and WF (KC1, 10 trials) 

 

Table D.1. Results for heel strike instant estimation when using Kv1 and WF data (KC1, 10 trials), 

considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 63.1 97.6 −3.4 ± 40.1 29.0 ± 27.8 −4.6 ± 67.4 48.4 ± 46.9 0.5 ± 54.8 39.6 ± 37.8 

1 5 94.9 70.0 11.2 ± 33.6 26.9 ± 22.9 1.6 ± 55.2 36.2 ± 41.3 2.5 ± 43.7 33.8 ± 27.7 

1 7 96.9 58.4 9.9 ± 27.7 23.6 ± 17.6 0.5 ± 33.7 25.1 ± 21.7 4.4 ± 36.4 29.8 ± 21.1 

1 9 97.0 54.1 10.9 ± 27.0 23.4 ± 17.2 2.4 ± 39.2 29.3 ± 24.8 5.2 ± 36.0 28.9 ± 22.0 

3 3 95.1 95.1 6.4 ± 25.0 19.2 ± 17.3 0.4 ± 35.1 23.5 ± 26.0 0.0 ± 31.9 23.3 ± 21.8 

3 5 98.8 92.5 8.0 ± 21.6 18.4 ± 13.9 2.7 ± 25.2 20.7 ± 14.6 1.3 ± 27.7 21.7 ± 17.1 

3 7 99.6 91.4 8.1 ± 21.3 18.2 ± 13.8 3.1 ± 24.3 20.0 ± 14.0 1.7 ± 27.0 21.2 ± 16.7 

3 9 99.6 88.1 8.3 ± 21.3 18.2 ± 13.7 3.5 ± 24.6 20.4 ± 14.1 2.1 ± 26.5 21.0 ± 16.3 

5 3 97.7 96.6 8.7 ± 22.2 17.9 ± 15.8 0.3 ± 35.6 22.7 ± 27.3 −0.1 ± 27.4 19.4 ± 19.3 

5 5 99.6 92.9 8.6 ± 19.3 17.3 ± 12.1 3.0 ± 25.4 20.0 ± 15.8 0.9 ± 23.4 18.1 ± 14.7 

5 7 99.6 92.4 8.7 ± 19.2 17.3 ± 12.0 2.5 ± 25.4 19.8 ± 15.9 0.7 ± 23.3 18.0 ± 14.7 

5 9 99.6 89.7 9.0 ± 19.1 17.3 ± 12.1 3.2 ± 25.7 20.2 ± 16.1 1.1 ± 23.4 18.1 ± 14.9 

7 3 95.0 95.1 5.3 ± 29.8 21.7 ± 21.2 15.8 ± 34.9 29.8 ± 23.9 5.5 ± 39.6 26.0 ± 30.4 

7 5 99.0 91.4 8.1 ± 23.1 19.7 ± 14.5 12.9 ± 31.9 27.2 ± 20.9 5.2 ± 28.0 21.2 ± 19.0 

7 7 99.8 87.9 8.9 ± 22.5 19.4 ± 14.3 12.3 ± 32.0 27.0 ± 20.8 5.0 ± 26.4 20.2 ± 17.6 

7 9 99.8 87.9 8.9 ± 22.5 19.4 ± 14.3 12.3 ± 32.0 27.0 ± 20.8 5.0 ± 26.4 20.2 ± 17.6 

9 3 95.0 92.4 9.9 ± 33.7 27.8 ± 21.4 32.1 ± 58.4 53.3 ± 39.8 13.4 ± 42.3 30.6 ± 32.1 

9 5 99.4 88.6 11.5 ± 31.9 26.8 ± 20.7 35.9 ± 55.8 52.7 ± 40.2 13.2 ± 41.0 29.0 ± 31.9 

9 7 99.6 86.9 12.1 ± 30.9 26.4 ± 20.1 33.7 ± 54.4 50.0 ± 39.8 11.4 ± 37.7 26.7 ± 29.0 

9 9 99.8 81.7 12.9 ± 29.9 26.3 ± 19.2 35.9 ± 48.2 47.3 ± 37.0 12.3 ± 36.1 25.3 ± 28.5 
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Table D.2. Results for heel strike side identification when using Kv1 and WF data (KC1, 10 trials), 

considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity for left and right heel strikes. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 84.2 84.2 81.6 86.7 

1 5 96.1 96.6 96.5 96.6 

1 7 99.6 97.8 97.8 99.6 

1 9 99.6 98.9 99.1 99.6 

3 3 99.1 96.7 96.5 99.3 

3 5 100.0 98.9 99.1 100.0 

3 7 99.6 99.3 99.6 99.6 

3 9 100.0 99.3 99.6 100.0 

5 3 99.6 98.5 98.7 99.6 

5 5 99.1 99.3 99.6 99.3 

5 7 100.0 99.3 99.6 100.0 

5 9 100.0 99.3 99.6 100.0 

7 3 100.0 99.3 99.6 100.0 

7 5 100.0 99.3 99.6 100.0 

7 7 100.0 99.3 99.6 100.0 

7 9 100.0 99.3 99.6 100.0 

9 3 100.0 99.3 99.6 100.0 

9 5 100.0 99.3 99.6 100.0 

9 7 100.0 99.3 99.6 100.0 

9 9 99.6 99.3 99.6 99.6 
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Kv1 and WB (KC1, 10 trials) 

 

Table D.4. Results for heel strike instant estimation when using Kv1 and WB data (KC1, 10 trials), 

considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 57.9 96.1 −9.8 ± 50.6 39.2 ± 33.4 −16.5 ± 70.4 55.3 ± 46.3 −5.9 ± 66.2 50.8 ± 42.8 

1 5 94.6 67.8 22.0 ± 39.4 36.3 ± 26.7 0.2 ± 48.0 36.0 ± 31.3 1.7 ± 53.1 40.8 ± 33.9 

1 7 95.5 48.6 23.2 ± 34.1 33.0 ± 24.7 1.2 ± 38.6 30.6 ± 22.6 0.2 ± 44.7 33.9 ± 28.9 

1 9 95.9 45.4 23.0 ± 32.0 31.7 ± 23.4 −2.2 ± 39.6 29.8 ± 25.1 −0.3 ± 39.3 29.0 ± 26.4 

3 3 90.0 94.2 20.7 ± 30.3 29.7 ± 21.5 −6.9 ± 41.3 31.8 ± 27.2 −1.7 ± 37.6 29.9 ± 22.8 

3 5 96.6 89.0 22.7 ± 29.5 30.1 ± 21.9 −3.7 ± 38.0 28.1 ± 25.8 −1.4 ± 35.7 28.4 ± 21.7 

3 7 97.1 87.8 22.7 ± 28.5 29.5 ± 21.3 −2.0 ± 35.0 27.0 ± 22.2 −1.0 ± 34.7 27.8 ± 20.7 

3 9 97.2 86.9 22.8 ± 28.0 29.3 ± 21.1 −2.0 ± 34.8 26.7 ± 22.3 −1.5 ± 33.5 27.1 ± 19.6 

5 3 95.0 94.0 19.4 ± 26.2 25.5 ± 20.3 −2.5 ± 32.3 23.9 ± 21.7 −1.2 ± 30.9 21.7 ± 22.0 

5 5 97.9 92.0 19.7 ± 25.8 25.5 ± 20.0 −1.4 ± 33.5 24.2 ± 23.1 −0.9 ± 28.3 20.9 ± 19.1 

5 7 97.9 91.9 19.9 ± 25.4 25.4 ± 19.8 −0.6 ± 32.1 23.5 ± 21.8 −0.6 ± 27.7 20.6 ± 18.5 

5 9 98.5 91.0 19.7 ± 24.3 25.0 ± 18.8 −1.6 ± 30.6 22.8 ± 20.3 −1.7 ± 25.7 19.8 ± 16.4 

7 3 96.4 93.5 19.0 ± 27.1 25.3 ± 21.3 −7.2 ± 26.7 20.9 ± 18.0 −3.4 ± 34.1 21.4 ± 26.7 

7 5 97.8 92.8 20.3 ± 21.9 24.4 ± 17.3 −6.6 ± 26.2 20.6 ± 17.4 −2.3 ± 24.2 19.2 ± 14.9 

7 7 97.7 91.7 20.6 ± 21.7 24.5 ± 17.2 −5.7 ± 25.7 20.3 ± 16.6 −1.8 ± 23.9 19.0 ± 14.7 

7 9 97.9 91.0 20.8 ± 21.6 24.6 ± 17.2 −6.0 ± 25.8 20.4 ± 16.8 −2.1 ± 23.7 18.9 ± 14.5 

9 3 96.7 92.8 21.0 ± 21.5 24.8 ± 17.0 −6.3 ± 28.1 21.8 ± 18.6 −3.3 ± 24.3 18.8 ± 15.8 

9 5 97.6 92.4 21.0 ± 21.5 24.8 ± 16.9 −6.6 ± 28.1 21.9 ± 18.7 −3.5 ± 24.3 18.8 ± 15.8 

9 7 98.1 91.3 21.5 ± 22.0 25.2 ± 17.6 −7.9 ± 32.2 23.5 ± 23.3 −4.0 ± 24.6 18.9 ± 16.3 

9 9 98.0 88.2 22.0 ± 20.7 25.1 ± 16.9 −5.7 ± 27.5 21.2 ± 18.3 −2.9 ± 23.4 18.0 ± 15.2 
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Table D.5. Results for heel strike side identification when using Kv1 and WB data (KC1, 10 trials), 

considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity for left and right heel strikes. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 84.7 80.7 80.2 86.2 

1 5 91.1 92.3 92.8 91.2 

1 7 94.9 99.2 99.2 95.3 

1 9 97.7 96.5 96.6 98.4 

3 3 95.8 94.2 94.3 96.4 

3 5 97.0 96.9 97.0 97.6 

3 7 97.7 96.9 97.0 98.4 

3 9 98.5 99.6 99.6 99.2 

5 3 95.9 97.6 97.7 96.5 

5 5 98.5 98.1 98.1 99.2 

5 7 98.9 99.2 99.2 99.6 

5 9 98.1 99.2 99.2 98.8 

7 3 97.4 98.8 98.9 98.0 

7 5 98.5 98.4 98.5 99.2 

7 7 98.5 98.8 98.9 99.2 

7 9 99.3 100.0 100.0 100.0 

9 3 97.8 98.4 98.5 98.4 

9 5 97.7 97.3 97.4 98.4 

9 7 98.9 99.2 99.2 99.6 

9 9 98.9 100.0 100.0 99.6 
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Kv2 and WF (KC1, 10 trials) 

 

Table D.7. Results for heel strike instant estimation when using Kv2 and WF data (KC1, 10 trials), 

considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 71.3 98.3 5.5 ± 36.9 30.6 ± 21.4 8.5 ± 44.8 35.6 ± 28.4 5.8 ± 45.7 36.1 ± 28.7 

1 5 97.2 75.2 21.7 ± 35.8 33.7 ± 24.8 9.1 ± 42.6 32.3 ± 29.2 6.0 ± 41.4 31.6 ± 27.4 

1 7 98.3 64.9 21.8 ± 31.7 30.9 ± 22.9 6.6 ± 33.9 26.6 ± 21.9 3.3 ± 33.3 25.2 ± 21.9 

1 9 98.4 63.7 21.0 ± 30.6 30.1 ± 21.7 6.5 ± 34.1 26.8 ± 22.0 3.8 ± 33.2 25.3 ± 21.8 

3 3 97.9 97.4 14.4 ± 26.4 23.4 ± 18.9 6.4 ± 27.5 21.4 ± 18.3 3.3 ± 28.6 21.9 ± 18.8 

3 5 99.2 96.7 14.9 ± 26.5 23.6 ± 19.1 7.3 ± 27.7 21.4 ± 19.0 3.8 ± 28.3 21.7 ± 18.5 

3 7 99.4 96.1 15.0 ± 26.4 23.5 ± 19.1 7.5 ± 27.2 21.2 ± 18.6 3.9 ± 28.2 21.6 ± 18.5 

3 9 99.6 95.3 15.2 ± 26.0 23.3 ± 19.0 7.8 ± 27.3 21.3 ± 18.8 4.4 ± 27.7 21.4 ± 18.2 

5 3 98.7 97.9 13.4 ± 23.0 20.0 ± 17.5 4.0 ± 25.8 17.6 ± 19.2 3.1 ± 23.9 17.9 ± 16.2 

5 5 99.6 96.7 13.4 ± 22.0 19.8 ± 16.5 4.8 ± 24.0 17.4 ± 17.1 3.6 ± 23.2 17.8 ± 15.4 

5 7 99.6 96.4 13.4 ± 22.0 19.8 ± 16.5 4.8 ± 24.0 17.5 ± 17.2 3.6 ± 23.2 17.7 ± 15.3 

5 9 99.8 96.4 13.4 ± 22.0 19.8 ± 16.5 4.8 ± 24.0 17.5 ± 17.2 3.6 ± 23.2 17.7 ± 15.3 

7 3 98.3 97.6 16.6 ± 24.9 22.2 ± 20.0 6.9 ± 27.9 18.3 ± 22.2 4.3 ± 25.3 17.2 ± 19.1 

7 5 99.5 97.1 17.3 ± 21.5 21.5 ± 17.3 5.6 ± 22.6 17.0 ± 15.9 3.3 ± 21.4 16.2 ± 14.3 

7 7 99.8 96.1 17.2 ± 20.9 21.3 ± 16.6 6.1 ± 21.9 16.9 ± 15.1 3.6 ± 20.5 15.9 ± 13.4 

7 9 99.8 96.1 17.2 ± 20.9 21.3 ± 16.6 6.1 ± 21.9 16.9 ± 15.1 3.6 ± 20.5 15.9 ± 13.4 

9 3 97.5 97.5 20.5 ± 27.0 26.9 ± 20.5 9.7 ± 29.8 21.3 ± 22.9 6.9 ± 27.5 19.5 ± 20.6 

9 5 99.8 96.1 21.8 ± 24.6 26.3 ± 19.6 8.1 ± 26.8 19.6 ± 20.0 5.6 ± 24.8 18.1 ± 17.8 

9 7 99.9 95.4 22.3 ± 23.4 26.1 ± 19.2 7.4 ± 25.1 18.8 ± 18.2 5.1 ± 23.6 17.6 ± 16.5 

9 9 99.9 94.4 22.1 ± 23.2 25.9 ± 18.9 7.8 ± 24.8 18.6 ± 18.2 5.2 ± 23.1 17.3 ± 16.1 
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Table D.8. Results for heel strike side identification when using Kv2 and WF data (KC1, 10 trials), 

considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity for left and right heel strikes. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 91.4 86.1 87.2 91.3 

1 5 99.1 96.1 96.4 99.0 

1 7 99.8 99.0 99.1 99.7 

1 9 100.0 100.0 100.0 100.0 

3 3 99.5 97.0 97.3 99.5 

3 5 100.0 99.2 99.3 100.0 

3 7 100.0 99.5 99.5 100.0 

3 9 100.0 99.7 99.8 100.0 

5 3 100.0 99.2 99.3 100.0 

5 5 100.0 99.5 99.5 100.0 

5 7 100.0 99.7 99.8 100.0 

5 9 100.0 100.0 100.0 100.0 

7 3 100.0 99.5 99.5 100.0 

7 5 100.0 99.7 99.8 100.0 

7 7 100.0 100.0 100.0 100.0 

7 9 100.0 100.0 100.0 100.0 

9 3 100.0 100.0 100.0 100.0 

9 5 100.0 100.0 100.0 100.0 

9 7 100.0 100.0 100.0 100.0 

9 9 100.0 100.0 100.0 100.0 
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Kv2 and WB (KC1, 10 trials) 

 
Table D.10. Results for heel strike instant estimation when using Kv2 and WB data (KC1, 10 trials), 

considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 66.5 98.4 −13.6 ± 36.3 31.7 ± 22.4 −6.9 ± 47.3 36.6 ± 30.7 −1.5 ± 45.8 35.5 ± 28.9 

1 5 96.2 69.0 0.1 ± 38.6 31.7 ± 22.1 −5.1 ± 49.8 40.2 ± 29.7 −2.8 ± 48.3 37.9 ± 29.9 

1 7 96.7 57.6 −0.6 ± 35.7 29.0 ± 20.8 −6.5 ± 45.2 35.1 ± 29.0 −1.6 ± 41.8 32.9 ± 25.7 

1 9 97.3 55.5 −0.7 ± 35.3 28.7 ± 20.6 −9.4 ± 43.3 34.2 ± 27.9 −1.7 ± 41.9 32.9 ± 26.0 

3 3 96.2 98.3 6.7 ± 28.6 22.5 ± 18.9 −0.2 ± 31.0 24.1 ± 19.5 1.6 ± 32.1 24.6 ± 20.6 

3 5 98.2 96.4 7.1 ± 28.6 22.5 ± 19.0 −0.5 ± 30.7 24.0 ± 19.2 1.6 ± 32.0 24.5 ± 20.6 

3 7 98.4 94.9 7.4 ± 28.5 22.5 ± 19.0 −0.7 ± 30.3 23.6 ± 19.0 1.0 ± 31.3 24.0 ± 20.1 

3 9 98.5 93.5 7.5 ± 28.5 22.6 ± 19.0 −1.2 ± 30.1 23.4 ± 18.9 0.9 ± 31.4 24.0 ± 20.2 

