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Summary 
 

Speech has been shown to convey clinically useful information in the study of 
Neurodegenerative Disorders (NDs), such as Parkinson’s Disease (PD). Traditionally the 
use of speech as an exploratory tool in People with Parkinson’s (PwP) has focused on the 
estimation of acoustic characteristics and their study at face value, analysing the physio-
acoustical markers and using them as features for the differentiation between Healthy 
Controls (HC) and PwP. The present work takes a step further, given the intricate 
interoperation between neuromotor activity, responsible for both planning and driving the 
system, and the production of the acoustic speech signal; by the study of speech, this 
relationship may be properly exploited and analysed, providing a non-invasive method 
for the diagnosis, analysis, and observation of NDs. This work aims to introduce a 
working model that is capable of linking both domains and serves as a projection tool to 
provide insights about a speaker’s neuromotor state. This is based on a review of the 
neurophysiological background of the structure and function of the nervous system, and 
a review of the main nervous system dysfunctions involved in PD and other related 
neuromotor disorders. The role of the respiratory, phonatory, and articulatory systems is 
reviewed in the production of voice and speech under normal and pathological 
circumstances. This setting might allow for speech to be considered a useful trait within 
the precision medicine framework, as it provides a personal biometric marker that is 
innate and easy to elicit, can be recorded remotely with inexpensive equipment, is non-
invasive, cost-effective, and easy to process. 

The problem can be divided into two main categories: firstly, a binary detection task 
distinguishing between healthy controls and individuals with NDs based on the projection 
model and phonatory estimates; secondly, a progression and tracking task providing a set 
of quantitative indices that enable clinically interpretable scores. This study aims to define 
a set of features and models that help to characterise hypokinetic dysarthria (HD). These 
incorporate the neuroscientific knowhow semantically and quantitatively to be used in 
clinical decision support tools that provide mechanistic insight on the processes involved 
in speech production, incorporating into the algorithmic element neuromotor 
considerations that add to better interpretability, consequently leading to improved 
clinical decisions and diagnosis.  

An overview of the acoustic signal processing algorithms for use in speech articulation 
and phonation system inversion regarding neuromotor disorder assessment is provided. 
An algorithmic methodology for model inversion and exploration has been proposed for 
the functional characterization and system inversion of each subsystem involved under 
the neuro-biomechanical foundations exposed before.  
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A description of the vocal fold biomechanics using the glottal source, and formant 
dynamics provides the base for specific mapping to articulation kinematics. The statistical 
methods used in performance evaluation are based on three-way comparisons and 
transversal and longitudinal assessment by classical hypothesis testing. 

Three related experimental studies are shown to empirically illustrate the potential of 
phonation and articulation analysis: the characterization of PD from glottal biomechanics 
based on the amplitude distributions of the glottal flow and on the vocal fold body 
stiffness in assessing the efficiency of transcranial magnetic stimulation, and the 
description of PD dysarthria through an articulation projection model.  

The results from the biomechanical analysis of phonation showed that the behaviour of 
glottal source amplitude distributions from PD and healthy controls using three-way 
comparisons and hierarchical clustering were essentially distinguishable from those from 
normative young participants with the best accuracy scores produced by SVM classifiers 
of 94.8% (males) and 92.2% (females). Nevertheless, PD participants were barely 
separable from age-matched controls, possibly pointing to confounding factors due to 
age. The outcomes from using vocal fold stiffness in assessing the efficiency of 
transcranial magnetic stimulation showed mixed results, as some PD participants 
reflected clear improvements in phonation stability after stimulation, whereas some 
others did not. Some cases of sham controls experienced also minor improvements of 
unknown origin, possibly expressing a placebo effect. The overall results on the 
efficiency of stimulation showed an accuracy global score of 67% over the 18 cases 
studied. The results from articulation projection modelling showed the possibility of 
formulating personalised models for PD and control participants to transform acoustic 
formant dynamics into articulation kinematics. This might open the possibility of 
characterising PD dysarthria based on speech audio records.  

The most remarkable findings of the study include the determination of the glottal source 
amplitude distribution behaviour of normative and PD participants; the impact of age 
effects in phonation as a confounding factor in neuromotor disorder characterization; the 
importance of ensuring that the classification of speech dysarthria is based on principles 
that can be explained and interpreted; the need of taking into account the effects of 
medication when framing new classification experiments; the potential of using EEG-
band decomposition to analyse vocal fold stiffness correlates, as well as the possibility of 
using these descriptions in longitudinal monitoring of treatment efficiency; the feasibility 
of establishing a relationship between acoustic and kinematic variables by projection 
model inversion; and the potential of these descriptions for estimating neuromotor 
activities in midbrain related to phonation and articulation activity.  

The most important outcome to be brought forth from the thesis is that the methodology 
used throughout the project uses a bottom-up approach based on speech model inversion 
at the acoustical, biomechanical, and neuromotor levels allowing to estimate glottal 
signals, biomechanical correlates, and neuromotor activity from speech alone, 
establishing a common neuromechanical characterisation framework on its own. 
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Frequently used notation 
 

The following mathematical notational conventions are used throughout this thesis: 

Vectors are written in bold lowercase letters, for example, 𝐱; matrices are written in bold 

capital letters, for example, 𝐗. {∙} ,  denotes the ith row, jth column matrix entry. The 

subscript n in the form 𝑥  indicates the nth element of a vector. The expectation and the 

conditional expectation operators used are: 𝐸[∙] and 𝐸[(∙ |𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)]. Also, (∙)  denotes 

the transpose of a matrix, and  represents the differentiation of a function 𝑓 concerning 

𝑥. The covariance of two random variables 𝑋, 𝑌 is defined by 𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[𝑋, 𝑌] −

𝐸[𝑋] ∙ 𝐸[𝑌]. The convolution operator is denoted by ⨂, and the distance metric is 

represented by ‖∙‖. Unless otherwise specified, the Euclidean distance is used. In the 

context of this thesis we work with (a) real numbers (represented with ℝ), (b) natural 

numbers (represented with ℕ), and (c) integer numbers (represented with ℤ). 
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CHAPTER 1 
 

1 Introduction 

The relationship between the increase in life expectancy and the manifestation of 

neurodegenerative disorders (NDs) is well established, their impact is expected to rise 

with the overall increase of the global life expectancy (Hou et al., 2019). This is due to 

the steady progression of material wealth, improvement of living conditions, and medical 

advancements that have reduced the impact on factors affecting historical mortality 

records, such as food or water poisoning, violent death, infectious diseases, starvation, 

infant death, and exposure (Griffin, 2008). The world average life expectancy has 

dramatically risen over the past two centuries, with an average lifespan of around 30 

years1 throughout most of human history to today’s world average of 72.6-73.2 years 

(World Health Organization, 2021). Consequently, throughout most of human history, 

certain types of diseases did not have enough time to develop and exhibit observable 

symptoms as individuals would expire before from other causes. In rare and uncommon 

cases such diseases would be documented as oddities and unexplained anomalies. Thus, 

as individuals’ lives progress the nature of the diseases that are likely to affect them 

changes as well. Infectious diseases, for instance, are more prevalent in children than 

cancer or diabetes.  

 

 

1 The low average life expectancy is largely influenced by high infant mortality rates. However, once 
individuals reached adulthood, the average life expectancy worldwide was approximately 75 years 
although this figure varies between studies and time periods. 
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There is a technological aspect to take into account as well, as technology develops new 

manufacturing techniques that allow for the development of more complex machinery, 

tools, and sensors causing the emergence of new devices that solve key unsurmountable 

problems. Given that diseases with more acute onset and severity historically caused the 

highest number of fatalities, medical research, and practice have prioritised addressing 

them, generating a cyclical pattern of identification and the development of effective 

treatments. Medical advances such as the discovery of penicillin, pacemaker technology, 

and the evolution of organ transplants changed medical research priorities and have thus 

shifted focus between medical fields. Over the last century, advancements in cancer and 

cardio-respiratory diseases have been among the most remarkable medical 

accomplishments. Probably because of longer life expectancy, greater numbers of people 

with NDs are being diagnosed these days, driving interest from the medical community, 

and promoting research to shift gradually toward NDs, to provide a better understanding 

of this specific field. 

1.1 Neurodegenerative disorders 

NDs are a group of conditions that affect the neurons in the human nervous system 

(Hardiman et al., 2011). These pathologies are characterised by a progressive loss of 

susceptible neuron populations due to toxic or metabolic disorders, leading to impairment 

or loss of certain brain functions and severely worsening the behaviour of individuals 

affected by them. The categorization of NDs can be classified according to primary 

clinical features (e.g., dementia, Parkinsonism, or motor neuron disease), anatomic 

distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal 

disorders, or spinocerebellar degenerations), or principal molecular abnormality (Dugger 

and Dixon, 2017).  
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The main group of interest for the present work is Neuromotor Disorders (NMDs); these 

produce predominantly motor affections that manifest in any task involving the 

movement of biomechanical body systems. NMDs seem to be a consequence of neurons 

degenerating past a series of structures known as the Basal Ganglia (BG), which are 

directly involved in motor control, cognition, and emotion regulation. These structures 

are the striatum, the globus pallidus, the subthalamic nucleus, and the substantia nigra 

(see Figure 1.1). 

 

Figure 1.1 BG and associated structures. 
Description: BG (red) and associated structures2 (blue). 

https://creativecommons.org/licenses/by-sa/4.0/ 
 

The BG serve as a pivotal link between higher cortical functions involved in cognitive 

planning and the neuromotor pathways that transmit signals to motor neurons in the 

medulla oblongata and the spinal cord.  

 

2 Source: https://commons.wikimedia.org/wiki/File:Basal_ganglia_and_related_structures_(2).svg, 
Licence: CC BY-SA 4.0 (Authorizing free share and remix). No changes made with respect to the 
original file. Retrieved 2023/10/02. 
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This network of structures is primarily responsible for control functions and the precise 

modulation of responses. By integrating information from cognitive processes with motor 

outputs, the BG contribute to the refinement and coordination of motor actions, ensuring 

accurate execution and appropriate adjustments in response to environmental demands.  

The study of NDs is as long as humans have been recording history (Papavramidou, 

2018). The understanding and categorization of these disorders have evolved, gradually 

unravelling their intricate nature. The earliest observations of these disorders date back to 

ancient civilizations. For instance, descriptions of dementia-like symptoms can be found 

in ancient Egyptian, Greek, and Roman texts (Boller and Forbes, 1998). Alzheimer's 

disease, the most prevalent form of dementia, was named after Dr Alois Alzheimer, who 

in 1906 identified unique brain abnormalities in a patient exhibiting severe memory loss 

and cognitive decline (Auguste Detter). The latter half of the 20th century witnessed 

significant breakthroughs in molecular biology and genetics, which revolutionised the 

study of NDs and their characterization. The identification of specific genes associated 

with inherited forms of NDs, such as Huntington's disease, allowed for deeper insights 

into the underlying mechanisms.  

Despite extensive research efforts, effective treatments to halt or reverse the progression 

of NDs remain elusive. Although various therapeutic approaches, including medication, 

physical therapy, and supportive care, have been shown to alleviate symptoms and 

enhance the quality of life for individuals affected by these disorders (Blom, Emmelot-

Vonk, and Koek, 2013). Therefore, their study poses a major challenge to the 

development of effective treatments and interventions. So far exploring potential 

biomarkers, developing novel therapeutic targets, and investigating strategies are crucial 

objectives in the pursuit of finding more effective treatments and ultimately discovering 

a cure (Emamzadeh and Surguchov, 2018).  
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A brief description of the most prevalent NDs is given in Table 1.1. 

 

Table 1.1 Brief description of the most prevalent NDs3 

Disorder Description 

Alzheimer's disease Alzheimer’s disease is a neurodegenerative disorder that leads to a 
progressive loss of memory and cognitive abilities. The exact causes are 
unclear, but it involves a combination of genetic factors, environmental 
influences, and lifestyle choices. A key feature of Alzheimer’s is the buildup 
of beta-amyloid plaques and tau tangles in the brain, which are abnormal 
protein deposits that disrupt brain function. 

Amyotrophic lateral 
sclerosis 

Amyotrophic lateral sclerosis (ALS) is marked by the breakdown of motor 
neurons, which manage voluntary muscles. While most ALS cases occur 
randomly without a known cause, a minority are linked to certain genetic 
mutations. 

Creutzfeldt-Jakob 
disease 

Creutzfeldt-Jakob’s disease is a rare degenerative brain disorder caused by 
the abnormal folding of prion proteins. It can occur spontaneously, be 
inherited, or be transmitted through exposure to infected tissues. 

Frontotemporal 
dementia  

Frontotemporal dementia is a group of disorders characterised by the 
degeneration of nerve cells in the frontal and temporal lobes of the brain. It 
can be caused by genetic mutations or occur sporadically without a known 
cause. 

Huntington's disease Huntington's disease is an inherited neurodegenerative disorder caused by a 
mutation in the huntingtin gene. The mutation leads to the production of a 
toxic protein that damages nerve cells in the brain, particularly in the BG. 

Lewy Body Dementia 
(LBD) 

LBD is associated with the buildup of abnormal protein deposits called Lewy 
bodies in the brain. The exact cause is unknown, but it is believed to involve 
a combination of genetic and environmental factors. 

Multiple sclerosis (MS) MS is an autoimmune disease where the immune system mistakenly attacks 
the protective covering of nerve fibres in the central nervous system. The 
exact cause of MS is unknown, but it is thought to involve a combination of 
genetic and environmental factors. 

Parkinson's disease Its a neurodegenerative disorder characterized by the loss of dopamine-
producing cells in the substantia nigra part of the brain. The causes of PD are 
not completely known, but it’s thought to be due to a mix 
of genetic and environmental factors, along with the buildup of 
abnormal alpha-synuclein protein. 

 

 

 

3 https://www.ninds.nih.gov/health-information/disorders 
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1.1.1 Parkinson’s Disease 

The neurodegenerative disorder first described by Dr. James Parkinson as shaking palsy, 

known since then as Parkinson’s disease (PD), is the second most prevalent among NDs 

(Hardiman et al., 2011). At the time that Dr. Parkinson described six cases of this disorder, 

it was considered an unclassified disabling disease, of novel and rare character. Since 

then, morbidity and mortality rates due to PD are increasing faster than concerning any 

other neurological disorder (Dorsey et al., 2018a, b). The prevalence of PD is expected to 

double every 20 years (Simon, Tanner, and Brundin, 2020). Global estimates in 2019 

showed over 8.5 million individuals with PD, an increase of 81% since 2000, 329,000 

deaths being attributed to this disorder, an increase of over 100% since 2000 (World 

Health Organisation, 2023). When considering the causes of PD, three factors seem to be 

the most relevant: ageing, genetics, and environment (De Lau and Breteler, 2006). Social, 

political, and economic reasons are mentioned as possible causes for its geographical 

expansion, linked to processed food and drinks, alcohol, tobacco, environmental factors, 

and social habits (limited physical activity among them).  

PD is the most prevalent NMD, quantifying its incidence in 15 cases per 100,000, with a 

prevalence ranging from 100 to 200 cases per 100,000 (Tysnes and Storstein, 2017). The 

way PD generally manifests itself is through unintended or uncontrollable movements, 

such as shaking, rigidity, and difficulty with balance and coordination, among others. 

Moreover, there are some behavioural changes such as sleep problems, depression, 

memory difficulties, and fatigue. The highest risk factor associated with the development 

of PD is unclear but one of the strongest factors is age, although there are early cases that 

can manifest before the age of 50 (approximately 5-10%). A comprehensive description 

of the characteristics of the disease among other relevant aspects can be found in Sapir 

(2014). 
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There is increasing evidence that PD is an umbrella term that refers to the range of 

heterogeneous symptoms, which as it affects most motor functions is also reflected in 

voice (Tsanas and Arora 2022). The heterogeneity of its potential causes makes PD a 

prime target for a precision medicine approach from the pharmacological, neurosurgical, 

and rehabilitative points of view. Although the single most predictive factor for PD is 

advanced age (typically beyond age 60), almost 25% of affected individuals are younger 

than 65 years (Bloem, Okun, and Klein, 2021). On average, its incidence is lower, and its 

onset is higher among women than among men (De Lau and Breteler, 2006). PD 

manifests itself as a progressive deterioration of motor capabilities developing over many 

years before clear manifestations become evident (Bloem, Okun, and Klein, 2021). 

Among the earliest symptoms for prodromal PD diagnosis rapid eye movement disorders 

during sleep, and speech dysarthria phenomena, seem to be the earliest signs of 

deterioration. The general symptoms associated with PD are bradykinesia, rigidity, 

freezing of gait, frozen facial mask (hypomimia), postural sway, and distal limb resting 

tremor, among others (Jankovic, 2008; Dauer and Przedborski, 2003; Bhat et al., 2018). 

According to Tsanas and Arora (2022), “speech as an item within comprehensive PD 

clinical scales has been previously shown to be very strongly associated with overall PD 

symptom severity as assessed using standardised clinical metrics”. In this sense, it is well 

known that HD is one of the characteristic motor symptoms of PD (Duffy, 2013), that 

affects respiration, phonation, articulation, prosody, and fluency (Titze, 1994a; Tsanas, 

2012; Mekyska et al., 2015; Brabenec et al., 2017).  
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Phonation symptoms, such as musculus vocalis hypotonia, vocal fold imbalance, and 

tremor in voice (altered neuromotor feedback) are some manifestations of PD-related 

neurodegeneration on speech (Liotti et al. 2003; Sapir et al., 2010; Belalcazar-Bolaños et 

al., 2015; Hanratty et al., 2016). Precise knowledge of the neural processes and models 

regulating the respiratory, phonation, and articulation systems in the body is essential to 

explain the effects of PD on speech (Davis et al., 1996; Schulz et al., 2005; Jürgens, 2009), 

especially in terms of neurological circuit modelling (Hirschauer, Adeli and Buford, 

2015; Yuvaraj et al., 2016; Caiola and Holmes, 2019). There has been a lot of interest in 

developing signal-processing approaches to mine speech data, extract dysarthria and 

dysphonia features, and employ statistical machine-learning algorithms for biomedical 

speech applications (Tsanas, 2013; Brabenec et al., 2017; Arora and Tsanas, 2021; Arora 

et al., 2021; Tsanas, Little, and Ramig, 2021). However, to a large extent, these studies 

do not provide the same level of insights that mechanistic models can provide, i.e., models 

that build on the physical principles of voice production to characterise the underlying 

vocal production mechanisms related to PD-associated disorders (Duffy, 2013). 

Exploring a mechanistic model can provide new insights into the underlying 

physiological processes, which in turn might inspire further signal processing algorithms 

for the characterisation of speech signals. 

1.1.2 Etiology of PD 

The BG are the nervous terminations that are responsible for fine-tuning voluntary 

movements by processing and adjusting the impulses received from the cerebral cortex 

promoting precise neuromotor actions. They are strongly connected to sensorial areas and 

integrate information from feedback channels into movement, incorporating information 

returning from the brain to the planning of new motor orders. This information is then 

conveyed to the thalamus which relays the impulses back to the cerebral cortex. 
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Ultimately the fine-tuned processed instructions are relayed to the motor units through 

the tracts of the pyramidal motor system.  

The BG are responsible for mediating some other higher cortical functions, such as 

planning and modulation of movement, memory, eye movements, reward processing, and 

motivation. The most associated signs and symptoms of PD occur when the neurons in 

the BG become impaired or they die. These neurons are responsible for producing 

dopamine, a neurotransmitter in charge of sending messages between nerve cells closely 

associated with the ability to think and plan, movement promotion, motivation, mood, 

memory, and some more tasks. As they degrade dopamine production is reduced which 

in turn causes a wide display of problems including movement alterations.  

There exists a clear relationship between α-synuclein and PD, the presence of Lewy 

Bodies is a primary component of the neuron degeneration. Depending on the area where 

neuron decay takes place, the disease is either branded as PD of LBD (Henderson et. al. 

2019). Alpha-synuclein is a misfolded protein due to mutations in the gene encoding it. 

Increasing evidence suggests that this protein can spread throughout a neuron population. 

In vitro models have shown that neurons grafted with α-synuclein proteins from Lewy 

Bodies form Lewy Body structures of their own, and animal models suggest that rat nigral 

neurons grafted with human α-synuclein spread α-synuclein to embryonic ventral 

mesencephalic neurons, showing areas of human α-synuclein surrounded by a larger ring 

of rat α-synuclein, suggesting a seeding mechanism (Paweł et. al. 2015). As the disease 

progresses α-synuclein pathology seems to spread throughout the different brain 

structures, in the early stages affecting primarily motor function regions and progressively 

moving to cortical structures responsible for higher cognitive processing.  
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This process seems to be the consequence of a physical transmission of the protein 

between brain areas, where the protein is misfolded by an originator neuron and then 

transmitted to proximal vulnerable neurons.  

Braak’s staging hypothesis (Braak et. al. 2003) proposes that Parkinson’s disease is the 

result of exposure to an exogenous agent that gains entry into the body via the nasal or 

gastrointestinal pathways. This agent is believed to infiltrate deeper into the nervous 

system, ultimately reaching the brain either through the pituitary gland or the vagus nerve. 

The existence of Lewy bodies in the enteric and peripheral nervous systems lends 

credence to this proposition. The pathological process navigates through the tissues, 

primarily affecting thin and predominantly unmyelinated neurons. The Braak staging 

system categorizes the progression of the disease into six distinct stages, each one 

associated with abnormal pathology in specific neurological structures. In relation to 

symptomatology, the nature and severity of symptoms correspond to the progression 

through Braak stages. The initial stages are marked by non-motor symptoms, such as 

olfactory dysfunction or constipation. Motor symptoms typically manifest around the 

mid-stage, while cognitive symptoms emerge as the disease progresses to the later Braak 

stages.  

An important distinction between PD and parkinsonism lies in their underlying causes. 

PD primarily results from neuronal cell death, whereas parkinsonism can have various 

alternative etiologies. Common alternative causes observed in clinical practice include 

other neurodegenerative diseases and drug-induced effects. Additionally, less frequent 

causes include structural brain disorders, head injuries, Wilson’s disease, and exposure to 

toxins (Rajput et al., 2024). One specific condition associated with parkinsonism is Lewy-

body dementia. In this disorder, abnormal clumps of α-synuclein (known as Lewy bodies) 

accumulate inside neurons.  
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To differentiate between PD and parkinsonism, clinicians often administer levodopa to 

patients. If symptoms improve in response to the drug, PD is more likely to be the 

underlying cause. 

Some instances of PD seem to show hereditary origin, and some specific cases can be 

related to specific genetic mutations. While genetics is expected to play a role in PD, in 

most cases family history does not seem to play a crucial role, which leads researchers to 

think that the disease is caused by a combination of genetic factors as well as exposure to 

environmental factors such as toxins. 

1.1.3 Symptoms and manifestation 

PD is characterized by a range of core symptoms primarily affecting movement. These 

symptoms can manifest in several ways; one prominent manifestation is the characteristic 

resting tremor, observed in the hands, arms, legs, jaw, or head. Additionally, individuals 

with PD may experience muscular stiffness, resulting in prolonged muscle contractions 

that make movement challenging or even impossible. Another common symptom is 

hypokinesia, which consists of slowed movements (Duffy, 2013). Furthermore, PD can 

lead to a loss of balance and coordination, further impacting mobility. In addition to these 

core symptoms, individuals with PD often display a secondary range of symptoms. These 

can include psychological changes such as depression, as well as difficulties in 

controlling secondary motor functions like swallowing, chewing, and speaking. 

Additionally, PD may give rise to complications such as constipation and urinary 

problems. The presence of these secondary symptoms further contributes to the overall 

burden experienced by individuals living with PD. 
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In the early stages of PD, symptoms seem to manifest with mild motor complications 

while performing day-to-day tasks, such as tremors or body movement, along with rapid 

eye movement sleep behaviour disorder, hyposmia and depression (Turcano et. al. 2019, 

Postuma et. al. 2012). Even though speech is somewhat of an afterthought, most PD cases 

will develop some form of speech disruptions, such as HD and phonation asthenia. As the 

disease progresses an important and dangerous manifestation of the disease is the 

affectation of gait, forcing a forward-leaning posture, quick small steps, and arm 

stabilising swings. Individuals have trouble initiating or continuing movement, such as 

the characteristic and potentially dangerous freezing of gait, where the stride becomes 

locked in place, presenting a fall risk. Another axis that PD manifests is handwriting, 

lettering becoming smaller and more irregular as the disease settles in. 

In most cases, the disease is perceived externally by close ones as the alterations manifest 

increasingly and more evidently. Symptoms seem too often begin on one side of the body, 

but as disease progresses, they eventually spread to both sides. However, it is not 

uncommon for symptoms to be more severe on one side than the other. Many PwPs note 

that they had other problems before stiffness and tremors manifested, such as sleep 

disorders, constipation, loss of smell, and restless legs. Some of these symptoms might 

be relatable to ageing because as stated before PD is more is more prevalent with age. 

1.1.4 Effects of PD on cognitive functions 

As it was introduced in subsection 1.2.1 dopamine plays a very important role in many 

cognitive functions such as memory, attention, and the ability to plan and accomplish 

tasks among others. Some PwPs may experience changes in many of these areas leading 

to stress and depression. Individuals with PD may experience impairments in various 

cognitive domains.  
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One common cognitive effect is executive dysfunction, which can result in difficulties 

with planning, problem-solving, decision-making, and multitasking. PD can also impact 

attention and concentration, leading to decreased focus and distractibility. Memory 

deficits, particularly in working memory and episodic memory, are frequently observed 

in PD. Additionally, individuals with PD may experience difficulties in language and 

communication, such as word-finding capability, and reduced verbal fluency. 

Visuospatial abilities, including spatial perception and navigation, can also be affected. 

Furthermore, PD can lead to changes in mood and behaviour, including depression, 

anxiety, apathy, and impulsivity. These cognitive effects of PD can significantly impact 

daily functioning and quality of life for individuals living with the disease. 

As PD progresses, commonly some cases develop a form of dementia which is diagnosed 

as Parkinson’s Disease Dementia (PDD). A consequence of this condition is that people 

suffering from it may have severe memory and cognitive problems that affect daily life. 

PDD is characterized by not only prominent cognitive symptoms but also by additional 

alterations, such as visual hallucinations and motor impairments. The cognitive effects of 

PDD are diverse and can include deficits in attention and alertness, executive function, 

and visuospatial abilities. Individuals with PDD may struggle with sustaining attention, 

and maintaining focus, and easily become disoriented. Executive dysfunction can 

manifest as difficulties with planning, organizing, problem-solving, and shifting between 

tasks. Visuospatial impairments can result in challenges to depth perception, spatial 

navigation, and object recognition. Memory deficits, particularly in episodic memory, 

may also be present in PDD, although they are generally less severe compared to other 

forms of dementia such as Alzheimer's disease.  
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Language and communication can be affected, leading to difficulties in finding words and 

expressing themselves. Furthermore, PDD is associated with fluctuations in cognitive 

abilities and attention, with periods of lucidity alternating with periods of confusion or 

disorientation. 

1.1.5 Diagnosis of PD 

The presence of α-synuclein can be used to identify the cause of PD even before there are 

any noticeable symptoms through the test α-synuclein seed amplification assay, where 

spinal fluid is extracted through a lumbar puncture and then examined for α-synuclein 

clumps. This procedure is used in clinical research during clinical trials and it is not 

available in a health care professional's office due to its invasiveness and risks involved, 

but there is hope that it will be used for the diagnosis of Parkinson's disease in the future. 

Experts also hope the test could one day be done using blood samples rather than spinal 

fluid (Mayo Clinic 2023). As a result, the diagnosis primarily relies on the patient's 

clinical history, symptoms, and physical and neurological examination. Diagnosis is 

typically undertaken through a combination of exploring a person's medical history and 

conducting an in-clinic examination. Typically, a specialist, such as a neurologist or a 

geriatrician, conducts the inspection. The specialist requests the individual to take on a 

sequence of physical exercises aimed at detecting any potential symptoms or movement-

related issues. At this stage diagnostic uncertainty is resolved if the individual presents 

two of the three following symptoms compatible with a high chance for PD to be present: 

resting tremor or shaking, bradykinesia or slowed movement, and rigidity or muscle 

stiffness. 
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If after the exposure of the patient to levodpa the symptoms subside, the likelihood of PD 

being the cause of the symptoms dramatically increases. Several disorders that can cause 

symptoms similar to those of PD such as multiple system atrophy and LBD are labelled 

with the broader term of Parkinsonism; they share similar features with PD but require 

different treatments. While these disorders might be initially labelled as PD, certain tests 

or pharmacological treatments provide a better understanding after the initial diagnosis. 

Once the disease has been diagnosed, its progression is commonly assessed according to 

the Unified Parkinson’s Disease Rating Scale (UPDRS, Goetz et al., 2004, 2007 and 

2008) which is a widely commonly used metric ranking disease progression according to 

a clinical opinion and self-assessment questionnaire. The scale is composed of five parts; 

each covering a different aspect affected by the progression of PD:  

 Part I: evaluation of mentation, behaviour, and mood. 

 Part II: self-evaluation of daily life activities, including speech, swallowing, 

handwriting, dressing, hygiene, falling, salivation, turning in bed, walking, 

and cutting food. 

 Part III: clinician-scored monitored motor evaluation. 

 Part IV: complications of therapy. 

 Part V: Hoehn and Yahr staging of severity of Parkinson's disease. 

 Part VI: Schwab and England activities of daily life scale assessing the 

capacities of people with impaired mobility.  

While the medical history and neurological examination play a crucial role in diagnosing 

non-genetic PD, it is important to note that the diagnosis is primarily clinical and relies 

on the expertise of the healthcare provider, and this is precisely the key inspiration for 

this work.  
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Providing an objective assessment using UPDRS as the only tool might be complicated 

even for very experienced professionals, given the different subjective factors affecting 

the final scoring.   

1.1.6 Pharmacological treatments 

Although there is no cure for PD, however, various treatments and therapies are available 

to manage the symptoms and improve the quality of life of individuals with PD, such as 

pharmacological treatment, brain stimulation interventions, and other rehabilitative 

therapies. The symptoms of PD can be mitigated or reduced by addressing the effect on 

the different predominant biochemical aspects that cause the distortions, affecting the 

dopamine supply in the brain, affecting neurotransmitters in the brain, or controlling non-

movement-related symptoms. The main drug used in combating PD symptoms is 

levodopa, a chemical precursor used in the metabolisation of dopamine, as it is absorbed 

by the brain cells, the medication increases dopamine production to compensate for the 

declining natural supply. However, like many medications, it can cause adverse effects 

including nausea, vomiting, low blood pressure, and dyskinesias. To combat the side 

effects of levodopa, patients tend to take additional medication such as carbidopa. It 

prevents the breakdown of levodopa before it reaches the brain, this has the added effect 

of reducing the required levodopa amount to improve the symptoms. There are 

complications to suddenly stopping the levodopa treatment, as it could cause dopamine 

levels to abruptly drop leading to the incapacity of movement or difficulty in breathing. 

There are several other drugs used to increase the effectiveness of levodopa delivery as 

listed in Table 1.2. 
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Table 1.2 Brief description of most commonly used levodopa deliveries for PD. 