5 3 98.2 98.8 11.9 ± 22.7 20.2 ± 15.7 −0.1 ± 24.7 18.3 ± 16.6 0.4 ± 25.4 19.4 ± 16.3 

5 5 98.6 97.7 12.2 ± 22.5 20.2 ± 15.7 −0.1 ± 23.6 17.7 ± 15.5 0.4 ± 24.8 19.1 ± 15.8 

5 7 98.5 96.8 12.2 ± 22.5 20.2 ± 15.7 0.3 ± 23.5 17.7 ± 15.5 0.5 ± 24.7 19.0 ± 15.8 

5 9 98.5 95.8 12.3 ± 22.5 20.3 ± 15.7 −0.2 ± 23.6 17.7 ± 15.6 0.4 ± 24.7 18.9 ± 15.9 

7 3 97.7 98.3 19.0 ± 22.5 23.6 ± 17.6 −2.1 ± 22.5 17.6 ± 14.3 0.0 ± 24.1 18.6 ± 15.3 

7 5 98.6 97.3 19.7 ± 20.7 23.3 ± 16.6 −3.2 ± 21.2 16.9 ± 13.2 −0.5 ± 22.9 18.0 ± 14.2 

7 7 98.7 95.7 19.9 ± 20.6 23.3 ± 16.6 −3.5 ± 20.4 16.5 ± 12.5 −0.5 ± 22.8 17.9 ± 14.2 

7 9 98.7 95.7 19.9 ± 20.6 23.3 ± 16.6 −3.5 ± 20.4 16.5 ± 12.5 −0.5 ± 22.8 17.9 ± 14.2 

9 3 96.6 98.2 23.0 ± 22.7 27.0 ± 17.8 −3.4 ± 24.1 17.8 ± 16.6 −1.1 ± 26.4 19.2 ± 18.1 

9 5 98.3 96.5 24.1 ± 20.6 26.7 ± 17.2 −3.0 ± 21.0 16.7 ± 13.0 −0.6 ± 22.4 17.6 ± 13.9 

9 7 98.3 95.8 24.1 ± 20.5 26.6 ± 17.2 −3.3 ± 20.5 16.6 ± 12.5 −0.6 ± 22.0 17.4 ± 13.5 

9 9 98.4 93.5 24.5 ± 20.1 26.7 ± 17.1 −3.7 ± 19.8 16.1 ± 12.1 −1.0 ± 20.9 16.7 ± 12.6 
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Table D.11. Results for heel strike side identification when using Kv2 and WB data (KC1, 10 trials), 

considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity for left and right heel strikes. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 87.2 85.4 85.1 88.4 

1 5 96.8 97.1 97.1 96.8 

1 7 97.6 99.5 99.5 97.6 

1 9 99.5 98.9 98.9 99.5 

3 3 97.3 97.9 97.9 97.3 

3 5 98.7 99.5 99.5 98.7 

3 7 99.2 99.7 99.7 99.2 

3 9 100.0 99.7 99.7 100.0 

5 3 99.2 100.0 100.0 99.2 

5 5 99.2 99.7 99.7 99.2 

5 7 100.0 99.7 99.7 100.0 

5 9 99.7 100.0 100.0 99.7 

7 3 99.2 98.9 98.9 99.2 

7 5 99.5 99.7 99.7 99.5 

7 7 99.7 100.0 100.0 99.7 

7 9 100.0 99.7 99.7 100.0 

9 3 100.0 99.2 99.2 100.0 

9 5 99.7 100.0 100.0 99.7 

9 7 99.7 100.0 100.0 99.7 

9 9 99.5 100.0 100.0 99.5 
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D.2 Results for Different Kv2 Configurations (WF Trials) 

KC1 (Kv2, WF, 5 trials) 

 

Table D.13. Results for heel strike instant estimation when using configuration KC1 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 70.8 97.7 4.6 ± 36.7 30.5 ± 20.8 8.8 ± 43.9 34.9 ± 28.0 6.7 ± 46.1 36.0 ± 29.5 

1 5 96.7 74.8 20.8 ± 35.3 33.6 ± 23.3 10.1 ± 44.8 34.2 ± 30.5 8.3 ± 42.9 32.4 ± 29.3 

1 7 98.5 61.9 21.7 ± 29.7 30.3 ± 20.7 8.0 ± 32.9 26.3 ± 21.0 5.5 ± 30.8 23.3 ± 20.9 

1 9 98.5 61.2 21.3 ± 29.1 29.9 ± 20.2 8.3 ± 33.0 26.5 ± 21.1 5.8 ± 31.0 23.4 ± 21.0 

3 3 98.1 97.0 13.8 ± 26.2 23.3 ± 18.3 8.0 ± 27.6 22.0 ± 18.5 4.6 ± 27.2 21.7 ± 17.1 

3 5 99.5 96.6 14.0 ± 26.3 23.4 ± 18.4 8.5 ± 27.7 22.0 ± 18.8 4.9 ± 26.9 21.5 ± 16.9 

3 7 99.8 95.9 14.0 ± 26.1 23.3 ± 18.3 9.0 ± 26.5 21.4 ± 18.1 5.1 ± 26.5 21.2 ± 16.6 

3 9 99.8 95.4 14.3 ± 25.8 23.2 ± 18.3 9.2 ± 26.5 21.4 ± 18.1 5.4 ± 26.3 21.1 ± 16.6 

5 3 98.6 97.5 13.1 ± 21.5 20.0 ± 15.3 3.3 ± 22.5 17.5 ± 14.5 3.2 ± 21.8 17.1 ± 13.9 

5 5 99.5 96.3 13.1 ± 21.5 20.0 ± 15.3 3.3 ± 22.5 17.5 ± 14.5 3.2 ± 21.8 17.1 ± 13.9 

5 7 99.5 96.3 13.1 ± 21.5 20.0 ± 15.3 3.3 ± 22.5 17.5 ± 14.5 3.2 ± 21.8 17.1 ± 13.9 

5 9 99.8 96.3 13.1 ± 21.5 20.0 ± 15.3 3.3 ± 22.5 17.5 ± 14.5 3.2 ± 21.8 17.1 ± 13.9 

7 3 98.1 97.0 16.6 ± 25.3 22.5 ± 20.3 7.5 ± 28.7 18.3 ± 23.3 4.8 ± 25.3 17.0 ± 19.3 

7 5 99.5 96.8 17.4 ± 21.7 21.9 ± 17.2 6.2 ± 22.3 17.0 ± 15.6 3.7 ± 21.2 16.1 ± 14.2 

7 7 99.8 95.9 16.9 ± 20.5 21.5 ± 15.6 7.1 ± 20.3 16.4 ± 13.8 4.3 ± 19.6 15.7 ± 12.5 

7 9 99.8 95.9 16.9 ± 20.5 21.5 ± 15.6 7.1 ± 20.3 16.4 ± 13.8 4.3 ± 19.6 15.7 ± 12.5 

9 3 98.4 97.0 21.8 ± 24.0 26.3 ± 19.0 8.1 ± 25.9 18.8 ± 19.5 6.2 ± 24.9 18.1 ± 18.2 

9 5 100.0 96.6 22.3 ± 23.0 26.0 ± 18.7 7.2 ± 25.0 18.2 ± 18.6 5.6 ± 23.6 17.5 ± 16.8 

9 7 100.0 95.9 22.8 ± 21.8 25.8 ± 18.2 6.4 ± 22.8 17.3 ± 16.1 5.0 ± 22.4 17.0 ± 15.4 

9 9 100.0 95.0 22.6 ± 21.4 25.6 ± 17.7 7.0 ± 22.0 16.9 ± 15.6 5.3 ± 21.3 16.5 ± 14.5 
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Table D.14. Results for heel strike side identification when using configuration KC1 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity for left and right heel strikes. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 91.4 86.5 87.7 91.3 

1 5 99.1 97.0 97.3 99.0 

1 7 99.5 99.0 99.1 99.5 

1 9 100.0 100.0 100.0 100.0 

3 3 99.5 96.6 96.8 99.5 

3 5 100.0 99.0 99.1 100.0 

3 7 100.0 99.5 99.5 100.0 

3 9 100.0 100 100.0 100.0 

5 3 100.0 99.0 99.1 100.0 

5 5 100.0 99.5 99.5 100.0 

5 7 100.0 100.0 100.0 100.0 

5 9 100.0 100.0 100.0 100.0 

7 3 100.0 100.0 100.0 100.0 

7 5 100.0 100.0 100.0 100.0 

7 7 100.0 100.0 100.0 100.0 

7 9 100.0 100.0 100.0 100.0 

9 3 100.0 100.0 100.0 100.0 

9 5 100.0 100.0 100.0 100.0 

9 7 100.0 100.0 100.0 100.0 

9 9 100.0 100.0 100.0 100.0 

 



Appendix D Window Size Selection for Gait Cycle Detection 

 

 

206 

T
a

b
le

 D
.1

5
. 

R
es

u
lt

s 
fo

r 
to

e 
o
ff

 i
n

st
a

n
t 

es
ti

m
a

ti
o

n
 w

h
en

 u
si

n
g

 c
o

n
fi

g
u

ra
ti

o
n

 K
C

1
 (

K
v

2
, 
W

F
, 

5
 t

ri
a

ls
),

 c
o

n
si

d
er

in
g

 d
if

fe
r
en

t 
v

a
lu

es
 f

o
r 

th
e 

w
in

d
o
w

 

si
ze

 N
F

3
. 

T
h

e 
re

su
lt

s 
in

cl
u

d
e 

th
e 

a
ss

o
c
ia

te
d

 s
en

si
ti

v
it

y
, 

a
s 

w
el

l 
a

s 
tr

u
e 

a
n

d
 a

b
so

lu
te

 e
r
ro

rs
 f

o
r 

es
ti

m
a

ti
n

g
 t

o
e 

o
ff

 i
n

st
a

n
ts

, 
a

n
d

 t
h

e 
st

a
n

ce
, 

sw
in

g
 s

in
g

le
 s

u
p

p
o

rt
 

a
n

d
 d

o
u

b
le

 s
u

p
p

o
rt

 d
u

ra
ti

o
n

. 

D
o

u
b

le
 s

u
p

p
o

rt
 d

u
r
a
ti

o
n

 

(m
s)

 A
b

s.
 e

r
ro

r 

3
6

.6
 ±

 2
5

.0
 

3
1

.1
 ±

 2
3

.8
 

2
9

.5
 ±

 2
3

.0
 

2
7

.5
 ±

 1
9

.4
 

2
5

.9
 ±

 2
0

.5
 

3
0

.0
 ±

 2
3

.3
 

T
r
u

e
 e

rr
o

r 

3
.5

 ±
 4

4
.2

 

1
.5

 ±
 3

9
.2

 

3
.6

 ±
 3

7
.2

 

1
.2

 ±
 3

3
.6

 

1
.5

 ±
 3

3
.1

 

−
9

.0
 ±

 3
6
.9

 

S
in

g
le

 s
u

p
p

o
r
t 

d
u

ra
ti

o
n

 

(m
s)

 A
b

s.
 e

r
ro

r 

3
4

.7
 ±

 2
5

.7
 

3
0

.7
 ±

 2
3

.9
 

2
8

.1
 ±

 2
3

.2
 

2
6

.9
 ±

 2
2

.0
 

2
6

.5
 ±

 2
0

.9
 

2
9

.5
 ±

 2
4

.1
 

T
r
u

e
 e

rr
o

r 

−
0

.2
 ±

 4
3
.2

 

1
.9

 ±
 3

8
.9

 

0
.7

 ±
 3

6
.4

 

2
.2

 ±
 3

4
.6

 

1
.2

 ±
 3

3
.7

 

1
3

.3
 ±

 3
5

.7
 

S
w

in
g

 d
u

ra
ti

o
n

 (
m

s)
 

A
b

s.
 e

r
ro

r 

2
5

.2
 ±

 1
9

.0
 

2
1

.9
 ±

 1
7

.5
 

2
0

.7
 ±

 1
8

.1
 

2
0

.3
 ±

 1
7

.2
 

1
9

.8
 ±

 1
6

.3
 

2
1

.2
 ±

 1
8

.0
 

T
r
u

e
 e

rr
o

r 

0
.5

 ±
 3

1
.6

 

2
.1

 ±
 2

8
.0

 

1
.2

 ±
 2

7
.5

 

1
.7

 ±
 2

6
.6

 

1
.4

 ±
 2

5
.6

 

6
.4

 ±
 2

7
.1

 

S
ta

n
c
e 

d
u

ra
ti

o
n

 (
m

s)
 

A
b

s.
 e

r
ro

r 

2
2

.6
 ±

 1
8

.2
 

1
9

.2
 ±

 1
4

.9
 

1
9

.3
 ±

 1
4

.6
 

1
8

.5
 ±

 1
4

.2
 

1
7

.2
 ±

 1
4

.1
 

1
9

.5
 ±

 1
4

.6
 

T
r
u

e
 e

rr
o

r 

2
.7

 ±
 2

8
.9

 

1
.1

 ±
 2

4
.3

 

2
.0

 ±
 2

4
.2

 

1
.5

 ±
 2

3
.3

 

1
.8

 ±
 2

2
.2

 

−
3

.2
 ±

 2
4
.2

 

T
o

e
 o

ff
 i

n
st

a
n

t 
(m

s)
 

A
b

s.
 e

r
ro

r 

2
4

.5
 ±

 1
9

.4
 

2
2

.9
 ±

 1
8

.7
 

2
1

.6
 ±

 1
7

.3
 

2
0

.9
 ±

 1
5

.9
 

2
0

.5
 ±

 1
5

.2
 

2
0

.5
 ±

 1
6

.1
 

T
r
u

e
 e

rr
o

r 

1
3

.3
 ±

 2
8

.3
 

1
2

.8
 ±

 2
6

.7
 

1
3

.4
 ±

 2
4

.3
 

1
2

.4
 ±

 2
3

.2
 

1
2

.5
 ±

 2
2

.3
 

7
.7

 ±
 2

4
.9

 

S
en

si
ti

v
it

y
 

(%
) 

1
0
0

.0
 

1
0
0

.0
 

1
0
0

.0
 

1
0
0

.0
 

1
0
0

.0
 

1
0
0

.0
 

W
in

d
o

w
 s

iz
e
 

(f
ra

m
e
s)

 

N
F

3
 

1
 

3
 

5
 

7
 

9
 

1
1
 

  



D.2 Results for Different Kv2 Configurations (WF Trials) 

 

 

207 

KC2 (Kv2, WF, 5 trials) 

 

Table D.16. Results for heel strike instant estimation when using configuration KC2 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window 

size 

(frames) 
Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 75.0 98.2 7.5 ± 41.7 33.6 ± 25.8 12.0 ± 56.9 44.8 ± 37.0 4.3 ± 49.6 37.3 ± 32.9 

1 5 97.2 78.5 23.3 ± 35.2 34.8 ± 23.8 14.1 ± 39.9 32.6 ± 26.8 7.6 ± 39.5 30.2 ± 26.5 

1 7 97.2 71.3 23.5 ± 32.4 32.8 ± 23.0 13.3 ± 36.0 29.5 ± 24.4 7.6 ± 34.4 26.4 ± 23.2 

1 9 97.7 69.5 23.2 ± 31.6 32.4 ± 22.1 11.4 ± 35.1 28.4 ± 23.3 7.3 ± 33.6 25.8 ± 22.6 

3 3 97.0 97.7 19.1 ± 28.5 26.6 ± 21.6 11.9 ± 28.6 24.6 ± 18.9 6.5 ± 29.6 23.7 ± 18.8 

3 5 98.1 96.7 19.7 ± 28.5 26.8 ± 22.0 13.2 ± 28.0 24.5 ± 18.8 7.6 ± 29.0 23.5 ± 18.7 

3 7 98.1 96.5 19.7 ± 28.5 26.8 ± 22.0 13.0 ± 28.0 24.5 ± 18.8 7.6 ± 29.1 23.5 ± 18.7 

3 9 98.3 95.9 19.8 ± 28.0 26.5 ± 21.7 12.3 ± 27.4 23.8 ± 18.2 7.4 ± 28.5 23.1 ± 18.2 

5 3 97.7 97.1 16.8 ± 23.3 22.3 ± 18.2 10.7 ± 23.7 19.8 ± 16.9 6.5 ± 21.6 17.5 ± 14.1 

5 5 99.2 95.9 17.0 ± 23.2 22.2 ± 18.1 10.4 ± 23.5 19.5 ± 16.7 6.2 ± 21.0 17.2 ± 13.6 

5 7 99.2 95.9 17.0 ± 23.2 22.2 ± 18.1 10.4 ± 23.5 19.5 ± 16.7 6.2 ± 21.0 17.2 ± 13.6 

5 9 99.2 95.7 17.0 ± 23.2 22.3 ± 18.1 10.4 ± 23.6 19.6 ± 16.7 6.2 ± 21.1 17.2 ± 13.6 

7 3 98.1 96.3 20.7 ± 24.7 25.4 ± 19.8 13.0 ± 24.3 20.7 ± 18.1 8.3 ± 22.7 18.2 ± 15.9 

7 5 98.9 95.7 20.8 ± 24.0 25.1 ± 19.5 12.4 ± 23.5 20.2 ± 17.2 8.2 ± 21.9 17.7 ± 15.2 

7 7 99.1 95.1 21.0 ± 23.9 25.1 ± 19.5 12.5 ± 23.4 20.1 ± 17.2 8.2 ± 21.8 17.6 ± 15.2 

7 9 99.1 95.1 21.0 ± 23.9 25.1 ± 19.5 12.5 ± 23.4 20.1 ± 17.2 8.2 ± 21.8 17.6 ± 15.2 

9 3 95.5 94.9 24.1 ± 30.5 31.1 ± 23.2 18.6 ± 30.8 26.9 ± 23.9 12.2 ± 27.4 21.6 ± 20.8 

9 5 98.7 92.4 26.1 ± 28.0 30.5 ± 23.2 16.4 ± 28.6 24.6 ± 22.0 10.2 ± 24.8 19.5 ± 18.3 

9 7 99.1 91.8 26.5 ± 27.0 30.2 ± 22.8 15.5 ± 27.6 23.8 ± 20.8 9.4 ± 23.6 18.9 ± 16.9 

9 9 99.1 90.8 26.4 ± 26.5 29.9 ± 22.5 14.8 ± 27.1 23.2 ± 20.4 9.2 ± 23.2 18.5 ± 16.7 
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Table D.17. Results for heel strike side identification when using configuration KC2 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 96.8 87.2 88.1 96.8 

1 5 99.2 97.8 98.0 99.1 

1 7 98.8 100.0 100.0 98.6 

1 9 99.2 100.0 100.0 99.1 

3 3 99.2 96.9 97.2 99.1 

3 5 98.8 99.5 99.6 98.6 

3 7 99.2 100.0 100.0 99.1 

3 9 99.2 100.0 100.0 99.1 

5 3 99.2 99.5 99.6 99.1 

5 5 99.6 99.5 99.6 99.5 

5 7 99.2 99.5 99.6 99.1 

5 9 99.2 100.0 100.0 99.1 

7 3 99.6 100.0 100.0 99.5 

7 5 99.6 100.0 100.0 99.5 

7 7 99.2 99.5 99.6 99.1 

7 9 98.8 100.0 100.0 98.6 

9 3 100.0 100.0 100.0 100.0 

9 5 99.2 100.0 100.0 99.1 

9 7 99.2 100.0 100.0 99.1 

9 9 98.8 100.0 100.0 98.6 
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KC3 (Kv2, WF, 5 trials) 

 

Table D.19. Results for heel strike instant estimation when using configuration KC3 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF1 and ND1. 

The results include the associated precision and sensitivity, as well as true and absolute errors for esti-

mating heel strike instants, stride duration and step duration. 

Window size 

(frames) Precision 

(%) 

Sensitivity 

(%) 

Heel strike instant (ms) Stride duration (ms) Step duration (ms) 

NF1 ND1 True error Abs. error True error Abs. error True error Abs. error 

1 3 63.9 96.8 −5.9 ± 43.1 30.2 ± 31.3 10.1 ± 56.0 39.7 ± 40.7 8.5 ± 52.5 38.1 ± 37.0 

1 5 94.4 71.2 4.9 ± 33.9 27.4 ± 20.4 5.9 ± 41.4 34.1 ± 24.0 5.8 ± 41.8 33.0 ± 26.3 

1 7 97.9 60.1 7.4 ± 31.6 25.7 ± 19.9 2.2 ± 38.6 31.4 ± 22.4 4.4 ± 38.5 30.2 ± 24.2 

1 9 98.5 55.9 7.5 ± 31.4 25.5 ± 19.6 0.4 ± 37.6 31.6 ± 19.9 1.4 ± 36.1 28.3 ± 22.3 

3 3 92.5 95.3 7.3 ± 28.0 21.6 ± 19.3 5.1 ± 34.0 25.8 ± 22.6 4.8 ± 31.3 22.9 ± 21.9 

3 5 97.8 92.8 8.2 ± 28.2 21.7 ± 19.7 7.1 ± 33.2 25.4 ± 22.4 6.4 ± 32.2 23.2 ± 23.1 

3 7 98.2 91.3 8.8 ± 26.5 21.1 ± 18.2 7.7 ± 30.5 24.3 ± 19.9 6.4 ± 27.8 21.2 ± 19.0 

3 9 98.6 89.8 8.7 ± 25.7 20.7 ± 17.5 6.7 ± 30.0 23.8 ± 19.4 6.1 ± 27.1 20.7 ± 18.5 

5 3 95.2 97.0 12.3 ± 24.4 20.9 ± 17.6 6.6 ± 24.9 19.5 ± 16.9 5.8 ± 25.0 19.3 ± 16.9 

5 5 98.4 93.6 12.8 ± 22.9 20.2 ± 16.7 6.2 ± 22.8 18.3 ± 14.9 5.6 ± 23.1 18.2 ± 15.4 

5 7 98.4 93.0 12.6 ± 22.7 20.1 ± 16.5 6.0 ± 22.5 18.0 ± 14.6 5.4 ± 22.5 17.9 ± 14.7 

5 9 98.6 92.5 12.8 ± 22.4 20.0 ± 16.3 5.8 ± 22.3 17.9 ± 14.5 5.3 ± 22.4 17.8 ± 14.6 

7 3 95.8 96.2 16.5 ± 29.1 25.1 ± 22.0 10.7 ± 32.2 22.2 ± 25.6 8.1 ± 28.6 19.6 ± 22.4 

7 5 98.4 94.0 18.6 ± 23.8 23.8 ± 18.5 7.7 ± 25.0 19.3 ± 17.6 6.0 ± 22.4 17.1 ± 15.6 

7 7 98.8 91.3 18.8 ± 22.5 23.3 ± 17.8 7.5 ± 23.2 18.1 ± 16.3 5.7 ± 21.1 16.3 ± 14.6 

7 9 98.8 91.3 18.8 ± 22.5 23.3 ± 17.8 7.5 ± 23.2 18.1 ± 16.3 5.7 ± 21.1 16.3 ± 14.6 

9 3 96.5 95.3 22.6 ± 33.0 31.6 ± 24.5 17.5 ± 35.5 25.8 ± 30.0 12.1 ± 31.5 21.7 ± 25.9 

9 5 98.9 94.2 23.8 ± 31.4 31.1 ± 24.0 15.4 ± 33.3 24.1 ± 27.7 10.6 ± 29.6 20.3 ± 23.9 

9 7 99.1 92.8 24.6 ± 30.0 30.8 ± 23.6 14.4 ± 31.9 23.0 ± 26.3 9.9 ± 28.4 19.7 ± 22.8 

9 9 99.1 90.6 24.5 ± 28.1 29.9 ± 22.3 14.0 ± 29.2 21.3 ± 24.4 9.6 ± 26.5 18.4 ± 21.3 
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Table D.20. Results for heel strike side identification when using configuration KC3 (Kv2, WF, 5 tri-

als), considering different value pairs for the window sizes NF2 and ND2. 

The results include the associated precision and sensitivity. 

Window size 

(frames) 
Precision (%) Sensitivity (%) 

NF2 ND2 Left Right Left Right 

1 3 85.6 81.4 82.1 85.0 

1 5 98.6 96.7 96.9 98.6 

1 7 99.1 97.6 97.8 99.0 

1 9 99.1 100.0 100.0 99.0 

3 3 98.6 95.8 96.0 98.6 

3 5 99.5 97.6 97.8 99.5 

3 7 99.1 98.1 98.2 99.0 

3 9 99.6 100.0 100.0 99.5 

5 3 100.0 98.1 98.2 100.0 

5 5 99.6 98.6 98.7 99.5 

5 7 100.0 100.0 100.0 100.0 

5 9 100.0 100.0 100.0 100.0 

7 3 99.1 99.5 99.6 99.0 

7 5 100.0 99.5 99.6 100.0 

7 7 100.0 99.5 99.6 100.0 

7 9 100.0 99.5 99.6 100.0 

9 3 99.6 99.0 99.1 99.5 

9 5 100.0 99.5 99.6 100.0 

9 7 100.0 99.5 99.6 100.0 

9 9 100.0 99.5 99.6 100.0 
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Appendix E Kinect Physical Configuration 

Selection 

We considered three different Kinect physical configurations corresponding to the following 

sensor heights: 0.6 m, 1 m, and 1.34 m. For each height and Kinect version (Kv1 and Kv2), we 

explored the tilt angle values indicated in Table E.1. For each angle, we verified the minimum and 

maximum distance between the Kinect and a given subject (height of 1.67 m) for which all joints are 

tracked by the sensor. We then chose the tilt angle that led to the largest practical depth range (indi-

cated in bold in the table). 

 
Table E.1. Practical depth range for different Kinect tilt angles, for each Kinect version (Kv1 and Kv2) 

considered height. 

The largest range for each Kinect version and height is indicated in bold. 

Kinect Height 
Tilt angle 

(degrees) 

Minimuma 

(m) 

Maximumb 

(m) 

Depth rangec 

(m) 

Kv1 

0.6 m 

5 2.27 3.78 1.51 

0 2.00 3.78 1.78 

−5 2.38 3.73 1.35 

1 m 

−5 2.25 3.77 1.52 

−10 1.72 3.7 1.98 

−15 2.27 3.55 1.28 

1.34 m 

−5 3.08 3.76 0.68 

−10 2.53 3.78 1.25 

−18 1.81 3.46 1.65 

Kv2 

0.6 m 

5 1.4 4.43 3.03 

0 1.61 4.36 2.75 

−5 1.86 4.33 2.47 

1 m 

0 1.9 4.5 2.6 

−5 1.51 4.42 2.91 

−10 1.37 4.22 2.85 

1.34 m 

−10 1.75 4.3 2.55 

−15 1.5 4.08 2.58 

−20 1.25 3.61 2.36 

a Shortest distance between the subject and Kinect for which all body joints are tracked. 

b Longest distance between the subject and Kinect for which all body joints are tracked. 

c Difference between maximum and minimum distances. 
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Appendix F Butterworth Filter Optimization for 

Gait Parameter Computation 

For computing the considered gait parameters from Kinect data, the associated measures 

were processed using a zero-lag low-pass Butterworth filter. To choose the best filter’s parameters 

(order and cut-off frequency), we obtained the mean estimation error for the Kinect when compared 

with Qualisys (gold standard), when considering different values for the order and cut-off frequency. 

The results achieved for both Kinect versions (Kv1 and Kv2) and both walking activities (WF and 

WB) are presented in Tables F.1 to F.8 (configuration KC1). The results for the three considered 

physical configurations of the Kinect (KC1, KC2 and KC3) are presented in Tables F.9 to F.14. 
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F.1 Results for Both Kinect Versions and Walking Activities 

Kv1 and WF (KC1, 10 trials) 

 
Table F.1. Mean estimation error for spatiotemporal gait parameters (Kv1, WF, KC1, 10 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 4.2 2.0 0.124 0.206 0.943 1.347 

2 

1 3.8 17.8 0.129 0.024 0.673 0.230 

2 3.6 9.6 0.125 0.028 0.217 0.414 

3 3.5 6.1 0.124 0.041 0.208 0.535 

4 3.5 4.3 0.124 0.054 0.309 0.632 

5 3.6 3.2 0.124 0.067 0.403 0.724 

6 3.5 2.6 0.124 0.082 0.491 0.820 

7 3.7 2.3 0.124 0.101 0.584 0.930 

8 3.7 2.1 0.124 0.127 0.690 1.061 

9 4.0 2.0 0.124 0.168 0.824 1.216 

4 

1 4.8 21.0 0.127 0.026 0.783 0.227 

2 4.1 9.9 0.123 0.028 0.244 0.405 

3 3.8 5.4 0.123 0.040 0.209 0.491 

4 3.5 3.5 0.123 0.049 0.324 0.569 

5 3.4 2.8 0.123 0.059 0.400 0.645 

6 3.4 2.4 0.123 0.069 0.453 0.722 

7 3.5 2.2 0.123 0.080 0.508 0.806 

8 3.6 2.1 0.124 0.095 0.576 0.902 

9 3.8 2.1 0.124 0.114 0.658 1.005 

6 

1 6.8 22.4 0.127 0.026 0.764 0.235 

2 4.9 10.3 0.122 0.029 0.275 0.410 

3 4.0 5.2 0.123 0.040 0.215 0.484 

4 3.5 3.4 0.123 0.049 0.338 0.553 

5 3.3 2.7 0.123 0.058 0.405 0.624 

6 3.5 2.4 0.123 0.067 0.450 0.694 

7 3.5 2.2 0.123 0.076 0.489 0.770 

8 3.5 2.1 0.123 0.088 0.544 0.859 

9 3.6 2.1 0.124 0.104 0.617 0.955 
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Table F.2. Mean estimation error for kinematic gait parameters (Kv1, WF, KC1, 10 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 7.3 6.7 5.5 4.4 3.0 13.2 4.4 53.4 

2 

1 7.2 6.7 4.6 8.8 3.3 25.2 15.0 16.4 

2 7.2 6.7 4.0 6.8 3.0 18.3 10.1 30.7 

3 7.3 6.7 3.8 6.0 2.9 15.9 7.7 37.9 

4 7.3 6.7 3.9 5.6 2.9 14.8 6.5 42.5 

5 7.3 6.7 4.1 5.3 2.9 14.3 5.8 45.9 

6 7.3 6.7 4.2 5.1 2.9 13.9 5.3 49.0 

7 7.3 6.7 4.5 4.9 3.0 13.7 5.0 51.5 

8 7.3 6.7 4.8 4.7 3.0 13.5 4.8 53.5 

9 7.3 6.7 5.3 4.5 3.0 13.3 4.6 54.3 

4 

1 7.2 6.7 4.6 9.0 3.2 27.6 17.9 15.4 

2 7.3 6.7 4.1 6.6 3.0 17.6 10.6 31.2 

3 7.3 6.7 3.9 5.9 2.9 14.5 7.1 38.8 

4 7.3 6.7 3.8 5.5 2.9 13.8 5.8 43.7 

5 7.3 6.7 4.0 5.3 2.9 13.8 5.3 47.3 

6 7.3 6.7 4.1 5.2 2.9 13.7 5.1 49.6 

7 7.3 6.7 4.2 5.1 2.9 13.6 4.9 51.7 

8 7.3 6.7 4.4 5.0 3.0 13.6 4.8 53.7 

9 7.3 6.7 4.7 4.9 3.0 13.5 4.7 55.1 

6 

1 7.3 6.7 4.6 9.2 3.2 28.9 18.8 14.6 

2 7.3 6.7 4.1 6.6 3.1 17.7 10.9 31.5 

3 7.3 6.7 3.9 5.8 2.9 14.0 6.8 38.9 

4 7.3 6.7 3.8 5.5 2.9 13.4 5.6 44.0 

5 7.3 6.7 3.9 5.4 2.9 13.7 5.2 47.9 

6 7.3 6.7 4.1 5.2 2.9 13.8 5.1 50.4 

7 7.3 6.7 4.2 5.1 2.9 13.6 5.0 52.1 

8 7.3 6.7 4.3 5.0 3.0 13.5 4.9 53.8 

9 7.3 6.7 4.6 4.9 3.0 13.5 4.7 55.4 
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Kv1 and WB (KC1, 10 trials) 

 

Table F.3. Mean estimation error for spatiotemporal gait parameters (Kv1, WB, KC1, 10 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 5.3 2.7 0.167 0.221 1.744 1.024 

2 

1 5.9 19.4 0.172 0.031 0.532 0.145 

2 5.4 11.0 0.168 0.035 0.363 0.196 

3 5.5 7.2 0.167 0.048 0.408 0.285 

4 5.5 5.3 0.167 0.064 0.522 0.366 

5 5.4 4.1 0.167 0.079 0.660 0.443 

6 5.5 3.4 0.167 0.096 0.819 0.525 

7 5.3 3.0 0.167 0.117 1.008 0.619 

8 5.3 2.8 0.167 0.143 1.236 0.737 

9 5.3 2.7 0.166 0.182 1.518 0.890 

4 

1 7.9 22.7 0.171 0.033 0.590 0.154 

2 5.8 11.6 0.166 0.034 0.334 0.175 

3 5.3 6.6 0.166 0.044 0.363 0.246 

4 5.4 4.5 0.166 0.056 0.430 0.316 

5 5.4 3.5 0.166 0.070 0.536 0.383 

6 5.4 3.1 0.166 0.083 0.663 0.445 

7 5.4 2.9 0.166 0.097 0.800 0.514 

8 5.6 2.8 0.167 0.113 0.953 0.594 

9 5.3 2.7 0.167 0.132 1.127 0.680 

6 

1 9.7 24.2 0.171 0.035 0.590 0.159 

2 6.1 12.2 0.165 0.034 0.330 0.175 

3 5.6 6.6 0.166 0.044 0.361 0.239 

4 5.5 4.3 0.166 0.055 0.409 0.302 

5 5.4 3.4 0.166 0.068 0.498 0.368 

6 5.4 3.0 0.166 0.080 0.612 0.428 

7 5.4 2.9 0.166 0.093 0.742 0.487 

8 5.4 2.8 0.167 0.107 0.883 0.558 

9 5.6 2.7 0.167 0.123 1.034 0.637 
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Table F.4. Mean estimation error for kinematic gait parameters (Kv1, WB, KC1, 10 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 15.9 9.3 6.8 10.1 5.5 6.0 6.9 27.5 