Drug Description 

Dopamine agonists These work by stimulating dopamine receptors in the brain, mimicking the 
effects of dopamine. These medications help increase dopamine activity, 
compensating for the reduced natural supply in conditions such as 
Parkinson's disease. However, like other drugs, dopamine agonists may have 
associated side effects. 

Enzyme inhibitors Such as MAO-B inhibitors and COMT inhibitors, work by blocking specific 
enzymes in the brain that break down dopamine. By inhibiting these 
enzymes, more dopamine is available in the brain, which helps alleviate the 
motor symptoms of PD.  

Amantadine  The main use of amantadine is to treat dyskinesias, such as stiffness, tremors, 
shaking, and uncontrolled muscle movements. It may be used alone or in 
combination with other drugs like levodopa. Amantadine is a weak 
antagonist of the NMDA-type glutamate receptor. This action may help 
reduce abnormal brain activity that contributes to the symptoms of 
Parkinson’s disease. It increases dopamine release and blocks dopamine 
reuptake in the brain. Although amantadine has dopaminergic-like side 
effects, it is not clear how it works to treat dyskinesias or “off” episodes in 
people with Parkinson’s disease. 

Anticholinergic drugs These are a class of medications that block the action of acetylcholine on 
certain receptors, a neurotransmitter in the CNS and PNS. In the context of 
PD, anticholinergic drugs are sometimes prescribed to help manage specific 
motor symptoms. They can help reduce tremors and stiffness by balancing 
the levels of acetylcholine and dopamine in the brain. They are generally not 
the first-line treatment and are often reserved for patients who do not respond 
well to other medications or who experience intolerable side effects from 
other treatments. 

1.1.7 Brain stimulation therapies 

Brain stimulation therapies involve activating or inhibiting brain areas directly by 

inducing localised electrical currents, these therapies have shown promise in the 

management of PD symptoms. When aiming to stimulate the brain, there are certain 

complications that need to be addressed; the first is the encasement of the brain within 

the skull, which poses a challenge in accessing the target area. The second complication 

involves the delivery of the stimulating currents effectively to the brain tissue.  
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Methodologies can be broadly classified depending on their invasiveness, one way to 

apply the currents to the desired tissue is to directly apply the currents through electrodes; 

either noninvasively by placing them on the scalp or invasively by placing them directly 

into the brain through perforations in the skull. Non-invasive placements are generally 

safer and easier to administer, however, the electrical currents delivered through the scalp 

may have limited penetration and specificity, which can hinder their effectiveness. In 

contrast, invasive methods, like Deep Brain Stimulation (DBS), allow for more precise 

targeting of specific brain regions. By placing electrodes directly into the brain, the 

electrical stimulation can be delivered with greater accuracy and depth. This approach is 

often reserved for conditions that require highly targeted stimulation, such as PD or 

essential tremor. However, invasive methods carry additional risks associated with 

surgery, such as infection or damage to surrounding brain structures.  

Alternatively, the electrical currents can be induced by applying electromagnetic fields. 

There is a wide range of techniques that work on inducing currents by magnetic 

stimulation on the desired areas, changing frequency and field intensity, the most 

common of them being repetitive Transcraneal Magnetic Stimulation (rTMS). Although 

this technique was initially conceived as a research tool, there has been great interest 

regarding its potential clinical role. Presently, it is unclear whether rTMS will have some 

role as an alternative treatment for PD symptom management. This method is a non-

invasive procedure that uses a magnetic coil to generate localized electrical currents in 

specific areas of the brain. The magnetic coil is placed on the scalp, and the magnetic 

field it produces penetrates the skull and induces electrical currents in the underlying brain 

tissue.  
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It is a relatively safe and well-tolerated procedure compared to surgical interventions like 

DBS. However, the effects of rTMS are generally temporary and require repeated 

sessions for sustained benefits; the exact reason explaining why this method is effective 

is still an issue of ongoing study. 

Other therapies that may help manage Parkinson’s symptoms are shown in Table 1.3. 

Table 1.3 Supporting therapies for PD. 

Therapy Description 

Cognitive Therapy Cognitive changes can occur in PD, and cognitive therapy can help 
individuals manage and cope with these changes. It involves exercises and 
strategies to improve memory, attention, problem-solving, and other 
cognitive functions. 

Exercise Programs Regular exercise has been shown to have numerous benefits for individuals 
with PD. It can improve motor symptoms, balance, strength, and flexibility, 
as well as promote overall well-being. Exercise programs may include 
activities such as walking, cycling, dancing, tai chi, etc. 

Occupational Therapy Occupational therapy aims to enable individuals to perform daily activities 
more independently. It focuses on enhancing skills related to self-care, work, 
and leisure, and may involve strategies for adapting the environment to make 
tasks easier to accomplish. 

Physical Focuses on improving mobility, balance, strength, and flexibility. It involves 
exercises, stretching, and other techniques to help manage motor symptoms 
and maintain physical function. 

Speech Therapy Speech therapy helps address the communication difficulties that can arise in 
PD, such as speech and swallowing problems. Techniques may include 
exercises to strengthen speech-related muscles, improve articulation, and 
develop strategies for clearer communication. 

Support Groups Joining a support group can provide a sense of community, a platform for 
sharing experiences, and emotional support. Support groups can be beneficial 
for individuals with PD as well as their caregivers and family members. 

Supportive Counselling Counselling or psychotherapy can provide emotional support, help 
individuals and their families cope with the impact of PD, and address any 
psychological or emotional challenges that may arise. 
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1.1.8 Speech alterations as a consequence of NDs 

The influence of neurological and cognitive processes on speech is a well-established and 

recognised fact (Skodda et al., 2013; Sapir, 2014; Rusz et al., 2013). Many studies in the 

last decade have explored diverse signals such as Electroencephalography (EEG), 

Magneto Encephalography (MEG), Functional Magnetic Resonance Imaging (fMRI), 

and other non-invasive methods to provide new insights into the speech production 

process (Rusz et al., 2013; Oh et al., 2018, Stam, 2010). This is of particular interest when 

investigating NDs (cognitive and neuromotor) such as Alzheimer's, PD, Amyotrophic 

Lateral Sclerosis (ALS), Huntington’s Chorea, and others related (Skaper, Zusso, and 

Giusti, 2018). 

As introduced previously speech allows contactless remote recording on smart terminals, 

such as phones, tablets, or laptop computers, it offers the added benefit of mapping 

acoustic estimates to neuromuscular activity, providing an advantage in the detection and 

monitoring of disorders dependent on remote neuromotor transmission (Arora, Baghai-

Ravary, and Tsanas, 2019). A comprehensive study on the effects of PD on speech 

(Yunusova, Weismer, and Lindstrom, 2011; Skodda, Visser, and Schlegel, 2011) could 

provide insights into the underlying physiology, associating speech characteristics to the 

physical manifestations of the disorder. This can be achieved through the study of 

phonation, articulation, prosody, and fluency (Mekyska et al., 2015) which would offer 

valuable information on the activity of specific brain areas involved in speech production, 

such as motor planning, premotor and motor, and working memory. There is an unmet 

need to establish a robust and reliable methodology to map estimates extracted from the 

speech acoustics to motor actions in certain muscles involved in speech articulation and 

production.  
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One such example is the masseter muscle, responsible for raising the lower mandible. 

Such a projection is proposed in this work to transform speech formant dynamics to 

articulatory kinematics (Dromey, Jang, and Hollis, 2013; Whitfield and Goberman, 

2014). First proposals of an inverse model (relating formant dynamics and articulation) 

are presented; as a result, several indicators were developed to encompass articulatory 

movements from speech alone (e.g., Absolute Kinematic Velocity, AKV) (Gómez-Vilda 

et al., 2017a, b). The problem with these first attempts was the lack of a robust model 

parameter estimation. This led to further exploratory work, where the relationships 

between masetter surface electromyography (sEMG), accelerometry, and speech were 

investigated (Gómez-Rodellar et al., 2018). After an in-depth study of the influence of 

PD on these biometric signals (Gómez-Rodellar et al., 2019b), the conclusions were 

applied to the characterisation of PD hypokinetic dysarthria (HD), (Gómez-Rodellar et 

al., 2019a; Gómez-Vilda et al., 2019a). 

Speech production is a dynamic neuromechanical activity that involves cognitive and 

neuromotor resources of extreme complexity, and which is not yet well understood 

(Duffy, 2013). The natural way in which it is acquired and used shades the sophisticated 

processes that are placed into work during its normal expression. Speech is instantiated 

in the linguistic neuromotor cortex (Demonet, Thierry, and Cardebat, 2005), and its 

execution demands the concourse of cognitive, neuromotor, neuromuscular, and 

musculoskeletal processes (Duffy, 2013). Through speech, thoughts and emotions are 

projected to the knowledge of others by cognitive-linguistic messages. These are 

programmed for their neuromotor expression by the activation, time-alignment and 

sensorimotor projection, extension, and strength of a large number of diverse muscles, 

and associated biomechanical structures.  
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The neuromotor areas from the Central Nervous System (CNS), where planning, 

programming, and control are provided are responsible for activating the respiratory, 

phonatory, and articulatory muscular structures innervated by the Peripheral Nervous 

System (PNS), (Kandel et al, 2013). The resulting speech is a sequence of acoustic 

interactions between the glottal source signal and the vocal tract cavities, both activated 

and modulated by neuromotor impulses, imprinting the cognitive-linguistic message. The 

alteration or dysfunction of any key vocal production mechanisms will result in a deficient 

production of speech known as a speech disorder. Among them, motor speech disorders 

are the result of dysfunctional neurological structures involved in the planning, 

sequencing, activating, and monitoring of the neuromuscular structures responsible for 

speech sound production, modulation, and projection. One of the most active 

neuromuscular structures involved in speech production is the masseter-jaw-tongue 

complex, including part of the lower facial muscles and tissues attached to the mandible 

(Duffy, 2013). This system is responsible for the production of open or closed, and 

elongation or retraction of the vocal tract, producing phonations perceptible as vowels 

and vowel-related sounds (Greenberg et al., 2004).  Depending on the quasi-stationarity 

of this system (for more than 30-50 ms) the outcome is vowel-like phonations, whereas 

rapid movements are responsible for the acoustical representation of many consonant-like 

sounds. NDs affect the functional operation of this structure, and its central role in speech 

articulation suggests it could likely express key pathological changes reflecting the 

neuromotor behaviour.  
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PD, also known as shaking palsy has an unclear aetiology in most cases, but evidence 

suggests that it may be due to different dysfunctions affecting the fine control of muscular 

actions of cerebral subsystems responsible for musculoskeletal control, such as the 

hypothalamus, the cerebellum, the primary and secondary neuromotor control areas, and 

the frontal lobes (Brown et al., 2009). A compelling and comprehensive overall view is 

given in Duffy (2013): “The motor system is present at all of the major anatomic levels 

of the nervous system and is directly responsible for all motor activity involving … to the 

planning, control, and execution of voluntary movement, including speech.”. 

It is a well-established fact that PD causes considerable alterations in speech and 

phonation (Ricciardi et al., 2016, Brabenec et al., 2017). Broadly speaking, speech 

alterations may be classified as dysphonia (voice production), dysarthria (speech 

articulation), dysprosody (the fundamental frequency), and dysfluency (rhythm and 

sequence of inter-syllabic and intersegmental blocks). These alterations are jointly 

referred to as hypokinetic dysarthria. Harel, Cannizzaro, and Snyder (2004a) give a 

summary of the symptoms associated with HD 

 “Hypokinetic dysarthria, a speech disorder characterised by indistinctness of 

articulation, weakness of voice, lack of inflection, burst of speech, and hesitations and 

stoppages, is an integral part of the motoric changes in PD”. In this same sense, there is 

“compelling evidence to suggest that speech can help quantify not only motor symptoms 

... but generalised diverse symptoms in PD” (Tsanas, 2012). Godino-Llorente et al. (2017) 

stress the fact that “The low levels of dopamine that appear in patients with PD lead to 

dysfunctions of the basal ganglia… These deficits negatively affect the three main 

anatomic subsystems involved in the speech production: respiration, phonation and 

articulation”.  
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A good description of the neuromotor systems involved in speech production, and how 

they may be affected by NDs is to be found in Duffy (2013). Therefore, the search for 

neuromotor degenerative biomarkers in speech is to be concentrated on phonation (glottal 

signals in terms of distortion and biomechanics), speech articulation (study of acoustic 

and biomechanical clues as formants and jaw-tongue kinematics), the prosodic flow 

(concentrated in the time evolution of the fundamental frequency and speech energy 

stability) and on fluency (syllabic and intersyllabic intervals, duration, stability and 

fluctuation of the speaking rate). This is well documented in the work of Mekyska et al. 

(2015). Moreover, speech can be used to investigate the nature and extent of vocal 

impairment in individuals who are at risk of developing PD and can provide a crucial 

opportunity to intervene in the prodromal stages. Arora et al. (2021) have reported very 

compelling findings when comparing speech signals from people diagnosed with sleep 

behaviour disorder (which is one of the strongest known predictors of PD risk) with a 

control group and a diagnosed PD group. Furthermore, it has been demonstrated that PD 

symptom severity can be accurately monitored using speech signals collected over the 

standard telephone network, thus alleviating the need for frequent physical patient visits 

to the clinic (Tsanas. Little, and Ramig, 2021). The main compelling facts favouring 

speech-based PD biomarkers are the low cost of the required equipment with the increase 

of computational power of smartphones and tablets and their reduction in cost, and the 

contactless factor, which is particularly useful to facilitate remote studies. Summarising, 

the acoustic markers induced by HD in PD speech allow us to conclude that speech 

analysis might become a non-invasive and cost-effective tool to characterise and monitor 

PD.  
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The role of speech as a possible biomarker in PD detection is well established in the state-

of-the-art research literature, with many studies discussing speech-based PD features 

sensitive to HD. In the present study, the focus is placed on the study of acoustic and 

biomechanical clues, such as formants, and jaw-tongue kinematics. 

1.2 Motivations 

As discussed in the previous section NMDs are a group of NDs that involve the 

neuromuscular system, severely altering movement activity. PD is among the most 

prevalent NMDs, which affects 8.5 million individuals globally according to the WHO, 

with continuously rising prevalence rates. The study and understanding of these diseases 

have two distinct approaches; the first one is at a biochemical level, by the study of the 

material processes that lead to neuron deaths. This approach is invasive in its nature, and 

it has substantial constraints both in time and the environment of the test. The second 

approach is the study of the affectation of the output tasks, such as movement, speech, or 

writing. Although there are different degrees of invasive and cumbersome extraction 

devices generally these approaches tend to be less stress-inducing than any traditional 

medical tests. The idea behind the use of these systems is that they are minimally invasive 

and can provide insights into the state of the underlying brain-motor systems. Speech is 

one of the most key distorted functions, as it is affected both by motor and cognitive 

impairment, carrying with it significant semantic information about the state of the 

underlying systems. The processing and study of speech provide a non-invasive setting, 

with a signal that is easy to extract and record, that can be stored, transported, and 

processed easily. The study and processing of speech is not exclusively secluded to a 

neuroacoustic field of research, but it also has immediate applications in the fields of 

speech therapy and linguistics. 
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The standard metric for assessing PD is the UPDRS, based on a series of self-assessed 

metrics as well as an estimation of the symptoms by a trained clinician. This scale is the 

gold standard upon which the progression of PD is compared and categorised. The 

inherent problem of such metrics is the lack of objective quantitative tests, even though 

the standard is quite thorough it still suffers from a high degree of variability due to the 

individual interpretation of the patient and the clinical staff. 

Characterizing PD poses several challenges across various domains, including 

neuromotor assessment, neuropsychological assessment, diagnosis, pharmacological 

treatment, and rehabilitation. Traditional methods of PD characterization often rely on 

subjective assessments, which are prone to variability and subjectivity. There is an 

increasing need for objective assessment methods to overcome these limitations and 

provide more accurate and reliable measurements of disease progression and treatment 

outcomes. Moreover, there is also an increasing need to apply some form of remote 

diagnosis that is non-invasive and easy to use. As PwP are more affected by the motor 

symptoms mobility becomes an issue and there is a point that a visit to the health centres 

or clinics becomes increasingly difficult. 

In the realm of neuromotor assessment, objective measures can help quantify motor 

symptoms such as bradykinesia, tremors, and rigidity. Objective tools, such as motion 

sensors and wearable devices, can provide quantitative data on motor performance, 

allowing for more precise monitoring and tracking of symptom severity and progression 

over time. These assessments can provide valuable insights into the effectiveness of 

pharmacological treatments and rehabilitation interventions. Neuropsychological 

assessment is another crucial aspect of PD characterization, as cognitive and behavioural 

changes often accompany motor symptoms.  
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Objective assessment methods, such as computerized cognitive tests and neuroimaging 

techniques like functional MRI (fMRI), can provide objective measures of cognitive 

functioning, identifying deficits and tracking changes over time. Another dimension of 

analysis is the use of biomarkers or disease-related markers that can be observed by 

imaging techniques (e.g., DAT-SPECT, MRI), cerebrospinal fluid analysis, and genetic 

testing, these provide analysis of the biochemistry of the underlying brain-motor system.  

There is another need of paramount importance when dealing with PD and that is the 

assessment of pharmacological treatment. It is a complex balance of drugs and individual 

responses to medications can vary. Objective assessment methods can help monitor 

treatment response objectively by measuring changes in motor symptoms, such as 

medication-induced dyskinesia or motor fluctuations. Currently, real-time tracking of the 

effects of medication is exceedingly difficult, as the strain on public healthcare services 

means that the time per patient a clinician has available is very limited, as a consequence 

of incremental volume and constricted resources. This combined with the long separation 

between visits leads to ineffective and in the worst-case scenario detrimental drug dosage 

and administration. Analogously rehabilitation is a crucial component of PD 

management, aiming to improve functional abilities, enhance mobility, and maintain 

quality of life. Objective assessment methods in rehabilitation, such as motion analysis 

systems, force sensors, and virtual reality-based training programs, provide quantitative 

data on motor performance and functional outcomes. 

These previous methodologies suffer from differing degrees of invasiveness along with 

the costly and complex infrastructure that confines the collection of data and samples to 

specialized centres.  
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They require costly specialized equipment, and a degree of expertise to place, operate, 

and interpret results heavily restricting the application of therapies and healthcare 

delivery to PwP. Here is where speech has the space to serve as an invaluable diagnostics 

tool, as it is non-invasive, can be stored off-site, requires little storage space, and is easy 

to process and record. Speech has the potential to provide objective measurements and 

serve as a monitoring and diagnostics vehicle for clinicians, rehabilitator personnel, and 

caregivers as it could provide real-time information about the underlying state of the 

speaker. 

1.3 Speech as a biomarker of PD 

Some of the biomarkers that speech can capture are shown in Table 1.4. 

Table 1.4 Speech biomarkers for PD description and characterization. 

Biomarker Description 

Articulation and phonation 

PD has a clear effect on the articulatory and phonatory aspects of speech 
production. Individuals with PD exhibit differing degrees of imprecise 
articulation, reduced speech rate, and variations in pitch and intonation. 
These changes can be attributed to disruptions in the coordination of the 
muscles involved in speech production, including the lips, tongue, and 
vocal folds. 

Prosody 
In PD, alterations in prosody can occur, leading to decreased variation in 
pitch, reduced stress patterns, and a monotonous speech pattern.  

Speech rate and fluency 

PD can affect speech rate and fluency. Individuals with PD may exhibit a 
slower rate of speech, pauses, and hesitations. These disruptions in speech 
fluency, known as dysarthria, can be attributed to the bradykinesia and 
rigidity commonly associated with PD. 

Variability and micro-
prosody 

PD can lead to reduced variability in speech, resulting in a more robotic 
or monotonic speech pattern. Additionally, alterations in micro-prosody, 
which refers to the subtle timing variations and expressive cues in speech, 
may be present in individuals with PD. 

Vocal quality 

Has an ageing effect on vocal quality, leading to changes such as reduced 
loudness, monotony, hoarseness, and breathiness. These vocal changes, 
often referred to as hypophonia, can be indicative of underlying motor 
impairments affecting the laryngeal muscles. 

Voice tremor 
PD can manifest as a tremor, including in the muscles involved in voice 
production. Voice tremors can result in a quivering or shaky quality of the 
voice. 
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1.4 Statement of the problem 

From a clinical standpoint, managing PD poses several challenges. Currently, there is no 

definitive cure for PD, and while research endeavours persist in seeking a solution, the 

primary goal of medical support systems remains focused on symptom management and 

improving the quality of life for PwP. Achieving this objective necessitates systematic 

and ongoing patient monitoring to assess and address disease symptoms. However, 

existing protocols and healthcare structures often fall short in terms of monitoring 

frequency, hindering comprehensive tracking of disease manifestation, progression, 

treatment adherence, and medication optimization. This limitation arises from various 

contributing factors: 

 Due to the motor degeneration characteristic of PD, accessing clinical facilities 

becomes cumbersome and logistically complex for PwP. This situation demands 

significant effort from both patients affected by the disease and their caregivers 

or family members. Consequently, PwP tend to visit clinician’s offices less 

frequently than would be ideal. 

 Given the current incidence rates of NDs healthcare systems are experiencing 

strain, and this effect is expected to increase leading to additional demand of 

dedicated resources. Consequently, regular attendance for check-ups becomes 

problematic, leading to undesired delays and problems with patient management. 

 The progressive nature of PD necessitates adaptive responses in therapy and 

medication. However, the infrequency of clinical visits results in challenges 

related to accurate assessment, pharmacological treatment, and dosage 

management, which can be overly generalized and unresponsive. 
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 The UPDRS rating system relies on a combination of self-assessed metrics and 

symptom estimation by trained clinicians. This scale serves as the gold standard 

for assessing and categorizing PD progression. However, a notable limitation of 

these metrics lies in their lack of objective quantitative tests, leading to significant 

variability due to individual patient interpretation and clinical staff assessment. 

With this in mind speech may offer support to two unmet clinical needs: 

 Serve as a surrogate marker for PD, the alterations produced on speech are 

observable and measurable. Speech can be regularly recorded at a low cost, 

processed offsite and produces quasi-instantaneous interpretable data. 

 Speech can be used as a telemonitoring tool for PwP. Speech can be recorded on 

site, but processed elsewhere and transformed into a series of clinical indicators 

to assess disease progression and patient management. 

The aim of this project is to utilize speech as a diagnostic tool to model neuromotor 

dysfunction. This can be implemented by analysing the affected speech components and 

tracing the progression of the compromised biomechanical system back to its neuromotor 

origin. This approach enables the establishment of a methodology to map estimates 

extracted from speech to motor actions, facilitating the assessment of specific affected 

areas within a minimally invasive context. 

1.5 Thesis Framework 

The advances manifested in speech quality evaluation for clinical assessment of different 

pathologies have a rich history that spans several centuries, reflecting the ongoing interest 

in understanding and assessing the characteristics of human vocalizations.  
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While a comprehensive historical review is beyond the scope of this thesis, a brief 

overview of key developments in voice quality evaluation is due to fix the framework fo 

the study, which may be summarized as follows: 

• Early Observations: Ancient civilizations recognized the importance of voice 

quality and its impact on communication, and in the assessment of emotions and health. 

Ancient Greek scholars, such as Aristotle and Galen, made observations about voice 

characteristics, including pitch, loudness, and clarity. 

• Subjective evaluation: In the 19th century, speech evaluation primarily relied on 

subjective descriptions by clinicians and voice teachers. Experts would assess voice 

quality based on their own perceptions and qualitative judgments. For instance, James 

Parkinson informed of voice alterations in some of the six cases described on saking palsy 

(“…the speech was very much interrupted…”, “…a similar affection of the speech, when 

the tongue thus outruns the mind, is termed volubility.”, “…but was continually checked 

by the impediment in his speech, and the difficulty which his hearers were put to.” 

Parkinson, 1817). 

• Laryngeal visualization: The invention of laryngoscopy in the late 19th century 

by Manuel Patricio García (Radomsky, 2005), a Spanish professor of operistic singing 

style and vocal pedagogist in London, allowed for direct visualization of the larynx and 

vocal folds by means of a handle-stuck mirror. This simple device enabled clinicians to 

observe structural and functional abnormalities that could contribute to voice quality 

alterations. 
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• Objective acoustic analysis: In the early-20th century, with the invention of the 

phonography by T. A. Edison predating on an earlier design by Édouard Léon Scott de 

Martinville, the field of acoustic phonetics emerged, facilitating objective measurement 

of various voice parameters. Researchers began using spectrograms and other acoustic 

analysis techniques to quantify characteristics such as fundamental frequency, intensity, 

and spectral properties of the voice. 

• Perceptual assessment: Perceptual evaluation methods were developed to assess 

voice quality. The Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V) 

protocol, introduced in the late 20th century (Kempster et al., 2009), provided a 

standardized framework for rating vocal characteristics, including roughness, breathiness, 

strain, and overall severity. 

• Quantitative assessment: Advances in technology led to the development of 

computer-based tools for voice analysis. Quantitative measures, such as jitter, shimmer, 

harmonics-to-noise ratio (HNR), and cepstral analysis, became increasingly utilized for 

objective assessment of voice quality. 

• Multidimensional Approaches: Modern voice quality evaluation incorporates 

multidimensional approaches that combine perceptual, acoustic, and physiological 

measures. This integrated approach acknowledges the complexity of voice production 

and the interplay between various factors affecting voice quality. 

• Advanced Instrumentation and Automation: Recent advancements in digital 

signal processing, machine learning, and artificial intelligence have paved the way for 

automated voice analysis systems. These systems can extract and analyze a wide range 

of acoustic and perceptual features, providing objective and efficient assessment of voice 

quality. 
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 At this point, it is important to note that voice quality evaluation remains an 

active area of research, with ongoing efforts to refine assessment methods, establish 

normative data, and improve the clinical application of voice analysis tools. 

1.5.1 Preexisting knowledge on PD manifestations on speech 

The instrumental evaluation of speech and phonation using instrumental acoustic analysis 

allowed the definition of the examination frameworks to be capitalized when more 

powerful computer-based methods were available. In what follows, the focus of this 

subsection will concentrate on the acoustic analysis of PD speech, benefiting from 

translational methodological practice from the field of voice quality analysis in laryngeal 

and organic pathologies affecting phonation. 

Early research: 

• Longemann et al. (1978) studied the frequency of occurrence of speech and voice 

symptoms in 200 Parkinson patients by two expert listeners from high-fidelity tape 

recordings of conversational speech samples and readings of the sentence version of the 

Fisher-Logemann Test of Articulation Competence.  

• Ramig and Ringel (1983) described the effects of aging on basic features of 

phonation (fundamental frequency, jitter, shimmer, and range) from a sample of 48 men. 

This can be considered a historical precedent regarding the use of acoustic analysis in the 

characterisation of ageing voice, which is not a study on PD properly, but given the 

relationship between some of the characteristics of ageing and PD speech, it can be 

considered a precursor study from samples of connected speech and sustained vowel 

production. 
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• Ringel and Chodzko-Zajko (1987) reported results from a longitudinal study 

involving 200 elderly male subjects to further investigate the influence of the subjects' 

physiological status on their phonatory and auditory performances on voice fundamental 

frequency, duration, intensity, jitter and shimmer, harmonics/noise ratios, and listener 

perceptions of vocal quality; measures of auditory sensitivity, discrimination, and 

acoustic immittance; and measures of hemodynamic, pulmonary, metabolic, and 

biochemical function to understand the basic mechanisms that underly control of the 

laryngeal mechanism. 

• Caliguri (1989) addressed the question of whether or not speaking rate influences 

articulatory hypokinesia in dysarthria associated with Parkinson's disease. Analyses of 

parkinsonian speech samples revealed mean speaking rates consistent with normal 

controls. The results provided a physiologic basis for the perception of hypokinetic 

dysarthria in Parkinson's disease and suggest that speaking rate may be an important 

control variable contributing to articulatory hypokinesia in Parkinson's disease. 

• Illes (1989) reported results from an analysis of the temporal form, syntactic 

form, and lexical form of spontaneous language production of early and middle stage 

Alzheimer's, Huntington's, and Parkinson's patients, showing that the language structure 

was disrupted in each disease, but in different ways. 

• Ackermann and Ziegler (1991) studied acoustic speech analysis of sentence 

utterances to provide information on speech tempo and accuracy of articulation from 

twelve patients with idiopathic Parkinson's disease. 
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• Forrest and Weismer (1995) presented results from lower lip and jaw movement 

from parkinsonian dysarthric and age-matched, neurologically normal speakers during 

the production of alternating stress contrasts. Discrete measures of movement, including 

displacement amplitude, peak velocity, the relation of amplitude to peak velocity, and 

movement durations were compared across groups for stressed and unstressed syllables. 

• Hertrich and Ackermann (1995) collected electroglottographic and acoustic 

recordings during sustained vowel production in men and women with PD. They 

concluded that PD seems to have a differential impact on phonation in men and women 

determined by the sexual dimorphism of laryngeal structures. 

• Weismer and Wildermuth (1998) studied formant trajectories in three groups of 

individuals with neurogenic speech disorders, as well as a group of normaI older speakers. 

Results indicated that there are certain disorder-specific characteristics reflecting the 

classic pathophysiologies of the individual diseases. 

• Kegl, Cohen, and Poizner (1999) reported a number of studies on the articulatory 

consequences of Parkinson's disease (PD) in the spoken and signed modalities to highlight 

the commonalities and distinctions between the two modalities of speech and sign that 

will allow to better understand the impingements of PD on language production in 

general. 

More recent research: 

The expansion of speech and phonation instrumental analysis experienced a strong push 

forward with the development of computer-aided applications, offering new and more 

detailed findings and insights. A classical reference in instrumental measurements of 

speech and voice in clinical practice is due to Baken and Orlikoff (2000). 
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• Goberman and Coelho (2002) reviewed the literature pertaining to PD and the 

speech dysfunction typically associated with it, including the effects on respiration, 

phonation, articulation, resonance, and prosody, and effects of treatment with the drug L-

Dopa on Parkinsonian speech. This work was extended in Goberman, Coelho, and Robb 

(2002). 

• Liotti et al. (2003) provided a study on PD hypophonia based on neural correlate 

assessment by positron emission tomography. 

• Harel, Cannizaro, and Snyder (2004a), and Harel et al. (2004b) described the 

acoustic characteristics of PD speech in prodromal and incipient stages and their use as 

potential biomarkers to monitor disease progression and treatment evaluation. 

• Ho, Bradshaw, and Iansek (2008) conducted a careful study on the effects of 

levodopa on the speech of treated PD patients. 

• Tsanas et al. (2010a, b and c) published some of the first studies in the use of 

speech processing from remote sensors in the telemonitoring of PD. Consequent research 

may be found in Tsanas et al. (2010d and 2011). These studies were a fundamental 

support of A. Tsanas’ PhD thesis (Tsanas, 2012), considered a specific indispensable 

reference in the field since on. These studies had a continuation in Tsanas et al. (2012), 

Tsanas (2013), Tsanas and Gómez (2013), and Tsanas et al. (2014). 

• Skodda, Visser, and Schlegel (2011) give a description of the characteristics of 

vowel articulation in terms of speech rate and intonation variablity by PD patients. 