2 

1 15.8 9.3 4.5 15.3 8.6 17.4 12.8 9.8 

2 15.9 9.3 5.0 14.1 7.6 10.3 9.8 16.7 

3 15.9 9.3 5.4 13.4 7.0 8.1 8.6 19.5 

4 15.9 9.3 5.6 12.9 6.7 7.2 7.9 21.3 

5 15.9 9.3 5.8 12.5 6.4 6.8 7.5 22.6 

6 15.9 9.3 6.0 12.1 6.2 6.5 7.3 23.8 

7 15.9 9.3 6.1 11.7 6.0 6.3 7.1 24.9 

8 15.9 9.3 6.3 11.2 5.8 6.2 7.0 25.9 

9 15.9 9.3 6.5 10.7 5.7 6.1 6.9 26.8 

4 

1 15.9 9.3 4.4 15.5 8.4 20.1 13.6 9.7 

2 15.9 9.3 5.0 14.2 7.7 10.0 10.0 18.1 

3 15.9 9.3 5.4 13.5 7.1 7.3 8.3 20.2 

4 15.9 9.3 5.6 13.1 6.7 6.7 7.6 21.3 

5 15.9 9.3 5.8 12.7 6.4 6.5 7.3 22.3 

6 15.9 9.3 5.9 12.3 6.2 6.4 7.2 23.3 

7 15.9 9.3 6.1 12.0 6.1 6.3 7.1 24.3 

8 15.9 9.3 6.2 11.7 5.9 6.2 7.0 25.1 

9 15.9 9.3 6.3 11.4 5.8 6.1 7.0 26.0 

6 

1 15.9 9.3 4.4 15.5 7.9 21.4 14.1 9.1 

2 15.9 9.3 5.0 14.2 7.6 10.0 10.3 18.6 

3 15.9 9.3 5.4 13.6 7.1 7.0 8.3 20.5 

4 15.9 9.3 5.6 13.1 6.8 6.6 7.5 21.1 

5 15.9 9.3 5.8 12.8 6.5 6.5 7.2 22.1 

6 15.9 9.3 5.9 12.4 6.3 6.4 7.1 23.1 

7 15.9 9.3 6.0 12.1 6.1 6.4 7.1 24.1 

8 15.9 9.3 6.1 11.8 6.0 6.2 7.0 24.9 

9 15.9 9.3 6.2 11.5 5.9 6.2 7.0 25.7 
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Kv2 and WF (KC1, 10 trials) 

 

Table F.5. Mean estimation error for spatiotemporal gait parameters (Kv2, WF, KC1, 10 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 3.8 1.5 0.013 0.119 0.901 0.386 

2 

1 3.3 16.5 0.019 0.020 0.873 0.217 

2 3.1 8.9 0.015 0.013 0.422 0.084 

3 3.1 5.6 0.014 0.019 0.236 0.106 

4 3.3 3.9 0.013 0.025 0.220 0.139 

5 3.4 2.9 0.013 0.031 0.276 0.173 

6 3.5 2.3 0.013 0.040 0.358 0.208 

7 3.6 1.9 0.013 0.053 0.459 0.245 

8 3.6 1.7 0.013 0.070 0.585 0.288 

9 3.7 1.6 0.013 0.094 0.751 0.341 

4 

1 5.0 19.4 0.017 0.025 0.976 0.230 

2 3.0 9.2 0.013 0.015 0.458 0.072 

3 2.9 5.0 0.013 0.021 0.218 0.101 

4 3.1 3.3 0.013 0.024 0.183 0.126 

5 3.3 2.5 0.013 0.027 0.217 0.152 

6 3.3 2.1 0.013 0.030 0.270 0.181 

7 3.4 1.8 0.013 0.036 0.338 0.211 

8 3.5 1.7 0.013 0.048 0.419 0.243 

9 3.6 1.6 0.013 0.064 0.513 0.276 

6 

1 6.8 20.7 0.018 0.028 0.962 0.235 

2 3.2 9.6 0.013 0.016 0.484 0.074 

3 2.9 4.8 0.013 0.023 0.209 0.102 

4 3.0 3.1 0.013 0.025 0.170 0.122 

5 3.3 2.4 0.013 0.026 0.200 0.145 

6 3.3 2.1 0.013 0.028 0.244 0.172 

7 3.4 1.8 0.013 0.032 0.304 0.200 

8 3.4 1.7 0.013 0.041 0.376 0.230 

9 3.6 1.6 0.013 0.056 0.458 0.263 
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Table F.6. Mean estimation error for kinematic gait parameters (Kv2, WF, KC1, 10 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

shoulder 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 17.9 18.5 5.8 2.9 3.5 4.0 4.6 4.7 45.3 

2 

1 17.9 18.6 5.8 5.7 7.2 7.4 17.6 12.3 9.8 

2 17.9 18.5 5.8 4.5 5.2 5.6 9.9 7.9 21.6 

3 17.9 18.5 5.8 4.0 4.5 5.0 7.2 6.0 28.7 

4 17.9 18.5 5.8 3.7 4.2 4.7 6.1 5.2 33.6 

5 17.9 18.5 5.8 3.5 4.0 4.5 5.6 4.9 37.3 

6 17.9 18.5 5.8 3.3 3.9 4.4 5.3 4.8 40.4 

7 17.9 18.5 5.8 3.2 3.7 4.3 5.0 4.7 43.0 

8 17.9 18.5 5.8 3.1 3.6 4.2 4.9 4.7 45.0 

9 17.9 18.5 5.8 3.0 3.5 4.1 4.7 4.6 46.0 

4 

1 17.9 18.6 5.8 5.7 7.4 7.3 20.6 14.8 9.0 

2 17.9 18.5 5.8 4.4 4.9 4.8 8.9 8.6 20.3 

3 17.9 18.5 5.8 4.0 4.2 4.7 5.5 5.7 27.8 

4 17.9 18.5 5.8 3.7 4.1 4.6 5.0 4.9 33.7 

5 17.9 18.5 5.8 3.6 4.0 4.5 5.0 4.7 38.0 

6 17.9 18.5 5.8 3.4 3.9 4.4 5.0 4.7 40.9 

7 17.9 18.5 5.8 3.3 3.8 4.3 5.0 4.7 43.0 

8 17.9 18.5 5.8 3.2 3.8 4.3 4.9 4.7 44.9 

9 17.9 18.5 5.8 3.1 3.7 4.2 4.9 4.6 46.3 

6 

1 17.9 18.6 5.8 5.7 7.6 6.8 22.3 16.0 8.7 

2 17.9 18.5 5.8 4.3 4.8 4.2 8.8 9.1 20.0 

3 17.9 18.5 5.8 4.0 4.2 4.6 4.9 5.5 26.8 

4 17.9 18.5 5.8 3.8 4.0 4.6 4.7 4.9 33.4 

5 17.9 18.5 5.8 3.6 4.0 4.5 5.0 4.7 38.4 

6 17.9 18.5 5.8 3.5 3.9 4.4 5.0 4.7 41.3 

7 17.9 18.5 5.8 3.3 3.9 4.3 5.0 4.6 43.3 

8 17.9 18.5 5.8 3.2 3.8 4.3 4.9 4.7 44.9 

9 17.9 18.5 5.8 3.1 3.7 4.2 4.9 4.6 46.4 
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Kv2 and WB (KC1, 10 trials) 

 

Table F.7. Mean estimation error for spatiotemporal gait parameters (Kv2, WB, KC1, 10 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 5.6 1.8 0.020 0.163 1.173 0.539 

2 

1 4.9 17.7 0.025 0.022 0.747 0.209 

2 4.8 9.4 0.021 0.012 0.429 0.118 

3 5.0 5.8 0.020 0.014 0.331 0.159 

4 5.0 3.9 0.020 0.020 0.331 0.206 

5 5.1 2.8 0.020 0.030 0.385 0.251 

6 5.2 2.2 0.020 0.044 0.478 0.296 

7 5.3 1.9 0.020 0.066 0.597 0.346 

8 5.4 1.8 0.020 0.097 0.754 0.404 

9 5.5 1.8 0.020 0.134 0.967 0.477 

4 

1 5.5 21.0 0.023 0.026 0.804 0.221 

2 4.7 10.0 0.019 0.012 0.432 0.114 

3 4.8 5.2 0.019 0.015 0.332 0.150 

4 5.0 3.2 0.020 0.018 0.314 0.182 

5 5.0 2.3 0.020 0.021 0.327 0.217 

6 5.0 2.0 0.020 0.026 0.374 0.254 

7 5.2 1.8 0.020 0.035 0.457 0.293 

8 5.2 1.8 0.020 0.052 0.557 0.337 

9 5.3 1.8 0.020 0.081 0.675 0.383 

6 

1 6.7 22.4 0.023 0.027 0.795 0.231 

2 4.7 10.5 0.019 0.013 0.438 0.118 

3 4.7 5.1 0.019 0.016 0.320 0.149 

4 5.0 3.0 0.020 0.018 0.315 0.174 

5 5.0 2.3 0.020 0.020 0.321 0.207 

6 5.0 2.0 0.020 0.024 0.351 0.241 

7 5.0 1.9 0.020 0.030 0.418 0.278 

8 5.2 1.8 0.020 0.041 0.508 0.317 

9 5.2 1.8 0.020 0.062 0.610 0.361 

 

 

 



F.1 Results for Both Kinect Versions and Walking Activities 

 

 

223 

 

Table F.8. Mean estimation error for kinematic gait parameters (Kv2, WB, KC1, 10 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

shoulder 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 11.7 15.4 6.3 8.3 13.6 3.7 6.7 5.0 49.3 

2 

1 11.7 15.4 6.3 6.4 18.3 6.3 19.6 15.4 18.8 

2 11.7 15.4 6.3 6.9 16.8 5.1 12.4 10.4 28.3 

3 11.7 15.4 6.3 7.2 16.1 4.6 10.0 8.0 32.9 

4 11.7 15.4 6.3 7.4 15.7 4.3 8.9 6.8 36.0 

5 11.7 15.4 6.3 7.6 15.3 4.1 8.3 6.2 38.6 

6 11.7 15.4 6.3 7.7 15.0 4.0 7.9 5.8 40.8 

7 11.7 15.4 6.3 7.9 14.7 3.9 7.5 5.5 43.0 

8 11.7 15.4 6.3 8.0 14.4 3.8 7.2 5.3 45.1 

9 11.7 15.4 6.3 8.2 14.0 3.7 6.9 5.1 47.4 

4 

1 11.7 15.4 6.3 6.4 18.6 6.1 22.3 18.1 18.8 

2 11.7 15.4 6.3 7.0 16.7 4.9 11.5 11.2 29.5 

3 11.7 15.4 6.3 7.3 16.1 4.5 8.6 7.4 33.0 

4 11.7 15.4 6.3 7.5 15.7 4.2 8.2 6.1 35.6 

5 11.7 15.4 6.3 7.6 15.5 4.1 8.1 5.7 38.1 

6 11.7 15.4 6.3 7.7 15.2 4.0 7.9 5.6 40.2 

7 11.7 15.4 6.3 7.8 15.0 3.9 7.6 5.5 41.9 

8 11.7 15.4 6.3 7.9 14.8 3.8 7.4 5.4 43.5 

9 11.7 15.4 6.3 8.0 14.5 3.8 7.2 5.3 45.1 

6 

1 11.7 15.4 6.3 6.5 18.8 5.8 23.9 19.1 18.2 

2 11.7 15.4 6.3 7.1 16.7 4.7 11.5 11.6 30.2 

3 11.7 15.4 6.3 7.3 16.0 4.4 8.0 7.1 33.2 

4 11.7 15.4 6.3 7.5 15.7 4.2 7.9 5.9 35.1 

5 11.7 15.4 6.3 7.6 15.5 4.1 8.1 5.6 37.7 

6 11.7 15.4 6.3 7.7 15.3 4.0 8.0 5.5 40.1 

7 11.7 15.4 6.3 7.8 15.1 3.9 7.7 5.5 41.8 

8 11.7 15.4 6.3 7.9 14.9 3.9 7.5 5.4 43.2 

9 11.7 15.4 6.3 8.0 14.7 3.8 7.3 5.3 44.7 
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F.2 Results for Different Kv2 Configurations (WF Trials) 

Kv2 and KC1 (WF, 5 trials) 

 

Table F.9. Mean estimation error for spatiotemporal gait parameters (Kv2, WF, KC1, 5 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 3.8 1.5 0.013 0.118 0.916 0.420 

2 

1 3.2 16.5 0.019 0.021 0.868 0.212 

2 3.3 8.9 0.014 0.014 0.415 0.086 

3 3.2 5.6 0.013 0.019 0.226 0.115 

4 3.4 3.9 0.013 0.024 0.211 0.153 

5 3.4 2.9 0.013 0.031 0.275 0.192 

6 3.5 2.3 0.013 0.039 0.363 0.230 

7 3.6 1.9 0.013 0.052 0.466 0.272 

8 3.7 1.6 0.013 0.069 0.594 0.318 

9 3.7 1.5 0.013 0.092 0.762 0.374 

4 

1 4.6 19.5 0.017 0.026 0.970 0.224 

2 3.1 9.1 0.013 0.015 0.454 0.077 

3 3.0 4.9 0.013 0.021 0.209 0.109 

4 3.2 3.2 0.013 0.024 0.173 0.138 

5 3.4 2.4 0.013 0.026 0.211 0.167 

6 3.4 2.0 0.013 0.029 0.267 0.199 

7 3.5 1.8 0.013 0.036 0.339 0.233 

8 3.5 1.6 0.013 0.047 0.424 0.268 

9 3.7 1.6 0.013 0.062 0.522 0.305 

6 

1 6.6 20.8 0.017 0.028 0.959 0.229 

2 3.2 9.5 0.012 0.016 0.480 0.079 

3 3.1 4.8 0.013 0.023 0.200 0.110 

4 3.1 3.1 0.013 0.024 0.162 0.133 

5 3.4 2.4 0.013 0.026 0.196 0.159 

6 3.4 2.0 0.013 0.028 0.242 0.189 

7 3.5 1.8 0.013 0.031 0.304 0.221 

8 3.4 1.7 0.013 0.040 0.378 0.254 

9 3.6 1.6 0.013 0.055 0.466 0.289 
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Table F.10. Mean estimation error for kinematic gait parameters (Kv2, WF, KC1, 5 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

shoulder 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 18.0 18.7 5.9 2.9 3.6 4.1 4.7 4.5 45.3 

2 

1 18.0 18.7 5.9 5.6 7.1 7.3 17.7 12.2 10.2 

2 18.0 18.7 5.9 4.4 5.2 5.5 10.0 7.7 21.7 

3 18.0 18.7 5.9 3.9 4.6 5.0 7.3 5.8 28.7 

4 18.0 18.7 5.9 3.6 4.3 4.7 6.2 5.0 33.5 

5 18.0 18.7 5.9 3.4 4.1 4.5 5.6 4.8 37.2 

6 18.0 18.7 5.9 3.2 3.9 4.4 5.3 4.6 40.3 

7 18.0 18.7 5.9 3.1 3.8 4.3 5.1 4.5 42.9 

8 18.0 18.7 5.9 3.0 3.7 4.2 4.9 4.5 44.9 

9 18.0 18.7 5.9 2.9 3.7 4.1 4.8 4.5 46.0 

4 

1 18.1 18.7 5.9 5.6 7.4 7.1 20.6 14.7 9.4 

2 18.0 18.7 5.9 4.3 4.9 4.8 8.9 8.5 20.7 

3 18.0 18.7 5.9 3.9 4.3 4.7 5.6 5.5 27.8 

4 18.0 18.7 5.9 3.7 4.2 4.6 5.1 4.8 33.6 

5 18.0 18.7 5.9 3.5 4.1 4.5 5.1 4.6 37.8 

6 18.0 18.7 5.9 3.3 4.0 4.4 5.1 4.6 40.6 

7 18.0 18.7 5.9 3.2 3.9 4.4 5.0 4.5 42.8 

8 18.0 18.7 5.9 3.1 3.8 4.3 5.0 4.5 44.6 

9 18.0 18.7 5.9 3.0 3.8 4.2 4.9 4.5 46.1 

6 

1 18.1 18.7 5.9 5.6 7.5 6.7 22.3 15.9 8.9 

2 18.0 18.7 5.9 4.3 4.9 4.2 8.9 8.9 20.4 

3 18.0 18.7 5.9 4.0 4.3 4.6 4.9 5.3 27.0 

4 18.0 18.7 5.9 3.7 4.1 4.6 4.7 4.7 33.3 

5 18.0 18.7 5.9 3.5 4.1 4.6 5.1 4.6 38.2 

6 18.0 18.7 5.9 3.4 4.0 4.5 5.1 4.5 41.1 

7 18.0 18.7 5.9 3.2 3.9 4.4 5.1 4.5 43.0 

8 18.0 18.7 5.9 3.1 3.9 4.3 5.0 4.5 44.6 

9 18.0 18.7 5.9 3.0 3.8 4.2 4.9 4.5 46.1 
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Kv2 and KC2 (WF, 5 trials) 

 

Table F.11. Mean estimation error for spatiotemporal gait parameters (Kv2, WF, KC2, 5 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 3.3 1.2 0.013 0.114 0.838 0.350 

2 

1 3.1 16.3 0.018 0.021 0.776 0.248 

2 2.8 8.5 0.014 0.013 0.380 0.100 

3 3.0 5.2 0.013 0.016 0.219 0.100 

4 3.2 3.5 0.013 0.021 0.209 0.125 

5 3.3 2.4 0.013 0.028 0.260 0.153 

6 3.3 1.8 0.013 0.037 0.336 0.183 

7 3.3 1.5 0.013 0.049 0.428 0.217 

8 3.2 1.3 0.013 0.067 0.541 0.258 

9 3.2 1.2 0.013 0.090 0.692 0.310 

4 

1 4.7 19.2 0.016 0.026 0.852 0.259 

2 3.0 8.9 0.013 0.014 0.388 0.073 

3 2.8 4.6 0.013 0.018 0.201 0.093 

4 3.0 2.8 0.013 0.021 0.174 0.116 

5 3.2 2.0 0.013 0.023 0.202 0.137 

6 3.3 1.6 0.013 0.026 0.248 0.160 

7 3.3 1.4 0.013 0.033 0.313 0.184 

8 3.3 1.3 0.013 0.044 0.393 0.211 

9 3.3 1.3 0.013 0.060 0.483 0.242 

6 

1 6.3 20.6 0.017 0.027 0.844 0.261 

2 3.0 9.3 0.012 0.015 0.401 0.071 

3 2.8 4.5 0.013 0.019 0.187 0.091 

4 2.8 2.6 0.013 0.021 0.162 0.113 

5 3.1 1.9 0.013 0.022 0.186 0.133 

6 3.3 1.6 0.013 0.024 0.221 0.153 

7 3.3 1.4 0.013 0.028 0.275 0.176 

8 3.3 1.3 0.013 0.038 0.349 0.200 

9 3.3 1.3 0.013 0.053 0.433 0.228 
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Table F.12. Mean estimation error for kinematic gait parameters (Kv2, WF, KC2, 5 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

shoulder 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 19.0 19.4 6.6 3.3 3.3 3.4 6.4 4.2 39.3 

2 

1 19.0 19.4 6.6 5.8 5.7 6.4 19.1 11.9 8.4 

2 19.0 19.4 6.6 4.5 3.8 4.5 11.6 7.3 13.7 

3 19.0 19.4 6.6 4.1 3.4 4.0 9.1 5.5 18.8 

4 19.0 19.4 6.6 3.8 3.2 3.8 8.0 4.7 23.0 

5 19.0 19.4 6.6 3.6 3.2 3.6 7.5 4.4 26.6 

6 19.0 19.4 6.6 3.5 3.1 3.6 7.2 4.3 30.0 

7 19.0 19.4 6.6 3.4 3.1 3.5 6.9 4.3 33.0 

8 19.0 19.4 6.6 3.3 3.1 3.5 6.7 4.2 35.7 

9 19.0 19.4 6.6 3.2 3.2 3.4 6.5 4.2 38.0 

4 

1 19.0 19.4 6.6 5.7 5.8 6.5 21.9 14.4 9.2 

2 19.0 19.4 6.6 4.4 3.6 3.9 10.5 8.0 12.9 

3 19.0 19.4 6.6 4.1 3.3 3.8 7.4 5.2 17.9 

4 19.0 19.4 6.6 3.9 3.2 3.7 7.0 4.4 22.3 

5 19.0 19.4 6.6 3.7 3.2 3.6 7.0 4.3 26.1 

6 19.0 19.4 6.6 3.5 3.2 3.6 7.0 4.2 29.2 

7 19.0 19.4 6.6 3.4 3.1 3.5 6.9 4.2 31.9 

8 19.0 19.4 6.6 3.3 3.1 3.5 6.8 4.2 34.3 

9 19.0 19.4 6.6 3.3 3.1 3.4 6.7 4.2 36.3 

6 

1 19.0 19.4 6.6 5.8 6.0 6.1 23.6 15.6 9.6 

2 19.0 19.4 6.6 4.4 3.6 3.5 10.4 8.5 12.7 

3 19.0 19.4 6.6 4.1 3.3 3.8 6.8 5.0 17.5 

4 19.0 19.4 6.6 3.9 3.2 3.8 6.6 4.4 22.1 

5 19.0 19.4 6.6 3.7 3.2 3.7 7.0 4.2 26.1 

6 19.0 19.4 6.6 3.6 3.2 3.6 7.0 4.2 29.1 

7 19.0 19.4 6.6 3.5 3.1 3.5 7.0 4.2 31.7 

8 19.0 19.4 6.6 3.4 3.1 3.5 6.9 4.2 34.0 

9 19.0 19.4 6.6 3.3 3.1 3.4 6.8 4.2 35.9 
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Kv2 and KC3 (WF, 5 trials) 

 

Table F.13. Mean estimation error for spatiotemporal gait parameters (Kv2, WF, KC3, 5 trials), when 

considering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Spatiotemporal parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Step 

length 

(mm) 

Step width 

(mm) 

Gait speed 

(m/s) 

Gait speed 

variability 

(m/s) 

Foot swing 

velocity 

(m/s) 

Arm swing 

velocity 

(m/s) 

No filtering 3.6 1.7 0.014 0.121 0.728 0.401 

2 

1 3.1 15.8 0.020 0.019 0.984 0.247 

2 2.9 8.5 0.015 0.014 0.558 0.098 

3 3.0 5.4 0.014 0.019 0.349 0.108 

4 3.2 3.9 0.014 0.025 0.254 0.137 

5 3.2 3.0 0.014 0.031 0.243 0.170 

6 3.4 2.4 0.014 0.041 0.281 0.206 

7 3.5 2.0 0.014 0.054 0.351 0.246 

8 3.5 1.8 0.014 0.073 0.457 0.291 

9 3.5 1.7 0.014 0.097 0.602 0.351 

4 

1 5.0 18.6 0.017 0.023 1.081 0.257 

2 3.0 8.6 0.014 0.015 0.584 0.085 

3 2.9 4.7 0.014 0.021 0.340 0.107 

4 3.0 3.1 0.014 0.024 0.244 0.128 

5 3.2 2.5 0.014 0.026 0.216 0.150 

6 3.3 2.1 0.014 0.030 0.224 0.176 

7 3.5 1.9 0.014 0.037 0.260 0.207 

8 3.5 1.8 0.014 0.050 0.323 0.241 

9 3.6 1.7 0.014 0.066 0.401 0.277 

6 

1 6.7 19.9 0.018 0.025 1.067 0.264 

2 3.2 8.9 0.013 0.016 0.607 0.086 

3 3.0 4.5 0.014 0.022 0.328 0.109 

4 2.9 3.0 0.014 0.024 0.232 0.125 

5 3.2 2.4 0.014 0.026 0.208 0.145 

6 3.3 2.1 0.014 0.028 0.213 0.168 

7 3.4 1.9 0.014 0.032 0.237 0.195 

8 3.6 1.8 0.014 0.043 0.287 0.227 

9 3.6 1.7 0.014 0.059 0.357 0.261 
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Table F.14. Mean estimation error for kinematic gait parameters (Kv2, WF, KC3, 5 trials), when con-

sidering different value pairs for the Butterworth filter parameters (order and cut-off frequency). 

Butterworth filter 

parameters 

Kinematic parameters 

Mean error 

Order 

Cut-off 

frequency 

(Hz) 

Neck 

angle 

(deg.) 

Spine 

shoulder 

angle 

(deg.) 

Spine 

middle 

angle 

(deg.) 

Elbow 

angle 

maximum 

(deg.) 

Elbow 

angle 

minimum 

(deg.) 

Knee 

angle 

maximum 

(deg.) 

Knee 

angle 

minimum 

(deg.) 

Hip 

angle 

range 

(deg.) 

Ankle 

angle 

range 

(deg.) 

No filtering 16.9 17.5 5.2 3.0 3.6 3.9 4.5 5.1 45.2 

2 

1 16.9 17.5 5.2 6.2 7.0 7.5 17.4 12.7 14.6 

2 16.9 17.5 5.2 4.9 5.2 5.7 9.7 8.4 27.5 

3 16.9 17.5 5.2 4.3 4.6 5.0 7.1 6.6 33.2 

4 16.9 17.5 5.2 3.9 4.4 4.7 6.0 5.8 36.4 

5 16.9 17.5 5.2 3.7 4.2 4.5 5.5 5.5 38.8 

6 16.9 17.5 5.2 3.5 4.1 4.4 5.2 5.3 40.9 

7 16.9 17.5 5.2 3.3 3.9 4.2 5.0 5.2 42.8 

8 16.9 17.5 5.2 3.2 3.8 4.1 4.8 5.1 44.6 

9 16.9 17.5 5.2 3.1 3.7 4.0 4.6 5.1 45.7 

4 

1 16.9 17.5 5.2 6.1 7.1 7.4 20.2 14.8 12.7 

2 16.9 17.5 5.2 4.8 4.9 5.0 8.6 9.2 28.7 

3 16.9 17.5 5.2 4.3 4.4 4.8 5.5 6.4 34.7 

4 16.9 17.5 5.2 4.0 4.2 4.7 5.0 5.6 38.1 

5 16.9 17.5 5.2 3.8 4.2 4.5 5.0 5.3 40.3 

6 16.9 17.5 5.2 3.6 4.1 4.4 5.0 5.2 41.6 

7 16.9 17.5 5.2 3.5 4.1 4.3 4.9 5.2 42.9 

8 16.9 17.5 5.2 3.3 4.0 4.2 4.9 5.1 44.2 

9 16.9 17.5 5.2 3.2 3.9 4.1 4.8 5.1 45.4 

6 

1 16.9 17.5 5.2 6.1 7.3 6.9 21.9 15.8 11.6 

2 16.9 17.5 5.2 4.8 4.9 4.5 8.5 9.7 29.1 

3 16.9 17.5 5.2 4.4 4.3 4.8 4.9 6.3 34.8 

4 16.9 17.5 5.2 4.1 4.2 4.7 4.7 5.5 38.6 

5 16.9 17.5 5.2 3.8 4.2 4.5 4.9 5.3 41.0 

6 16.9 17.5 5.2 3.7 4.1 4.4 5.0 5.2 42.3 

7 16.9 17.5 5.2 3.5 4.1 4.3 4.9 5.2 43.3 

8 16.9 17.5 5.2 3.4 4.0 4.2 4.9 5.1 44.5 

9 16.9 17.5 5.2 3.2 3.9 4.2 4.8 5.1 45.6 
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Appendix G Additional Kinect Validation Results 

This appendix includes the complete results obtained for the studies on the Kinect’s validity 

for gait analysis (Chapter 6): Kinect version comparison (Appendix G.1); walking activity compari-

son (Appendix G.2); Kinect configuration comparison (Appendix G.3). It also presents the results 

obtained for the Kinect v2 when varying the number of gait cycles considered for gait parameter 

computation (Appendix G.4). 
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G.1 Kinect Version Comparison 

 

Table G.1. Mean and standard deviation values for each gait parameter obtained when using the Ki-

nect and Qualisys, in the case of both Kinect versions (Kv1 and Kv2), considering the WF activity and 

configuration KC1.  

Parameter  

Mean ± standard deviation 

Kv1 Kv2 

Kinect Qualisys Kinect Qualisys 

Stride duration 

(s) 
1.065 ± 0.060 1.062 ± 0.056 1.055 ± 0.066 1.056 ± 0.061 

Step duration 

(s) 
0.534 ± 0.028 0.537 ± 0.032 0.532 ± 0.042 0.532 ± 0.035 

Stance duration 

(s) 
0.681 ± 0.051 0.667 ± 0.044 0.669 ± 0.045 0.672 ± 0.048 

Swing duration 

(s) 
0.384 ± 0.037 0.395 ± 0.022 0.387 ± 0.030 0.384 ± 0.029 

Single support duration 

(s) 
0.772 ± 0.079 0.781 ± 0.035 0.770 ± 0.045 0.773 ± 0.045 

Double support duration 

(s) 
0.293 ± 0.072 0.281 ± 0.038 0.285 ± 0.037 0.283 ± 0.042 

Stride length 

(mm) 
134.6 ± 12.4 121.7 ± 10.5 122.5 ± 12.4 121.9 ± 12.7 

Step length 

(mm) 
58.0 ± 6.6 56.2 ± 6.0 54.9 ± 7.7 55.6 ± 8.1 

Step width 

(mm) 
13.7 ± 3.3 11.9 ± 2.0 13.2 ± 2.7 11.9 ± 2.5 

Gait speed 

(m/s) 
1.297 ± 0.114 1.169 ± 0.106 1.184 ± 0.13 1.172 ± 0.128 

Gait speed variability 

(m/s) 
0.097 ± 0.040 0.096 ± 0.015 0.099 ± 0.030 0.095 ± 0.027 

Foot swing velocity 

(m/s) 
3.789 ± 0.320 3.661 ± 0.312 3.721 ± 0.340 3.700 ± 0.355 

Arm swing velocity 

(m/s) 
2.549 ± 0.642 2.298 ± 0.366 2.234 ± 0.341 2.230 ± 0.355 

Neck angle 

(deg. ) 
161.8 ± 7.3 155.9 ± 8.5 172.1 ± 3.5 154.7 ± 8.6 

Spine middle angle 

(deg.) 
174.8 ± 3.4 168.7 ± 5.6 176.2 ± 1.8 171.1 ± 4.1 

Elbow angle maximum 

(deg.) 
167.7 ± 4.7 168.0 ± 5.6 167.2 ± 5.1 167.8 ± 4.9 

Elbow angle minimum 

(deg.) 
137.9 ± 8.2 136.6 ± 8.4 139.3 ± 7.9 138.7 ± 9.0 

Knee angle maximum 

(deg.) 
177.9 ± 1.1 177.0 ± 2.5 174.5 ± 2.7 177.1 ± 2.2 

Knee angle minimum 

(deg.) 
138.5 ± 4.4 124.9 ± 4.7 128.7 ± 4.1 124.7 ± 4.6 

Hip angle range 

(deg.) 
15.7 ± 2.7 20.4 ± 3.4 19.3 ± 4.6 20.7 ± 3.1 

Ankle angle range 

(deg.) 
40.1 ± 14.1 28.0 ± 5.7 29.1 ± 12.8 27.7 ± 6.2 
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Table G.2. Bland Altman’s mean difference (Mean diff) and 95% limits of agreement (LoA) for each 

gait parameter, in the case of both Kinect versions (Kv1 and Kv2), considering the WF activity and 

configuration KC1.   

Parameter  
Mean diffa 95% LoA 

Kv1 Kv2 Kv1 Kv2 

Stride duration 

(s) 
0.003 0.000 −0.055 to 0.061 −0.042 to 0.041 

Step duration 

(s) 
−0.003 0.000 −0.040 to 0.033 −0.039 to 0.039 

Stance duration 

(s) 
0.014 −0.003 −0.061 to 0.089 −0.042 to 0.036 

Swing duration 

(s) 
−0.010^ 0.003 −0.077 to 0.057 −0.055 to 0.061 

Single support duration 

(s) 
−0.009^ −0.002 −0.149 to 0.132 −0.074 to 0.069 

Double support duration 

(s) 
0.012^ 0.002 −0.132 to 0.156 −0.049 to 0.053 

Stride length 

(mm) 
12.9~ 0.6 3.5 to 22.2 −3.0 to 4.3 

Step length 

(mm) 
1.7 −0.7 −6.2 to 9.7 −8.4 to 6.9 

Step width 

(mm) 
1.8~^ 1.3~ −2.0 to 5.6 −0.3 to 2.8 

Gait speed 

(m/s) 
0.128~ 0.012~ 0.085 to 0.170 −0.003 to 0.027 

Gait speed variability 

(m/s) 
0.001^ 0.005 −0.065 to 0.067 −0.027 to 0.037 

Foot swing velocity 

(m/s) 
0.128~ 0.021 −0.282 to 0.537 −0.262 to 0.304 

Arm swing velocity 

(m/s) 
0.251~^ 0.004 −0.689 to 1.192 −0.121 to 0.128 

Neck angle 

(deg. ) 
5.9~ 17.4~^ −4.8 to 16.6 2.2 to 32.6 

Spine middle angle 

(deg.) 
6.1~^ 5.2~^ −6.3 to 18.5 −1.7 to 12.1 

Elbow angle maximum 

(deg.) 
−0.3 −0.6~^ −11.2 to 10.6 −9.3 to 8.1 

Elbow angle minimum 

(deg.) 
1.4 0.6 −8.7 to 11.4 −7.4 to 8.6 

Knee angle maximum 

(deg.) 
0.9^ −2.6~ −5.3 to 7.0 −10 to 4.8 

Knee angle minimum 

(deg.) 
13.6~ 4.0~ 5.4 to 21.7 −2.1 to 10 

Hip angle range 

(deg.) 
−4.7~ −1.3 −10.1 to 0.6 −11.5 to 8.9 

Ankle angle range 

(deg.) 
12.2~^ 1.3^ −16.4 to 40.7 −19.7 to 22.3 

a The ~ and ^ symbols indicate fixed and proportional bias, respectively. The lowest error (Mean 

diff) for each parameter is indicated in bold, when there is a statistically significant difference be-

tween the two Kinect versions (one-way repeated-measures ANOVA, p-value ≤ 0.05). 
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Table G.3. Pearson's correlation coefficient (r) and concordance correlation coefficient (rc), and associ-

ated 95% confidence interval (CI), for each gait parameter, in the case of both Kinect versions (Kv1 

and Kv2), considering the WF activity and configuration KC1. 