• Rektorová et al. (2012) provided a functional description of the neuroanatomy 

of phonation in PD patients. 
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• Skodda, Grönheit, and Schlegel (2012) propose the use of vowel articulation 

features as a biomarker of PD progession. This study is further extended in Skodda, et al. 

(2013). 

• Hanratty et al. (2016) analysed the use of glottal source features to characterize 

PD speech. 

• Ricciardi et al. (2016) studied the relationship between speech disturbances in 

PD and gait on a data sample from 43 speakers of Italian. 

• Godino et al. (2017) offered a very complete study on idiopatic PD speech 

including kinematic biomarkers. 

• Mekyska et al. (2018) studied the relationship between hypokinetic dysarthria 

and gait disorders in PD. 

• Pinho, et al. (2018) presented a review on the effects of levodopa on PD speech. 

• Gillivan-Murphy, Miller, and Carding (2018) aimed to evaluate voice tremor in 

people with PD (pwPD) and a matched control group using acoustic analysis, and to 

examine correlations with voice disability and disease variables. 

• Further work on PD using statistical analysis to quantify symptom severity may 

be found in Tsanas (2019), Tsanas and Arora (2019), Tsanas and Arora (2020), Tsanas 

and Arora (2021), Tsanas, Little and Ramig (2021), and Tsanas and Arora (2022). 
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1.5.2 Speech based discrimination between PD and HC 

Since the identification of the intrinsic characteristics of speech affected by PD attempts 

have been undertaken to use them as differentiation tool between healthy controls and 

PwP. The differentiation stems from a loss in overall movement control, this in turn 

causes: monotone pitch, reduced loudness, imprecise articulation, altered rate of speech 

and breathy or hoarse voice quality. 

Early research 

• Robbins, Logemann, and Kirshner (1986) used videofluoroscopy to examine 

movement patterns during swallowing and speech production in six parkinsonian subjects 

and six age-matched controls. Duration of velar movement during speech production 

significantly differentiated the groups, reflecting reduced range of velar motion.  

• Ludlow, Connor, and Bassich (1987) compared patients with Parkinson's 

Disease (PD) and Huntington's Disease (HD) on speech timing tasks. The results 

suggested that PD and HD patients are not impaired in speech planning or initiation, but 

have poor control over the duration of speech events. 

• Forrest, Weismer, and Turner (1989) published an interesting study on the 

kinematic, acoustical, and perceptual analysis of PD speech on PD patients and normative 

aging participants, considering jaw displacements and velocities, and lip movement 

amplitude and velocity. Acoustically, the Parkinsonian subjects had reduced durations of 

vocalic segments, reduced formant transitions, and increased voice onset time compared 

to their age-paired healthy controls. 
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• Zwirner, Murry, and Woodson (1991) studied, five parameters of phonatory 

function (jitter, shimmer, signal-to-noise ratio, fundamental frequency, and standard 

deviation of fundamental frequency) from samples of sustained phonation in three 

neuropathological groups (Parkinson, Huntington, cerebellar ataxia) and a normal control 

group to assess the use of acoustic measures in differential diagnosis. The results 

indicated that perturbation measures of the neuropathological groups showed a higher 

degree of variability compared to normative subjects. 

• Svensson, Henningson, and Karlsson (1993) conducted a kinematic analysis of 

vertical jaw movements during speech was performed by using an optoelectronic 

technique on nine individuals with Parkinson’s disease (PD) and nine normal control 

subjects, matched for sex and age. Significant group differences were found for all 

kinematic measures during a syllable repetition task, as well as for the total dysarthria test 

scores and certain individual test items. 

• Jiménez et al. (1997) quantified several acoustic features of the voice in 22 PD 

patients and 28 age and sex-matched controls using The Computerized Speech Lab 4300 

program (Kay Elemetrics) on two seconds of a sustained /a/ and a sentence. Measures 

included fundamental frequency (F0), frequency perturbation (jitter), intensity 

perturbation (shimmer), and harmonic/noise ratio (HIN) of the vowel /a/, and frequency 

and intensity variability of a sentence, phonational range, dynamic range at the natural 

frequency, maximum phonational time and ratio. When compared to controls, PD patients 

showed higher jitter and shimmer, lower ratio, and lower frequency variability of the 

sentence in the microphonic signal and reported a higher frequency of presence of low 

voice intensity, monopitch, harshness, voice arrests, and tremor. This study was further 

extended on 41 PD participants (Gamboa et al. 1997), showing similar conclusions. 
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• Louis, E. D., Klatka, L. A., Liu, Y., and Fahn, S. (1997). Comparison of 

extrapyramidal features in 31 pathologically confirmed cases of diffuse Lewy body 

disease and 34 pathologically confirmed cases of Parkinson's disease. Neurology, 48(2), 

376-380. https://doi.org/10.1212/WNL.48.2.376. 

• Le Dorze et al. (1998) The realization of prosody (speech rate, fundamental 

frequency, intonation) was investigated in a group of 10 individuals with Parkinson's 

disease and a group of 10 individuals with Friedreich's ataxia. Data from these two 

neurologically disordered groups were compared to individuals without neurological 

impairment. Both neurologically impaired groups retained some aspects of normal speech 

prosody, while other aspects were affected to a significant degree. The prosodic 

characteristics of speakers with Parkinson's disease were distinct from those of speakers 

with Friedreich's ataxia. These results were interpreted in terms of prosodic competence 

and prosodic performance. 

• Holmes et al. (2000) examined the acoustic and perceptual voice characteristics 

of patients with Parkinson's disease according to disease severity. The perceptual and 

acoustic voice characteristics of 30 patients with early stage PD and 30 patients with later 

stage PD were compared with data from 30 normal control subjects. In comparison with 

controls both early and later stage PD patients' voices were characterized perceptually by 

limited pitch and loudness variability, breathiness, harshness and reduced loudness. 

Acoustically, the voices of both groups of PD patients demonstrated lower mean intensity 

levels and reduced maximum phonation frequency ranges in comparison with normative 

data. Data also suggested that the PD patients' voices were characterized by excess jitter, 

a high-speaking fundamental frequency for males and a reduced fundamental frequency 

variability for females. Tremor was the sole voice feature which was associated only with 

later stage PD. 
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More recent research: 

• Yunusova et al. (2008) reported the characteristics of articulatory movements 

from vowels in speakers with dysarthria compared with healthy controls. 

• Gillivan-Murphy (2013) conducted a study in her PhD thesis on voice tremor in 

30 persons with PD ‘off-medication’ and 28 age-sex matched neurologically healthy 

controls evaluated for voice tremor features using acoustic measurement, auditory 

perceptual voice rating, and nasendoscopic vocal tract examination. Speech intelligibility, 

severity of voice impairment, voice disability and disease variables (duration, disability, 

motor symptom severity, phenotype) were measured and examined for relationship with 

acoustic voice tremor measures. 

• Belalcazar-Bolaños et al. (2015) proposed the estimation of different glottal flow 

features considering nonlinear behavior of the vocal folds to evaluate the discrimination 

capability of eight nonlinear dynamic features. The experiment included the five Spanish 

vowels uttered by 50 People with PD (PPD) and 50 Healthy Controls (HC). 

• Tykalová et al. (2020) compared speech disorder between patients with the 

postural instability/gait difficulty and tremor-dominant motor phenotypes of PD. Speech 

samples were acquired from a total of 63 participants, 21 with postural instability, 21 

tremor-dominant, and 21 healthy controls. Quantitative acoustic vocal assessment of 12 

unique speech dimensions related to phonation, vocal tremor, oral diadochokinesis, 

articulation, prosody and speech timing was performed. The study demonstrated that 

speech disorder reflects the underlying motor phenotypes. Vocal tremor appeared to be 

an isolated phenomenon that does not share similar pathophysiology with limb tremor.  
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• Ozbolt et al. (2022) proposed a summary of methodological issues to be 

considered takint into account that in PD characterization from speech unaccounted 

covariates in methodology, experimental design, and data preparation resulted in overly 

optimistic results employing sustained vowels, such as including record-wise fold 

creation rather than subject-wise; an imbalance of age between PD participants and 

healthy controls; using too small corpora; etc. In their study they perform several 

experiments isolating each issue to measure its influence on three different corpora. 

Results suggest that each independent methodological issue analysed has an effect on 

classification accuracy. 

1.5.3 Speech in prodromal PD 

It is possible to detect prodromal Parkinson’s disease through speech. Recent studies have 

shown that machine learning algorithms can predict Parkinson’s disease with a high 

degree of accuracy. These findings suggest that speech analysis, particularly when 

combined with advanced machine learning techniques, can be a valuable non-invasive 

method for the early detection of Parkinson’s disease. 

• Ho et al (1998) classified speech impairment in 200 patients with PD into five 

levels of overall severity and described the corresponding type (voice, articulation, 

fluency) and extent (rated on a five-point scale) of impairment for each level from two-

minute conversational speech samples. Parameters of voice, fluency and articulation were 

assessed by two trained-raters. Voice was found to be the leading deficit, impaired to a 

greater extent than other features in the initial stages. Articulatory and fluency deficits 

manifested later, articulatory. At the profound impairment stage articulation was the most 

frequently impaired feature, drawing parallels with deficits of motor performance in gait 

and handwriting. 
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• Postuma et al. (2012) published a dedailed description on the relationship 

between prodromal PD development and REM sleep behaviour disorder. 

• Rusz et al (2013) explored the use of vowel articulation dispersion as a 

biomarker of prodromal PD. 

• Orozco et al. (2015) presented a study on the use of different phonation features 

(stability and periodicity, noise-to-signal, spectral density, and nonlinear dynamics) for 

the detection of laryngeal, functional, and neurological disorders using an SVM as a 

classifier. 

• Orozco et al. (2016) published a multi-lingual (Spanish, Czech, and German) 

approach to PD detection using an SVM as a classifier. 

• Mu et al. (2017) used cluster analysis to search for subtypes from a large, cohort 

of Parkinson's disease patients across all motor stages, using motor features 

(bradykinesia, rigidity, tremor, axial signs) and rater-based non-motor symptom scales. 

• Arora, Baghai-Ravari, and Tsanas (2019) This study presented a statistical 

framework to account for variations in phonetic backgrounds in telephone-quality voice 

analysis for PD detection. The statistical framework for analyzing voice was based on 

307 dysphonia measures that quantify different properties of voice impairment, such as 

breathiness, roughness, monopitch, hoarse voice quality, and exaggerated vocal tremor, 

were computed. Feature selection algorithms were used to identify robust parsimonious 

feature subsets, which were used in combination with a random forests (RFs) classifier to 

accurately distinguish PD from HC. 
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• Kadiri, Kethireddy, and Alku (2020) proposed to use cepstral coefficients 

derived from the single frequency filtering (SFF) method for the detection of PD. SFF 

has been shown to provide higher spectro-temporal resolution compared to the short-time 

Fourier transform. The study used the PC-GITA database, which consists of speech from 

speakers with PD and healthy controls (50 males, 50 females). The proposed detection 

system was based on the i-vectors derived from SFFCCs using SVM as a classifier. 

• Moro et al. (2021) conducted a comprehensive review to identify the most 

common features and machine learning methods used in detecting and assessing the 

severity of PD by phonatory and articulatory aspects of speech and voice to provide a 

broad overview on the evidence that articulatory and phonatory aspects of speech and 

voice are meaningful for the automatic detection and severity assessment of PD. A 

historical perspective of publications in the field since 1956 to 2020 is given. 

• Šimek and Rusz (2021) aimed to investigate the voice changes via the CPP 

measures in the idiopathic rapid eye movement sleep behaviour disorder, and recently 

diagnosed and advanced-stage Parkinson's disease patients across noise-free and noisy 

environments. The sustained vowel phonation, reading of passages, and monologues of 

60 early-stage untreated PD, 30 advanced-stage Parkinson's disease, 60 participants 

affected by REM beharvior disorder, and 60 healthy control participants were evaluated. 

• Madruga, Campos, and Pérez (2023) analyzed the effects of recording device 

mismatch in PD speech classification. Multicondition training was proposed to improve 

robustness against mismatch in an experiment on 30 PD patients and 30 healthy controls. 

Three vocalizations of sustained /a/ were recorded using different devices. Acoustical 

features were extracted and averaged per patient and recording device. Machine learning 

was used to distinguish healthy from PD patients by using different combinations of train-

test smartphones. 
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• Zhang et al. (2023a) proposed a method to distinguish PD patients from healthy 

controls, combined with the idea of formal structure analysis according to the direction 

information statistically obtained in a sub-region of the spectrogram to describe the 

correspondence between energy points and their direction attributes to obtain the coupling 

information between the direction attributes in the formal context. The number of 

connected domains in indicate the degree of nodal coupling is used as input to multiple 

classifiers for validation purposes. 

• Zhang, Lin, and Xue (2023b) proposed a methodology for feature extraction 

from PD speech based on fractional Fourier transform to obtain the spectrograms at 

different orders. The energy variation information in the spectrograms at each order is 

estimated, and converted through a mapping relationship between energy points and 

directional attributes. The connected component features are fed into different classifiers, 

such as linear regressors, SVMs, random forests, and multilayer perceptrons. 

1.6 Objectives 

The disabling nature of PD poses significant challenges for PwP healthcare providers, 

support staff, and caregivers. These challenges can be broadly categorized into two key 

areas: 

•  The first area pertains to the understanding and management of disease 

manifestation, encompassing aspects such as early diagnosis, tracking disease 

progression, and assessing the efficacy of medication.  

• The second area of focus revolves around therapeutic interventions and 

improving the quality of life for PwP. This includes the development of neuroprotective 

therapies aimed at slowing down disease progression through personalized rehabilitation 

strategies to address the specific requirements of an individual.  
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The primary focus of this study is to develop and validate a functioning biomechanical 

model of speech production based on the temporomandibular system. Substantial effort 

has been dedicated to comprehending the underlying biological processes, investigating 

the dynamics of the jaw-tongue system, and examining associated correlates using 

speech-derived features, 3D acceleration, and sEMG, this integration of additional signals 

collected concurrently with speech may provide new additional insights into the 

pathophysiology of PD. This modelization methodology extends beyond PD, 

encompassing other NDs as well as the fields of linguistics and speech therapy, where a 

similar approach might produce positive results.  

The rationale for conducting this study lies in the potential to establish a reliable 

validation benchmark for remote telemonitoring of NMDs solely based on the acoustic 

analysis of speech. By employing statistical machine learning techniques, the analysis of 

various biomarkers can be translated into a readily understandable set of indicators, 

suitable for routine utilization in clinical settings as a diagnostic support tool. 

As reflected by a conscientious analysis of the state-of-the-art, it may be concluded that 

computer-assisted characterization of PD based on acoustic analysis has reached a 

maturity state. To a large extent, these studies do not provide the same level of insights 

that mechanistic models can provide, i.e., models that build on the physical principles of 

voice production to characterize the underlying vocal production mechanism and PD-

related pathology (Duffy, 2013). Further progress will need to dive into mechanistic 

models explaining the neuroacoustical foundation underlying neuromotor control to 

provide new insights into the underlying neurophysiological processes, which in turn 

might inspire further signal processing algorithms for the characterization of speech 

signals.  
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The main aim of the present PhD thesis is to describe some exploratory studies in PD 

phonation and articulation which may open the possibility of opening new hypotheses to 

add new knowledge on the mechanisms underlying altered speech production in NMDs 

(Darbin and Montgomery, 2022). 

The study aims to validate a temporomandibular biomechanical model of speech 

production by understanding the underlying biological processes and the associated 

correlates which could serve as biomarkers in NMDs, using speech-derived features, 3D 

acceleration, and sEMG. 

1.7 Hypotheses 

• Speech-derived correlates can be validated from features estimated from 

sEMG and accelerometry. 

• The manifestation of PD can be analysed by studying the frequential traces 

on the different EEG bands of the glottal signals. 

• Interpretable first-principle models provide novel insights into the underlying 

phenomenon to be characterised. 

1.8 Summary of contributions 

This doctoral research aims to address a specific gap in the study of neuromotor speech 

disorders. While speech affected by PD has traditionally been characterized using 

acoustic features such as bandwidth, vowel space area, spectral components, activity 

indicators, duration, energy, formants, intensity, Linear Predictive coefficients, Mel 

Cepstrum coefficients, pitch, zero crossings, and speaking rate, this Ph.D. takes a novel 

approach. Rather than interpreting these indicators as mere features, it seeks to draw 

conclusions about the underlying biomechanical systems based on their behaviour.  



Introduction 
 

 

48 
 

The research involves modelling speech behaviour using first-principle models and 

applying statistical analysis and information theory to describe these behaviours.  

The aim of this Ph.D. was never to attempt maximizing classification scores but to 

provide explainable interpretable features and methods. To this end, by characterizing 

speech production and observing the pathological elements of speech, inferences can be 

made about the biomechanical elements at fault. By having a deep understanding on the 

driving neurological features responsible for controlling the system, the standing 

hypothesis is that it would be possible to backtrace the dysfunction to the brain areas at 

fault, setting speech up for as a reliable exploratory tool that is non-invasive, inexpensive 

and easy to process in the clinician’s diagnostic toolset.. 

The present thesis summarizes the research activities conducted since my engagement in 

the DTP PM of UoE in 2019, with special emphasis on the definition and design of three 

experimental frameworks around the characterization of the glottal source in phonated 

speech, and on the projection of acoustical features into articulation kinematics. The 

related research activity is briefly described as follows: 

 A methodology for PD characterization based on the amplitude distributions of 

glottal source and flow as features has been proposed and tested to differentiate PD from 

HC phonation. This work is described in detail in subsections 5.1.1 (experimental design), 

6.1.1 (results), and 7.1 (discussion). It has been published in Gómez-Rodellar et al. 

(2019c) and Gómez-Rodellar et al. (2020a). 
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 A methodology for PD characterization based on biomechanical features of the 

vocal folds during phonation has been devised and tested on PD participants submitted to 

rTMS. This work is described in detail in subsections 5.1.2 (experimental design), 6.1.2 

(results), and 7.2 (discussion). It has been published in Gómez-Rodellar et al. (2021d), 

Gómez-Rodellar et al. (2022b), and Gómez-Rodellar et al. (2023). 

 A neuromechanical model of jaw-tongue articulation in Parkinson’s disease 

speech has been designed and tested on diadochokinetic tests from PD and HC 

participants. Besides, individual mandibular motor actions have been estimated on speech 

articulation features using this model. This work is described in detail in subsections 5.2 

(experimental design), 6.2 (results), and 7.3 (discussion). It has been published in Gómez-

Rodellar et al. (2019a), Gómez-Rodellar et al. (2019b), Gómez-Rodellar et al. (2020b), 

Gómez-Rodellar et al. (2021a), Gómez-Rodellar et al. (2021b), Gómez-Rodellar et al. 

(2022a). 

The following is a detailed and commented list of the publications leading to the above-

mentioned activities in journals and conference papers: 

Journal publications as first author: 

Gómez-Rodellar, A., Palacios, D., Ferrández-Vicente, J. M., Mekyska, J., Álvarez-

Marquina, A., and Gómez, P. (2020a). A methodology to differentiate Parkinson’s 

disease and aging speech based on glottal flow acoustic analysis. International 

Journal of Neural Systems, 30(10), 2050058. 

https://doi.org/10.1142/S0129065720500586. 

This journal paper extends the results from previous conference papers on PD and 

aging phonation using a larger database. 
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Gómez-Rodellar, A., Gómez-Vilda, P., Palacios, D., Rodellar-Biarge, V., Nieto, 

V., Álvarez-Marquina, A., and Tsanas, A. (2021a). A Neuromotor to Acoustical 

Jaw-Tongue Projection Model with Application in Parkinson’s Disease 

Hypokinetic Dysarthria. Frontiers in Human Neuroscience, 15, 622825. 

This journal paper proposes the study of the neuromotor activity of the masseter-

jaw-tongue articulation during diadochokinetic exercising to establish functional 

statistical relationships between surface Electromyography (sEMG), 3D 

Accelerometry (3DAcc), and acoustic features extracted from the speech signal. 

Gómez-Rodellar, A., Tsanas, A., Gómez, P., Palacios, D., Rodellar-Biarge, V. and 

Álvarez-Marquina, A. (2021b). Acoustic to Kinematic Projection in Parkinson’s 

Disease Dysarthria. Biomedical Signal Processing and Control 66 102422. 

https://doi.org/ 10.1016/j.bspc.2021.102422. 

This journal paper extends the results from previous conference papers on 

acoustical signals to kinematic features, using improved models and larger 

databases. 

Gómez-Rodellar, A., Mekyska, J., Gómez-Vilda, P., Brabenec, L., Šimko, P., and 

Rektorová, I. (2023). A Pilot Study on the Functional Stability of Phonation in EEG 

Bands After Repetitive Transcranial Magnetic Stimulation in Parkinson’s Disease. 

International Journal of Neural Systems, 2350028. 

This journal paper shows the feasibility of estimating EEG-related NMA on the 

extrapyramidal neural pathways. 
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Other journal publications as co-author: 

Gómez-Vilda, P., Galaz, Z., Mekyska, J., Ferrández-Vicente, J. M., Gómez-

Rodellar, A., Palacios, D., Smekal, Z., Eliasova, I., Kostalova, M., Rektorová, I. 

(2019c) Vowel Articulation Dynamic Stability Related to Parkinson’s Disease 

Rating Features: Male Dataset, Int. Journal of Neural Systems 28(2), 1850037 

(13pages). https://doi.org/10.1142/S0129065718500375. 

This journal paper presents the results of using articulation kinematic features in 

the detection of PD on a moderate-size database of male participants. 

Gómez-Vilda, P., Gómez-Rodellar, A., Ferrández-Vicente, J. M., Mekyska, J., 

Palacios, D., Rodellar-Biarge, V., Álvarez-Marquina, A., Smekal, Z., Eliasova, I., 

Kostalova, M., Rektorová, I. (2019a) Neuromechanical Modelling of Articulatory 

Movements from Surface Electromyography and Speech Formants. International 

Journal of Neural Systems, 29:2, 1850039, doi: 10.1142/S0129065718500399. 

This journal paper shows the validation of the articulation to kinematic projection 

model using surface electromyography recordings. 

Gómez-Vilda, P., Mekyska, J., Gómez-Rodellar, A., Palacios, D., Rodellar-

Biarge, V., Álvarez-Marquina, A. (2019b) Characterization of Parkinson’s disease 

dysarthria in terms of speech articulation kinematics. Biomedical Signal Processing 

and Control, 52, 312-320, doi: 10.1016/j.bspc.2019.04.029. 

This journal paper presents an early elaborated version of the articulation to 

kinematic projection model using accelerometry. 
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Conference publications as first author: 

Gómez-Rodellar, A., Tsanas, A., Gómez, P., Palacios, D., Álvarez-Marquina, A., 

Martínez. R. (2019a) A Neuromechanical Model of Jaw-Tongue Articulation in 

Parkinson’s Disease Speech. Proc. of MAVEBA 19; 25-28, Firenze University 

Press, December 17-19. 

This conference paper is an early version of the jaw-tongue articulation model to 

project acoustical signals into kinematic features, extending previous work 

modelling the jaw-tongue biomechanical system to further investigate neuromotor 

activity in muscular activity during certain speech gestures to model hypokinetic 

dysarthria in Parkinson’s Disease (PD) patients. 

Gómez-Rodellar, A., Palacios, D., Mekyska, J., Álvarez-Marquina, A., and 

Gómez, P. (2019b) Comparing Parkinson’s Disease Dysarthria and Aging Speech 

using Articulation Kinematics, Proc. 12th International Joint Conference on 

Biomedical Engineering Systems and Technologies, F. Putze, A. Fred and H. 

Gamboa (Eds.), SCITEPRESS, Lisbon, Portugal 52-61. 

https://doi.org/10.5220/0007355700520061. 

In this conference paper the results from comparing speech from PD and aging 

voice participants showed some of the confounding factors to be taken into account. 

Gómez-Rodellar, A., Palacios, D., Ferrández-Vicente, J. M., Mekyska, J., Álvarez-

Marquina, A., and Gómez, P. (2019c) Evaluating Instability on Phonation in 

Parkinson’s Disease and Aging Speech, Lecture Notes on Computer Science, 

11487(2) 340-351. https://doi.org/10.1007/978-3-030-19651-6_33. 
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This conference paper summarizes the results from comparing laryngeal 

biomechanical features obtained from PD and ageing voice with a reference 

normative population. 

Gómez-Rodellar, A., Tsanas, A., Gómez-Vilda, P., Álvarez-Marquina, A., and 

Palacios-Alonso, D. (2020b). Individual Mandibular Motor Actions Estimated from 

Speech Articulation. In LREC 2020 Language Resources and Evaluation 

Conference 11-16 May 2020 (p. 74). 

This study aims to compare the articulation characteristics of a person with 

Parkinson’s Disease (PD) with the articulation characteristics of a healthy person 

on the neuromotor principles of speech production. The study methodology is based 

on the recording of speech as a vehicular signal accompanied by other multimodal 

traits associated, such as the surface Electromyography in the masseter and the 

acceleration in the chin. 

Gómez-Rodellar, A., Mekyska, J., Brabenec, L., Simko, P., Rektorová, I., Gómez, 

P., and Tsanas, A. (2021d). Longitudinal Effect of Repetitive Transcranial 

Magnetic Stimulation on Phonation in a Patient with Parkinson’s Disease: A Case 

Study. Claudia Manfredi (Ed.), Models and Analysis of Vocal Emissions for 

Biomedical Applications: 12th International Workshop, December, 14-16, 2021, 

Firenze University Press (www.fupress.com), pp. 157-160.. 

https://doi.org/10.36253/978-88-5518-449-6. 

This work describes a case study exploring the longitudinal effect of repetitive 

Transcranial Magnetic Stimulation (rTMS) on hypokinetic dysarthria in a patient 

with Parkinson’s Disease (PD). 
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Gómez-Rodellar, A. and Tsanas, A. (2021c). F0 Estimation in Irregular Vocal 

Emissions using Ridge Detection Methods. Claudia Manfredi (Ed.), Models and 

Analysis of Vocal Emissions for Biomedical Applications: 12th International 

Workshop, December, 14-16, 2021, Firenze University Press (www.fupress.com). 

https://doi.org/10.36253/978-88-5518-449-6. 

This study analyses the F0 estimation using artificially generated [a:] vowels by 

employing exploratory functions (kernels) to analyze the repetitive structure found 

in the Auto Correlation Function (ACF). 

Gómez-Rodellar, A., Gómez-Vilda, P., Ferrández-Vicente, J., and Tsanas, A. 

(2022a). Characterizing Masseter Surface Electromyography on EEG-Related 

Frequency Bands in Parkinson’s Disease Neuromotor Dysarthria. In International 

Work-Conference on the Interplay Between Natural and Artificial Computation 

(pp. 219-228). Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-031-06242-1_22. 

This study aims to evaluate the behaviour of facial muscles’ activity estimating 

the entropy of their surface electromyographic (sEMG) activity during the 

production of diadochokinetic speech tests. 

Gómez-Rodellar, A., Mekyska, J., Gómez-Vilda, P., Brabenec, L., Simko, P., and 

Rektorová, I. (2022b). Evaluation of TMS Effects on the Phonation of Parkinson’s 

Disease Patients. In International Work-Conference on the Interplay Between 

Natural and Artificial Computation (pp. 199-208). Cham: Springer International 

Publishing. https://doi.org/10.1007/978-3-031-06242-1_20. 

This paper is devoted to describing the potential beneficial effects of rTMS on the 

phonation stability of Parkinson’s Disease Patients (PDPs). 
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Other conference publications as co-author: 

Álvarez-Marquina, A., Gómez-Rodellar, A., Palacios-Alonso, D., Mekyska, J., 

Tsanas, A., Gómez, P., and Martínez, R. (2020). Parkinson's Disease Glottal Flow 

Characterization: Phonation Features vs Amplitude Distributions. In BIOSIGNALS 

(pp. 359-368). https://doi.org/10.5220/0009189403590368. 

This work resorts to theoretical modelling of glottal signals under the main known 

causes affecting phonation quality, which are closure deficits during the phonation 

cycle. 

Gómez-Vilda, P., Gómez-Rodellar, A., Palacios-Alonso, D., and Tsanas, A. 

(2021). Performance of monosyllabic vs multisyllabic diadochokinetic exercises in 

evaluating Parkinson's disease hypokinetic dysarthria from fluency distributions. 

In Proceedings of the 14th International Joint Conference on Biomedical 

Engineering Systems and Technologies—BIOSIGNALS (pp. 114-123). 

The present work aims to explore the timely responsive performance of two of these 

exercises (a monosyllabic [ta] vs a multisyllabic [pataka]) when uttered by 

Parkinson's Disease participants compared to controls. 

Álvarez-Marquina, A., Gómez-Rodellar, A., Gómez-Vilda, P., Palacios-Alonso, 

D., and Díaz-Pérez, F. (2022). Identification of Parkinson’s Disease from Speech 

Using CNNs and Formant Measures. In International Work-Conference on the 

Interplay Between Natural and Artificial Computation (pp. 332-342). Cham: 

Springer International Publishing. 
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Through the present work the use of machine learning-based technologies, more 

specifically the Convolutional Neural Networks (CNNs) and the direct application 

of formant features extracted from sustained phonations of vowel /a/ are proposed. 

Gómez-Vilda, P., Gómez-Rodellar, A., Palacios-Alonso, D., Álvarez-Marquina, 

A., and Tsanas, A. (2022). Characterization of Hypokinetic Dysarthria by a CNN 

Based on Auditory Receptive Fields. In International Work-Conference on the 

Interplay Between Natural and Artificial Computation (pp. 343-352). Cham: 

Springer International Publishing. https://doi.org/10.1007/978-3-031-06242-1_34. 

This study aims to evaluate the processing of speech from people diagnosed with 

Parkinson’s Disease using Convolutional Neural Networks (CNN) towards 

characterizing speech articulation kinematics to explore differences between 

Healthy Controls (HC) and PD participants with Hypokinetic Dysarthria (HD), 

using Auditory Receptive Fields (ARFs) in the convolutional layers. 

Gómez-Vilda, P., Mekyska, J., Brabenec, L., Šimko, P., Rektorová, I., Gómez-

Rodellar, A., and Rodellar-Biarge, V. (2023a). Description of PD Phonation in 

Terms of EEG-Related Frequency Bands. In Proceedings of the 16th International 

Joint Conference on Biomedical Engineering Systems and Technologies 

(BIOSTEC 2023) - Volume 4: BIOSIGNALS, pages 226-233. 

https://doi.org/10.5220/0011669100003414. 

The present study concentrates on analyzing and comparing the phonation 

behaviour of two cases before (pre-stimulus) and after (post-stimulus) ten sessions 

of rTMS treatment, to assess the extent of changes in their vocalization from the 

EEG-band description of glottal biomechanical features. 
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Gómez-Vilda, P., Gómez-Rodellar, A., Palacios, D., and Tsanas, A. (2023b). 

Evaluating the Performance of Diadochokinetic Tests in Characterizing 

Parkinson’s Disease Hypokinetic Dysarthria. In Biomedical Engineering Systems 

and Technologies: 14th International Joint Conference, BIOSTEC 2021, Virtual 

Event, February 11–13, 2021, Revised Selected Papers (pp. 102-119). Cham: 

Springer International Publishing. https://doi.org/10.1007/978-3-031-20664-1_6. 

The present work aims to explore the performance of tests consisting of a 

monosyllabic repetition [...tatata...] vs a multi-syllable one [...pataka...]) in the 

characterisation of PD speech. 

1.9 Thesis structure 

The manuscript is organized in the classical IMRAD structure (Sollaci and Pereira, 2004). 

Chapter 1 an introduction, definition of motivations, statement of the problem, report of 

the state-of-the-art, working hypotheses, and general overview of research framework. 

Chapter 2 offers a detailed description of the fundamentals of speech production, 

describing its physiological, functional, and neurological structures, and giving a brief 

reference to neuromotor alterations due to PD. Chapter 3 concentrated on describing 

speech neuromotor disorder assessment foundations. Chapter 4 is devoted to describing 

the algorithmic methods behind neuromotor disorder assessment. Chapter 5 summarizes 

the experimental design to provide the materials for three studies based on the use of 

glottal flow, vocal fold biomechanics, and jaw-tongue kinematics to assess speech 

alterations due to PD. Chapter 6 is intended to present the results of these studies. Chapter 

7 concentrated on the discussion of the results presented to describe contributions,  

insights, limitations, and open objectives to new lines of study. Chapter 8 summarizes the 

findings, reflections, and conclusions derived from the study. 
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CHAPTER 2 
 

2 Fundamentals of speech production 

Speech production comprises physiological, anatomical, and cognitive processes, 

involving the coordination of various structures and mechanisms within the human body 

to produce and articulate sounds, which convey meaning according to a pre-established 

communication code. Speech is often confused with voice, and they often are used 

interchangeably. Voice has to do with sound production while speech is the articulated 

outcome; for example, a problem with speech production would be hoarseness while a 

problem with speech production would be hypernasal-sounding words. Although 

phonation is the basis of voiced speech, it is not present in voiceless speech sounds. This 

fact establishes an essential distinction between voice and speech: voice need not be 

always associated with speech (consider cough, or laughter), and speech need not be 

always voiced (consider whispering). 

Speech production description might consider the following key elements: 

1. Respiration: Speech production begins with respiration, where the air is drawn 

into the lungs and exhaled in a controlled motion to produce voiced and unvoiced 

speech. 

2. Phonation: This refers to the generation of sound by the vocal folds (also known 

improperly as vocal cords) located in the larynx. As air moves through the vocal 

folds, they vibrate, generating a pulsed periodic pattern that travels toward the 

upper oral and nasal cavities.  
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3. Articulation: As the glottal signal travels outward, it is modified by the shape of 

the Oro-Naso-Pharyngeal Tract (ONPT), this airway is constricted or expanded 

through articulation gestures (static or dynamic) of various modifiable structures, 

such as the lips, tongue, teeth, and palate. These gestures create different speech 

sounds or phonemes. In voiceless speech, articulation organs produce similar 

modifications in the turbulent flow of air constituting the unvoiced source of 

speech to a given extent. 

4. Resonance: As the glottal signal (in voiced speech) or the turbulent airflow 

(voiceless sounds) travels through the ONPT parts of the source pressure signal is 

reflected backwards generating standing waves. These waves are a well-

understood phenomenon in physics, they present a series of local maxima and 

minima spaced at fixed intervals. The resonance properties of these cavities shape 

the temporal (onset, nucleus, and decay) and spectral (harmonic display) qualities 

of the sound, resulting in distinct vocal productions. 

5. Prosody: Although prosody is not directly derived from the biomechanical aspects 

of speech production it plays a major role regarding speech communication. 

Prosody encompasses the rhythm, intonation, and stress patterns in speech. It 

involves variations in fundamental frequency, loudness, and duration that convey 

emotional or grammatical information. The variations in fundamental frequency 

and loudness introduce important meta-information to speech, such as modulating 

emphasis in declarative or interrogative statements. In tonal languages, important 

interpretation aspects are embedded in the fundamental tone. Prosody plays a 

crucial role in conveying meaning and adding nuance to spoken language. 
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The production of speech involves complex cognitive processes, including language 

planning, motor control, and monitoring. The brain coordinates and regulates the complex 

sequential and precise movements required for speech production, ensuring that the 

intended message is accurately conveyed. 

Understanding the fundamentals of speech production is essential for speech-language 

pathologists, linguists, and researchers to diagnose and treat speech disorders, study 

language acquisition and development, and improve understanding of human 

communication. 

2.1 Physiology 

The physiology of the human speech production system is constituted by the respiratory, 

phonatory, and articulatory structures, and the CNS and PNS areas and pathways 

controlling each of these structures, as represented in Figure 2.1. 

2.1.1 The respiratory system 

Inhalation and expiration is a natural and autonomous process ensuring the necessary 

amount of oxygen to keep the metabolic processes responsible for energy production in 

cellular mitochondria. A secondary function allows the production of harmonic (quasi-

periodical) voiced sounds by the vibration of the vocal folds, or frictional (turbulent) 

unvoiced sounds by disordered airflow. The main muscle controlling respiration is the 

diaphragm, a strong vault-like muscle separating the thoracic cavity from the abdominal 

space (Pickering and Jones, 2002); the activity of this muscle is driven by a branch of the 

vagus nerve. During inhalation, this muscle flattens and tenses creating extra space in the 

thoracic cavity, which is filled with fresh air. During expiration, the relaxation of the 

diaphragm, combined with the tensioning of the inter-costal muscles results in a reduction 

of the thoracic cavity, forcing air outward.  
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Figure 2.1 Structural schema of the speech and phonation production system. 
Description: 1) direct pathway from cortical areas controlling phonation and articulation to 

subthalamic nucleus; 2) muscular structures controlling inhalation and expiration, comprising mainly 
the diaphragm and the intercostal muscles; 3) vocal folds and supporting cartilages and laryngeal 

muscles; 4) mandibular and other extrinsic muscles responsible of raising and lowering the jaw-tongue 
complex; 5) intrinsic lingual muscles responsible of stretching, enlarging, flattening or rounding the 

tongue; 6) velopharyngeal muscles blocking or opening the nasopharyngeal passage; 7) indirect neural 
connections involving BG red). 
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The muscular and skeletal walls of the thoracic cavity and the bronchial air ducts are 

relatively flexible, and together with the natural compressibility of air allow the creation 

of a surplus pressure when the air passage at the vocal folds is stopped.  This ability 

explains the important subglottal pressure build-ups during vocal fold contact, helping 

the injection of airflow pulses during phonation.    

2.1.2 The phonation system 

The subglottal pulmonary structures (trachea, bronchi, alveoli) constitute a septic-free 

space, where any extraneous substances or matter, such as dust, water, saliva, or food 

might induce dangerous infectious and strong inflammatory responses. To prevent this 

risk to vital functions, the biology of mammals designed a safety system, consisting of a 

series of cartilages and muscle structures, responsible for generating an immediate 

response through a reflex circuit composed of afferent neurons in the laryngeal space 

acting directly on efferent neurons in the bulbar midbrain, protracting muscular and 

conjunctive tissular structures at both sides of the laryngeal space, known as vocal folds, 

which produce an immediate blocking of the air passage (the glottis). Besides, the 

diaphragm and intercostal muscles are promoted to produce an important supraglottal 

pressure build-up enough to overcome the vocal fold tenseness, producing a sudden 

violent airflow (cough) to remove any of the extraneous substances, which is perceived 

as a notorious and worrying sound. These two mechanisms have been adapted by many 

animals to voluntarily produce voiced sounds and are the basis of voiced speech as well.  

The mechanical foundation behind their function is relatively simple: with previously 

stored air in the lungs, a simple and voluntary gesture of the laryngeal nerves brings the 

vocal folds together (adduction) closing the glottis and the airflow. 
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 Immediately after, the relaxation of the diaphragm and the contraction of the inter-coastal 

muscles promote a moderate pressure build-up in the lung-bronchi-trachea space. This 

build-up forces both vocal folds to separate (abduction), and a puff of air is expelled. The 

burst of gas from the subglottal cavity causes a drop in the subglottal pressure, and the 

reactive muscular forces acting on the vocal folds force their adduction again. As the 

balance between subglottal pressure build-up and vocal fold occluding tenseness is subtle 

and prone to voluntary control, the duration, intensity, and repetition rate of the 

adduction-abduction process is easily controlled to produce repetitive airflow releases 

and stops. The release of an airflow burst produces an increment in the supraglottal cavity 

pressure, and its constriction produces a drop in the same pressure. As it happens that the 

pressure increments and drops are proportional to the rate of flow changes, positive and 

negative dynamic sound pressure waves are induced in the glottis, which propagate 

through the ONPT. Given that the flow decay rate during adduction is much larger than 

the flow increment during abduction, the negative sound pressure waves are prevalent as 

the dominant sound excitation expressing phonation. This sound pressure wave at the 

glottis is known as the glottal source. 

2.1.3 The articulatory system 

An oversimplification of the speech production process assumes many times that the 

glottal source is the only way of generating a signal to excite the vocal tract and 

experience the resonant phenomena, that is, enhancing and attenuating parts of its original 

power spectrum to produce vowel-like timbres. This assumption, the standard for voiced 

sounds, does not cover all possibilities as stated previously voiceless sounds are a 

consequence of a turbulent source.  
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This is a relevant factor as the alternation between voiced sounds, unvoiced sounds, and 

stops, is an intrinsic characteristic of articulatory speech dynamics. The section of the 

upper ONPT may be modelled by the action of different muscles that increase or decrease 

its section and elongation; as an example, the nasal cavity can be connected or 

disconnected to the oral cavity by the velum, a set of structures controlled by the 

stylopharyngeal muscle, which may retract the velum to the back pharyngeal wall, 

blocking airflow to the nasal cavity. When connected to the oral cavity the nasal tract 

imprints a specific signature to the vocalization power spectrum, known as 

‘hypernasality’, which is a gesture necessary to articulate nasal sounds as [m, n, ɲ, ɳ]. The 

oral cavity can be subject to important changes in section and longitude due to the action 

of several groups of muscles, namely, the jaw rising by the masseter, temporalis, medial 

pterygoid, lateral pterygoid, and digastric, which act together with gravity to lower the 

jaw. The tongue is a complex structure of vessels and muscles, including a set of extrinsic 

muscles, such as the styloglossus, and the intrinsic muscles, such as the inferior and 

superior longitudinalis, and verticalis (Sanguinetti, Laboissière, and Payan, 1997). The 

lip radiation point may be modelled by the orbicular muscles to produce oval or round lip 

terminations, buccination, and enlargement. All these groups are controlled by 

independent neuromotor pathways derived from hypoglossal (XII cranial nerve). These 

muscular structures are summarized in Figure 2.2. 

2.1.4 The nervous system 

The nervous system is classically divided into two parts: the central nervous system 

(CNS) and the peripheral nervous system (PNS). The CNS consists of the brain and spinal 

cord, while the PNS consists of all the nerves that branch out from the spine, ending at 

specific muscles, near or distal (see Figure 2.3). 
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The PNS is further divided into two parts: the somatic nervous system (SNS) and the 

autonomic nervous system (ANS). The SNS controls voluntary movements and 

reflexes, while the ANS controls involuntary functions such as heart rate, digestion, 

and breathing4. 

 

Figure 2.2 Synoptic representation of the extrinsic and intrinsic muscles involved in tongue movement 
and shaping. 
Description: a) extrinsic styloglossus; b) extrinsic hyoglossus; c) extrinsic genioglossus; d) intrinsic 
transversal; e) intrinsic superior longitudinal; f) intrinsic inferior longitudinal. (adapted from Sanguinetti, 
Laboissière, and Payan, 1997) 
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The CNS is responsible for processing information received from the PNS and sending 

out instructions to the body muscles. It is also responsible for higher functions such as 

thought, memory, and emotion (Kandel et al., 2013). 

 

Figure 2.3 Relational and functional description of the nervous system and its parts5 
 

2.1.5 Structure and function 

The main structure of the CNS is the brain, split into two hemispheres, left, and right, 

strongly intercommunicated. The left and right hemispheres are responsible for 

controlling different tasks and behaviours (known as brain lateralization). The left 

hemisphere is dominant regarding language, logic, and math abilities.  

 

4 https://www.ncbi.nlm.nih.gov/books/NBK542179/ 
5 Source: https://commons.wikimedia.org/wiki/File:NSdiagram.svg, Licence: Permission is granted to 
copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, 
Version 1.2. Retrieved 2023/10/02. 
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The right hemisphere is associated with creative activities, being dominant in artistic and 

musical performing, and intuition.  

Classically, the CNS is divided into the following seven parts (see Figure 2.4 and Table 

2.1).  

 

Figure 2.4 Synoptic representation of different CNS structures and cortical lobes. 
Description: A: The CNS is divided into seven main parts; B) The four lobes of the cerebral cortex 

(adapted from Kandel et al., 2013) 
 

Certain elements have been left out of this description, such as the limbic system and 

reticular formation, as the purpose of this section is to provide an overview of the main 

brain structures, an exhaustive anatomical description being beyond the scope of this 

work. As previously introduced, cerebral tissue is composed of neurons, each 

characterized by three principal components: a cell body (soma), an axon, and dendrites. 
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The axon functions as the conduit for transmitting electrical nerve impulses away from 

the soma, while dendrites serve as receptors for signals originating from neighbouring 

neurons. Critically, neurons possess the capacity to establish connections with a multitude 

of other neural cells through intercellular communication occurring within specialized 

synaptic gaps. 

Table 2.1 CNS subdivisions. 

Section Description 

Cerebral cortex The brain’s outer layer known for its folds (gyri) and grooves (sulci), which 
is visible upon removing the skull and membranes. This area, also called 
grey matter, contains neuronal cell bodies and other components, 
contrasting with the underlying white matter made up of myelinated axons. 
The cortex’s convolutions increase its surface area, allowing for a higher 
neuron concentration. It’s divided into four lobes—frontal, parietal, 
occipital, and temporal—each responsible for specific functions. The 
frontal lobe handles voluntary movements, cognitive functions, and 
language; it includes areas for speech production like Broca’s area. The 
parietal lobe processes sensory information, the occipital lobe manages 
visual data, and the temporal lobe focuses on auditory information crucial 
for speech comprehension. 

Basal Ganglia The BG are found within the cerebral white matter, being composed of the 
caudate nucleus, putamen, and globus pallidus. These structures form the 
pallidum and the striatum. The BG control and coordinate muscle 
movements (Lanciego, Luquín, and Obeso, 2012). 

Diencephalon The interbrain, situated between the BG and the midbrain, includes the 
thalamus, hypothalamus, epithalamus, and subthalamus. The thalamus acts 
as a relay station for sensory and motor signals to and from the spinal cord, 
medulla oblongata, and cerebellum, and processes sensations like pain and 
temperature. The hypothalamus controls eye movements and auditory 
responses, maintains homeostasis by regulating internal balance against 
external changes, and oversees vital functions such as heart rate, blood 
pressure, hunger, thirst, body temperature, and hormone release, linking the 
nervous system with the endocrine system. 

 Midbrain The midbrain being one of the smallest parts of the CNS, roughly 2 cm in 
length plays a vital role in movement planning and execution, excitation, 
motivation, and habituation. Dopamine is produced in a region referred to 
as substantia nigra, a structure darker than neighbouring areas due to the 
high levels of neuromelanin in dopaminergic neurons.  

Pons It is a part of the brainstem, connecting the medulla oblongata and the 
thalamus, responsible for relaying NMA from the motor cortex to the 
cerebellum, medulla, and thalamus, acting as a distribution hub. 
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Section Description 

Medulla oblongata The medulla oblongata, located at the base of the brainstem, controls vital 
autonomic functions such as breathing, heart rate, blood pressure, and 
digestion. It uses chemoreceptors to monitor respiratory activity and adjust 
breathing rates based on blood acidity. Additionally, it serves as a control 
center for cardiovascular and vasomotor functions, managing reflexes 
like vomiting, swallowing, coughing, and sneezing. 

Cerebellum The cerebellum is responsible for coordinating smooth and voluntary 
movements. It consists of three lobes: anterior, posterior, and 
flocculonodular. The cerebellum is connected to other brain parts via 
cerebellar peduncles. The superior cerebellar peduncle links it to the 
midbrain, aiding in limb coordination. The inferior cerebellar 
peduncle connects to the medulla, involving proprioceptors for balance and 
posture. The middle cerebellar peduncle, a pathway from the pons, carries 
information about voluntary motor actions to the cerebellum. The 
cerebellum works with the cerebral cortex to interpret commands and send 
signals to the motor cortex, ensuring precise muscle contractions for 
coordinated movement. 

Spinal cord The cerebellum facilitates the coordination of smooth, voluntary 
movements and is divided into three lobes: anterior, posterior, and 
flocculonodular. It is interconnected with the brain via cerebellar peduncles. 
The superior cerebellar peduncle connects it to the midbrain for limb 
coordination, the inferior cerebellar peduncle links to the medulla for 
balance and posture, and the middle cerebellar peduncle conveys voluntary 
motor action information from the pons. The cerebellum collaborates with 
the cerebral cortex to process instructions and communicate with the motor 
cortex, ensuring precise and coordinated muscle movements. 

 

The intricacy of neuronal interactions within the cerebral structures is marked by 

nonlinear behaviours, feedback loops, and multiple interconnections spanning various 

cerebral regions. Neurons can be broadly arranged into two primary categories: primary 

neurons, and secondary or motor neurons. A salient distinguishing feature between these 

neuronal types lies in the presence or absence of Schwann cells. Primary neurons, 

generally devoid of Schwann cells, are principally responsible for processing and 

transmitting signals within the central nervous system and are indispensable for cognitive 

and sensory processes. They are primarily located within the cortical regions, constituting 

the grey matter. Conversely, secondary or motor neurons are characterized by the 

encasement of their axons by Schwann cells.  
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These neurons are responsible for conveying signals from the central nervous system to 

muscles and glands, thus facilitating motor functions and physiological responses. Their 

primary location is situated post-thalamus, with somas clustered into nuclei. These 

aggregations serve as the origination points for major nerves governing specific body 

regions. These nerves exit the brainstem at various junctures, collectively forming the 

principal neural conduits of the body. Figure 2.5 gives an anatomic representation of these 

structures. Table 2.2 presents the nomenclature to address each nerve branch. 

Sensory information travels from the PNS to the spinal cord before reaching the brain. 

This information ascends upwards using first, second, and third-order neurons. First-order 

neurons receive impulses from skin and proprioceptors and send them to the spinal cord. 

They connect with second-order neurons in the dorsal horn and send impulses to the 

thalamus and cerebellum. Third-order neurons relay sensory neural activity to the 

somatosensory portion of the cortex. Somatosensory sensations inform about pressure, 

pain, temperature, and other body senses. Motor information travels from the CNS to 

lower motor neurons. These efferent neurons instantiate muscle movement. The 

relationship between movement and neuron activation is not a straightforward matter, as 

there exists inhibitory circuits that instead of activating a muscle, do precisely the 

opposite and impede its activation. 
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Figure 2.5 Synoptic representation of the different nerves (left)6  and locations of the STNs (right)7. 

 

 

6 Source: 
https://commons.wikimedia.org/wiki/File:Brain_human_normal_inferior_view_with_labels_en.svg, 
Patrick J. Lynch, medical illustrator, Permission is granted to copy, distribute and/or modify this 
document under the terms of the GNU Free Documentation License, Version 1.2. Retrieved: 2023/10/02. 
7 Source:  
https://commons.wikimedia.org/wiki/File:Brain_stem_sagittal.svg, (Authorizing free share and remix). 
No changes made with respect to the original file licensed under the Creative Commons Attribution-Share 
Alike 3.0 Unported. Retrieved 2023/10/02. 
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Table 2.2 Pathways of cranial nerves leaving the skull. 

Location Nerve Numeration 

cribriform plate Terminal nerve 0 

cribriform plate Olfactory nerve I 

optic foramen Optic nerve II 

superior orbital fissure 

Oculomotor 

Trochlear 

Abducens 

Trigeminal (ophthalmic) 

III 

IV 

VI 

V1 

foramen rotundum Trigeminal (maxillary) V2 

foramen ovale Trigeminal (mandibular) V3 

stylomastoid foramen Facial nerve VII 

internal auditory canal Vestibulocochlear VIII 

jugular foramen 

Glossopharyngeal 

Vagus 

Accessory 

IX 

X 

XI 

hypoglossal canal Hypoglossal XII 

 

Movement tends to be managed by the activation of agonist-antagonist muscles; to 

produce fine-tuned and accurate motion muscle activation has to be precisely managed 

and timed, through the activation or inhibition of the respective muscles. This process is 

linked to fine-tuning movement and precision control that is managed by structures in the 

thalamus and the BG; these structures gather information from the proprioceptive areas 

of the cortex and modulate a response, this matter is discussed later. 

2.2 Main nervous system dysfunctions 

The intricate and delicate structures composing the nervous system are fragile and work 

under specific mechanical and immunological protections. The skull and spinal bone are 

rigid protections against mechanical stress and contusions.  
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The brain-blood barrier is designed to keep the liable neuron structures protected from 

chemical and microbiological noxious agents. Despite the multiple barriers and 

protections, many different factors may alter the normal functionality of specific brain 

areas, leading to subsequent alterations that may be externally observed. The nature of 

these dysfunctions is varied and is due to many factors, as summarized in Table 2.3. 

Table 2.3 Most frequent nervous system disorders. 

Disorder Description 

Alzheimer's disease (AD) It is the most common ND, a type of dementia in which brain cells and 
neural connections begin to degenerate and die. This condition results in 
loss of memory, cognitive and physical decline, and difficulty in 
swallowing. AD is progressive, with conditions worsening over time. 
Clinical inspection found aggregations of beta-amyloid plaques and 
neurofibrillary tangles made of tau protein within the neurons in AD 
patients. It seems that these plaques and tangles induce the death of brain 
cells and are formed as a consequence of the misfolding of proteins within 
the neuronal network. 

Amyotrophic lateral 
sclerosis (ALS) 

Also known as Lou Gehrig’s disease, affects motor neurons that control 
voluntary and involuntary movements. The ultimate cause of ALS is not 
known, and unfortunately, there is no cure. Scientists believe that cell death 
is related to the excess amount of extracellular glutamate in ALS patients. 
Riluzole, which can disrupt the formation of glutamate, is used to slow 
down the progression and reduce the painful symptoms of ALS. 

Broca’s aphasia Also known as expressive aphasia, it is caused by a stroke, brain tumour, or 
brain trauma that causes irreversible damage to Broca’s area. People 
affected by Broca’s aphasia experience difficulty in producing speech. They 
can comprehend speech and know what they want to express, although they 
are unable to produce the required movements to communicate, producing 
a severe disconnect between thought and language capabilities. 

Cerebrovascular 
accidents (CVA) 

Cerebrovascular accidents, also known as strokes, occur when a section of 
the brain is not able to receive enough oxygenated blood, leading to hypoxia 
that causes tissues in the brain to die, with the consequent loss of brain 
function. Generally, strokes are caused by blood clots travelling from 
elsewhere in the body to a cerebral vessel in the brain clogging it. The 
consequences of the stroke are dependent on the area of the brain deprived 
of blood flow. Some patients may experience left-sided paralysis, while 
others might produce slurred speech. When facing a CVA, time is crucial. 
Some of the interventions might try to break down the clot with adequate 
medication or attempt surgical removal. The severity of symptoms directly 
correlates to how long the tissue’s oxygen supply has been cut off. 

Huntington disease It is a hereditary, progressive brain disorder that is caused by a mutation in 
the huntingtin gene, HTT. This causes the huntingtin protein to accumulate 
in the brain cells, which eventually leads to cellular death. Initially, 
Huntington's disease causes chorea, involuntary jerking, and hand-flapping 
movements. As the disease progresses, cognitive decline occurs. Fatality 
takes place approximately within 15 years of diagnosis. 
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Disorder Description 

Multiple sclerosis Multiple sclerosis is an autoimmune disease, in which the body's immune 
system attacks the myelin proteins of the central nervous system, disabling 
the functions of myelinated neurons which are responsible for the 
communication between the CNS and the PNS. MS has a high prevalence 
in young adults and shows up as pain, weakness, and vision and 
coordination loss. Medication is used to depress the body’s immune system 
and can help control the adverse effects of this disease. 

Parkinson's disease (PD) It is a nervous system disorder that results in the deterioration of dopamine-
releasing neurons in the midbrain (substantia nigra pars compacta). As a 
consequence of the drop in dopamine levels, tremors, unsteady movements, 
and loss of balance are some of the most prevalent symptoms that severely 
condition the living standards of the persons affected. PD is a progressive 
disease, many patients experience bradykinesia, stiffness, and a mask-
freezing face as symptoms progress. While no definite cure exists for the 
disease, the severity of the symptoms can be controlled to a certain extent 
by medication. Levodopa is a dopamine precursor drug that can be 
metabolized into dopamine for CNS use. Deep brain stimulation can 
provide a degree of improvement, although it does not prevent the 
progression of the disease. 

 Poliomyelitis It is a consequence of an inflammation of the spinal cord due to the 
poliovirus. It devastates the neurons in the ventral horn of the spinal cord 
leading to paralysis. The infection of the poliovirus is preventable through 
vaccination. 

Spinal cord traumas Symptoms of spinal cord injuries are dependent on where the injury takes 
place. Sensation can be damaged when injury affects the sensory tracts. 
However, if the ventral roots or ventral horns are damaged, paralysis occurs. 
There are two causes for motor paralysis; flaccid, when nerve impulses do 
not reach the intended muscles; without stimulation, the muscles are unable 
to contract and become spastic, where the motor neurons undergo irregular 
stimulation, causing involuntary contraction depending on where the injury 
has taken place. Paraplegia, paralysis of the lower limbs, occurs when the 
spinal cord is interrupted between T1 and L1. Quadriplegia, paralysis of all 
limbs, is a result of an injury in the cervical region, and hemiplegia where 
there is a paralysis of half of the body, as a result of unilateral interruption. 

Traumatic brain injury 
(TBI) 

It may happen when there is a severe blow or jolt to the head or body; a 
foreign object that goes through brain tissue can also cause traumatic brain 
injury. This inevitably leads to the disruption of normal brain activity. TBI 
symptoms can vary depending on the severity of the injury. A concussion 
can cause temporary dizziness or loss of consciousness, while a contusion 
causes lasting neurological damage. Contusions to the brain stem may cause 
a coma. TBI can cause subdural or subarachnoid haemorrhage and cerebral 
oedema. When the brain tissues suffer stress or trauma, the blood vessels in 
the brain might break, causing blood to pool, increasing intracranial 
pressure, and compressing the brain tissue. In the most severe cases, the 
brain might be contracted onto the spinal cord damaging it, leading to 
hampered autonomic nervous system functions, or even functional loss. 

Wernicke’s aphasia It occurs most commonly as a result of a haemorrhagic or ischemic stroke 
affecting the left middle cerebral artery blood supply capability. In 
Wernicke’s aphasia, a person can speak clearly and produce speech. 
However, their speech holds no meaning. Additionally, they also experience 
difficulty with understanding language. 
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2.3 Neuromotor functional description of speech production 

The intricate process of speech production is a complex interplay of neural and 

biomechanical structures and organs, a detailed exploration of which would necessitate 

an entire dedicated chapter. In this section, a concise, high-level functional overview of 

the processes and structures involved in activating the necessary muscles for speech 

generation is offered. While this content may seem out of place in a technical thesis, it is 

vital for understanding subsequent sections, because certain elements within the speech 

signal have direct connections to specific muscular activations, and therefore are 

consequently influenced by specific regions of the brain, nerves, and other anatomical 

structures.  

The neuromotor elements responsible for controlling speech production involve a 

complex network of brain regions and neural connections that work together to generate 

and coordinate the movements required for speaking. This process allows for the 

transformation of thoughts, feelings, and emotions into spoken language (cognitive-

linguistic processing), and the respective muscles located in the vocal tract are activated, 

including the tongue, lips, jaw, and vocal folds (neuromuscular execution), through the 

control of neuromuscular execution the selection, sequencing, and regulation of 

sensorimotor tasks, at appropriate co-articulated times, durations, and intensities (motor 

speech planning, programming, and control), accordingly with Duffy (2013). The primary 

neuromotor pathway involved in speech production is known as the corticobulbar tract. 

This tract originates in the Primary Motor Cortex (PMC), located in the frontal lobe of 

the brain, specifically in the region known as the precentral gyrus.  
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The precentral gyrus contains specialized areas called the motor speech cortex or Broca's 

area, which is crucial for the planning and execution of speech motions. From the motor 

cortex, the corticobulbar tract sends descending fibres that pass through the internal 

capsule, a dense bundle of nerve fibres located deep within the brain. These fibres then 

project to the brainstem, specifically to the cranial nerve nuclei, which mark the beginning 

of the nerves directly involved in speech production. In the brainstem, the corticobulbar 

fibres synapse with the motor neurons of the cranial nerve nuclei that innervate the 

muscles of the vocal tract. The cranial nerves most relevant in speech production include 

the hypoglossal nerve (cranial nerve XII) for the tongue muscles, the facial nerve (cranial 

nerve VII) for the muscles of the lips, and the trigeminal nerve (cranial nerve V) for the 

jaw muscles (refer to Figure 2.5 for an anatomic description). In addition to the 

corticobulbar tract, there are other neural pathways involved in speech production. These 

include the corticospinal tract, which controls voluntary movements of the body, 

including the respiratory muscles needed for breathing during speech. The corticospinal 

tract originates from the same motor cortex region as the corticobulbar tract but descends 

further down the spinal cord to innervate muscles throughout the body. Moreover, there 

are extensive connections between the motor speech cortex and other brain regions 

involved in language processing, such as the arcuate fasciculus that connects Broca’s area 

(motor) with Wernike’s area (auditory processing and language comprehension). These 

connections integrate language processing and motor planning, allowing for responsive, 

fluent, and coordinated speech production. Overall, the neuromotor pathways controlling 

speech production involve a complex interplay between the motor cortex, brainstem 

nuclei, and cranial nerves. These pathways ensure the precise and coordinated movements 

of the vocal tract muscles necessary for producing intelligible speech. Duffy (2013) in 

chapter 2 page 76 describes the complexity of these interactions as follows: 
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“The motor system, of which the speech motor system is a part, contains the complex 

network of structures and pathways that organize, control, and execute movement. It 

resides at all levels of the nervous system and mediates many activities of striated and 

visceral muscles. An appreciation of its organization and basic operating principles is 

necessary to understand normal speech production and MSDs. The motor system can be 

subdivided in many ways. Unfortunately, categorizing the components of a complex, 

integrated, and incompletely understood system inevitably results in some ambiguity, 

overlap, and confusion. Nonetheless, it would be impossible to develop an understanding 

of the speech motor system without parsing it in some way. The motor system can be 

organized purely by anatomy or according to its functions. Because functional labels 

contribute to an understanding of what the components do.” A functional description of 

the complex speech production system starts with the instantiation of speech from many 

different cognitive areas in the brain, including visual, conceptual, and long-short 

memory mapping, which structures them into emotional expressions at a semantic level. 