Parameter  
ra (95% CI) rc (95% CI) 

Kv1 Kv2 Kv1 Kv2 

Stride duration 
0.87* 

(0.70 to 0.95) 

0.95* 

(0.87 to 0.98) 

0.87 

(0.71 to 0.95) 

0.94 

(0.87 to 0.98) 

Step duration 
0.82* 

(0.59 to 0.93) 

0.88* 

(0.72 to 0.95) 

0.81 

(0.59 to 0.92) 

0.87 

(0.70 to 0.94) 

Stance duration 
0.69* 

(0.36 to 0.87) 

0.91* 

(0.78 to 0.96) 

0.66 

(0.35 to 0.85) 

0.91 

(0.79 to 0.96) 

Swing duration 
0.42 

(−0.03 to 0.73) 

0.49* 

(0.05 to 0.76) 

0.36 

(−0.06 to 0.67) 

0.49 

(0.08 to 0.75) 

Single support duration 
0.42 

(−0.03 to 0.73) 

0.67* 

(0.32 to 0.86) 

0.31 

(−0.13 to 0.64) 

0.67 

(0.35 to 0.85) 

Double support duration 
0.24 

(−0.23 to 0.61) 

0.79* 

(0.53 to 0.91) 

0.19 

(−0.25 to 0.57) 

0.78 

(0.54 to 0.91) 

Stride length 
0.93* 

(0.82 to 0.97) 

0.99* 

(0.97 to 1.00) 

0.56 

(0.36 to 0.72) 

0.99 

(0.97 to 1.00) 

Step length 
0.80* 

(0.54 to 0.92) 

0.88* 

(0.71 to 0.95) 

0.77 

(0.52 to 0.90) 

0.88 

(0.72 to 0.95) 

Step width 
0.84* 

(0.64 to 0.94) 

0.95* 

(0.88 to 0.98) 

0.62 

(0.34 to 0.80) 

0.85 

(0.72 to 0.93) 

Gait speed 
0.98* 

(0.96 to 0.99) 

1.00* 

(1.00 to 1.00) 

0.59 

(0.41 to 0.73) 

0.99 

(0.99 to 1.00) 

Gait speed variability 
0.60* 

(0.22 to 0.82) 

0.84* 

(0.63 to 0.94) 

0.40 

(−0.03 to 0.70) 

0.83 

(0.63 to 0.93) 

Foot swing velocity 
0.78* 

(0.52 to 0.91) 

0.91* 

(0.79 to 0.97) 

0.73 

(0.47 to 0.87) 

0.91 

(0.80 to 0.96) 

Arm swing velocity 
0.67* 

(0.33 to 0.86) 

0.98* 

(0.96 to 0.99) 

0.53 

(0.17 to 0.76) 

0.98 

(0.96 to 0.99) 

Neck angle 
0.77* 

(0.49 to 0.91) 

0.42 

(−0.04 to 0.73) 

0.61 

(0.33 to 0.79) 

0.07 

(−0.04 to 0.17) 

Spine middle angle 
0.09 

(−0.37 to 0.51) 

0.50* 

(0.07 to 0.77) 

0.04 

(−0.22 to 0.30) 

0.16 

(−0.04 to 0.35) 

Elbow angle maximum 
0.43 

(−0.01 to 0.74) 

0.61* 

(0.23 to 0.83) 

0.43 

(0.01 to 0.72) 

0.61 

(0.26 to 0.82) 

Elbow angle minimum 
0.81* 

(0.57 to 0.92) 

0.89* 

(0.74 to 0.96) 

0.81 

(0.58 to 0.92) 

0.88 

(0.74 to 0.95) 

Knee angle maximum 
−0.42 

(−0.73 to 0.03) 

−0.21 

(−0.59 to 0.26) 

0.00 

(0.00 to 0.00) 

0.00 

(0.00 to 0.00) 

Knee angle minimum 
0.58* 

(0.17 to 0.82) 

0.75* 

(0.46 to 0.89) 

0.11 

(0.01 to 0.20) 

0.53 

(0.26 to 0.72) 

Hip angle range 
0.61* 

(0.22 to 0.83) 

0.14 

(−0.32 to 0.55) 

0.27 

(0.06 to 0.46) 

0.13 

(−0.3 to 0.52) 

Ankle angle range 
0.13 

(−0.35 to 0.55) 

0.55* 

(0.14 to 0.80) 

0.05 

(−0.23 to 0.33) 

0.43 

(0.01 to 0.72) 

a The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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G.2 Walking Activity Comparison 

 

Table G.4. Mean and standard deviation values for each gait parameter obtained when using the Kv2 

and Qualisys, in the case of both walking activities (WF and WB), considering the configuration KC1. 

Parameter 

Mean ± standard deviation 

WF WB 

Kinect Qualisys Kinect Qualisys 

Stride duration 

(s) 
1.064 ± 0.053 1.059 ± 0.054 1.065 ± 0.059 1.062 ± 0.059 

Step duration 

(s) 
0.533 ± 0.029 0.531 ± 0.028 0.527 ± 0.031 0.525 ± 0.030 

Stance duration 

(s) 
0.674 ± 0.037 0.673 ± 0.043 0.690 ± 0.041 0.677 ± 0.047 

Swing duration 

(s) 
0.389 ± 0.019 0.386 ± 0.018 0.380 ± 0.023 0.390 ± 0.019 

Single support duration 

(s) 
0.779 ± 0.036 0.777 ± 0.033 0.760 ± 0.043 0.787 ± 0.037 

Double support duration 

(s) 
0.285 ± 0.024 0.282 ± 0.038 0.305 ± 0.029 0.274 ± 0.036 

Stride length 

(mm) 
123.3 ± 11.9 122.2 ± 12.0 129.6 ± 9.6 129.4 ± 9.4 

Step length 

(mm) 
56.6 ± 6.6 56.1 ± 6.4 59.1 ± 6.1 61.2 ± 4.6 

Step width 

(mm) 
13.1 ± 2.0 11.7 ± 1.8 12.2 ± 1.8 11.3 ± 1.6 

Gait speed 

(m/s) 
1.186 ± 0.123 1.173 ± 0.123 1.241 ± 0.104 1.221 ± 0.105 

Gait speed variability 

(m/s) 
0.100 ± 0.017 0.094 ± 0.016 0.080 ± 0.011 0.079 ± 0.012 

Foot swing velocity 

(m/s) 
3.645 ± 0.295 3.709 ± 0.339 3.776 ± 0.330 3.884 ± 0.281 

Arm swing velocity 

(m/s) 
2.306 ± 0.329 2.280 ± 0.331 2.184 ± 0.294 2.134 ± 0.246 

Neck angle 

(deg. ) 
172.2 ± 2.9 154.6 ± 7.6 165.3 ± 4.5 156.3 ± 8.4 

Spine shoulder angle 

(deg.) 
174.1 ± 2.3 155.9 ± 6.5 171.7 ± 2.3 157.4 ± 6.5 

Spine middle angle 

(deg.) 
176.2 ± 1.5 171.0 ± 4.0 176.9 ± 0.8 171.6 ± 4.4 

Elbow angle maximum 

(deg.) 
167.6 ± 4.1 168.3 ± 4.3 173.8 ± 2.4 166.5 ± 4.2 

Elbow angle minimum 

(deg.) 
138.9 ± 6.2 137.7 ± 7.4 153.6 ± 6.0 140.7 ± 4.7 

Knee angle maximum 

(deg.) 
173.8 ± 1.9 177.2 ± 2.3 174.9 ± 1.6 177.0 ± 2.5 

Knee angle minimum 

(deg.) 
128.8 ± 4.1 124.5 ± 4.1 129.2 ± 3.4 124.1 ± 4.4 

Hip angle range 

(deg.) 
18.6 ± 3.9 20.2 ± 3.3 18.1 ± 3.2 22.4 ± 3.4 

Ankle angle range 

(deg.) 
32.4 ± 7.5 28.9 ± 4.3 48.5 ± 6.1 30.4 ± 4.5 
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Table G.5. Bland Altman’s mean difference (Mean diff) and 95% limits of agreement (LoA) for each 

gait parameter, in the case of both walking activities (WF and WB), considering the Kv2 and configu-

ration KC1. 

Parameter  
Mean diffa 95% LoA 

WF WB WF WB 

Stride duration 

(s) 
0.005~ 0.003 −0.012 to 0.021 −0.014 to 0.02 

Step duration 

(s) 
0.002 0.002 −0.011 to 0.016 −0.018 to 0.022 

Stance duration 

(s) 
0.001^ 0.013~ −0.021 to 0.024 −0.022 to 0.047 

Swing duration 

(s) 
0.003 −0.009~ −0.021 to 0.027 −0.037 to 0.018 

Single support duration 

(s) 
0.001 −0.027~ −0.041 to 0.044 −0.084 to 0.03 

Double support duration 

(s) 
0.003^ 0.031~ −0.039 to 0.045 −0.036 to 0.098 

Stride length 

(mm) 
1.2~ 0.2 0.0 to 2.4 −3.2 to 3.6 

Step length 

(mm) 
0.5 −2.1~^ −2.5 to 3.6 −7.9 to 3.7 

Step width 

(mm) 
1.4~ 0.9~ −0.2 to 3.0 −1.2 to 3 

Gait speed 

(m/s) 
0.013~ 0.020~ 0.005 to 0.021 0.009 to 0.032 

Gait speed variability 

(m/s) 
0.006~ 0.000 −0.009 to 0.021 −0.013 to 0.014 

Foot swing velocity 

(m/s) 
−0.063 −0.108 −0.340 to 0.213 −0.614 to 0.398 

Arm swing velocity 

(m/s) 
0.026 0.050 −0.086 to 0.138 −0.159 to 0.259 

Neck angle 

(deg. ) 
17.6~^ 9.1~^ 3.7 to 31.5 −8.6 to 26.8 

Spine shoulder angle 

(deg.) 
18.1~^ 14.3~^ 7.7 to 28.6 1.2 to 27.4 

Spine middle angle 

(deg.) 
5.2~^ 5.3~^ −1.7 to 12.0 −3.5 to 14.1 

Elbow angle maximum 

(deg.) 
−0.7 7.4~^ −5.7 to 4.3 −1.5 to 16.3 

Elbow angle minimum 

(deg.) 
1.2~^ 12.9~ −3.3 to 5.8 7.3 to 18.4 

Knee angle maximum 

(deg.) 
−3.4~ −2.1~ −9.8 to 3.0 −8.6 to 4.4 

Knee angle minimum 

(deg.) 
4.3~ 5.1~ −0.1 to 8.6 −5.5 to 15.6 

Hip angle range 

(deg.) 
−1.6 −4.4~ −11.0 to 7.8 −12.2 to 3.5 

Ankle angle range 

(deg.) 
3.5~^ 18.0~ −7.4 to 14.4 4.4 to 31.6 

a The ~ and ^ symbols indicate fixed and proportional bias, respectively. The lowest error (Mean diff) 

for each parameter is indicated in bold, when there is a statistically significant difference between 

the two Kinect versions (one-way repeated-measures ANOVA, p-value ≤ 0.05). 
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Table G.6. Pearson's correlation coefficient (r) and concordance correlation coefficient (rc), and associ-

ated 95% confidence interval (CI), for each gait parameter, in the case of both walking activities (WF 

and WB), considering the Kv2 and configuration KC1. 

Parameter  
ra (95% CI) rc (95% CI) 

WF WB WF WB 

Stride duration 
0.99* 

(0.97 to 1.00) 

0.99* 

(0.97 to 1.00) 

0.98 

(0.96 to 0.99) 

0.99 

(0.97 to 1.00) 

Step duration 
0.97* 

(0.93 to 0.99) 

0.95* 

(0.87 to 0.98) 

0.97 

(0.93 to 0.99) 

0.95 

(0.87 to 0.98) 

Stance duration 
0.97* 

(0.93 to 0.99) 

0.93* 

(0.81 to 0.97) 

0.96 

(0.90 to 0.98) 

0.89 

(0.75 to 0.95) 

Swing duration 
0.79* 

(0.54 to 0.92) 

0.80* 

(0.53 to 0.92) 

0.79 

(0.55 to 0.91) 

0.72 

(0.44 to 0.88) 

Single support duration 
0.81* 

(0.57 to 0.92) 

0.75* 

(0.40 to 0.91) 

0.81 

(0.58 to 0.92) 

0.60 

(0.28 to 0.81) 

Double support duration 
0.85* 

(0.66 to 0.94) 

0.46 

(−0.04 to 0.78) 

0.77 

(0.51 to 0.90) 

0.32 

(−0.03 to 0.60) 

Stride length 
1.00* 

(1.00 to 1.00) 

0.98* 

(0.96 to 0.99) 

0.99 

(0.99 to 1.00) 

0.98 

(0.96 to 0.99) 

Step length 
0.97* 

(0.93 to 0.99) 

0.88* 

(0.72 to 0.95) 

0.97 

(0.92 to 0.99) 

0.80 

(0.59 to 0.91) 

Step width 
0.92* 

(0.81 to 0.97) 

0.82* 

(0.59 to 0.92) 

0.73 

(0.53 to 0.85) 

0.72 

(0.47 to 0.86) 

Gait speed 
1.00* 

(1.00 to 1.00) 

1.00* 

(1.00 to 1.00) 

0.99 

(0.99 to 1.00) 

0.98 

(0.96 to 0.99) 

Gait speed variability 
0.90* 

(0.75 to 0.96) 

0.84* 

(0.63 to 0.93) 

0.84 

(0.66 to 0.93) 

0.83 

(0.62 to 0.93) 

Foot swing velocity 
0.91* 

(0.78 to 0.96) 

0.65* 

(0.27 to 0.86) 

0.89 

(0.75 to 0.95) 

0.62 

(0.26 to 0.83) 

Arm swing velocity 
0.99* 

(0.96 to 0.99) 

0.94* 

(0.84 to 0.98) 

0.98 

(0.96 to 0.99) 

0.91 

(0.79 to 0.96) 

Neck angle 
0.37 

(−0.1 to 0.71) 

0.11 

(−0.36 to 0.54) 

0.04 

(−0.04 to 0.13) 

0.05 

(−0.19 to 0.29) 

Spine shoulder angle 
0.63* 

(0.25 to 0.84) 

0.12 

(−0.34 to 0.54) 

0.05 

(−0.01 to 0.11) 

0.02 

(−0.06 to 0.09) 

Spine middle angle 
0.53* 

(0.12 to 0.79) 

−0.07 

(−0.50 to 0.40) 

0.15 

(−0.04 to 0.33) 

0.00 

(0.00 to 0.00) 

Elbow angle maximum 
0.81* 

(0.58 to 0.92) 

0.15 

(−0.34 to 0.58) 

0.81 

(0.59 to 0.92) 

0.04 

(−0.10 to 0.18) 

Elbow angle minimum 
0.95* 

(0.89 to 0.98) 

0.88* 

(0.71 to 0.96) 

0.93 

(0.84 to 0.97) 

0.22 

(0.09 to 0.35) 

Knee angle maximum 
−0.26 

(−0.63 to 0.21) 

−0.21 

(−0.64 to 0.31) 

0.00 

(0.00 to 0.00) 

0.00 

(0.00 to 0.00) 

Knee angle minimum 
0.85* 

(0.66 to 0.94) 

0.05 

(−0.46 to 0.53) 

0.55 

(0.32 to 0.72) 

0.03 

(−0.24 to 0.29) 

Hip angle range 
0.12 

(−0.34 to 0.53) 

0.28 

(−0.23 to 0.67) 

0.11 

(−0.31 to 0.49) 

0.15 

(−0.12 to 0.40) 

Ankle angle range 
0.68* 

(0.32 to 0.86) 

0.17 

(−0.35 to 0.62) 

0.51 

(0.16 to 0.75) 

0.03 

(−0.05 to 0.10) 

a The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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G.3 Kinect Configuration Comparison 

 

Table G.7. Mean and standard deviation values for each gait parameter obtained when using the Kv2 

and Qualisys, in the case of the three configurations (KC1, KC2 and KC3), considering the WF activ-

ity. 

Parameter  

Mean ± standard deviation 

KC1 KC2 KC3 

Kinect Qualisys Kinect Qualisys Kinect Qualisys 

Stride duration 

(s) 
1.065 ± 0.055 1.062 ± 0.052 1.071 ± 0.054 1.064 ± 0.051 1.059 ± 0.059 1.054 ± 0.056 

Step duration 

(s) 
0.535 ± 0.029 0.534 ± 0.026 0.541 ± 0.027 0.535 ± 0.024 0.534 ± 0.032 0.529 ± 0.028 

Stance duration 

(s) 
0.674 ± 0.036 0.671 ± 0.042 0.671 ± 0.036 0.677 ± 0.046 0.67 ± 0.043 0.669 ± 0.046 

Swing duration 

(s) 
0.391 ± 0.022 0.391 ± 0.018 0.399 ± 0.022 0.387 ± 0.013 0.389 ± 0.022 0.385 ± 0.02 

Single support duration 

(s) 
0.783 ± 0.040 0.783 ± 0.033 0.793 ± 0.042 0.777 ± 0.028 0.776 ± 0.036 0.772 ± 0.035 

Double support duration 

(s) 
0.284 ± 0.024 0.282 ± 0.037 0.278 ± 0.025 0.287 ± 0.037 0.283 ± 0.035 0.282 ± 0.038 

Stride length 

(mm) 
124.3 ± 11.7 123.3 ± 11.6 121 ± 10 120.1 ± 9.9 121.7 ± 10.7 120.2 ± 10.2 

Step length 

(mm) 
57.1 ± 6.6 56.9 ± 6.2 54.3 ± 5.2 54.8 ± 6 55.5 ± 6 54.8 ± 6.1 

Step width 

(mm) 
12.9 ± 1.8 11.6 ± 1.5 12.4 ± 2.3 11.7 ± 1.9 13 ± 1.8 11.5 ± 1.5 

Gait speed 

(m/s) 
1.189 ± 0.125 1.176 ± 0.123 1.162 ± 0.116 1.151 ± 0.115 1.177 ± 0.118 1.164 ± 0.117 

Gait speed variability 

(m/s) 
0.1 ± 0.017 0.093 ± 0.016 0.103 ± 0.018 0.1 ± 0.018 0.101 ± 0.021 0.097 ± 0.017 

Foot swing velocity 

(m/s) 
3.681 ± 0.29 3.716 ± 0.359 3.573 ± 0.232 3.631 ± 0.327 3.463 ± 0.297 3.661 ± 0.33 

Arm swing velocity 

(m/s) 
2.323 ± 0.347 2.296 ± 0.33 2.223 ± 0.315 2.238 ± 0.314 2.312 ± 0.329 2.292 ± 0.338 

Neck angle 

(deg. ) 
171.8 ± 3.4 154.2 ± 8.0 171.1 ± 3.4 152.1 ± 8.7 171.6 ± 3.1 154.4 ± 7.7 

Spine shoulder angle 

(deg.) 
173.9 ± 2.7 155.6 ± 6.8 173.3 ± 2.6 153.9 ± 6.9 173.5 ± 2.5 155.7 ± 6.5 

Spine middle angle 

(deg.) 
176.1 ± 1.7 170.7 ± 4.2 175.8 ± 1.6 169.7 ± 4.9 175.7 ± 1.6 170.7 ± 4.4 

Elbow angle maximum 

(deg.) 
167.2 ± 4.2 167.9 ± 4.3 167.5 ± 4.6 167.8 ± 4.1 167.0 ± 4.3 168.3 ± 3.7 

Elbow angle minimum 

(deg.) 
138.1 ± 6.7 136.8 ± 7.7 136.8 ± 6.6 137.8 ± 7.1 138.2 ± 5.2 137.1 ± 6.7 

Knee angle maximum 

(deg.) 
173.7 ± 2.0 177.2 ± 2.3 175.0 ± 1.7 177.1 ± 2.1 174.0 ± 1.9 177.1 ± 2.3 

Knee angle minimum 

(deg.) 
129.1 ± 3.9 124.4 ± 4.1 130.9 ± 3.6 124.6 ± 4.3 128.8 ± 3.2 124.7 ± 4.0 

Hip angle range 

(deg.) 
18.6 ± 3.6 20.4 ± 3.4 18.5 ± 3.3 20.1 ± 3.1 17.4 ± 4.3 20.1 ± 3.6 

Ankle angle range 

(deg.) 
32.7 ± 8.3 29.3 ± 5.0 24.3 ± 7.0 28.7 ± 5.0 37.9 ± 6.4 28.7 ± 4.5 
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Table G.8. Bland Altman’s mean difference (Mean diff) and 95% limits of agreement (LoA) for each 

gait parameter, in the case of the three configurations (KC1, KC2 and KC3), considering the Kv2 and 

WF activity. 

Parameter  
Mean diffa 95% LoA 

KC1 KC2 KC3 KC1 KC2 KC3 

Stride duration 

(s) 
0.003 0.007~ 0.005~ −0.015 to 0.02 −0.014 to 0.028 −0.013 to 0.022 

Step duration 

(s) 
0.000^ 0.006~ 0.005~ −0.013 to 0.014 −0.015 to 0.027 −0.012 to 0.022 

Stance duration 

(s) 
0.003^a −0.006^b 0.001a,b −0.021 to 0.026 −0.042 to 0.031 −0.036 to 0.038 

Swing duration 

(s) 
0.000b 0.013~^a 0.004b −0.027 to 0.027 −0.022 to 0.048 −0.035 to 0.042 

Single support duration 

(s) 
0.000b 0.016~^a 0.004a,b −0.048 to 0.048 −0.044 to 0.077 −0.056 to 0.064 

Double support duration 

(s) 
0.003^a −0.009b 0.001a,b −0.042 to 0.047 −0.074 to 0.055 −0.058 to 0.06 

Stride length 

(mm) 
1.0~ 0.9~ 1.6~ −0.2 to 2.1 −0.5 to 2.3 −0.9 to 4 

Step length 

(mm) 
0.2 −0.5^ 0.7 −3.4 to 3.7 −3.8 to 2.8 −3 to 4.3 

Step width 

(mm) 
1.3~a 0.8~b 1.5~^a −0.3 to 2.8 −1.5 to 3 −0.2 to 3.2 

Gait speed 

(m/s) 
0.012~ 0.011~ 0.014~ 0.005 to 0.019 0.002 to 0.02 −0.001 to 0.028 

Gait speed variability 

(m/s) 
0.007~ 0.004 0.004 −0.012 to 0.026 −0.012 to 0.019 −0.019 to 0.027 

Foot swing velocity 

(m/s) 
−0.036^a −0.057^a −0.197~b −0.341 to 0.27 −0.399 to 0.284 −0.47 to 0.076 

Arm swing velocity 

(m/s) 
0.027 −0.015 0.020 −0.112 to 0.167 −0.087 to 0.058 −0.138 to 0.179 

Neck angle 

(deg. ) 
17.7~^a,b 18.9~^a 17.2~^b 3.6 to 31.7 4.6 to 33.2 3.6 to 30.7 

Spine shoulder angle 

(deg.) 
18.3~^b 19.4~^a 17.8~^b 7.7 to 28.9 8.7 to 30.2 7.6 to 28 

Spine middle angle 

(deg.) 
5.3~^a.b 6.1~^a 5.0~^b −1.5 to 12.2 −2.2 to 14.4 −2.1 to 12 

Elbow angle maximum 

(deg.) 
−0.7a.b −0.3a −1.3~b −5 to 3.6 −5.4 to 4.8 −6.1 to 3.4 

Elbow angle minimum 

(deg.) 
1.3~a −0.9b 1.0^a −3.5 to 6 −6.7 to 4.8 −4.9 to 7 

Knee angle maximum 

(deg.) 
−3.5~b −2.1~a −3.1~b −10.2 to 3.3 −8.2 to 4.1 −9.7 to 3.4 

Knee angle minimum 

(deg.) 
4.6~b 6.3~a 4.1~b 0.5 to 8.7 0.2 to 12.3 −0.5 to 8.7 

Hip angle range 

(deg.) 
−1.8 −1.5 −2.7~ −11 to 7.5 −9.7 to 6.6 −11.9 to 6.5 

Ankle angle range 

(deg.) 
3.4~^b −4.3~c 9.2~a −7.7 to 14.4 −17.9 to 9.2 −3.7 to 22 

a The ~ and ^ symbols indicate fixed and proportional bias, respectively. For each parameters, the superscript a, b and c letters 

indicate statistically significant differences between the KC1, KC2 and/or KC3 from post-hoc Tukey test (configurations with 

different letters are significantly different). The lowest error (Mean diff) is indicated in bold, when there is a statistically sig-

nificant difference between one of the configurations and the other two. 
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Table G.9. Pearson's correlation coefficient (r) and concordance correlation coefficient (rc), and associ-

ated 95% confidence interval (CI), for each gait parameter, in the case of the three configurations 

(KC1, KC2 and KC3), considering the Kv2 and WF activity. 

Parameter  
ra (95% CI) rc (95% CI) 

KC1 KC2 KC3 KC1 KC2 KC3 

Stride duration 
0.99* 

(0.97 to 0.99) 

0.98* 

(0.95 to 0.99) 

0.99* 

(0.97 to 1.00) 

0.99 

(0.96 to 0.99) 

0.97 

(0.93 to 0.99) 

0.99 

(0.97 to 0.99) 

Step duration 
0.98* 

(0.94 to 0.99) 

0.92* 

(0.81 to 0.97) 

0.97* 

(0.92 to 0.99) 

0.97 

(0.93 to 0.99) 

0.89 

(0.75 to 0.95) 

0.95 

(0.88 to 0.98) 

Stance duration 
0.96* 

(0.91 to 0.99) 

0.92* 

(0.81 to 0.97) 

0.91* 

(0.79 to 0.96) 

0.95 

(0.89 to 0.98) 

0.89 

(0.75 to 0.95) 

0.91 

(0.79 to 0.96) 

Swing duration 
0.78* 

(0.52 to 0.91) 

0.58* 

(0.19 to 0.82) 

0.56* 

(0.16 to 0.80) 

0.76 

(0.51 to 0.90) 

0.42 

(0.08 to 0.68) 

0.56 

(0.18 to 0.79) 

Single support duration 
0.79* 

(0.51 to 0.92) 

0.69* 

(0.35 to 0.87) 

0.62* 

(0.25 to 0.84) 

0.77 

(0.50 to 0.91) 

0.58 

(0.25 to 0.80) 

0.62 

(0.27 to 0.83) 

Double support duration 
0.81* 

(0.55 to 0.93) 

0.49* 

(0.07 to 0.77) 

0.66* 

(0.31 to 0.85) 

0.74 

(0.44 to 0.89) 

0.45 

(0.04 to 0.73) 

0.66 

(0.33 to 0.85) 

Stride length 
1.00* 

(1.00 to 1.00) 

1.00* 

(0.99 to 1.00) 

0.99* 

(0.98 to 1.00) 

1.00 

(0.99 to 1.00) 

0.99 

(0.99 to 1.00) 

0.98 

(0.96 to 0.99) 

Step length 
0.96* 

(0.90 to 0.99) 

0.97* 

(0.91 to 0.99) 

0.95* 

(0.89 to 0.98) 

0.96 

(0.90 to 0.98) 

0.95 

(0.89 to 0.98) 

0.95 

(0.88 to 0.98) 

Step width 
0.91* 

(0.77 to 0.96) 

0.86* 

(0.68 to 0.94) 

0.89* 

(0.73 to 0.95) 

0.69 

(0.47 to 0.83) 

0.80 

(0.58 to 0.91) 

0.61 

(0.38 to 0.77) 

Gait speed 
1.00* 

(1.00 to 1.00) 

1.00* 

(1.00 to 1.00) 

1.00* 

(1.00 to 1.00) 

0.99 

(0.99 to 1.00) 

0.99 

(0.99 to 1.00) 

0.99 

(0.98 to 1.00) 

Gait speed variability 
0.82* 

(0.60 to 0.93) 

0.91* 

(0.77 to 0.96) 

0.83* 

(0.61 to 0.93) 

0.76 

(0.53 to 0.89) 

0.89 

(0.76 to 0.95) 

0.80 

(0.57 to 0.91) 

Foot swing velocity 
0.91* 

(0.78 to 0.96) 

0.86* 

(0.67 to 0.94) 

0.91* 

(0.78 to 0.96) 

0.89 

(0.74 to 0.95) 

0.80 

(0.58 to 0.91) 

0.76 

(0.56 to 0.87) 

Arm swing velocity 
0.98* 

(0.95 to 0.99) 

0.99* 

(0.98 to 1.00) 

0.97* 

(0.93 to 0.99) 

0.98 

(0.94 to 0.99) 

0.99 

(0.98 to 1.00) 

0.97 

(0.93 to 0.99) 

Neck angle 
0.45 

(0.00 to 0.75) 

0.57* 

(0.16 to 0.81) 

0.45 

(0.00 to 0.75) 

0.06 

(−0.03 to 0.16) 

0.08 

(−0.02 to 0.17) 

0.06 

(−0.03 to 0.15) 

Spine middle angle 
0.67* 

(0.32 to 0.86) 

0.68* 

(0.34 to 0.86) 

0.66* 

(0.31 to 0.85) 

0.06 

(0.00 to 0.13) 

0.06 

(0.00 to 0.12) 

0.06 

(0.00 to 0.12) 

Elbow angle maximum 
0.56* 

(0.15 to 0.80) 

0.55* 

(0.14 to 0.80) 

0.62* 

(0.25 to 0.84) 

0.17 

(−0.03 to 0.35) 

0.14 

(−0.06 to 0.32) 

0.19 

(−0.02 to 0.39) 

Elbow angle minimum 
0.87* 

(0.69 to 0.95) 

0.83* 

(0.61 to 0.93) 

0.83* 

(0.61 to 0.93) 

0.86 

(0.69 to 0.94) 

0.82 

(0.62 to 0.92) 

0.78 

(0.56 to 0.90) 

Knee angle maximum 
0.95* 

(0.88 to 0.98) 

0.91* 

(0.78 to 0.96) 

0.90* 

(0.77 to 0.96) 

0.93 

(0.84 to 0.97) 

0.90 

(0.78 to 0.96) 

0.87 

(0.70 to 0.94) 

Knee angle minimum 
−0.30 

(−0.66 to 0.16) 

−0.31 

(−0.67 to 0.16) 

−0.24 

(−0.63 to 0.24) 

0.00 

(0.00 to 0.00) 

0.00 

(0.00 to 0.00) 

0.00 

(0.00 to 0.00)  

Hip angle range 
0.86* 

(0.67 to 0.95) 

0.71* 

(0.38 to 0.88) 

0.81* 

(0.56 to 0.92) 

0.52 

(0.30 to 0.69) 

0.31 

(0.11 to 0.50) 

0.48 

(0.24 to 0.67) 

Ankle angle range 
0.10 

(−0.37 to 0.53) 

0.14 

(−0.33 to 0.56) 

0.31 

(−0.17 to 0.67) 

0.09 

(−0.31 to 0.46) 

0.13 

(−0.29 to 0.51) 

0.26 

(−0.13 to 0.57) 

 a The * symbol indicates a statistically significant value (p-value ≤ 0.05). 
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G.4 Results for Kinect v2 when varying the Number of Gait 

Cycles 

 

Table G.10. Bland Altman’s mean difference values obtained for Kv2 and WF (KC1), when varying 

the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 

(s) 
0.000 −0.003 0.009 0.004 0.005 0.003 0.002 0.004 0.001 0.006 0.005 

Step duration 

(s) 
0.000 −0.002 0.006 0.001 0.001 −0.001 0.003 0.002 0.002 0.004 0.002 

Stance duration 

(s) 
−0.003 −0.002 0.001 0.004 0.005 0.002 0.002 0.000 0.003 0.004 0.001 

Swing duration 

(s) 
0.003 −0.001 0.008 0.000 0.000 0.002 0.000 0.004 −0.001 0.002 0.003 

Single support duration 

(s) 
−0.002 −0.001 0.010 −0.002 −0.003 0.000 0.000 0.000 −0.002 0.001 0.001 

Double support duration 

(s) 
0.002 −0.002 −0.001 0.006 0.007 0.003 0.002 0.004 0.003 0.005 0.003 

Stride length 

(cm) 
0.6 1.0 1.6 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.2 

Step length 

(cm) 
−0.7 0.3 0.2 0.6 0.0 0.2 −0.4 0.0 0.4 0.1 0.5 

Step width 

(cm) 
1.3 1.8 1.3 1.4 1.2 1.3 1.4 1.2 1.3 1.3 1.4 

Gait speed 

(m/s) 
0.012 0.013 0.011 0.013 0.014 0.013 0.013 0.012 0.013 0.012 0.013 

Gait speed variability 

(m/s) 
0.005 0.005 0.008 0.008 0.007 0.008 0.006 0.005 0.007 0.005 0.006 

Foot swing velocity 

(m/s) 
0.021 −0.069 −0.037 −0.056 −0.079 −0.062 −0.049 −0.048 −0.069 −0.045 −0.063 

Arm swing velocity 

(m/s) 
0.004 −0.006 0.017 0.031 0.028 0.018 0.036 0.020 0.029 0.008 0.026 

Neck angle 

(deg. ) 
17 17 18 17 18 18 18 18 18 18 18 

Spine shoulder angle 

(deg.) 
18 18 18 18 18 18 18 18 18 18 18 

Spine middle angle 

(deg.) 
5 5 5 5 5 5 5 5 5 5 5 

Elbow angle maximum 

(deg.) 
−1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 

Elbow angle minimum 

(deg.) 
1 2 2 1 1 1 1 1 1 1 1 

Knee angle maximum 

(deg.) 
−3 −4 −4 −3 −3 −3 −3 −4 −3 −3 −3 

Knee angle minimum 

(deg.) 
4 5 4 5 4 5 5 5 5 4 4 

Hip angle range 

(deg.) 
−1 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 

Ankle angle range 

(deg.) 
1 6 2 3 2 4 5 3 2 3 4 

Temporal a 

(s) 
0.000 −0.002 0.006 0.002 0.003 0.002 0.002 0.002 0.001 0.004 0.003 

Spatiala 

(cm) 
0.4 1.0 1.0 1.0 0.8 0.8 0.7 0.7 0.9 0.8 1.0 

Velocitya 

(m/s) 
0.011 −0.014 0.000 −0.001 −0.008 −0.006 0.002 −0.003 −0.005 −0.005 −0.005 

Kinematica 

(deg.) 
5 5 5 5 5 5 5 5 5 5 5 

a mean value when considering all corresponding parameters. 