These structures are transformed into semantic items including object and concept names, 

actions, and names of actions, which are syntactically built into ordered sequences of 

sounds. These activate Broca’s area, and premotor, motor, and supplementary motor areas 

from gesture mapping retrieved from the hippocampus to the fine motor control, 

including the thalamic centres, the BG, and the cerebellum, to express direct NMA on the 

extrapyramidal pathways. The phrenic nerve activates inspiration and expiration 

movements on the diaphragm and intercostal muscles to press airflow through the larynx, 

inducing the vibration of the vocal folds when emitting voiced sounds, or the turbulence 

in constricted passages (vocal folds, false vocal folds, velopharynx, tongue dorsum, teeth, 

lips) when emitting voiceless sounds.  



Fundamentals of speech production 
 

 

78 
 

The ONPT tract is shaped, by mandibular muscles rising and lowering the jaw, lip 

rounding, opening and closing by orofacial muscles, extending and retracting the velum 

by velopharyngeal muscles, as well as shaping the tongue by extrinsic and intrinsic 

muscles, conditioning the pharyngeal and oral cavities by jaw, tongue, and palate 

gestures. 

The sound waves, either organized as a harmonic spectrum (voiced sounds) or as an 

unorganized power distribution (voiceless sounds) propagate through the ONPT, 

experiencing reflections as the tract presents changes in its transversal section following 

wave propagation, the reflections being stronger where the section changes are more 

abrupt, the reflection function being proportional to the derivative of the transversal 

section logarithm, as it will be exposed in subsection 3.3. The forward and backward 

propagation of sound waves is explained by a complex convolutional model, determining 

the presence of standing waves for certain frequencies in the tube, following a resonant 

accumulation of energy. These frequencies are known as formants, because their presence 

in the energy spectrum, either as harmonic lines, or as power bands, are especially 

detected and encoded in the auditory system when speech is perceived (Greenberg et al., 

2004; Gómez-Vilda, Ferrández-Vicente, and Rodellar-Biarge, 2013). Changes in the 

configuration of the ONPT produced by articulation gestures (tongue, mandible, and lip 

configurations), will result in changes in the shape and distribution of formants (peak 

position and bandwidth), therefore, the information conveyed by formants might be 

exploited to infer the position and movement of articulation organs, using articulation 

kinematic projection models (see subsection 4.2). 
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2.4 Neuromotor description of the speech production system 

As introduced in Section 2.1 of this same chapter, speech production has three distinct 

components, respiration, phonation, and articulation. Although both are governed by 

NMA, the neural pathways that innervate each of the required muscles are different. Each 

process plays a completely different role in the production of the final speech signal. The 

following subsections provide a description of the neuromotor control processes and the 

different muscles involved in each task.  

2.4.1 Phonation neuromotor control 

The anatomical regions involved in regulating phonation can be summarized as follows, 

drawing from the works of Jürgens (2002), Brown et al. (2009), Rektorová et al. (2012), 

and Duffy (2013): The Primary Cortex Vocalization Area (PCVA), plays a central role in 

directly activating the laryngeal muscles through phonatory motoneurons, constituting 

the direct activation pathway. Additionally, a separate neuromotor control feedback 

pathway, also modulated by the PCVA, traverses through the pontine grey, cerebellum, 

and ventrolateral thalamus, ultimately providing feedback to the PCVA. Furthermore, the 

PCVA extends another control pathway through the putamen, subsequently progressing 

to the substantia nigra, medullar reticular formation, nucleus ambiguous, and solitary 

tract nucleus, ultimately reaching phonatory motoneurons, thus forming the indirect 

pathway. Other circuits provide motor control gating functions, through the anterior 

cingulate cortex and the periaqueductal grey, to the medullary reticular formation, and 

similarly as in the indirect pathway, to the nucleus ambiguous, solitary tract nucleus, and 

phonation motoneurons. Auditory feedback is provided by acoustically perceived 

sensation from the superior temporal cortex (Wernicke’s area) to the lateral prefrontal 

cortex, supplementary motor area, and PCVA.  
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Summarizing the direct activation pathways, the PVCA includes the laryngeal motor 

cortex (Brown et al., 2009), premotor cortex, supplementary motor area, and cerebellar 

lobule VI. Secondary areas comprehend the cingulate motor area, the ventral nuclei of 

the thalamus, the putamen, the frontal operculum, and the anterior insula (Dietrich et al., 

2020).  

The functional relationship among them is still a matter of ongoing research, although 

there is consensus that as far as vocalization is concerned, the direct pathway is mainly 

controlled by the Ventromedial Central Sulcus Peak (VmCSP) corresponding to 

Broadmann area 4p, and the Dorsolateral Peak (DsP) in area 6, both on the precentral 

gyrus next to articulator control areas (Dietrich et al., 2020). Specifically, Rödel et al. 

(2004) reported selective stimulation of the vocal fold tensor (cricothyroid muscle: CTM) 

or relaxer (thyroarytenoid muscle: TAM) using transcranial magnetic stimulation. In this 

sense, Brown et al. (2009) suggested that both areas mentioned before may have 

functional roles representing different muscles in the Laryngeal Biomechanical System 

(LBMS) because both muscular systems are innervated respectively by the external 

Superior Laryngeal Nerve (SLN), and the Recurrent Laryngeal Nerve (RLN). Therefore, 

a differential NMA (dNA) may be defined as the separated agonist-antagonist activity of 

neuromotor pathways controlling phonation, which may be indirectly estimated from the 

kinematics of specific trajectories of the effector being controlled. In the case under study, 

the agonist-antagonist direct NMA of the musculus vocalis is known to be controlled by 

the vocal fold tensor (cricothyroid) and the relaxer (thyroarytenoid). The working 

assumption in the present study will consider that the dNA projected to the lower 

neuromotor units through the direct activation pathway of the LBMS is mainly related to 

VmCSP and DsP activity. The majority of the research conducted in this project has 

primarily focused on sustained vowel phonation, specifically the open vowel [a:]. 
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Consequently, the involvement of secondary areas related to the indirect activation 

pathway becomes more pertinent in dynamic speech tasks, but these aspects are not within 

the scope of this study. The structures mentioned above, along with their respective roles 

in phonation control, are summarized as follows in Figure 2.6. 

The cricothyroid joint, schematically represented in Figure 2.6 allows the external 

elongation of the vocal fold by the stretching and activation of the CTM compatible with 

an increase of tension (Hammer, et al. 2010). The external branch of the SLN is the 

smaller of the two superior laryngeal nerve branches. It descends to the region of the 

superior pole of the thyroid and travels medially along the inferior constrictor muscle. 

The external branch of the SLN innervates the CTM, which is the only tensor of the TAM. 

The recurrent laryngeal nerve innervates the TAM, which combined with the arytenoid 

muscles (lateral and oblique) contributes to adduction, abduction, and relaxation of the 

vocal folds. The direct pathway from the laryngeal cortex (VmCSP and DsP) to CTM and 

TAM is the primary neuromotor pathway responsible for the activation of the cricothyroid 

joint, and the tension and relaxation of the musculus vocalis. 
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Figure 2.6 Synoptic representation of the cricothyroid joint and associated neuromuscular structures and 
function. 

Description: Structures and function assuming that the cricoarytenoid system is in adduction. (A) Cortico-
bulbar-laryngeal direct neuromotor pathways. LC: laryngeal cortex. NA: nucleus ambiguus in medulla 
oblongata. VNG: extracranial vagus nerve ganglia. SLN: superior laryngeal nerve. RLN: retro-laryngeal 
nerve. (B) Detailed view of the thyroarytenoid joint: Thy: thyroid cartilage. Ary: arytenoid cartilages. Cri: 
cricoid cartilage. TAM: thyroarytenoid muscle. CTM: cricothyroid muscle. The role that CTM and TAM 
will play in the cricothyroid joint is summarized by the swinging represented by the curved double-arrow 
line, resulting in the stretching, and shortening of the vocal folds during adduction (double-arrow straight 
line on top of TAM). 
 

2.4.2 Articulation neuromotor control 

The neuromotor system controlling articulation is responsible for coordinating the precise 

movements of the muscles involved in shaping the ONPT to produce speech sounds, 

including at least the oropharyngeal, mandibular, lingual, and orofacial subsystems.  

The primary neuromotor pathway responsible for speech articulation is the corticobulbar 

tract. This pathway originates in the primary motor cortex, specifically in the region 

known as the precentral gyrus, which contains specialized areas such as the primary motor 

cortex and the motor speech cortex (Broca's area), involved in planning and executing the 

movements associated with speech articulation.  
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The corticobulbar fibres travel from the cortex through the internal capsule, a dense 

bundle of nerve fibres located deep within the brain, then project to the brainstem, 

specifically to the cranial nerve nuclei that innervate the muscles responsible for speech 

articulation. The corticobulbar fibres synapse in the brainstem with the motor neurons of 

the cranial nerve nuclei, particularly the hypoglossal nucleus (cranial nerve XII), facial 

nucleus (cranial nerve VII), and trigeminal nucleus (cranial nerve V), please refer to 

Figure 2.1, Figure 2.5, and Table 2.2 Pathways of cranial nerves leaving the skull. for an 

anatomical description. These cranial nerves control the muscles of the tongue, lips, jaw, 

and face which are essential for precise speech articulation. Additionally, there are other 

neural pathways involved in speech articulation. The cerebellum plays a crucial role in 

fine-tuning motor movements and coordinating the timing and accuracy of speech 

articulatory gestures. The cerebellum receives inputs from the motor cortex and integrates 

sensory information to modulate and adjust motor commands during speech production. 

Besides, the BG contribute to the control of speech articulation by influencing movement 

initiation, coordination, and timing. These structures interact with the motor cortex and 

help regulate the selection and execution of appropriate speech-motor actions. 

According to its importance regarding one of the studies included in the present thesis, a 

detailed description of the masseter activity in controlling the mandible will be discussed 

in what follows. The masseter control complex is synoptically represented in Figure 2.7. 

In the case of interest for the mentioned study, the motor end plates of the FCPs innervate 

the masseter fibres producing muscle contraction. The NMA exciting masseter is induced 

from direct and indirect pathways.  
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The fine control of a muscle movement requires a certain degree of feedback. This is 

provided by sensory pathways (in green) consisting of neurons activated by spindles 

(terminal sensors detecting fibre stretching) attached to the muscles, providing 

proprioceptive sensing to the LMNs in two ways. 

 

Figure 2.7 Neurophysiological description of the masseter articulation motor system. 
Description: PMC: primary motor cortex; BA4: Brodmann area 4; UMN: upper motor neuron; BG: 

basal ganglia; TH: thalamus; CB: cerebellum; LMN: lower motor neuron; MB: midbrain. 
 

A direct feedback loop is provided by inhibitory interneurons. A more complex feedback 

loop connects sensory units with the BG and the cerebellum CB. These structures serve 

feedback information to the motor and frontal cortices, as well as to the Lower Motor 

Neurons (LNMs) (blue lines). The BG control circuit assists the PMC in accurate and 

fine-motor speech programming. The CB control circuit coordinates PMC motor 

planning from proprioceptive information. 
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2.5 The BG neuromotor feedback circuitry 

The BG are located deep in the brain hemispheres, integrated by the striatum (caudate 

nucleus and putamen) and the lentiform nucleus (putamen and globus pallidus). The 

substantia nigra and the subthalamic nuclei in the midbrain involved in the indirect 

activation pathways are nearby structures strongly connected to the BG. The cortical, 

thalamic, and substantia nigra provide inputs to the striatum, as well as the premotor 

cortex in the frontal lobe. The striatum provides inputs to the substantia nigra and globus 

pallidus, and the globus pallidus projects to the thalamus, subthalamic nucleus, red 

nucleus, and reticular structure in the brainstem. These connections compose different 

feedback circuits. The main output of the BG is found in the globus pallidus. These 

circuits regulate muscle tone, postural adjustments, goal-directed activities, grading force, 

amplitude, and duration of movements, and adjust movements to speech production 

constrictions, supporting learning, preparation, and instantiation of movements. The 

influence of the BG circuits on speech production is through its direct inhibitory action 

on cortical motor areas, damping, and modulating NMA from the cortex which could be 

excessive to produce fine and precise movements. HD would be a consequence of 

imprecise or excessive control effect, leading to dampened movements. The main cause 

of this disorder seems to be associated with dopamine imbalance, although its deficit does 

not completely explain speech deficits (Duffy, 2013). The deterioration of dopamine-

supplying neurons in substantia nigra results in a reduction of this neurotransmitter, and 

the BG circuit functionality is distorted. 

A more detailed description of the circuitry involving the BG  is summarized in the 

representation shown in Figure 2.8 (Schulz et al., 2005; Blitzer et al., 2009; and Brittain 

and Brown, 2014). 
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Figure 2.8 Summarized representation of main circuital relationships between the BG and the cortex. 
Description: GPe: globus pallidus pars externa; GPi: globus pallidus pars interna; STN: subthalamic 

nucleus; SNc: substantia nigra pars compacta8 (adapted from Brittain and Brown, 2014). 
 

According to Brittain and Brown (2014), motor projections from cortical areas take place 

at the striatum, with separate circuits projecting through globus pallidus and substantia 

nigra to thalamic and reticular brainstem nuclei. The dominant synaptic inputs to the 

striatum are the corticostriatal pathways, where cortical afferents innervate the output 

cells of the striatum (medium spiny neurons labelled indirect and direct). From the 

substantia nigra pars compacta dopaminergic ascending inputs innervate the middle 

spiny neurons, which can be divided into those which express dopamine D1-class 

receptors and project to the globus pallidus pars interna (GPi), and those which express 

dopamine D2-class receptors and project to the globus pallidus pars externa (GPe). 

 

8https://commons.wikimedia.org/wiki/File:Basal_Ganglia_Anterior_Unlabeled.jpg. Licensed under the 
Creative Commons Attribution-Share Alike 3.0 Unported. Retrieved 2023/10/02. 
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Dopamine release in the striatum excites the direct pathway, while simultaneously 

inhibiting the indirect pathway. These pathways form the basis of the classic direct and 

indirect model of BG function. The excitatory subthalamic nucleus (STN) of the BG 

network also receives a direct cortico-subthalamic projection (the hyperdirect pathway). 

2.6 Speech neuromotor disorders 

2.6.1 Phonation disorders 

The anomalous behaviour of vocal fold vibration patterns resulting from pathological 

origin produces important changes in the glottal source pattern, allowing the clinician to 

trace possible etiological hypotheses during voice quality assessment based on acoustical 

analysis. The multiple causes inducing anomalous vocal fold vibration may be associated 

with the following generic groups: 

1) Organic origin. The causative circumstances might be due to malformations, or 

specific lesions affecting the vocal folds, the supporting cartilages, or the muscles 

activating the adduction, contact, and abduction of the vocal folds, either of 

endogenous or iatrogenic origin (Dworkin and Meleka, 1997). Some of the 

different lesions may include nodules, polyps, cysts, oedema, carcinomas, or 

chronic laryngitis, a sort of permanent inflammation of the vocal folds and 

surrounding tissues. Iatrogenic lesions may include sulcus, most of the time 

because of compromised vocal fold surgery. All these lesions modify the pattern 

of the glottal source in one or another way.  
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2) Functional origin. When the vocal folds and their supporting and activating 

structures do not present any kind of lesion or apparent physiological alteration, 

although their function shows clear anomalous behaviour, most of the time due to 

voice abuse or inadequate phonation gestures (postural, muscular) hampering a 

proper phonation practice, producing a clear dysphonic voice, which could be 

corrected by adequate speech therapy.  

3) Neurological origin, when because of lesions or disorders in the CNS or PNS the 

NMA of the vocal folds the phonation shows a clear disordered behaviour. These 

anomalies might be produced by lesions at the cortical centres controlling 

phonation, at the BG and other midbrain structures, or the extrapyramidal neural 

pathways innervating the larynx. Sometimes, surgery compromising laryngeal 

nerves might result in partial or complete vocal fold paralysis, as in the radical 

treatment of thyroplastias. 

All these causes might produce different alterations in normal phonation, due to strong 

modifications to vocal fold biomechanics and associated kinematics. A brief explanation 

might be derived from the synoptic description given in Figure 2.9.  

The most semantic patterns, explaining the pathological behaviour of the vocal fold 

vibration are produced by glottal gaps, and unexpected defects in the adduction, contact, 

and abduction of the vocal folds. It is well known that the presence of glottal gaps has a 

strong influence on the quality of phonation (Chen et al., 2011). These gaps might appear 

because of organic laryngeal lesions, but also because of disordered neuromotor control 

of the larynx complex neuromuscular system, according to the synoptic description given 

in Figure 2.9.  



Unveiling the Impact of Neuromotor Disorders on Speech: A structured approach 
Combining Biomechanical Fundamentals and Statistical Machine Learning 

 
 

89 
 

Points a), b), and c), show the usual vocal fold configurations during normal functionality. 

In a) both vocal folds are represented in the inspiration-expiration position, allowing 

airflow from and to the lungs under the action of the diaphragm and intercostal muscles. 

 

Figure 2.9 Influence of the vocal fold normal and altered function regarding phonation. 
Synoptic description: Influence of the vocal fold normal and altered function regarding phonation 
(synoptic description): a) normal configuration during inspiration and expiration (respiratory function); 
b: normal configuration during vocal fold contact, either static (blocking position) or during the closed 
phase; c) normal configuration during the maximum aperture during the open phase; d) permanent 
contact gap at the arytenoid end of the vocal folds; e) right vocal fold paresis; f hourglass-type of contact 
defect due to some medial lesion on one or both vocal folds. 

 

In b) the vocal folds are shown during the contact phase when the airflow to the lungs and 

mouth is completely stopped. This configuration may be an involuntary reflex to prevent 

the intake of extraneous matter either in solid or liquid form, from the supraglottal cavity 

to the trachea and bronchi, or because of voluntary phonation activity, where the vocal 

folds are closed before being forced open by the subglottal pressure before the initiation 

of the opening phase. In c) both vocal folds are shown during the maximum open phase 

when the subglottal pressure has forced their separation (abduction) during the open-close 

cycle. At this point, as the glottal flow is near its maximum, the difference between the 

subglottal and the supraglottal pressure will be almost null, and the elastic forces acting 

on the vocal folds will initiate their approximation to a new contact phase (adduction). 
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Points d), e), and f) show different configurations of anomalous glottal function. In d) 

there is not complete contact between both vocal folds during any phase of the glottal 

cycle, either because of an anatomical alteration or as a result of muscle asthenia 

(affecting either the musculus vocalis or the transversal and oblique laryngeal muscles). 

In this case, the pressure build-up and decay will be less acute, and the MFDR will be 

less strong, affecting the harmonic display of the glottal source in the frequency domain. 

A higher volume of air will be lost during the phonation cycle with a lower phonation 

efficiency, and a need for more frequent air intake will be necessary, accompanied by 

more respiratory fatigue. This case is also represented in the left picture of Figure 2.10. 

 

Figure 2.10 Videoendoscopic images of the vocal folds taken with stroboscopic light. 
Description: Contact phase between vocal folds showing contact defects. Left: bilateral nodules, including a 

contralateral hematoma on the left vocal fold. Centre: Reinke’s Edema in the right vocal fold. Right: polyp on 
the right vocal fold. 

 

In e) both vocal folds show different dynamic activity, the right-hand side one presenting 

some difficulty completing the adduction phase, as a result of a lesion affecting the 

arytenoid cartilages or associated muscles, or the laryngeal nerves responsible for 

neuromotor activation of these muscles. Both vocal folds will show an asymmetric 

vibration, appearing as differences between neighbour glottal cycles (short-term jitter and 

shimmer). The MFDR will worsen as well. The harmonic display will show less slender 

and lower harmonics, and inter-harmonics will also be present.  

 



Unveiling the Impact of Neuromotor Disorders on Speech: A structured approach 
Combining Biomechanical Fundamentals and Statistical Machine Learning 

 
 

91 
 

This will be one of the consequences shown by the defect in the central picture of Figure 

2.10 (hourglass shape). In f) it may be seen that both vocal folds cannot come to complete 

contact on the anterior and posterior sides (epiglottic and arytenoid) due to a lesion on the 

medial part of the vocal folds. As a result, the MFDR will worsen, and there will be 

evident signs of incomplete contact during the closed phase. In this case, when the speaker 

tries to compensate for the deficient contact, overwork with sporadic openings will 

appear, and a turbulent airflow will be present. This situation corresponds to the right-

hand side picture of Figure 2.10. 

The different gap defects can be classified according to the glottal cycle phase they are 

affecting, as contact defects when they affect the complete closure of the glottal flow, or 

as permanent when there is no complete contact at any time during the glottal cycle. They 

will produce the following effects on the phonation quality: 

1) Rough phonation, when there is a clear non-periodical repetition pattern in the 

glottal cycle, due to asymmetric vocal fold vibration. Distortion features, such as 

jitter (irregular cycle duration), or shimmer (irregular cycle amplitude) will appear 

because of a different supraglottal pressure configuration in each glottal cycle. 

2) Airy or breathy phonation due to airflow escape generates fast gas jets through the 

contact defects, which will produce strong turbulence on impinging over slower 

gas masses within the supraglottal cavity. An increment on the non-harmonic part 

of the frequency spectrum of the glottal source will become evident.  

3) Asthenic phonation shows a reduced harmonic display due to permanent contact 

defects, allowing the continuous airflow escape associated with a small phonation 

efficiency. The MFDR will also worsen. 
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4) Strained phonation, when the speaker tries to compensate for some of these 

defects raises the tension of the vocal folds, producing a worsening of lesions, and 

generating irregular airflow escapes. 

Summarising, the signature of phonation alterations in the glottal source may be divided 

into two main groups: 

 Glottal gap defects due to abnormal adduction, abduction, and contact, which 

might appear during a specific interval of the phonation time or be permanent. 

These defects might be the result of laryngeal lesions, functional improper voice 

user, and less frequently of neuromotor origin. 

 Asymmetrical vibration of both vocal folds, mainly due to unilateral laryngeal 

lesions, iatrogenic causes secondary to surgery or intensive care intubation or 

NMDs.  

In any case, one of the main problems posed by phonation alterations is that their 

aetiology is uncertain most of the time, their laryngeal, functional, or neuromotor origin 

being an important confounding factor, especially in ageing voice, which produces many 

of the observable correlates present in NMDs (Orozco-Arroyave et al., 2015). 

Interestingly, their relevance in the characterization of PD was assessed in early 

observations by Perez et al. (1996).  

2.6.2 Hypokinetic dysarthria 

After introducing the necessary neurologic background, the following section describes 

how the different neuromotor disorders will affect the speech production apparatus. 

Motor speech disorders are the result of specific problems affecting some of the described 

direct or indirect pathways of activation, or the muscle fibres.  
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These disorders are commonly referred to as dysarthrias, in the particular case of PD HD 

related to the pathological behaviour of the complex BG control circuit. This phenomenon 

manifests all through the components of the phonation system that are responsible for the 

neuromechanical control of speech: respiration, phonation, and articulation. The term 

"hypokinetic" is employed to describe movements characterized by weakness, limited 

range, and rigidity, which in turn can convey a sense of speech that is monotonous, 

lacking inflexion, and devoid of expression. The control circuit of the BG exerts 

inhibitory influence over the premotor cortex (PMC) regions to regulate cortical activity, 

citing Duffy, 2013 (Chapter 7, page 344): “The primary influence of the basal ganglia 

control circuit on speech is through its connections with motor areas of the cerebral 

cortex. Its influence on the cortex appears inhibitory; that is, it damps or modulates 

cortical output that would otherwise be in excess of that required to accomplish movement 

goals. In hypokinetic dysarthria, this damping effect is excessive.”. An excessive level of 

inhibition within this circuit can lead to HD, as it will inevitably produce delays in 

activation or excessive blockage leading to inoperability of the agonist-antagonist 

dynamic. Most motor problems related to the BG motor circuit have an origin or relate to 

some inoperability of neurotransmitters. Specifically, dopamine deficits due to the 

progressive death of dopaminergic neurons in the substantia nigra pars compacta 

(located in the MB). This is the main element that leads to PD neuromotor symptoms: 

“The substantia nigra is the origin of the nigrostriatal pathway, which travels to various 

structures within the basal ganglia… The dopamine deficiency in this nigrostriatal 

pathway and the basal ganglia account for most of the typical features of PD. Once the 

brain is no longer able to compensate for this dopamine loss, some effects can occur. 

Typical symptoms include muscle rigidity, akinesia, bradykinesia, and tremor…” 

(Goberman and Coelho, 2002).  
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More specifically; “The essential neuropathological changes in PD are a loss of melanin-

containing dopaminergic neurons in the substantia nigra pars compacta… This results in 

a dysfunction of the basal ganglia circuitry, which is an integral part of cortico-basal 

ganglia-cortical loops that mediate motoric and cognitive functions” (Harel et al., 2004b).  

The consequence of the neuro-pathophysiological abnormalities that affect the control or 

execution of movements might lead to weakness, spasticity, incoordination, involuntary 

movement, and excessive, reduced, or unstable muscle tone. Specifically, dysarthria has 

a neurologic origin, and it is a disorder of movement, according to Duffy (2013). This 

author excludes the scope of dysarthria to disregard various other neurological speech 

disorders, including apraxia of speech, stuttering, palilalia, echolalia, mutism, foreign 

accent syndrome, and aprosodia. Additionally, cognitive-linguistic disorders such as 

aphasia and akinetic mutism, along with musculoskeletal defects stemming from an 

injury, disease, congenital conditions, ageing, or insufficient personal care (such as tooth 

loss), which encompass dysphonias linked to head and neck lesions, vocal misuse, or 

hormonal imbalances, excluded from the purview of dysarthria. Furthermore, 

psychogenic disorders like schizophrenia and depression, in conjunction with age-related 

alterations in pitch, voice quality, stability, loudness, breathing, fluency, and prosodic 

variations, are considered potential comorbidity confounders that warrant consideration 

but are not encompassed within the concept of dysarthria. 

Motor speech disorders have been classically studied in many ways, which can be 

grouped into perceptual and instrumental headings. The perceptual methods rely on 

auditory perception, being the reference standard for clinical differential diagnosis, 

severity assessment, disorder handling and treatment, and longitudinal evolution 

assessment. Visual and tactile inspection at rest, during non-speech activity, and speech 

utterance are the components of motor speech inspection.  
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The instrumental analysis is less widely used in clinical evaluation, due to insufficient 

normative methods, clinicians limited experience with acoustical instrumentation and 

lack of enough explanatory evidence to support the interpretability of the results. The 

instrumental methods are classified as acoustical, physiological, and visual imaging 

based; 

 The acoustical methods estimate the frequency, intensity, and temporal evolution 

of the speech signal, and are related to the auditory-perceptual assessment because 

they are used as a validation support. Machine learning methods have been used 

to reinforce the task of dysarthric assessment, although they cannot be granted the 

ultimate word because of the explainability, interpretability, and causability 

problems common to automatic computer-aided methods. Nevertheless, they help 

in the quantification, description, and understanding of motor speech disorders, 

providing quantitative, confirmatory, and accurate support to perceptual 

judgments, especially assessing speech rate, voice breathiness, tremor, fluency 

freezing and blockage events, pitch and loudness estimation, hyper- and hypo-

nasality assessment, articulation precision estimation, diadochokinetic test 

evaluation, etc. The capacity of acoustic analysis to visualize speech is an 

important help in estimating stability, monitoring speech competence 

deterioration, and visual feedback during rehabilitation and speech therapy.  
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 The physiological methods are conceived to assess the functionality of the 

structures generating speech. They are designed to evaluate muscle contraction, 

movement of speech structures, the relationship between the musculoskeletal 

speech levels, the temporal parameters relating central and peripheral neural and 

biomechanical functions, and the relationship between CNS structures during 

planning, programming, and executing speech tasks. Physiological analysis 

methods are based on functional magnetic resonance (fMRI), positron emission 

tomography (PET), single photon emission computerized tomography (SPECT), 

electroencephalography (EEG), transcranial magnetic stimulation (TMS), 

magnetoencephalography (MEG), electromyography (EMG), etc.  

 The visual imaging methods are based on videofluoroscopy, nasoendoscopy, 

laryngoscopy, and videostroboscopy. They are used in assessing tasks related to 

speech production, such as swallowing, velopharyngeal competence, or laryngeal 

functionality assessment, among others. 

Following Duffy (2013), meaningful concepts related to the characterization of motor 

speech disorders are age at onset, course, site of lesion, neurologic diagnosis, 

pathophysiology, speech components involved, severity, and perceptual characteristics. 

The major types of speech motor dysarthrias are flaccid (lower motor neuron), spastic 

(bilateral upper motor neuron), ataxic (cerebellar), hypokinetic (BG control circuits), 

hyperkinetic (BG control circuits), unilateral upper motor neuron, and mixed of some of 

the precedent ones. 
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2.6.3 PD HD 

HD is a speech motor disorder stemming from deterioration or damage of the BG leading 

to loss of motor control. It manifests primarily at the respiratory, phonatory, and 

articulatory levels, exerting a notable influence on aspects such as phonation, articulation, 

and prosody. The nomenclature "Hypokinetic Dysarthria" is attributed to the condition's 

hallmark characteristics of diminished movement range and loss of muscular force. These 

attributes are distinctive hallmarks of BG pathology, of which Parkinson's disease (PD) 

stands as a prototypical example, albeit not the sole condition displaying such features. 

PD may present motor speech signs related and unrelated to speech production. 

According to Duffy (2013), the list of speech and speech-related characteristics of HD 

would be grouped under the categories of perceptual (phonatory and respiratory, such as 

reduced loudness and utterance length; articulatory, such as phoneme repetition, palilalia, 

rapid, blurred, or galloping alternate motion rate, and prosodic, such as reduced stress, 

mono-pitch, mono loudness, unexpected stops and pauses, short speech bursts, variable 

rate, over-accelerated rate in segments and in a whole utterance), physical (frozen facial 

mask, tremor in jaw, lips, and tongue, reduced range in alternate motion, head tremor) 

and proprioceptive (patient complaining on difficulty in rising loudness, controlling 

speech rate, mumbling, stuttering, difficulty in starting speech, stiff lip sensation). 

The proper identification of which acoustic and physiological findings are to be 

considered in distinguishing HD from other types of dysarthrias and ageing speech is a 

critical aspect in the characterization of PD HD. Respiratory issues are a common 

occurrence in individuals with HD, and in some cases, they can lead to fatal outcomes. 

These issues arise from several factors, including reduced chest movement, diminished 

muscle strength, irregularities in breathing patterns, and a decrease in vital capacity.  
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Of particular note is the relationship between these factors and their impact on speech 

loudness and prosody, which is a significant observation in this context. This relationship 

can be effectively assessed through various means, such as the estimation of vowel 

duration and prolongation, measurement of airflow, determination of the number of 

syllables between sequential inspirations, and the evaluation of increased respiratory rate 

during spontaneous speech and reading, among other methods (Hlavnička et al., 2017).  

Phonatory issues in individuals with HD exhibit distinct characteristics that are 

perceptually notable. In males, a prominent feature is an elevation in the fundamental 

frequency, while in some cases for women, a reduction in fundamental frequency is 

observed, with severity increasing as the disease progresses. Additionally, vocal intensity 

is reduced across syllables, during vowel prolongations, and in alternate phonation 

gestures. There is also difficulty in adjusting loudness appropriately based on the listener's 

distance, and loudness decay becomes more pronounced when performing concurrent 

visual or manual tasks. Variability in phonation fundamental frequency and loudness is 

compromised during various tasks, such as spontaneous speech, reading, word and 

sentence imitation, and emotional expression, resulting in reduced distinctiveness. 