Appendix G Additional Kinect Validation Results 

 

 

242 

 

Table G.11. Pearson's correlation coefficient (r) values obtained for Kv2 and WF (KC1), when varying 

the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 0.95 0.98 0.97 0.98 0.99 0.99 0.98 0.98 1.00 0.98 0.99 

Step duration 0.88 0.92 0.88 0.93 0.96 0.96 0.94 0.88 0.97 0.94 0.97 

Stance duration 0.91 0.95 0.91 0.93 0.94 0.95 0.96 0.98 0.97 0.97 0.97 

Swing duration 0.49 0.39 0.70 0.71 0.86 0.71 0.76 0.58 0.78 0.64 0.79 

Single support duration 0.67 0.63 0.74 0.72 0.82 0.78 0.81 0.68 0.82 0.71 0.81 

Double support duration 0.79 0.75 0.67 0.67 0.66 0.77 0.84 0.81 0.85 0.85 0.85 

Stride length 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Step length 0.88 0.97 0.95 0.97 0.95 0.96 0.92 0.95 0.97 0.96 0.97 

Step width 0.95 0.91 0.83 0.94 0.93 0.91 0.92 0.90 0.87 0.92 0.92 

Gait speed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Gait speed variability 0.84 0.84 0.86 0.81 0.81 0.83 0.85 0.89 0.91 0.84 0.90 

Foot swing velocity 0.91 0.93 0.92 0.83 0.82 0.90 0.88 0.86 0.90 0.90 0.91 

Arm swing velocity 0.98 0.99 0.97 0.98 0.99 0.98 0.97 0.98 0.99 1.00 0.99 

Neck angle 0.42 0.57 0.51 0.38 0.35 0.45 0.46 0.43 0.50 0.49 0.37 

Spine shoulder angle 0.62 0.77 0.69 0.64 0.59 0.64 0.63 0.69 0.68 0.69 0.63 

Spine middle angle 0.50 0.62 0.59 0.54 0.45 0.53 0.48 0.54 0.55 0.58 0.53 

Elbow angle maximum 0.61 0.88 0.85 0.82 0.77 0.80 0.81 0.82 0.83 0.79 0.81 

Elbow angle minimum 0.89 0.95 0.90 0.95 0.94 0.93 0.94 0.95 0.94 0.94 0.95 

Knee angle maximum −0.21 −0.36 0.10 −0.35 −0.26 −0.16 −0.38 −0.14 −0.40 −0.26 −0.26 

Knee angle minimum 0.75 0.72 0.87 0.68 0.71 0.84 0.81 0.78 0.82 0.80 0.85 

Hip angle range 0.14 0.22 0.10 0.13 0.11 0.15 0.12 0.03 0.13 0.09 0.12 

Ankle angle range 0.55 0.38 0.77 0.65 0.71 0.63 0.63 0.73 0.67 0.70 0.68 

Spatiotemporala 0.86 0.87 0.88 0.88 0.90 0.90 0.88 0.93 0.90 0.93 0.88 

Kinematica 0.46 0.50 0.59 0.48 0.47 0.52 0.52 0.51 0.52 0.51 0.52 

a mean value when considering all corresponding parameters. 
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Table G.12. Concordance correlation coefficient (rc) values obtained for Kv2 and WF (KC1), when 

varying the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 0.94 0.98 0.96 0.98 0.98 0.99 0.98 0.97 1.00 0.97 0.98 

Step duration 0.87 0.92 0.87 0.93 0.96 0.96 0.94 0.87 0.95 0.93 0.97 

Stance duration 0.91 0.95 0.89 0.93 0.92 0.94 0.95 0.97 0.96 0.96 0.96 

Swing duration 0.49 0.39 0.67 0.70 0.86 0.71 0.75 0.57 0.78 0.64 0.79 

Single support duration 0.67 0.61 0.72 0.71 0.82 0.78 0.79 0.67 0.82 0.69 0.81 

Double support duration 0.78 0.73 0.63 0.62 0.59 0.71 0.77 0.73 0.83 0.76 0.77 

Stride length 0.99 1.00 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 

Step length 0.88 0.96 0.95 0.96 0.95 0.96 0.92 0.95 0.97 0.96 0.97 

Step width 0.85 0.64 0.68 0.77 0.76 0.74 0.71 0.73 0.64 0.71 0.73 

Gait speed 0.99 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Gait speed variability 0.83 0.82 0.81 0.71 0.76 0.75 0.80 0.87 0.84 0.81 0.84 

Foot swing velocity 0.91 0.92 0.89 0.82 0.80 0.86 0.87 0.85 0.88 0.88 0.89 

Arm swing velocity 0.98 0.99 0.97 0.97 0.99 0.98 0.97 0.98 0.98 1.00 0.98 

Neck angle 0.07 0.09 0.07 0.04 0.03 0.06 0.05 0.04 0.06 0.07 0.04 

Spine shoulder angle 0.07 0.09 0.07 0.05 0.04 0.06 0.05 0.05 0.05 0.06 0.05 

Spine middle angle 0.16 0.21 0.17 0.14 0.11 0.15 0.13 0.14 0.15 0.17 0.15 

Elbow angle maximum 0.61 0.88 0.85 0.81 0.76 0.79 0.81 0.79 0.83 0.78 0.81 

Elbow angle minimum 0.88 0.93 0.88 0.92 0.91 0.90 0.91 0.93 0.92 0.92 0.93 

Knee angle maximum 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Knee angle minimum 0.53 0.40 0.62 0.36 0.38 0.46 0.44 0.45 0.46 0.46 0.55 

Hip angle range 0.13 0.21 0.10 0.12 0.10 0.14 0.11 0.03 0.12 0.09 0.11 

Ankle angle range 0.43 0.22 0.50 0.50 0.61 0.46 0.43 0.56 0.56 0.53 0.51 

Spatiotemporala 0.85 0.84 0.85 0.87 0.87 0.87 0.88 0.86 0.89 0.87 0.90 

Kinematica 0.35 0.37 0.40 0.36 0.37 0.37 0.36 0.37 0.39 0.38 0.39 

a mean value when considering all corresponding parameters. 
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Table G.13. Bland Altman’s mean difference values obtained for Kv2 and WB (KC1), when varying 

the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 

(s) 
0.008 −0.002 0.000 0.000 −0.002 0.000 0.001 0.001 0.002 −0.002 0.000 

Step duration 

(s) 
0.000 −0.002 0.001 0.002 0.001 −0.003 0.001 0.001 0.002 −0.001 0.002 

Stance duration 

(s) 
0.017 0.011 0.012 0.015 0.010 0.014 0.011 0.011 0.011 0.014 0.013 

Swing duration 

(s) 
−0.010 −0.014 −0.011 −0.015 −0.013 −0.014 −0.010 −0.010 −0.008 −0.016 −0.012 

Single support duration 

(s) 
−0.019 −0.036 −0.032 −0.036 −0.033 −0.030 −0.026 −0.026 −0.028 −0.036 −0.031 

Double support duration 

(s) 
0.027 0.034 0.032 0.036 0.031 0.030 0.029 0.029 0.031 0.035 0.032 

Stride length 

(cm) 
−1.3 −0.3 0.0 0.1 −0.3 −0.6 0.1 0.1 0.0 −0.1 −0.5 

Step length 

(cm) 
−4.6 −2.6 −2.3 −2.4 −1.9 −2.7 −2.8 −2.8 −2.5 −2.5 −2.6 

Step width 

(cm) 
0.6 0.9 1.0 1.0 0.4 0.7 0.7 0.7 0.6 0.9 0.5 

Gait speed 

(m/s) 
0.021 0.021 0.020 0.020 0.021 0.020 0.020 0.020 0.021 0.020 0.019 

Gait speed variability 

(m/s) 
−0.001 0.001 0.002 −0.002 0.001 −0.002 0.000 0.000 0.003 0.000 −0.001 

Foot swing velocity 

(m/s) 
−0.029 −0.096 −0.087 −0.113 −0.106 −0.103 −0.139 −0.139 −0.114 −0.095 −0.121 

Arm swing velocity 

(m/s) 
0.065 0.152 0.145 0.049 0.082 0.064 0.050 0.050 0.048 0.078 0.046 

Neck angle 

(deg. ) 
10 10 8 9 9 10 10 10 9 9 9 

Spine shoulder angle 

(deg.) 
15 14 13 14 14 15 14 14 14 14 14 

Spine middle angle 

(deg.) 
6 6 6 5 6 6 6 6 6 6 5 

Elbow angle maximum 

(deg.) 
6 7 8 8 8 8 8 8 8 8 8 

Elbow angle minimum 

(deg.) 
11 11 9 11 12 12 12 12 13 12 13 

Knee angle maximum 

(deg.) 
−2 −3 −2 −3 −3 −2 −3 −3 −3 −2 −2 

Knee angle minimum 

(deg.) 
5 5 5 5 5 6 5 5 6 5 6 

Hip angle range 

(deg.) 
−4 −3 −5 −4 −4 −4 −4 −4 −4 −5 −4 

Ankle angle range 

(deg.) 
12 15 16 19 16 16 15 15 15 16 16 

Temporal a 

(s) 
0.004 −0.002 0.000 0.000 −0.001 −0.001 0.001 0.002 −0.001 0.001 0.002 

Spatiala 

(cm) 
−1.8 −0.7 −0.4 −0.4 −0.6 −0.9 −0.7 −0.6 −0.6 −0.9 −0.3 

Velocitya 

(m/s) 
0.014 0.020 0.020 −0.012 0.000 −0.005 −0.017 −0.011 0.001 −0.014 −0.010 

Kinematica 

(deg.) 
7 7 6 7 7 7 7 7 7 7 7 

a mean value when considering all corresponding parameters. 
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Table G.14. Pearson's correlation coefficient (r) values obtained for Kv2 and WB (KC1), when varying 

the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 0.87 0.94 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

Step duration 0.62 0.82 0.93 0.94 0.90 0.95 0.96 0.93 0.97 0.96 0.95 

Stance duration 0.86 0.91 0.90 0.93 0.94 0.93 0.92 0.94 0.95 0.95 0.93 

Swing duration 0.31 0.66 0.66 0.67 0.72 0.69 0.69 0.71 0.83 0.77 0.80 

Single support duration 0.60 0.65 0.76 0.70 0.77 0.72 0.81 0.77 0.80 0.76 0.75 

Double support duration 0.53 0.44 0.58 0.67 0.66 0.63 0.70 0.66 0.65 0.67 0.46 

Stride length 0.82 0.96 0.98 0.98 0.97 0.99 0.98 0.98 0.98 0.98 0.98 

Step length 0.68 0.75 0.74 0.80 0.87 0.84 0.87 0.89 0.89 0.92 0.88 

Step width 0.63 0.50 0.86 0.71 0.78 0.80 0.83 0.77 0.83 0.82 0.82 

Gait speed 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Gait speed variability 0.72 0.60 0.79 0.77 0.78 0.87 0.87 0.68 0.79 0.84 0.84 

Foot swing velocity 0.52 0.50 0.67 0.60 0.63 0.72 0.69 0.67 0.66 0.72 0.65 

Arm swing velocity 0.97 0.61 0.54 0.86 0.76 0.90 0.91 0.92 0.83 0.97 0.94 

Neck angle 0.50 0.56 −0.07 0.14 0.18 0.47 0.38 0.52 0.28 0.10 0.11 

Spine shoulder angle 0.45 0.53 0.02 0.11 0.22 0.45 0.36 0.51 0.26 0.09 0.12 

Spine middle angle −0.03 0.26 0.04 −0.18 0.10 0.06 −0.06 0.10 −0.07 0.03 −0.07 

Elbow angle maximum 0.25 0.24 0.05 −0.06 0.17 0.18 0.15 0.06 0.23 0.09 0.15 

Elbow angle minimum 0.56 0.66 0.60 0.71 0.71 0.80 0.80 0.86 0.80 0.81 0.88 

Knee angle maximum −0.29 0.08 −0.49 −0.33 −0.49 −0.55 −0.34 −0.10 −0.20 −0.42 −0.21 

Knee angle minimum 0.32 0.01 0.08 −0.04 0.13 0.18 −0.15 0.13 0.11 −0.03 0.05 

Hip angle range 0.18 0.26 0.25 0.40 0.37 0.36 0.45 0.36 0.21 0.28 0.28 

Ankle angle range 0.13 −0.13 0.42 0.01 0.28 0.15 0.02 0.18 −0.10 0.14 0.17 

Spatiotemporala 0.70 0.72 0.80 0.82 0.83 0.85 0.86 0.84 0.86 0.87 0.85 

Kinematica 0.20 0.24 0.11 0.08 0.18 0.21 0.16 0.26 0.16 0.13 0.17 

a mean value when considering all corresponding parameters. 
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Table G.15. Concordance correlation coefficient (rc) values obtained for Kv2 and WB (KC1), when 

varying the number of gait cycles used to compute the gait parameters. 

Gait Parameter 

Mean difference 

1 

cycle 

2 

cycles 

3 

cycles 

4 

cycles 

5 

cycles 

6 

cycles 

7 

cycles 

8 

cycles 

9 

cycles 

10 

cycles 

11 

cycles 

Stride duration 0.87 0.94 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 

Step duration 0.62 0.81 0.92 0.94 0.90 0.95 0.95 0.93 0.97 0.96 0.95 

Stance duration 0.82 0.88 0.88 0.89 0.92 0.90 0.89 0.91 0.90 0.91 0.89 

Swing duration 0.26 0.52 0.58 0.51 0.58 0.53 0.61 0.65 0.60 0.64 0.72 

Single support duration 0.54 0.46 0.56 0.48 0.58 0.55 0.65 0.61 0.52 0.57 0.60 

Double support duration 0.43 0.30 0.40 0.47 0.48 0.48 0.49 0.47 0.38 0.45 0.32 

Stride length 0.82 0.96 0.98 0.98 0.97 0.99 0.98 0.98 0.98 0.98 0.98 

Step length 0.51 0.67 0.68 0.72 0.81 0.73 0.76 0.80 0.79 0.81 0.80 

Step width 0.51 0.42 0.70 0.61 0.76 0.72 0.76 0.72 0.74 0.77 0.72 

Gait speed 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 

Gait speed variability 0.71 0.57 0.79 0.77 0.77 0.85 0.87 0.67 0.78 0.82 0.83 

Foot swing velocity 0.46 0.49 0.65 0.58 0.59 0.68 0.62 0.62 0.64 0.66 0.62 

Arm swing velocity 0.95 0.50 0.43 0.83 0.73 0.88 0.90 0.90 0.79 0.95 0.91 

Neck angle 0.20 0.20 0.00 0.07 0.08 0.17 0.13 0.19 0.10 0.04 0.05 

Spine shoulder angle 0.07 0.06 0.00 0.01 0.03 0.05 0.04 0.06 0.03 0.01 0.02 

Spine middle angle 0.00 0.04 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.00 0.00 

Elbow angle maximum 0.11 0.07 0.01 0.00 0.04 0.04 0.04 0.01 0.06 0.02 0.04 

Elbow angle minimum 0.30 0.31 0.31 0.29 0.27 0.28 0.27 0.26 0.28 0.20 0.22 

Knee angle maximum 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Knee angle minimum 0.20 0.01 0.05 0.00 0.06 0.08 0.00 0.06 0.05 0.00 0.03 

Hip angle range 0.10 0.17 0.12 0.21 0.21 0.21 0.24 0.19 0.09 0.15 0.15 

Ankle angle range 0.06 0.00 0.08 0.00 0.08 0.04 0.00 0.04 0.00 0.03 0.03 

Spatiotemporala 0.65 0.65 0.73 0.77 0.79 0.79 0.80 0.79 0.77 0.81 0.79 

Kinematica 0.12 0.11 0.07 0.09 0.10 0.10 0.09 0.10 0.07 0.06 0.07 

a mean value when considering all corresponding parameters. 
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Appendix H Additional Results for Subject 

Identification 

This appendix includes the number of gait cycles that was detected by our gait cycle detec-

tion solution for each subject, when considering our study on subject identification. This study in-

volved both healthy subjects (Table H.1) and Parkinson’s disease (PD) patients treated with deep 

brain stimulation (DBS) (Table H.2). The results are divided according to the location where the 

associated acquisitions took place.  

 

Table H.1. Number of gait cycles detected for the healthy subjects, when using the Kv2 and considering 

walking towards the sensor. 

Locationa Subject 
Number of 

gait cycles 

LBMP 

S1 32 

S2 30 

S3 27 

S4 28 

S5 33 

S6 23 

S7 25 

S8 23 

S9 33 

S10 32 

S11 35 

S12 25 

S13 21 

S14 22 

S15 29 

S16 22 

S17 30 

S18 22 

S19 21 

S20 22 

HSJ2 

S21 0 

S22 0 

S23 6 

S24 10 

S25 14 

a LBMP and HSJ2 stand for LABIOMEP and sec-

ond location at São João hospital, respectively. 
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Table H.2. Number of gait cycles detected for the PD patients, when using the Kv2 and considering 

walking towards the sensor. 

Locationa Patient Stateb 
Acquisition 

session 

Number of 

gait cycles 

HSJ2 

P1 
Stim-on #1 7 

Stim-off #2 29 

P2 
Stim-on #1 6 

Stim-off #2 23 

P3 
Stim-on #1 18 

Stim-off #2 21 

P4 
Stim-on #1 11 

Stim-off #2 8 

P5 
Stim-on #1 10 

Stim-off #2 12 

P6 Stim-on #1 5 

P7 Stim-on #1 11 

HSJ3 

P8 

Stim-on 

#1 15 

#2 26 

#3 19 

P9 

#1 25 

#2 24 

#3 60 

P10 

#1 20 

#2 23 

#3 33 

#4 34 

P11 
#1 20 

#2 21 

P12 

#1 21 

#2 19 

#3 15 

P13 

#1 36 

#2 36 

#3 35 

P14 

#1 14 

#2 18 

#3 20 

P15 
#1 8 

#2 26 

P16 
#1 38 

#2 25 

P17 
#1 2 

#2 19 

P18 #1 15 

a HSJ2 and HSJ3 stand for second and third location at São João hospital, 

respectively. 

b The state refers to the DBS state (stimulator on or off) in the case of PD 

patients only. 
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