Voice tremor within the range of 4-7 Hz is another significant feature, although it is not 

universally present, potentially being more frequent in later stages of PD. Flutter tremor 

within the range of 9-11 Hz has been reported specifically in HD and flaccid dysarthria, 

serving as a distinguishing characteristic from other dysarthrias. Maximum phonation 

time is sensitive to changes within the same individual as PD progresses, potentially 

serving as a metric for quantifying disease evolution, although it may not be useful for 

initial detection of the disorder. 
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Perturbation features like jitter, shimmer, and cepstral peak prominence (CPP) are 

sensitive but not exclusive to PD, and they are associated with reduced short-term 

neuromotor control of vocal fold abduction and adduction, as well as contact defects 

leading to turbulent airflow perceived as breathiness. Deficient motor control of 

phonation can result in slow vowel initiation and termination, along with coordination 

issues between voicing and articulation gestures. Increased glottal gaps, observed in most 

patients, have been associated with breathiness, incomplete adduction, and asymmetric 

vocal fold vibration due to laryngeal muscle rigidity and atrophy, although some of these 

observations may also be linked to ageing. 

In terms of articulation, problems in HD may relate to velopharyngeal dysfunction, where 

velar movements may be reduced or irregularly executed due to inadequate coordination 

between antagonist muscle pairs, resulting in hypernasality perception. Imprecise 

articulation place, and reduced movement range or speed (indicating deficient kinematic 

competence), could also stem from articulatory muscle rigidity and limited motion range. 

Uncoordinated jaw opening and closing may occur due to hypokinesia and rigidity, 

resulting in reduced formant dynamic extension, especially affecting the second formant, 

and restricted vowel space with centralization, which are associated with HD. 
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CHAPTER 3 
 

3 Speech production acoustic models 

This chapter, presents a series of models that represent the phonation and articulation 

aspects of speech production, considering the speech signal as the outcome of a sequential 

filtering of an input signal composed of a series of pulses, ending with the way the 

stationary wave inside the vocal tract is radiated to the environment. 

3.1 Speech production model 

The speech production model, upon which this work relies, was formulated by Gunnar 

Fant (1960, 1981). Fant's theory represents the production of the speech signal as the 

interplay between distinct subsystems, the GS is generated as the source of the system, it 

propagates through the ONPT and it emanates from the lips. In our specific context, this 

ONPT is represented under the assumptions delineated in subsection 3.2. Figure 3.1 

depicts Fant's model, which comprehensively incorporates the two primary biological 

aspects of speech production discussed in the preceding chapter: phonation and 

articulation. This investigation is specifically focused on examining both phonation and 

articulation as two distinct parts of speech production. It is noteworthy that in the context 

of sustained vowel production, the role of radiation is relatively minimal, in contrast to 

scenarios such as singing or acting, where performers are required to project their voices 

to suit the requirements of their performance. 
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The working model in the present study, as given in Deller, Proakis, and Hansen (1993, 

pg. 340), assumes that the GS signal is generated by the glottal excitation model, a train 

of deltas 𝛿(𝑛) being the input to the system; this series of pulses are then filtered by the 

glottal source filter and transformed into the GS pulses 𝑠 (𝑛), first block of Figure 3.2. 

The series of glottal pulses travels through the ONPT tract, which acts as a filter 

(represented by the second block of Figure 3.2). Depending on the position, aperture, and 

elongation of the structures that compose the ONPT a series of resonant frequencies arise 

or diminish to build up the vocal signal 𝑠 (𝑛). Assuming than the radiation point of the 

system is the lips, the acoustic signal, when projected outside the lips is modified by the 

lip radiation model, producing the microphonic speech signal 𝑠 (𝑛), this being the signal 

that can be recorded and processed. 

 

Figure 3.1 Fant’s model for the production of speech. 
Description: 1) Glottal source excitation model for voiced speech sounds (Liljencrants-Fant); 2) 

Turbulent excitation model for unvoiced speech sounds; 3) ONPT transfer function Fa(z) equivalent 
filter (upper respiratory ways); 4) Radiation equivalent model filter; 5) Power spectrum of the excitation 

signal e(n); 6) ONPT equivalent filter transfer function in the discrete frequency space; 7) Power 
spectrum of the speech acoustic signal sr(n) radiated from the lips (assuming mouth radiation). Fg(z): 

Spectrum of the glottal excitation signal in the discrete frequency space; Ft(z): Id. of the turbulent 
excitation signal; sv(n): vocal signal before lips; sr(n) acoustic signal radiated; Fl(z): Radiation model 

equivalent transfer function in the discrete frequency space. 
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This abstraction model introduces the series of conceptual connections and changes that 

the signal undergoes, but to properly analyse the acoustic signal the methodology requires 

a model with direct physical interpretation, this conceptualization being introduced in the 

following subsections. 

3.2 Phonation model 

The subsystems introduced in the previous section are modelling different physiological 

structures (lungs, bronchi, trachea, larynx, pharynx, nasopharynx, and oral and nasal 

cavities) with variable acoustical properties, under neuromotor control of specific nerves 

and brain areas, such as those represented in Figure 2.1. Concerning phonation, 

Rothenberg’s model, as represented in Figure 3.3, transforms the different parts involved 

in the production of phonation into a series of electromechanical elements that represent 

the physical properties of the subsystems involved in speech production. These different 

components aim to represent the oscillatory, inertial, impedance, capacitance, pressure 

build-up, flow, and propagation phenomena involved in the process of generating 

phonation. Since this approach aims to solely model phonation, the effects of the ONPT 

or the radiation considerations are simplified to give an overview of the production of the 

GS signal. 

 

Figure 3.2 Voice production model. 
Description: The model assumes that the glottal source is produced by a regular train of δ pulses, which 
are filtered by the glottal source generating model Fg(z) resulting in a train of glottal source pulses sg(n). 

The transfer function Fv(z) of the ONPT will enhance (formants) or attenuate (anti-resonances) the 
harmonic contents of the glottal source to produce the vocalized signal sv(n), which will be recorded as a 

radiated signal sr(n), which is the speech signal recorded by a microphone s(n). 

 
Model of the 
glottal source 

Fg(z)   

 
δ(n) 

Model of the 
ONPT Fv(z) 

  

Lip Radiaton 
Model R(z) 

  

     
sg(n) sv(n) sr(n)=s(n) 



Unveiling the Impact of Neuromotor Disorders on Speech: A structured approach 
Combining Biomechanical Fundamentals and Statistical Machine Learning 

 
 

103 
 

 

 

 

 

 

 

Figure 3.3 Rothenberg’s model of phonation. 
Description: a) physiological representation; b) acoustical simplified model; c) electromechanical 

equivalent model. In b) the acoustic pathways of the ONPT are idealised and simplified as a constant 
section tube, the pressure exerted by the diaphragm forces a flow of air through the glottis (xg) 

putting the vocal folds (represented as two moving lumped masses) into vibration. The two masses 
represented in each vocal fold may move transversal to the x-axis with relative independence, 

reproducing the mucosal wave movement. When put in contact they may stop the airflow. In c) the 
action of the diaphragm on lungs is represented as a flow generator ul, injecting a constant flow, 
which in part is stored in the yielding elastic walls (represented as a capacitor Cl) when there is a 

glottal stop, and injected through the glottis as ug. The action of the moving masses in the glottis is 
represented by a variable conductance (Gg) oscillating between a minimum and a maximum value 

following the specific vocal fold vibration pattern. The action of the tubular vocal tract is represented 
by an inertial inductance Lt, ignoring the yielding properties of its elastic walls. The pressure at the 
lips is the atmospheric quiescent pressure p0, dynamically considered null. As a result of the glottal 

flow injection, a pressure build-up is generated in the subglottal side (pl), and as a result of a variable 
flow through Lt a pressure build-up is generated also in the supraglottal side (pg). The dynamic 
component of this pressure ps=pg-p0, concerning the quiescent atmospheric pressure p0 can be 

considered a good representation of the glottal source. 
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Rothenberg’s model is based on the following two main assumptions: 

 The ONPT is modelled as the minimal acoustic tube that least interferes with the 

outward propagation of the GS, showing the most uniform transversal area, to be 

associated with the production of the schwa [ə] sound that corresponds to the 

minimal constriction to airflow. The distances along this rectified axis will be 

denoted by x, with origin x=0 at the lips, moving inwards towards the glottis 

(x=xg). 

 The ONPT is considered a single, uninterrupted cylindrical tube. This assumption 

assumes a total obstruction of the nasal tract by the palatal vellum, a structure 

responsible for regulating airflow into the nasal cavity. Within this framework, 

the vocal tract is regarded as a continuous, undivided cavity without any 

branching. Consequently, it is assumed that the vellum is closed, allowing air 

pressure waves to propagate through the vocal cavity. This condition will exclude 

the modelling of nasal consonants [m, n, ɲ] and nasalised vowels (symbolically 

[ῦ], those uttered with the nasopharyngeal passage open). 

Under these conditions, according to Rothenberg’s Model (Rothenberg, 1973, Koc and 

Ciloglu, 2016), the three following subsystems are responsible for phonation: 

 The respiratory cavity (diaphragm, lungs, bronchi, and trachea), stores and 

produces a pressure build-up pl on the subglottal side of the vocal folds during the 

closed phase of the glottal cycle. 
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 The glottal subsystem, represented by a vocal fold electromechanical conductance 

Gg. The pressure difference between the subglottal pl=p(xl,t) and supraglottal 

pg=p(xg,t) sides of the vocal folds injects an airflow ug=u(xg,t) through the glottis, 

known as the glottal flow (GF): 

𝑢 𝑥 , 𝑡 =  𝐺 (𝑝(𝑥 , 𝑡) − 𝑝(𝑥 , 𝑡)) (3.1) 

 The ONPT, which in Rothenberg’s Model is represented by a single tube of 

uniform section as an electromechanical inertial parameter Lt, subject to the 

contour conditions at x=0 (open space) and x=xg (glottis) where the following 

relationships apply: 

𝑝 (𝑡) = 𝑝 𝑥 , 𝑡 − 𝑝(0, 𝑡) =  𝐿
𝜕𝑢 𝑥 , 𝑡

𝜕𝑡
  (3.2) 

An extended description of the details above exposed can be found in Álvarez-Marquina 

et al. (2020). The vibrations of the vocal folds produce pressure changes in the 

supraglottal side of the vocal folds. The difference between the supraglottal side pressure 

p(xg,t) and the quiescent pressure at that point (p0,t) is known as the GS, given in (3.2). 

Therefore, the GS is proportional to the derivative of the glottal flow. The GS may be 

estimated from the speech signal using model inversion by adaptive linear prediction 

(Deller, Proakis, and Hansen, 1993; Fu and Murphy, 2006; Gómez-Vilda et al., 2009; 

Drugman, Bozkurt, and Dutoit, 2012; Alku et al., 2019), as it is described in subsection 

4.1.6. 

In what follows, the capability of Rothenberg’s model to reproduce some of the most 

relevant features of the glottal flow and source when different glottal apertures are 

assumed is shown from Figure 3.5 to Figure 3.8. These effects are obtained assuming a 

glottal aperture with a generic aspect as the one shown in Figure 3.4. 
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Figure 3.4 Glottal aperture function. 

Description: Glottal aperture function Gg(t) assumes permanent and temporary contact gap defects. A 
permanent gap of 0.2 relative units concerning the maximum aperture is present over the whole cycle. 
An anticipated (improper) contact defect opening superimposed on the permanent gap is seen between 
1.5 and 4 ms with a maximum value of 0.2 (rel. units), followed by a proper opening between 5 and 9 

ms with a maximum value of 0.8 (rel. units). 
 

If the vocal folds show any irregularity in the obstruction of airflow they may produce 

defects in phonation, these irregularities can be of the following two kinds: either due to 

imperfect aperture, closure, and contact, or due to asymmetric vocal fold kinematics. 

Imperfect closure produces irregular flow injections to the supraglottal cavity, which are 

associated with irregular glottal source pulses. This situation is represented in the glottal 

flow profile shown in Figure 3.4, where an irregular glottal flow can be appreciated as a 

permanent air escape (permanent contact gap) at 0.2 times the maximum glottal flow 

injection, and by an irregular air release between 1.5 and 4 ms. due to a spontaneous 

contact defect. The combination of these two cases (deficient spontaneous contact, and 

permanent contact gap) will produce most of the expected irregularities in the glottal 

source and flow patterns, as shown in Figure 3.5 to Figure 3.8.  
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Figure 3.5.a shows an idealized situation where the glottal flow follows a perfect opening-

closing pattern (neither permanent escape nor spontaneous opening). The associated 

normalized glottal source in Figure 3.5.b shows pressure rise and drop profiles aligned 

with the maximum flow declination rate of the glottal flow. After the pressure drop 

produced by vocal fold adduction, recovery is observed towards a null dynamic pressure 

extending till the instant when the vocal folds start a new opening cycle. After a maximum 

pressure build-up aligned with the maximum flow slope, a decay in the glottal source is 

observed till the next maximum flow declination rate instant. 

Figure 3.6 shows the case of a permanent gap defect producing a constant opening, it may 

be seen that the glottal flow remains uninterrupted during the whole phonation cycle. 

Following a decline to a minimum resulting from the adduction process, a consistent 

increase in flow persists until the point at which the actual opening commences. 

 

Figure 3.5 Glottal source and flow patterns and their amplitude distributions corresponding to an ideal 
behaviour with maximum relative amplitude, null contact defect, and null permanent gap. 

Description: a) glottal flow; b) amplitude distribution of the glottal flow; c) glottal source; d) amplitude 
distribution of the glottal source. The glottal source reproduces de ideal L-F profile. 
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Figure 3.7 illustrates a scenario where a spontaneous opening occurs during the contact 

phase, leading to an extemporaneous release of airflow in the middle of the glottal cycle. 

The improper opening takes place between 2 and 5 ms, and as a result, the normalized 

glottal source profile presents a replica in a small scale of the main L-F pattern. 

 

Figure 3.6 Glottal source and flow patterns and their amplitude distributions corresponding to a relative 
glottal aperture of 0.9, null contact defect, and a permanent gap of 0.2. 

Glottal source and flow patterns and their amplitude distributions corresponding to a relative glottal 
aperture of 0.9, null contact defect, and a permanent gap of 0.2: a) glottal flow; b) amplitude distribution 

of the glottal flow; c) glottal source; d) amplitude distribution of the glottal source. The glottal flow 
does not stop at any time, and it follows an almost straight ascending line during the contact phase. 
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Finally, Figure 3.8 shows a case that is a combination of a permanent and a spontaneous 

defect that affects the opening and closing cycles, as the one presented in Figure 3.4.  It 

may be observed that the effects on the glottal source are a combination of the results 

produced by each perturbation separately, such as a constant flow increment with the 

insertion of the improper flow escape, a wavelet superimposed on the general L-F pattern, 

and a jump of the quiescent pressure above the null value. 

 

Figure 3.7 Glottal source and flow patterns and their amplitude distributions corresponding to a relative 
glottal aperture of 1, a contact defect of 0.2, and a null permanent gap. 

Description: a) glottal flow; b) amplitude distribution of the glottal flow; c) glottal source; d) amplitude 
distribution of the glottal source. The glottal flow decays twice, and the contact defect produces a small-

scale wavelet of the main L-F pattern on the glottal source. 
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The question now is to examine to what extent the patterns produced by Rothenberg’s 

model are realistic representations of specific glottal patterns. The answer is provided in 

Figure 3.9, where a real estimation from a male case showing pathological behaviour, and 

a case simulated by the model are shown for comparison. 

 

Figure 3.8 Glottal source and flow patterns and their amplitude distributions corresponding to a relative 
glottal aperture of 0.8, a contact defect of 0.2, and a permanent gap of 0.2. 

Description: Glottal source and flow patterns and their amplitude distributions corresponding to a 
relative glottal aperture of 0.8, a contact defect of 0.2, and a permanent gap of 0.2: a) glottal flow; b) 

amplitude distribution of the glottal flow; c) glottal source; d) amplitude distribution of the glottal 
source. This case is a combination of those in Figure 3.6 and Figure 3.7. The glottal flow does not stop 

at any time, and it follows an almost straight ascending line during the contact phase, whereas the 
glottal source reproduces a small wavelet of the main L-F pattern. 
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The results of simulating the behaviour of the glottal flow and source with Rothenberg’s 

model may be seen in Figure 3.10. 

The comparison of the glottal flow and source from a real case obtained by ONPT 

inversion, and the results of simulating a permanent and spontaneous contact defect with 

Rothenberg’s model show important similarities, which avail both the process of glottal 

source estimation and the simulation of a real phonation model. 

 

 

Figure 3.9 The glottal source and flow estimated by inverse filtering from a real case corresponding to a 
male participant with a clear spontaneous contact defect. 
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3.2.1 Excitation model 

The spectral density of the glottal pulse presents a profile approximately following a curve 

inverse to frequency, 1/, which may be associated with a generating model given by the 

flow graph in Figure 3.11. This excitation model is a first approximation, that corresponds 

to a first-order IIR filter modelling the delayed decay of the signal input.  

 

 

Figure 3.10 Replication of the general pattern behaviour of the case presented in Figure 3.9. 
Description: The glottal source pattern corresponds to a main opening of 0.99, a contact defect of 0.35, 

and a permanent gap of 0.01. 

 

Figure 3.11 Flowgraph corresponding to the model generating the glottal pulse in the discrete-time 
domain. 

Description: e(n) is the signal input (pulse δ-train excitation), sg(n) is the glottal signal output, and ρ is 
the feedback coefficient of the system. 

  

z-1 

e(n)  sg(n)  

ρ  
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The mentioned frequency behaviour corresponds with a profile of 1/𝜔 in the Laplace 

domain, which is related to the integral of the input: 

𝑠 = 𝑒 + 𝜌𝑠  (3.3) 

with associated transfer function in the discrete domain given by: 

𝐹 (𝑧) =
1

1 − 𝜌𝑧
 (3.4) 

For ρ < 1 but in proximity to unity, this corresponds to a straightforward formulation of 

the integral of 𝑒  using the first-order finite difference method, incorporating a leakage 

factor to potentially offset any biasing effect in the integration. It is crucial to note that 

this model serves as an initial approximation to the generation model of the glottal pulse. 

The glottal source itself does not exhibit minimum phase characteristics, yet this model 

can provide an initial approximation of the glottal pulse. This estimate can be 

subsequently used in iterative refinements for evaluating the ONPT Transfer Function, as 

elaborated upon in later sections. 

3.2.2 Radiation model 

As it will be referred to in subsection 3.3.1 the vocal tract may be modelled as a finite 

number of concatenated tubes of varying sections, with the endpoint at the lips, where the 

last section of the tube is connected to the open space as shown in Figure 3.12. 

The pressure wave coming from the inner vocal tract reaching the lips (vocalized speech) 

is referred to as 𝑠 . This wave is mostly reflected in the mouth opening due to the abrupt 

change in section, this causes a reflection due mainly to the change in section and 

conditions. 
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This effect is encapsulated by the reflection coefficient from the lips to the open space 𝜌  

(Deller, Proakins and Hansen, 1993, pp 180-187), which may be expressed as: 

𝜌 =
𝑍 − 𝑍

𝑍 + 𝑍
=

𝜚𝑐
𝑆

−
𝜚𝑐
𝑆

𝜚𝑐
𝑆

+
𝜚𝑐
𝑆

=
𝑆 − 𝑆

𝑆 + 𝑆
 (3.5) 

S  being the equivalent section of the lip aperture, S  being the equivalent area of the open 

space, ϱ being the density of air, and 𝑐 being the speed of sound in air. As S ≪ S , this 

reflection coefficient is close to –1. The transfer function towards the open space is given 

by 1 − 𝜌 𝑧 , to produce the output 𝑠 : 

𝑠 = 𝑠 − 𝜌 𝑠  (3.6) 

Figure 3.12 Tubular section of the vocal tract and flow graph corresponding to the termination 
conditions at the lips. 

Description: sl and sr are the vocalized and radiated speech signals, respectively. 𝜌  is the reflection 
coefficient at the radiation end. 
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This transfer function behaves quite differently in the frequency domain depending on 

the value of 𝜌  for open or closed tube terminations (open: S ≪ S  or closed: S ≫ S ). 

For open termination if 𝜌 → −1: 

𝑅 (𝑧) =
𝑆 (𝑧)

𝑆 (𝑧)
≈ 1 + 𝑧  (3.7) 

it may be shown that: 

|𝑅 (𝜔)| → √2 + 2 𝑐𝑜𝑠 𝜔 (3.8) 

which has a maximum value of 2 for ω = 0 and two null values for ω = ±π. This 

behaviour corresponds to a two-sample average, with low-pass filtering properties, 

reducing high frequencies, which gives the speech a spectral tilt. This effect reinforces 

the 1/𝜔 behaviour of the glottal source generating model given in (3.3), and explains the 

need for pre-emphasis compensation as a previous step to the ONPT inversion, as it will 

be commented on in Chapter 4. 

3.3 Articulation model 

The ONPT is conceptually represented as a series of interconnected cylindrical tubes with 

varying cross-sectional shapes, approximating the time-varying cross-section of the 

ONPT during speech production (see Figure 3.13). Depending on the dimensions and 

lengths of these cylindrical structures, a range of resonant frequencies emerges and 

evolves as these cavities dynamically change section and shape with the movement of the 

articulation organs (velum, tongue, jaw, orofacial, etc.). To effectively model this 

complex, time-varying cavity-like structure using a concatenation of rigid-walled 

cylindrical tubes, several critical assumptions must be considered.  
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The most pertinent ones are: 

 The complex 3D structure of the ONPT is assumed to be extended on a single 

longitudinal axis (straight unfolding). 

 The cavities of the ONPT are symmetrical concerning the longitudinal axis. 

 The irregular cross-section is represented by a circular section of equivalent area 

normal to the propagation of the sound wave. 

 The ONPT is considered a single cavity, with no derivations. This assumption 

excludes nasals and nasalized vowels (see Figure App.1 showing the four different 

configurations of the ONPT in Appendix III). The valid configuration would 

correspond to an open vocal tract and a closed nasal tract at the velopharyngeal 

switch (VT: O; NT: C). 

 The time-varying conditions of the articulation studied might be considered quasi-

stationary compared with the duration of the time windows used in the 

estimations. This condition is fulfilled for time windows under 10 ms (Huang, 

Acero, and Hon, 2001). 

 

 

Figure 3.13 Structure of concatenated tubes representing the vocal tract. 
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Therefore, for each section, there will be a forward propagation wave that when reaching 

a section change will be in part reflected backwards into the section, and transmitted in 

part to the next section. Therefore for each section interconnection, this interaction can 

be modelled as forward and backwards transmitting branches, and forward-to-backward 

and backward-to-forward reflection branches, the propagation delay being represented by 

z-1 boxes, as depicted in Figure 3.14, showing two connected tube sections (Atal and 

Hanauer, 1971; Wakita, 1973). 

 

The relationship among the forward and backward propagating waves in one of the 

sections (from Figure 3.14) will be the following: 

𝑓 = (1 − 𝜌 )𝑓 − 𝜌 𝑏  

𝑏 = 𝜌 𝑓 + (1 + 𝜌 )𝑏  
(3.9) 

where the reflection coefficient will be: 

𝜌 =
𝑍 − 𝑍

𝑍 + 𝑍
=

𝜚𝑐
𝑆

−
𝜚𝑐

𝑆
𝜚𝑐
𝑆

+
𝜚𝑐

𝑆

=
𝑆 − 𝑆

𝑆 + 𝑆
 (3.10) 

 

Figure 3.14 Vocal tract equivalent filter explaining concatenated tube propagation. 
Description: Forward and backward propagation waves at stage 1: fi(n) and bi(n). Reflection coefficient 

at stage i: ri (adapted from Atal and Hanauer, 1971). 
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𝑆  and 𝑆  being the equivalent areas of two connected tubes, 𝜚 being the density of air, 

and 𝑐 being the speed of sound in air. It will be straightforward to reconstruct the surface 

profile of the vocal tract from (3.10) by the following recursion: 

𝑆 = 𝑆
1 − 𝜌

1 + 𝜌
 (3.11) 

For normalisation purposes, it will be assumed that the initial section (oral opening at 

lips) will be 𝑆 = 1. 

3.3.1 Two-section transmission model 

It will be seen that the transfer function of such a system between the vocal cords and the 

lips when terminated under the radiation conditions, assuming that it is composed of two 

tubes with perfect impedance adaptation at the excitation side (vocal folds), as 

summarised in Figure 3.15 behaves as an all-pole function.  

 

The following relations will hold from the flowgraph in Figure 3.15: 

𝑆(𝑧) = 1 − 𝜌 𝑧 𝐹 (𝑧) 

𝐹 (𝑧) = (1 − 𝜌 )𝑧 𝐹 (𝑧) − 𝜌 𝐵 (𝑧) 

𝐵 (𝑧) = 𝑧
𝜌

1 − 𝜌
𝑆(𝑧) 

(3.12) 

 

 

 

Figure 3.15 Vocal tract equivalent filter explaining concatenated tube propagation. 
Adapted from Atal and Hanauer (1971). 
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Now, applying the chain rule to the last expressions: 

𝑆(𝑧) =
(1 − 𝜌 )(1 − 𝜌 )𝑧

1 + 𝜌 𝜌 𝑧
𝐹 (𝑧) (3.13) 

Therefore, the transfer function between the glottal pressure wave 𝑝 = 𝑓  will be 

expressed as: 

𝐹 (𝑧) =
𝑆(𝑧)

𝐹 (𝑧)
=

(1 − 𝜌 )(1 − 𝜌 )

𝑧 + 𝜌 𝜌
 (3.14) 

which is a two-pole function. When inserting a new section, it may be shown that the new 

transfer function may be expressed as: 

𝐹 (𝑧) =
(1 − 𝜌 )(1 − 𝜌 )(1 − 𝜌 )𝑧

1 + 𝜌 𝜌 𝑧 + 𝜌 𝜌 𝑧 + 𝜌 𝜌 𝑧
 (3.15) 

which is also an all-pole function. The generalisation of the transfer function for any order 

under the conditions expressed above may be given as an all-pole system of order K: 

𝐹 (𝑧) =
𝐺 𝑧

∑ 𝑤 𝑧
 (3.16) 

where G  is a gain factor (scale factor), 𝑧  is a delay of K samples accounting for the 

travel time required for the wave to travel all along the vocal tract, and the denominator 

is a K-order polynomial with weights related to the reflection coefficients of the structure.  

This all-pole system may be inverted using an equivalent order prediction-error filter if 

the order is known (which is not an exact task and may be inaccurate if the sound is 

nasalised), or by a Wiener filter if the order is not known9. 

 

9 In relation to this, it must be said that the single duct vocal tract is not valid for certain sounds when the 
nasal tract is connected to the vocal tract. In this case, more complicated pole-zero models must be used, 
and their inversion will not be feasible by prediction-error filters of finite order. The Wiener filter would 
still be valid, as it can approximate the inverse of any transfer function provided the depth of the equivalent 
prediction-error filter is large enough. 
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CHAPTER 4 
 

4 Algorithmic methods 

This chapter provides a comprehensive overview of the methodologies employed 

throughout this study, categorizing them based on their specific applications into three 

primary groups: phonation estimation, articulation estimation, and supporting methods. 

Within the first two categories, the methodologies are primarily concerned with the 

isolation of relevant characteristics from the speech signal. In the realm of phonation, the 

primary objective is the extraction of critical GS information from the speech signal, 

involving the removal of the effects of the ONPT. Conversely, in articulation analysis, 

the focus is on estimating the contribution of the ONPT tract, by tracking the temporal 

changes in its profile and the resonant frequencies (formants) associated with these 

changes. Finally, the supporting methodologies encompass various secondary aspects, 

such as evaluation, comparison, statistical analysis, and transversal vs longitudinal 

assessment.  

As introduced in the previous chapters, phonation and articulation are key characteristics 

of speech production that require specific processing tools and methods. As introduced 

in the previous section, determining the contribution of the ONPT is key for both 

approaches. The multitube lossless model (as an extension of Rothenberg’s model, 

following Deller, Proakis, and Hansen (1993, pp. 174-192) represents the ONPT as a 

series of concatenated cylindrical sections that act as acoustic cavities that filter the GS. 

Thus, these series of reflections, feedback, and transference phenomena can be modelled 

using a lattice filter derived from Levinson-Durbin recursion (Levinson, 1946; Durbin, 

1960; Wiener, 1964; Deller, Proakis, and Hansen, 1993, pp. 297-307).  
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This method is referred to as vocal tract inversion by linear predictive filtering and is the 

cornerstone for the estimation of phonation and articulation alike, both methods 

branching after this same methodology. 

4.1 Phonation model estimation 

The goal when estimating phonation is to remove the effects of the ONPT and reconstruct 

the main features of the GS. By using linear predictive coding, the pattern GS emerges 

presenting a series of specific landmarks that serve to estimate other phonation-related 

signals and biomechanical correlates.  

4.1.1 Vocal tract inversion by linear predictive filtering (LPF) 

The antecedents of linear predictive filtering applied to the modelling of the vocal tract 

can be traced back to the pioneering works of Itakura and Saito (1968). A good reference 

work on linear prediction can be found in Makhoul (1975). A very detailed description of 

linear predictive inverse filtering is given in Deller, Proakis, and Hansen (1993). This last 

reference will be used together with the seminal work of Alku (1992) for deriving the 

specific methodology used in the present study.  

4.1.2 Compensation of the Radiation Model 

The joint effects of GS build-up and the low-pass behaviour of the radiation model 

introduce a spectral tilt in speech propagating to the lips, enhancing lower with respect to 

higher frequencies. This combined effect of the sometimes called “glottal formant” which 

can be modelled by a pole on the real axis, may create instabilities during the ONPT 

inversion process, and substantially alter the pattern of the GS cycle (Deller, Proakis, and 

Hansen, 1993, pp. 192-197). To compensate for these undesired effects, a first-order 

prediction-error filter lattice, such as the one shown in Figure 4.1 may be used. 
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This setup operates as a FIR filter recursion given by: 

𝑓 (𝑛) = 𝑓 (𝑛) + 𝑐 𝑏 (𝑛 − 1) (4.1) 

With the initial conditions of 𝑘 = 1 and c = −𝜌  (first reflection coefficient). Provided 

that: 

𝑓 (𝑛) = 𝑏 (𝑛) = 𝑠(𝑛) (4.2) 

the lattice operates as a first-order differentiator: 

𝑠 (𝑛) = 𝑓 (𝑛) = 𝑠(𝑛) − 𝜌 𝑠(𝑛 − 1) (4.3) 

with transfer function given by: 

𝐻 (𝑧) = 1 − 𝜌 𝑧  (4.4) 

 

Figure 4.1 First-order prediction error filter lattice and its equivalent FIR Filter. 
Description: a) First order prediction error filter lattice; b) its equivalent FIR Filter for cancelling the lip 
radiation effect. The pivoting reflection coefficient c0 estimated in (a) is used in the differentiator with 

leakage 1-c0 working as a pre-emphasis filter (b). 

𝑓 (𝑛) = 𝑠 (𝑛) 𝑓 (𝑛) = 𝑠(𝑛) 

𝑏 (𝑛) = 𝑠(𝑛) 
 

z-1 

 

𝑠 (𝑛) 
 

z-1 

 

𝑠(𝑛) 

-c0 

a) 

b) 

𝑠  
 𝑐 =

𝑓 (𝑛)𝑏 (𝑛 − 1)

|𝑓 (𝑛)||𝑏 (𝑛 − 1)|
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cancelling the first-order pole introduced by the radiation effects as discussed above. 

4.1.3 Compensation of the excitation model 

In order to estimate the frequency response of the ONPT, the effects of the GS have to be 

removed. The GS low-frequency behaviour if not corrected for will show a 1/ω spectral 

tilt when estimating the response of the ONPT. The inversion of the system may be 

instrumented using: 

𝑒(𝑛) = 𝑢(𝑛) − 𝛾𝑢(𝑛 − 1) (4.5) 

which corresponds to the first difference filter given by: 

𝐻 (𝑧) = 1 − 𝛾𝑧  (4.6) 

Corresponding with a first-order predictor with a coefficient given by – γ, similarly as in 

the radiation compensation filter. This procedure is only approximated, as it can be shown 

that the glottal pulse is not a minimum phase signal. Nevertheless, this problem may be 

solved by iterative approaches, refining the compensation after a few iterations. 

4.1.4 Estimation of the vocal tract transfer function 

The generating model for the speech trace given in Figure 3.2 may be inverted by the 

structure exposed in Figure 4.2. Under the assumption that the operations of the various 

blocks are commutative, it becomes feasible to group the GS and the radiation model 

together. The effects on the spectrum of this grouping can then be inverted using a second-

order prediction-error filter. 
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The equivalent transfer function of this second-order inverse filter will given by: 

𝐻 (𝑧) = 𝑅 (𝑧)𝐹 (𝑧) = 1 − 𝜌 𝑧 (1 − 𝛾𝑧 )

= 1 − 𝜌 + 𝛾 𝑧 + 𝜌 𝛾𝑧  
(4.7) 

where R (z) and F (z) are the respective inverse transfer functions of the lip radiation 

model and the GS generation model. This second-order inverse filter may be implemented 

by a second-order prediction-error lattice. The output of this filter sv(n) is an estimation 

of the signal contributed by the vocal tract model: 

𝑠 (𝑛) = 𝑠(𝑛) − 𝜌 + 𝛾 𝑠(𝑛 − 1) + 𝜌 𝑠(𝑛 − 2) (4.8) 

thence, taking each signal in its vector form: 

𝒔𝒗 = {𝑠 (𝑛)}; 

𝒔 = {𝑠(𝑛)} 
(4.9) 

and 𝒉𝒈 being the impulse response of the second-order prediction error lattice 

implementing the filter: 

𝒉𝒈 = 1, −𝜌 + 𝛾, 𝜌 ; 

 
(4.10) 

 

Figure 4.2 Combined effects of the inverse radiation transfer function and the inverse first-order glottal 
model. 

Description: The combined effects of the inverse radiation transfer function R-1(z) and the inverse first-
order glottal model Fg

-1(z) can be implemented as a second-order lattice predictor acting as a pre-
processing stage before the vocal tract model inverter Fv

-1(z). Correspondingly, as defined before, s(n), 
sl(n), sg(n), and δ(n) are the speech signal at the microphone, the estimation at the lips (pre-radiation), 
the glottal signal, and the generating delta train, respectively. The spectral whitening properties of the 

whole inversion system are manifested in producing a white spectrum signal δ(n) from spectrally 
coloured speech s(n). 
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the filtering process may be expressed as a convolutional operator10: 

𝒔𝒗 = 𝒔 ∗ 𝒉𝒈 (4.11) 

Similarly, the vocal tract inverse model might be seen as a Wiener filter, reducing 𝑠 (𝑛) 

to a signal with white power spectral distribution: 

𝒔𝒗 ∗ 𝒉𝒗 = 𝜹 (4.12) 

where 𝒉𝒗 is the vector form of the Wiener filter impulse response, and 𝜹 is the vector 

form of a train of delta impulses. 

As it was discussed before, the Wiener filter may be implemented by a prediction-error 

lattice filter (PELF) with a dimension 𝐾 large enough to reduce the output power 

spectrum to a flat (white) spectrum signal as considered adequate enough for the 

estimation purposes assumed. 

 

 

 

 

 

 

 

10Throughout this section and the following ones, the sequence notation (e.g. 𝑠(𝑛)) and the vectorial one 
(e.g. 𝐬) will be used interchangeably, for this last is better suited to express convolutional relationships in a 
more compact way.  
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4.1.5 Glottal source estimation 

With what has been commented on, the complete system to reconstruct the glottal pulse 

𝑢  from the speech trace, which may be represented in Figure 4.3. 

 

Figure 4.3 Estimation of the glottal residual by deconvolution with the impulse response of a de-
glottalized vocal tract model. 

Description: The transfer functions of the different deconvolution filters are the inverse convolver 
transfer functions of the generation models: Hr(z)=R-1(z); Hg(z)=Fg

-1(z);  Hv(z)=Fv
-1(z). 

 

The production process of 𝑠 (𝑛) described in Figure 3.2 may be expressed in compact 

convolutional form as: 

𝒔 = 𝜹 ∗ 𝒇𝒈 ∗ 𝒇𝒗 ∗ 𝒓 = 𝒇 ∗ 𝒇𝒗 ∗ 𝒓 = 𝒔𝒍 ∗ 𝒓 (4.13) 

where 𝒇𝒈, 𝒇𝒗, and 𝒓 are the impulse responses of the filters Fg(z), Fv(z), and R(z), 

respectively. Thence, by application of the commutative and associative properties of the 

convolution operator, taking 𝒉𝒓 as the impulse response of Hr(z): 

𝒔𝒍 = 𝒔 ∗ 𝒉𝒓 = {𝒔𝒍 ∗ 𝒓} ∗ 𝒉𝒓 = 𝒔𝒍 ∗ {𝒓 ∗ 𝒉𝒓} (4.14) 

as the operators 𝒓 and 𝒉𝒓 are inverse by definition to each other concerning the 

convolution operation. Besides, as: 

𝒔𝒍 = 𝒇𝒈 ∗ 𝒇𝒗 (4.15) 

convolving this signal with the impulse response of the inverse vocal tract model hv0: 

𝒔𝒍 ∗ 𝒉𝒗𝟎 = 𝒇𝒈 ∗ 𝒇𝒗 ∗ 𝒉𝒗𝟎 = 𝒇𝒈 ∗ {𝒇𝒗 ∗ 𝒉𝒗𝟎} ≅ 𝒇𝒈 = 𝒔𝒈 (4.16) 
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thus defining a procedure to estimate the glottal residual 𝒔𝒈 from the speech trace at the 

lips 𝒔𝒍. A more accurate reconstruction of the GS is obtained if the first estimation is used 

to better determine the vocal tract transfer function from the speech trace at the lips as 

shown in Figure 4.4. 

 

The operation of the iterative system is the following: In the first step, the i-1th version of 

the glottal pulse 𝑠 (𝑛) is Wiener-inverse filtered, reducing it to a white process 𝛿(𝑛). 

 

Figure 4.4 Structure of filters to support the joint estimation of the ONPT transfer function and the 
glottal residual. 

Description: a) joint estimation of the ONPT transfer function Hg(z) and glottal residual sg0(n) by an 
initial deconvolution step of the phonation signal sl(n) using the impulse response of the ONPT 

estimated on the glottal-compensated phonation signal; b) iteration chain extending the modelling of the 
glottal residual to deconvolve the radiation compensated phonation signal to model the ONPT transfer 

function and impulse response, which is used in deconvolving the radiation compensated phonation 
again to produce an updated version of the glottal residual. Description:  hgi(n) – impulse response of 

the Inverse Glottal Wiener’s Filter at i-th iteration; hvi(n) – impulse response of the Inverse Vocal 
Wiener’s Filter at i-th iteration; sgi(n) – estimation of the glottal residual at i-th iteration; svi(n) – 

estimation of the de-glottalized speech at i-th iteration. 
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The coefficients of the equivalent Wiener filter ℎ (𝑛) constitute the impulse response of 

such filter, and when convolved with the radiation-compensated speech 𝑠 (𝑛) produce 

the de-glottalised speech  𝑠 (𝑛). This signal is also Wiener-inverse filtered, reducing it 

to a white process 𝛿(𝑛). The coefficients of the equivalent Wiener filter ℎ (𝑛) when 

convolved with the radiation-compensated speech eliminate the influence of the vocal 

tract, reducing it to the i-th estimation of the glottal residual 𝑠 (𝑛). Usually, a two-step 

iteration suffices to produce a reliable estimation of the glottal pulse in most real cases. 

4.1.6 Iterative joint estimation of the GS and ONPT transfer function 

The structure of a Wiener Filter implemented by a PARCOR lattice and its associated 

convolver (see Figure 4.3 and Figure 4.4) to remove the influence of the transfer function 

estimated by inverse filtering may be integrated into a single structure as put forth in 

Figure 4.5. 

As shown for example in Deller, Proakis, and Hansen (1993) the residual error from a 

lattice filter may be seen as the output of an all-pole filter inverse to the lattice input trace. 

This result allows us to jointly build the inverse impulse response to 𝐬𝒗 by a lattice, 

reducing this signal to a white series, and at the same time convolves the associated signal 

𝒔𝒍 with the same inverse impulse response using a paired lattice (lower) which uses the 

same reflection coefficients estimated in the driving lattice (upper), as shown in Figure 

4.5 (joint process estimation). 
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The functionality of the system is the following: 

1) The phonation signal  𝒔 will be processed by an inverse radiation model 𝒉𝒍, following 

(4.14), having in mind the radiation place (oral, nasal) as well as the distance to the 

capturing device (microphone), the channel, and the effects of both factors, producing 

a radiation-compensated signal 𝒔𝒍.  

 

Figure 4.5 Structure of a lattice-ladder filter and deconvolver. 
Description: 𝑓 (𝑛) and 𝑔 (𝑛) are the lattice-equivalent main acoustic tube forward and backward 

propagating errors of the Inverse Wiener’s Filter, associated the propagation waves inside the tube at the 
i-th lattice stage; 𝑝(𝑛) and 𝑞 (𝑛) are the backward and forward propagating errors in the paired lattice 

implementing the Convolver; 𝑐  is the i-th pivoting coefficient (lattice) as well as the i-th reflection 
coefficient (acoustic tube). 
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2) This signal is processed by a mirror filter to neutralize the influence of the GS by an 

initial filtering model 𝒉𝒈𝟎 following (4.11), producing a partially de-glottalized 

phonation signal 𝒔𝒗𝟎. 

3) This new signal is treated by inverse filtering, to produce an inverse model of the 

ONTP impulse response 𝒉𝒗𝟎. 

4) This inverse model is applied by another mirror filter on the original phonation signal 

𝒔 to generate a glottal residual 𝒔𝒈𝟎. 

5) This signal is used to start a new iteration building a new inverse glottal model 

𝒉𝒈𝟏which is an update of 𝒉𝒈𝟎, by repeating steps 2)-5) the number of times considered 

sufficient to produce an accurate estimation of the glottal residual 𝒔𝒈𝐈. 

The iteration of steps 2)-5) may be represented in a circular diagram as given in Figure 

4.6. 

Given the relevance of the glottal signals in the estimation of phonation quality, an 

example of the estimation of the glottal residual and glottal flow is given in Figure 4.7. 
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Figure 4.6 Circular diagram of the iterative procedure to jointly estimate the ONPT and the glottal 
residual. 

Description: Iiterative procedure to jointly estimate the ONPT 𝐻 (𝑧) and the glottal residual 𝑠 (𝑛) 
from the phonation signal 𝑠(𝑛), presented unfolded in Figure 4.4. 

 

This methodology may be traced back to the work of P. Alku (1992), conveniently 

modified to estimate the biomechanical parameters of a 2-mass vocal fold model (Gómez-

Vilda et al., 2007; Gómez-Vilda et al., 2009), and incorporates the following main 

features: 

 Antiradiation filter compensation. It is a well-known fact (Huang, Acero, and Hong, 

2001) that the acoustic wave once radiated from the emission place (mouth, cranial 

bones, chest) experiences a frequency decay of 1/ω, which may be compensated by a 

first-order filter (pre-emphasis), which could be implemented as a simple first-order 

difference. For optimal filtering, in our case, a first order LPF predictor is used, 

because it corrects optimally the frequency tilt using the first reflection coefficient in 

the predictive inversion chain. 

 Inverse ONPT transfer function estimation by linear predictive filtering (LPF) from 

the speech de-glottalised signal. 
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 Cancellation of the vocal tract transfer function by a ladder filter (mirror filter) to 

produce an estimation of the glottal residual signal. 

 Inverse glottal filter estimation by LPF from the glottal residual signal. 

 Glottal filter transfer function cancellation by a ladder filter (mirror filter) to produce 

an estimation of de-glottalised voice. 

 
Figure 4.7 Glottal signals from a sustained emission of vowel [a:] uttered by a male normative speaker. 

Description: a) segment of vowel recording s(n); b) glottal residual sg(n) after inverse filtering (blue: 
original integration, red: low frequency filtered); c) GS p(xg,n), estimated from integrating the glottal 
residual; d) glottal flow u(xg,t), estimated from integrating the GS. The MFDR is marked with stars (). 

 

The radiation-compensated phonation signal 𝑠 (𝑛) is shown in Figure 4.7.a, as a series of 

pseudo-periodic phonation cycles marked by negative spike-like saliences, followed by 

bouncing oscillations corresponding to the presence of formants (resonances of the 

ONPT). Once processed following the procedures illustrated in Figure 4.6, a spike-like 

train of impulses (𝜹) is produced as a glottal residual 𝑠 (𝑛) (Figure 4.7.b) where all 

predictable frequency components have been removed by inverse filtering.  
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The glottal residual is integrated by a leakage and de-trend algorithm to remove slow-

moving shifts, producing the GS signal at the glottis 𝑝 𝑥 , 𝑛  given in Figure 4.7.c, 

which remembers the general pattern of the phonation signal, reproducing the classical 

Liljencrants-Fant profile (Fant, Lijencrants, and Lin, 1985), which will be explained later 

on. This same signal is integrated again to generate the glottal flow, as seen in Figure 

4.7.d. This is an estimation of the air escape through the glottis, its aspect being that of a 

triangular shape, showing a moderate slope-up leading edge from a minimum, a strong 

rise to a maximum, and a faster slope-down to a new minimum. The more relevant 

features of this signal are the initial slope-up related to the permanent gap, and the final 

slope-down, associated with the MFDR (maximum flow declination rate). 

4.1.7 Detailed description of the GS 

The typical GS cycle follows a specific pattern described by Rothenberg’s glottal flow 

commutation model discussed in subsection 3.2, producing an ideal L-F profile as the one 

depicted in Figure 3.5.c (corresponding to a null permanent and a null contact gap). That 

idealised behaviour is in part reflected in the detailed profile shown in Figure 4.8, which 

corresponds to one glottal cycle in Figure 3.5.c. 

The upper plot (a) shows a normative GS profile, characterised by the following intervals: 

1) Recovery Interval 0-tR, where the dynamic supraglottal pressure returns to its 

quiescent value (null, corresponding to the atmospheric pressure) as a 

consequence of the strong descent experienced at the MFDR due to the decay in 

the airflow produced by the vocal fold adduction process.  

2) Quiescent interval tR-tO, corresponding to the contact phase, where the dynamic 

supraglottal pressure is almost zero and the glottal flow remains at a minimum.  
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3) Flow injection Interval tO-tM, where the dynamic supraglottal pressure 

experiences an increment to a maximum because of the vocal fold abduction 

process when the glottal flow rises faster. 

4) Dynamic supraglottal pressure decay interval tM-tT, when the glottal flow 

experiences the fastest descent (MFDR), due to a decline in flow injection because 

of the vocal folds reaching a maximum aperture, initiating the adduction process. 

This effect limits the rate of flow increment and conditions its downfall. The 

MFDR is the instant when the glottal flow decays at its fastest rate, according to 

Titze and Palaparthi (2016), and it is considered the end of the GS cycle. It must 

be stressed that this instant is not the minimum of the glottal flow, which is 

reached at tR. The MFDR signals the end of a GS cycle and the start of a new one. 

According to Fant’s theory on the GS the sharpness and amplitude of the MFDR are the 

reference features to produce a good harmonic display in the frequency domain (number 

and sharpness of the harmonics found in the power spectrum of the GS), and a direct 

causability factor in the production of a large cepstral peak prominence (CPP), in 

alignment with Burk and Wats (2019), and Šimek and Rusz (2021). 
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Figure 4.8 Characteristics of a real L-F phonation cycle from a normative male participant (HUGMM). 
Description: a) detailed GS cycle between two neighbour MFDR instants corresponding to the same 
phonation signal analysed (blue: Glottal Source; magenta: Glottal Flow; green: support profile). b) 

sequence of glottal cycles. Time interval description: tR – recovery instant; tO – opening instant; tM: 
maximum supraglottal pressure instant. Blue: GS; green: glottal flow; purple: reference straight segments 

used in estimations. R.U.: relative units. 
 

4.1.8 Biomechanical analysis of phonation 

It is a well-known fact that PD produces important alterations in neuro-motor activity 

affecting the muscular tone, and resulting in symptoms such as spasms, rigidity, 

bradykinesia, unbalance, and tremors, among others (Christine and Aminoff, 2004). This 

altered neuromuscular activity affects not only to limbs but the phono-respiratory system 

as well, with instability in phonation being observed as dystonia and tremor in voice, 

which may be referred to as biomechanical instability of phonation (BIP).  
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The study of BIP or phonation hypokinesia and dyskinesia, is based on the biomechanical 

description of the larynx (Titze and Story, 2002). The body-cover 2-mass model (Berry, 

2001), reproduced in Figure 4.9, is especially adequate for this purpose. 

 

Figure 4.9 Vocal fold 2-mass biomechanical model used in the study 
Description: The body and cover structures (diagonal and horizontal line textures), behave as dynamic 

masses, corresponding to musculus vocalis and lamina propria. The visco-elastic wall links and 
Reinke’s space ligaments behave as damped springs. 

 

It has a simple description, given by a pair of dynamic equations, coupled through the 

force𝑓  resulting from trans-glottal pressure (difference of pressures between the 

subglottal and the supraglottal sides of the vocal folds), and the transversal velocity of the 

body and cover mass of the left vocal fold (𝑣  and 𝑣 ). The parameters 𝜇  and 𝜇  are 

the dynamic masses of the left vocal fold body (musculus vocalis) and cover (lamina 

propria) given in grams per unit length: g.cm-1. 𝜉  and 𝜉  are the dumped elastic springs 

acting between the body and the walls of the thyroid cartilage, and the body and cover 

masses, respectively.  
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Their elastic modules are given in N.cm-1. On their turn, 𝜎  and 𝜎  are the viscous 

dissipative parameters explaining the loss of energy experienced by the vocal fold during 

phonation, given as N.s.cm-1. With these premises, the left and right vocal fold dynamic 

relationships are: 

𝑓 = 𝜇
𝜕𝑣

𝜕𝑡
+ 𝜉 (𝑣 − 𝑣 )𝑑𝜁 + 𝜎 𝑣 + 𝜇

𝜕𝑣

𝜕𝑡
+ 𝜉 𝑣 𝑑𝜁 + 𝜎 𝑣  

𝑓 = 𝜇
𝜕𝑣

𝜕𝑡
+ 𝜉 (𝑣 − 𝑣 )𝑑𝜁 + 𝜎 𝑣 + 𝜇

𝜕𝑣

𝜕𝑡
+ 𝜉 𝑣 𝑑𝜁 + 𝜎 𝑣  

(4.17) 

 

The details of the model description can be found in Titze and Story (2002) and are the 

basis of the further model developments presented in what follows. 

4.1.9 Estimating vocal fold biomechanical parameters 

Once the GS has been reconstructed using the methods described in 4.1.5, its dynamic 

behaviour is matched with estimations derived from vocal fold modelling (Berry, 2001) 

by fitting its power spectral density with the model prediction, as it may be shown that 

the power spectral density of the GS is strongly conditioned by the biomechanical 

parameters of the vocal fold models (Story and Titze, 1995). This methodology may be 

used in the characterisation of the pathologic behaviour of a specific speaker’s voice or 

in the biometric characterisation of the speaker.  

The estimation of the elastic stiffness of the vocal fold body and cover is carried out in 

the following steps: 

1. The given phonated speech segment under analysis (voiced speech, preferably an 

open vowel) is inverted using the already described signal processing methods (Alku, 

1992; Deller, Proakis, and Hansen, 1993; Gómez-Vilda et al., 2009) to remove the 

effects of the supra-laryngeal resonant cavities (ONPT).  
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2. As a result, an estimate of the supra-glottal pressure just at the point where the glottal 

flow is injected, known as the GS will be obtained: 

𝑝 (𝑡) = 𝑠𝑟

𝑡

−∞
(𝜁)𝑑𝜁 (4.18) 

 

3. It may be shown (Gómez-Vilda et al., 2009) that the power spectral density of the GS 

𝑃 (ω)  given by 

𝑆 (ω) = 𝑃 (ω) ; 

𝑃 (ω) = 𝑝𝑔

∞

−∞
(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 

(4.19) 

can be associated with a functional derived from expressions (31) in terms of the model 

parameters as 𝑇 (𝜔, 𝐁), where 𝐁 = {𝜇 , 𝜉 , 𝜎 , 𝜇 , 𝜉 , 𝜎 } is the n-tuple biomechanical 

feature set. Under certain conditions both functions can be approximated using parameter 

variation to minimize the following error function: 

𝐿(𝜔, 𝑩) = 𝑃 (𝜔) − ‖𝑇(𝜔, 𝑩)‖ 𝑑𝜔
⬚

 (4.20) 

4.1.10 Average acoustic wave and mucosal wave correlate 

The biomechanical parameter estimations are based on the separation of the GS into two 

components, referred to as the average acoustic wave (AAW) and the mucosal wave 

correlate (MWC).  

The AAW, as it will be later explained, can be seen as the body dynamic component, 

because it may be associated with the one-mass/one-spring equivalent model of the vocal 

fold body.  
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The residual left when removing the AAW from the GS signal is designed as the MWC, 

as it can be associated with higher-order oscillation modes of the vocal folds related 

mainly to the dynamic behaviour of the vocal fold cover. Both signals can be considered 

correlates to the body and cover dynamics and will be referred to as such. 

For such, the GS 𝑝 (𝑡) is decomposed into two parts, the AAW, given as 𝑝 (𝑡), and the 

MWC, given as 𝑝 (𝑡): 

𝑝 (𝑡) = 𝑝(𝑥 (𝑡)) = 𝑝 (𝑡) + 𝑝 (𝑡) (4.21) 

 The AAW is a term coined by Titze (1994b, pg. 17, exp. 21-22) to refer to the low-

frequency contents of the signal under analysis. The AAW is defined as a rectified 

sinusoid with the same duration (𝑇 2⁄ ) as the phonation cycle to be matched: 

𝑝 (𝑡) = 𝑃 sin(𝜔𝑡); 0 ≤ 𝑡 ≤ 𝑇 2⁄ ;  𝜔 =
2𝜋

𝑇
 (4.22) 

where the amplitude 𝑃  may be evaluated by minimising the mean square of the 

difference between the AAW and the GS over the time window of the k-th phonation 

cycle: 

min 𝑝 (𝑡) − 𝑝 (𝑡) 𝑑𝑡
⬚

→ 𝑃 =
∫ 𝑝 (𝑡)sin(𝜔𝑡)𝑑𝑡

⬚

∫ [sin(𝜔𝑡)]
⬚

𝑑𝑡
 (4.23) 

In this way, the AAW would represent a second-order system response (one mass + one 

spring) associated with the vocal fold body. Therefore, the AAW is dominated by the 

dynamics of the vocal fold body, and MWC is mainly contributed by the dynamics of the 

vocal fold cover. This study was developed in detail by Gómez-Vilda et al. (2007).  
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Incidentally, it may be said that in tense phonation the decay of the GS during the closing 

phase will mimic the shape defined by Figure 3.5.c very closely as it is shown in Figure 

4.10, explaining the rich semantics of the AAW which can be exploited for the 

interpretation of the nature of the pathologic behaviour expressed in the GS. 

 

Figure 4.10 Example of the AAW and the MWC. 
Description: AAW and MWC estimated from fitting the GS to the vocal fold ideal first vibration mode, 
corresponding to a normative male participant. The minimum of the MWC serves as a good estimator of 

the opening instant. This pattern is typical in healthy adult male participants. 
 

4.1.11 Estimation of the AAW biomechanics 

The numerical estimation of the biomechanical parameters and particularly, the stiffness 

induced by the neuro-motor activity on the thyroarytenoid, transversal, and oblique 

laryngeal muscles controlling phonation, can be carried out using different approaches. 

A simple yet efficient method consists of first estimating the parameters associated with 

the biomechanics of the vocal fold body using the average acoustic wave (the first mode 

of the GS, see Berry, 2001). The mucosal wave correlate (related to the upper modes of 

the GS) is used to estimate the biomechanical parameters of the vocal fold cover.  
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The functional 𝑇 (𝜔, 𝐁), where 𝐁 = {𝜇 , 𝜉 , 𝜎 } is to be matched to the power spectral 

density of the AAW |𝑆 (ω)|  will be defined on the electromechanical equivalent of the 

first-order vocal fold body model given in Figure 4.11. 

 

Figure 4.11 Electromechanical equivalent of the vocal fold first vibration mode. 
Description: Vocal fold first vibration mode (AAW) where the effects of higher vibration modes 

(MWC) have been neglected. 
 

The work hypothesis is based on the assumption that the AAW is determined by the fold 

body dynamic component, therefore the power spectral density of the AAW is directly 

related to the square modulus of the input admittance derived from the 1-mass model in 

Figure 4.11 as given by relationship between the vocal fold mass velocity and the lateral 

force resulting from the pressure difference between the subglottal and supraglottal ridges 

of the glottis (trans-glottal pressure): 

𝑇 (ω) = |𝑌 | =
𝑉 (ω)

𝐹 (ω)
= [(𝜇 ω − 𝜉 ω ) + 𝜎 ]  (4.24) 

where ω is the angular frequency in rad.s-1 and 𝜇 , 𝜉  and 𝜎  are respectively the 

parameters associated with the lumped mass, elasticity, and dissipative losses of the 1-

mass model when only the low-order vibration mode of the vocal fold body is taken into 

account following the dimensional reduction of the Story-Titze model (Story and Titze, 

1995). 
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The robust estimation of the model parameters is based on the selection of two points on 

the power spectral density of the AAW, these being {𝑇 , ω } and {𝑇 , ω }. The lumped 

body mass may be estimated then as: 

𝜇 =
𝜔

𝜔 − 𝜔

𝑇 − 𝑇

𝑇 𝑇

⁄

 (4.25) 

The selection of the most adequate points for {𝑇 , ω } and {𝑇 , ω } is highly related to 

the accuracy and robustness of the estimation procedure. A good candidate for {𝑇 , ω } 

is the position of the main (resonant) peak in the amplitude of the power spectral density 

of the dynamic correlate: 

𝜔 =
𝜉

𝜇
 (4.26) 

A good candidate for and {𝑇 , ω } is the position of the third harmonic from the peak 

position, as the time series shows odd symmetry. These two points have shown to be 

robust enough in all the cases studied, although some other possibilities are functional if 

combined properly. 

Once the mass has been estimated, the elastic parameter (body stiffness) 𝜉  can be 

obtained from the precise determination of the position of the maximum associated with 

the resonant peak, this being {𝑇 , ω } 

𝜉 = 𝜇 𝜔  (4.27) 

The parameter of body losses can be estimated (but for a scale factor 𝐺 ) as: 

𝜎 =
𝐺

𝑇
 (4.28) 
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where 𝑇  stands for the value of the square modulus of the input admittance in expression 

(4.24) at the frequency of resonance ω  associated to the first maximum in the GS power 

spectral density. 

The evaluation methodology must first produce a very accurate estimation for f , which 

is used to evaluate ω . This leads to the determination of the mass from (4.28) and the 

losses and stiffness from (4.28) and (4.27), respectively. The stiffness of the vocal fold 

body is the most relevant biomechanical parameter because it is directly related to the 

neuron firing rate acting on the laryngeal muscles (Jürgens, 2002; Brown et al., 2009; 

Ludlow, 2005 and 2015), and retains neurologic disease behaviour in marks of hypo- and 

hypertension, as well as in tremor. Important correlates quantifying neuro-degenerative 

behaviour in speech are thus vocal fold stress, as well as its statistical dispersion. 

Similar derivations may be defined for the biomechanical parameters of the vocal fold 

cover using in its case the spectral density of the MWC, as the influence of the body 

dynamics has been removed implicitly on separating the AAW from the GS, reducing the 

problem to a single mass model. In this way, the application of the same methodology to 

the cover biomechanics may follow essentially the same steps in a similar way. 

An example of the AAW spectral power |𝑃 (ω)|  matching the trans admittance function 

using this methodology is shown in Figure 4.12. 
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Figure 4.12 Fitting the power spectrum of AAW to an electromechanical equivalent model. 
Description: Results of fitting the power spectrum of AAW with the results of the direct estimation of 

the electromechanical equivalent given in expressions (4.24), (4.25), (4.27), and (4.28). 
 

An example of the estimation of the vocal fold tension for the phonation segment shown 

in Figure 4.7.a is given in Figure 4.13. 

Figure 4.13 Example of the vocal fold tension estimated on a phonation segment. 
Description: Vocal fold tension estimated on a phonation segment taken from the same participant as 

shown in Figure 4.7: a) phonation signal (in blue) and its fundamental frequency (in red); b) vocal fold 
tension (in black), its trend (in red), and its detrended estimation (in blue). The detrend shows a slight 

decay from the first estimations to the last ones. 
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4.2 Articulation model estimation 

4.2.1 The neuromechanical jaw-tongue model 

The present study is based on a simplified jaw-tongue articulation model (Gómez-

Rodellar et al., 2019a) which is known to be representative of PD dysarthria (Gómez-

Rodellar et al., 2019b). It allows to create a relationship between acoustic and kinematic 

variables relating the first two formants F={F1, F2} to the horizontal and vertical 

coordinates S={xr, yr} of the joint Jaw-Tongue Reference Point (PrJT) in the sagittal plane. 

The centre of moments for the biomechanical system, consisting of the maxillary bone, 

tongue, and associated facial tissues, is represented by this point (see Figure 4.14). 

 

Figure 4.14 Synoptic representation of the jaw-tongue kinetic structure. 
Description: H: hyoid bone; J: mandible (dash grey); T: tongue (dash orange). 𝑃 (𝑥 , 𝑦 ): jaw-tongue 

reference centre of moments. {Δ𝑥 , Δ𝑦 }: displacements of the centre of moments relative to the 
reference. 𝑓 , 𝑓 , 𝑓 , 𝑓 : extrinsic forces acting on the jaw-tongue structure (masseter, geniohyoid, 

gravity, styloglossus). 𝑓 : intrinsic force acting on the tongue. {𝑋 , 𝑌 }: coordinates in the sagittal plane 
of an external accelerometer fixed to the chin. 𝜗: angle between the accelerometer axis 𝑋  and the 

reference sagittal axis 𝑥. 
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The model assumes that it can be established a Linear Time-Invariant (LTI) relationship 

between the PrJT sagittal coordinates and the relative displacements of the first two 

formants, which may be summarized as: 

∆𝐒 = 𝐖 × ∆𝐅;  

𝐖 = 𝑤
,

,
 

(4.29)  

where Δ = {Δ𝑠 , Δ𝑠 } is the vector of the horizontal and vertical displacements of PrJT in 

the time domain, which may be obtained from the rotation and integration of the 

tangential and normal acceleration components {𝑋 , 𝑌 } measured by the accelerometer 

fixed on the chin, 𝐖  is a 2x2 matrix expressing the LTI projection model, which will be 

referred to as the acoustic-to-kinematic projection, and ∆𝐅 is the relative displacement in 

the frequency of the first two formants concerning their means in the time domain, as the 

first two formants are strongly associated with articulation kinematics (Gómez-Rodellar 

et al., 2019a), defined as: 

∆𝐅 = {𝐅 − 𝑚𝑒𝑎𝑛(𝐅 ), 𝐅 − 𝑚𝑒𝑎𝑛(𝐅 )} (4.30)  

 

4.2.2 Formant estimation 

As it was commented in subsection 4.1.6, the methodology used for inverse filtering, 

produced the simultaneous estimation of the GS and the ONPT transfer function as an 

all-pole structure (in the case of a pure oral phonation, when the nasopharyngeal pathway 

is occluded by the stylo-pharyngeal muscles): 

𝐻 (𝑧) =
𝐺

∑ ℎ 𝑧
 (4.31) 

where K is the all-pole order, ℎ = 1, and 𝐺  is a scale factor.  
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This transfer function could be represented by an equivalent all-pole function in terms of 

the zeros of the denominator polynomial: 

𝐻 (𝑧) =
𝐺

∏ (𝑧 − 𝑧 )
 (4.32) 

which correspond to K/2 pairs of complex conjugate zeros in case of K being a pair, and 

to (K-1)/2 pairs of complex conjugate zeros and a real zero in case of K being odd. This 

property may be exploited to extract a real zero with the purpose of de-trending the 

behaviour of the ONPT transfer function, contributing to enhancing radiation 

compensation effects.  

Each one of these complex conjugate zeros represents a pole in the transfer function, 

which may be seen as frequency places where the transfer function amplitude on the unity 

circle is enhanced as a result of resonance effects: 

𝐻 (𝑧 = 𝑒 ) =
𝐺

∏ (𝑒 − 𝑟 𝑒 )
 (4.33) 

where 𝑟  and 𝜑  are the modulus and the angular frequency of each zero, represented as: 

𝑧 = 𝑟 𝑒  (4.34) 

where the contribution of each associated pole to the modulus of the transfer function on 

the unity circle is proportional to 1 (1 − 𝑟 )⁄  , at the frequency given by 𝐹 = 𝑓 𝜑 𝜋⁄ , 𝑓  

being the sampling frequency. 

Different approaches to the estimations of the zeros of a polynomial in the complex plane 

may be used to find the polynomial roots (Edelman and Kostlan, 1995; Epperson, 2013; 

García and Díaz, 2014). The MATLAB function used in the present study is based on the 

companion matrix method of Jenkins and Traub (Epperson, 2013, pg. 518). 
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Examples of the first two formant estimations from a normophonic speaker and a PD 

speaker are shown in Figure 4.15. 

Figure 4.15 Estimations of the first two formants on the sustained utterance of the vowel [a:]. 
Description: Example from a normative adult male speaker, following the methodology for polynomial-
zero estimation by Jenkins and Traub (Epperson, 2013, pg. 518) and the modulus-angle pattern (4.34). 

 

4.2.3 Mapping formant dynamics to articulation kinematics 

Speech Articulation is determined by the movement of the jaw, tongue, lips, and 

velopharyngeal tissues (Dromey, Jang, and Hollis, 2013; Whitfield and Goberman, 2014). 

Specifically, vowels are defined by certain articulation gestures as the open-close (also 

low-high attending to lower jaw position relative to the upper jaw), front-back, and round-

oval configurations, determining acoustic features perceived as formant positions.  
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This gesture-acoustic association is usually represented on a vowel polygon (see Figure 

4.16). 

 

Figure 4.16 Multilingual Vowel Set (IPA). 
Description: The vertical and horizontal axes represent the first (F1) and second (F2) formants, 

respectively (reversed axes). The feature close/open corresponds to jaw position high/low. 
International Phonetic Association (IPA): http://www.internationalphoneticassociation.org 

 

The open-close gesture is mainly dominated by the jaw, predominantly affecting the first 

formant F1 (pulling up the jaw is the dominant gesture in the phonation of [i:] and [u:], 

whereas relaxing down jaw is the gesture to phonate [a:]). The front-back gesture is 

mainly controlled by the tongue position, affecting the second formant F2 (pushing the 

tongue forward is the gesture for [i:], pulling it back results in [u:]). This is an 

oversimplification of what is a more complicated relationship between articulation 

gestures and formant positions, but it will be the starting point for defining kinematic 

correlates of phonation in this study. The articulation gesture of the jaw has been studied 

to relate it to acoustic features, as the first two formants (F1, F2). 
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4.2.4 The vowel triangle 

The vowel triangle is a simplification of the multilingual vowel set, in which only the 

extreme positions of the triangle are considered, usually marked by the positions of [u:, 

a:, i:], because these vowels are easily reproducible by most of the speakers in almost any 

language. A very meaningful feature related to the articulation span that a speaker can 

attain is derived from the area enclosed by such a profile, as shown in Figure 4.17. 

Figure 4.17 Example of the vowel triangle and the vowel space area (VSA) from a sequence [a:, i:, u:]. 
Description: Top: speech signal. Middle: first two formants from LPC spectral estimation. Bottom left 
and right: formant projection on the vowel triangle in F2 vs F1 (left) and in F1 vs F2 (reverted) as it is 

traditional in Linguistics (right). Black circles give the vowel centroids and the vowel triangle centre of 
gravity to evaluate the lnVSA, the FCR, and the MF (see text), which are shown superimposed on the 

vowel triangle. The male and female reference vowel triangles for Spanish are given in blue and purple. 
Colouring is used to signal time positions in the speech sequence, from green (beginning) to red (end). 

 

Figure 4.17 reproduces an utterance by a normative female speaker reproducing the 

sequence [a:, i:, u:] (top), sampled at 8 kHz, from which the vector {F1, F2}(middle) has 

been estimated every 2 ms using a 9-order LPC adaptive lattice filter.  



Unveiling the Impact of Neuromotor Disorders on Speech: A structured approach 
Combining Biomechanical Fundamentals and Statistical Machine Learning 

 
 

151 
 

Each position in the bottom plots is signalled by a circle, being coloured according to its 

time position in the sequence, from green (beginning) to red (end).  

4.2.5 Features based on vowel distribution. 

The following two metrics (Kent and Kim, 2003; Sapir, et al., 2010) have been classically 

used to quantify the articulation span (VSA: vowel space area) relative to the triangle 

centre of gravity (FCR: formant centralization ratio), accordingly to the following 

formulation: 

𝑙𝑛𝑉𝑆𝐴 = 𝑙𝑛
|𝐹 (𝐹 − 𝐹 ) + 𝐹 (𝐹 − 𝐹 ) + 𝐹 (𝐹 − 𝐹 )|

2
 (4.35) 

𝐹𝐶𝑅 =
|𝐹 + 𝐹 + 𝐹 + 𝐹 |

𝐹 + 𝐹
 (4.36) 

where 𝐹 , 𝐹 , 𝐹 , 𝐹 , 𝐹 , and 𝐹  are respectively the first and second formants of the 

corner-cluster data-centroids relative to [u:], [a:], and [i:], respectively; and ln{·} stands 

for the natural logarithm. Additionally, the modulus of the frequency span in both 

formants may be used as another meaningful feature: 

𝑀𝐹𝑛 = 𝑙𝑛
𝐹 − 𝑚𝑖𝑛 {𝐹 , 𝐹 }

𝑚𝑒𝑎𝑛{𝐹 }
+

𝐹 − 𝐹

𝑚𝑒𝑎𝑛{𝐹 }
 (4.37) 

where 𝑚𝑎𝑛{𝐹 } and 𝑚𝑒𝑎𝑛{𝐹 } are the averages of the first and second formant 

estimations over the utterance, excluding silences. This last feature expresses the ability 

of the speaker to reproduce a wide formant span. 
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4.2.6 Features based on formant dynamics 

The features defined in the previous subsection refer to static positions derived from a set 

of recordings trying to fix a wider vowel span on the vowel triangle. They do not explore 

the dynamic characteristics of articulation during vowels, glides, or other articulated 

phonated utterances. To help introduce the kinematic concept behind formant variability 

during non-stable utterances, an Articulation Kinematic Model (AKM) is proposed based 

on Figure 4.14. The ensuing study is focused on the dynamic tracking of the kinematic 

activity of the jaw-tongue reference point (PrJT), which may be defined as a hypothetical 

point in the sagittal plane (x: caudal-rostral; y: dorsal-ventral). As it may be seen in Figure 

4.14, the PrJT is a hypothetical point {xr, yr} where the sum of the different forces is null 

(masseter: fm, stylo-glossus and genio-hyoglossus: fsg and fgh, genio-glossus:  fgi, and the 

gravity: fw). The force exerted by the masseter fm will pull up the low mandible acting as 

a third-order lever. Other acting muscles are the styloglossus, genio-hyoid, and glosso-

intrinsic, acting on the jaw-tongue concerning the reference point. The AKM is integrated 

by the jaw (J) and tongue (T) and the facial tissues attached to them. The dynamics of this 

system (Hannam et al, 2008) may be approximated by a third-order lever, its fulcrum (F) 

being attached to the skull, articulating movements on the sagittal plane (x, y). Gravity 

acts as a constant force downwards (fw). The articulation gesture will determine the 

position of a hypothetical reference point in the jaw-tongue centre of masses (PrJT), 

attached to the jaw joint point F. The acoustic features {𝐹 , 𝐹 } may be associated to the 

reference point coordinates {xr, yr} as in (4.38), assuming that the system is linear and 

time-invariant and that a one-to-one association between articulatory gestures and 

acoustic features is possible (Dromey, Jang, and Hollis, 2013). The position of the PrJT 

will change in time under the action of the forces mentioned, modifying the resonant 

properties of the oral cavity, and producing dynamic changes in formants.  
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The work hypothesis considers that the changes in the first two formants 𝐹  and 𝐹  can 

be related to the AKM dynamics as by: 

𝐹 (𝑡)
𝐹 (𝑡)

=
𝑎 𝑎
𝑎 𝑎

𝑥 (𝑡)
𝑦 (𝑡)

 (4.38)  

where 𝑎  are the parameters relating PrJT to formant values. Under these assumptions, a 

relationship between the dynamic components of articulation and acoustics may be 

derived from (4.38): 

∆𝐹 (𝑡)
∆𝐹 (𝑡)

=
𝑎 𝑎
𝑎 𝑎

∆𝑥 (𝑡)
∆𝑦 (𝑡)

 (4.39)  

The utility of these relationships is conditioned by the possibility of estimating the set of 

parameters 𝑎 , as it will discussed in subsection 5.2.  

Assuming now the invertibility and time invariance of (4.39) the following relationship 

could be established: 

𝑑𝑥 (𝑡) 𝑑𝑡⁄

𝑑𝑦 (𝑡) 𝑑𝑡⁄
= 𝐖

𝑑𝐹 (𝑡) 𝑑𝑡⁄

𝑑𝐹 (𝑡) 𝑑𝑡⁄
;     𝐖 = 𝐀 =

𝑤 𝑤
𝑤 𝑤  (4.40)  

With these expressions in mind, it will be possible to define the absolute kinematic 

velocity (AKV) of the reference point (PrJT) as: 

|𝑣 (𝑡)| =
𝑑𝑥 (𝑡)

𝑑𝑡
+

𝑑𝑦 (𝑡)

𝑑𝑡

⁄

 (4.41)  

which may be rewritten as: 

|𝑣 (𝑡)| = 𝐻
𝑑𝐹 (𝑡)

𝑑𝑡
+ 𝐻

𝑑𝐹 (𝑡)

𝑑𝑡
+𝐻

𝑑𝐹 (𝑡)

𝑑𝑡

𝑑𝐹 (𝑡)

𝑑𝑡

⁄

 (4.42)  

where 𝐻 , 𝐻  and 𝐻  are quadratic forms of 𝑤 : 

𝐻 = 𝑤 + 𝑤 ; 𝐻 = 𝑤 + 𝑤 ; 𝐻 = 𝑤 𝑤 + 𝑤 𝑤  (4.43)  
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If it happens that 𝑤 ≪ 𝑤  and 𝑤 ≪ 𝑤 , 𝐻 ≈ 𝑤 ; 𝐻 ≈ 𝑤 ;, and 𝐻 ≪ 𝐻 , 𝐻 . 

On the other hand, if the time derivative amplitudes of 𝐹  and 𝐹  are the same order of 

magnitude, the third term 𝐻 𝑑𝐹 (𝑡) 𝑑𝑡⁄ 𝑑𝐹 (𝑡) 𝑑𝑡⁄  might be removed from the 

expression at almost no cost in terms of information loss. In this way, an estimation of 

the AKV may be produced exclusively in terms of formant dynamics: 

|𝑣 (𝑡)| ≈ 𝐻
𝑑𝐹 (𝑡)

𝑑𝑡
+ 𝐻

𝑑𝐹 (𝑡)

𝑑𝑡

⁄

 (4.44)  

Reliable estimates for 𝑤  can be obtained from articulations involving changes in the 

positions of the reference point showing predictable dynamic changes. A very relevant 

statistical feature to describe articulation kinematics can be defined from the probability 

distribution of the AKV in (4.44), directly estimated as its normalized amplitude 

histogram over a given number bins (N) between 0 and 50 cm.s-1 as: 

• 𝐹  and 𝐹  are estimated each 2 ms using an adaptive linear predictor at an implicit 

frequency resolution of 500 Hz. 

• The AKV’s (|𝑣 (𝑡)|) is estimated from (4.44). 

• An N-bin histogram of counts by amplitudes is built from each subject’s AKV. 

The interval covered for speeds is [0, |vr|max], with |vr|max=50 cm.s-1, and N=400, 

therefore each bin size is Δbk=[|vr|max/N]=0.125 cm.s-1 wide. 

• The following histogram of counts is built for each bin bk=k∙Δbk: 

if bk-1 ≤ |vr(t)| < bk then ck=ck+1 

where ck is the number of counts for bin bk. 
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• Count histograms ck (0≤k≤N) are normalized to their total number of counts 

Ct=Σbk (0≤k≤N), therefore they could be considered approximate estimators of 

probability density functions pk=ck/Ct. 

Thence p(|vrk|) = pk will be an estimate of the AKV probability density function. This 

feature has proven to be quite relevant in differentiating dysarthric from normative speech 

(Gómez-Vilda et al., 2017a). 

4.3 Supporting methods 

4.3.1 Performance evaluation 

The main objective of this study regarding voice and articulation quality analysis is to 

create a methodological framework for establishing comparisons to be applied in the 

evaluation of dysarthria treatment performance, as it is directly linked with comparing 

the specific estimations produced during point-like assessment sessions within two 

possible scenarios: transversal or longitudinal. In the first case, features are evaluated 

against a statistical data framework produced on estimations obtained from normative or 

control sets of participants (inter-participant). In the second case, features are evaluated 

against a statistical data framework obtained from previous recording sessions out of the 

same participant (intra-participant).  

The most important question when conducting data evaluation is the experimental design, 

which must start as a search for an answer to a specific research question, therefore, a 

working hypothesis must be set forth before formulating and answering this question. 

Participants potentially affected by the disorder under study provide the target dataset. 

Participants unaffected by the disorder will provide the control dataset. Consequently, an 

experimental sample set must be defined, including target and control participants, 

establishing the inclusion and exclusion criteria for such.  
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Control participants may be drawn from the same demographic conditions as target 

participants. Sometimes, a third dataset provided by normative participants is also 

included in the study as a golden standard. Normative participants are subjects not only 

unaffected by the disorder but also presenting the best performing features, according to 

their age and health conditions, usually drawn from mid-age adults in good general health 

conditions regarding inclusion and exclusion criteria. 

Another important consideration to be taken into account is the specific statistical 

framework for the evaluations to be carried on. In this case, the methodological issues to 

be taken into account for the specificity of the analysis are the type of features to be 

evaluated, either continuous or categorical character, the data sample size, and the 

transversal or longitudinal character of the evaluation sessions. 

4.3.2 Three-way comparisons 

The usual methodology for detecting pathological behaviour is based on the comparison 

of a given set of features from a target participant against two distributions, namely from 

an assumed pathological dataset, and from a control dataset. This methodology presents 

important undesirable side effects, as the control dataset is usually integrated by 

participants matched in age. In the case of PD, the main incidence for the first diagnosis 

is in the interval from 55 to 65 years old, the peak of the distribution being around 65-75 

years old. This means that the speech of age-matched controls may be affected by ageing, 

and potential effects in phonation, articulation, and fluency might be expected. The 

introduction of a normative database from the mid-age participants has been proposed for 

studies on phonation (see subsection 6.1 and Appendix I.7) to grant a background 

reference database to compensate for the co-morbidity effects of ageing on phonation.  
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This methodology is standard in the forensic analysis of speech (Taroni et al. 2006, 

Gómez-Vilda et al., 2012), where the samples under assessment are named “the targets”, 

the control reference samples are named “the suspects”, and the reference normative 

database is named the “normative background model”. The determination of the 

logarithmic likelihood of a target sample being attributed to a given suspect sample is 

based on the probability of matching the target with the suspect distribution relative to 

the probability of the target concerning the normative background model. As Gaussian 

distributions are defined by exponentials of normalized distances between samples and 

averages, their logarithms may be associated with these compensated distances. 

Therefore, the comparisons are based on three distances, the distance from the target 

dataset to the normative dataset, the distance of the target dataset to the control dataset, 

and the distance between the control dataset concerning the normative dataset. In this 

way, the alterations potentially affecting the control dataset due to ageing are also taken 

into account in the study, to compensate for co-morbidity effects. This situation is 

illustrated in the representation of Figure 4.18. 
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Figure 4.18 Synoptic representation of three-way comparisons on the PD-HC-RS plane. 
Description: The sample comparisons defined in the manifold {x} (three-dimensional in this example) 
may be reduced to the plane where the triangle HC-PD-RS is defined. PD: Parkinson’s Disease dataset; 

HC: age-matched healthy control dataset; RS: normative background reference dataset. 
 

In a multidimensional manifold of features {xi} (in this case exemplified by a three-

dimensional case, for easy visualization) a target dataset PD represented by its centroid 

�̅�  is to be compared against a control dataset HC represented by its centroid �̅� , 

relative to the reference (normative) dataset RS, represented by its centroid �̅� . 

Independently of the dimensionality of the feature space, these three centroids will define 

a triangle within a plane. The decision to assign the target sample to the control sample 

or to the normative sample depends on the distance between the control and the normative 

samples.  
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If this distance is large, it would imply that the controls are potentially affected by co-

morbidity factors, therefore, the decision favouring a non-pathological classification 

would be safely taken only if the distance from the target to the normative samples is 

smaller than the distance from the target to the control set. If the distance from the control 

sample to the normative sample is small the decision could be taken as a simpler two-

band comparison between the target and the control datasets. 

4.3.3 Statistical analysis 

The following approaches were used, depending on each specific analysis: 

 Age-matching between the HC and PD datasets was assessed using the non-

parametric Mann-Whitney U-test on the null hypothesis of the same medians between 

same-gender populations. 

 The descriptive statistics (degrees of freedom, mean, standard deviations, three 

quartiles, skewness, and kurtosis) of each JSD dataset (MNS, MHS, and MPD for 

males, and FNS, FHC, and FPD for females) are estimated. These statistics give a 

clear picture of each distribution regarding normality. 

 Besides, each JSD dataset has been tested for normality using Lilliefors tests (Abdi 

and Molin, 2007) including Monte Carlo simulations granting a p-value standard error 

under 0.001, to complement the descriptive statistics before mentioned. 

 The JSD datasets are compared in pairs to determine their differentiation capability 

as a complementary study to the classification. The null hypothesis of equal means 

between each distribution pair under comparison was evaluated on two-tailed tests for 

Student’s-t (parametric) and for Kolmogorov-Smirnov (non-parametric), and on 

equal medians for Mann-Whitney U (non-parametric).  
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4.3.4 Mutual information 

Regarding the studies included in the present manuscript, the classification methods 

proposed used either SVMs or the MI between paired GFADs taken as probability 

densities p(x) and q(x), defined in the positive part of the real axis (x0), as the glottal 

flow is a positive definite function. The normalized MI between two given probability 

density functions may be estimated by Jensen-Shannon Divergence (JSD), see Lin 

(1991), Endres and Schindelin (2003), and Cover and Thomas (2012): 

𝐷 =
𝐷 𝑝(𝑥) 𝑚(𝑥) + 𝐷 𝑞(𝑥) 𝑚(𝑥)

2
; 

𝑚(𝑥) =
𝑝(𝑥) + 𝑞(𝑥)

2
 

(4.45)   

The variable x represents the normalized GF amplitude (0≤x≤1) and DKL is the Kulback-

Leibler Divergence between the two distributions (Salicrú et al., 1994; Georgiou and 

Lindquist, 2003), defined as: 

𝐷 (𝑝(𝑥)|𝑞(𝑥)) = 𝑝(𝑥)𝑎𝑏𝑠 𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 (4.46)   

Jensen-Shannon’s Divergence is symmetrical for p(x) and q(x): (𝐷 {𝑝(𝑥), 𝑞(𝑥)} =

𝐷 {𝑞(𝑥), 𝑝(𝑥)}), and it is normalized on the interval [0, 1]. 
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4.3.5 Classification methods 

Three different classification methods are used in this study. The first method is based on 

the three-way comparison of JSDs from each target sample i, to the respective average 

distributions (see subsection 4.3.2): 

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥) ;  

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥) ; 

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥)  

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥) ;  

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥) ; 

𝐷 | = 𝐷 𝑝 (𝑥) 𝑝 (𝑥)  

(4.47)   

where 𝑝 (𝑥), 𝑝 (𝑥), 𝑝 (𝑥), 𝑝 (𝑥), 𝑝 (𝑥) and 𝑝 (𝑥) are the averages of 

the male and female distributions regarding their respective data sets. 𝐷 | , 𝐷 | , and 

𝐷 |  are the distances of the GFAD of sample i to each average GFAD of the male 

datasets. 𝐷 | , 𝐷 | , and 𝐷 |  are the respective distances to the female datasets. A 

naïve Bisector Criterion (BiCr), will classify a subject i as non-pathological if 

𝐷 | > 𝐷 | ; 𝑚𝑎𝑙𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 

𝐷 | > 𝐷 | ; 𝑓𝑒𝑚𝑎𝑙𝑒 𝑠𝑢𝑏𝑠𝑒𝑡𝑠 
(4.48)   

and as pathological otherwise.  

The second method is based on the hierarchical clustering (HiCl) of each sample’s JSD 

concerning the PD and NS average distributions. Hierarchical clustering is an 

unsupervised methodology based on ordering a dataset of observations using a 

dissimilarity measure between all pairs of observations (James et al., 2013, pp. 390-396).  
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The input to HiCl for the male datasets is the n-tuple {𝐷 | , 𝐷 | , 𝐷 | }, and in 

the female datasets the corresponding n-tuple is {𝐷 | , 𝐷 |  and 𝐷 | }. The types 

of linkage used are the shortest distance (simple) and farthest distance (complete). The 

number of clusters is fixed adaptively, to produce the following orderings:  

 Male Dataset: Zm = {HiCl(𝐷 | , 𝐷 | )} 

 Female Dataset: Zf = {HiCl(𝐷 | , 𝐷 | )} 

where Zm and Zf are the indices classifying each subset member as non-pathological (CN) 

or pathological (CP). The clustering results are presented as dendrograms. The 

classification methods BiCr and HiCl are summarized in Figure 4.19.a. 

The third classification method is based on the GFAD as a main feature, and an SVM as 

a classifier to distinguish between PD and HC phonation (see Álvarez-Marquina et al., 

2020), according to the following protocol (see Figure 4.19.b):  

 Feature selection using ReliefF (Robnik-Šikonja and Kononenko, 2003) was applied 

to each GFAD dataset (MPD vs MHC in males, and FPD vs FHC in females). In the 

male datasets, the GFADs of the MPD set are confronted with the MHC set: 

{𝑝 |𝑝 |𝑝 |𝑝 }. In the female datasets, FPD GFADs are confronted with the 

FHC: {𝑝 |𝑝 |𝑝 |𝑝 }. The number of neighbours was varied between 1 and 50. 

Subsets of N features (15≤N≤120) were selected in descending order following the 

ranking provided by ReliefF.  
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 Afterwards, each feature subset pair (MPD vs MHC in males, and FPD vs FHC in 

females) was fed to an SVM with a Gaussian radial basis function kernel (RBF) 

following Chang and Lin (2011). Cross-validation was used on all the datasets 

distributed in 10 groups (10-fold cross-validation) testing the combinations of the 

SVM grid space parameters (C, γ), as C=[2-3, 2-2,..., 212] and γ = [2-1, 2-2, ..., 2-10]. 

Sensitivity (STV), specificity (SPC), and accuracy (ACC) for each best-performing 

subset of N features were estimated on the average of 1000 runs over the 10 groups 

(1000 runs of the 10-fold cross-validation). 

 
Figure 4.19 Comparison between data flows in hierarchical clustering and SVM classification. 

Description: a) hierarchical clustering and b) SVM classification. The main difference between both 
methods is the use of JSD (green box) in BiCr or HiCl or specific features selected from the GFAD 

(yellow box) producing the reduced feature subset BGFAD used in SVM classification. Whereas JSD 
preserves information contents, BGFAD is a reductionist version of GFAD in terms of information 

contents. 
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In all cases, the classification performance was estimated according to the standard 

definition for STV, SPC, and ACC, as well as the factor F111: 

𝑆𝑇𝑉 =
𝑇𝑃

𝑃
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑆𝑃𝐶 =
𝑇𝑁

𝑁
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝐴𝐶𝐶 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

𝐹1 =
2 𝑇𝑃

2 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(4.49)   

 

where TP is true positives, TN is true negatives, FP is false positives and FN is false 

negatives. 

4.3.6 Transversal vs longitudinal assessment 

The specificities of data analytics in the medical field are quite different than in other 

areas. The main axiomatic consideration regarding this field can be summarized in the 

sentence “There are no diseases, only sick individuals” on the best tradition of Richard 

Koch’s ethics of Medicine (Töpfer and Wiesing, 2005a and 2005b). According to this 

observation, «Diagnosis is not the assignment of a term of a species to a patient’s disease: 

this would not do justice to the individuality of a clinical manifestation and would fail to 

provide a reason for individual therapy. Nevertheless, the terms assigned to diseases, 

although fictitious, are not useless, but assist in differentiating various phenomena» 

Therefore, the orientation of statistical studies must be quite different either if the target 

is centered on the disease, or if it is centred on the patient.  

 

11 The F1 score is a single metric that takes into account both precision and recall (sensitivity) of a diagnostic 
test or model. It is the harmonic mean of precision and recall, providing a balanced evaluation when there 
is an uneven class distribution. The F1 score ranges from 0 to 1, with 1 being the best possible value (perfect 
precision and recall). 
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This dichotomy is addressed by Rose (2001) as «Aetiology confronts two distinct issues: 

the determinants of individual cases, and the determinants of incidence rate. If exposure 

to a necessary agent is homogeneous within a population, then case/control and cohort 

methods will fail to detect it: they will only identify markers of susceptibility. The 

corresponding strategies in control are the “high-risk” approach, which seeks to protect 

susceptible individuals, and the population approach, which seeks to control the causes 

of incidence». The approaches to the study of PD disorder should find two different 

orientations: the statistical comparison of common features from a population of affected 

participants with the same features from a cohort of non-affected control individuals 

(transversal approach), and the statistical comparison of specific features known to be 

meaningful and statistically relevant from affected participants each on their own at 

different stages of the disorder progress in the timeline (longitudinal approach). The 

transversal approach should be designed to provide information on common features 

altered as a result of the disease for instance, in establishing the susceptibility (disorder-

centred). The longitudinal approach should be designed to monitor the progress of the 

disorder on each patient taken individually, either because of pharmacological, surgical, 

or rehabilitative treatment (patient-centred). The selection of paired control participants 

and normative references is critical in the transversal approach, whereas it is less 

meaningful in the case of longitudinal studies. The transversal approach requires the 

design of the normative and control sets, in the sense that the normative set is to be 

configured by mid-age participants and declared free of any pathological profile after 

clinical inspection. The number of participants should be large enough to fulfil the limit 

theorem.  
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The paired control set would require a minimum similar number of participants in the age 

range of the PD participants, which means that the influence of potential co-morbidities 

due to ageing will be present in both sets, making it difficult to establish clear cuts 

between some meaning features, which will affect their statistical relevance. Inclusion 

and exclusion criteria and demographic descriptions will constitute a necessary 

requirement to provide a clear framework for the study. A strong condition regarding 

transversal studies is gender separation because phonation and speech are behavioural 

traits highly impacted by the impact of sexual hormones, therefore, gender separation is 

mandatory because the larynx is the second more sexually hormone-affected structure in 

the human body (Hertrich and Ackermann, 1995; Abitbol, Abitbol, and Abitbol, 1999; 

Inamoto et al., 2015; Cirillo et al., 2020). The longitudinal approach will require a large 

number of estimations from the same participant in the timeline, which means frequent 

inspections and exhausting recording sessions, the normative and control sets being 

irrelevant, as well as demographic information. The statistical methods associated with 

the study are also different in both approaches, regarding transversal studies, parametrical 

tests being acceptable once the conditions of normativity are assessed on the features 

involved. If this would not be the case, non-parametric approaches could be used instead. 

In the case of longitudinal studies, having in mind that the availability of frequent tests in 

the timeline is cumbersome and exhausting for persons affected by reduced mobility, the 

use of mutual information tests for pairwise comparison would be preferable.  

Hypothesis casting is also strongly dependent on the character of both approaches. In the 

case of transversal studies, the susceptibility of a given set of features concerning 

environmental, social, ageing, or other grouping conditions is a clear objective. In the 

case of longitudinal studies, the susceptibility of a given set of features concerning 

treatment protocol specificities would be the main target. 
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4.3.7 Specific character of the studies presented 

The final objective of any feature classification study is to provide the highest 

performance scores regarding sensibility, specificity, and accuracy in the classification 

tasks. Not being far from that intentionality, the orientation of the present studies is 

essentially different, as they are oriented to explore deeper aspects of the inner 

explicability, interpretability, and causability beyond mere performance score 

assessment. 

In this sense, it is to be recognized that there has been a lot of interest in developing signal-

processing approaches to mine speech data, extract dysarthria and dysphonia measures, 

and employ statistical machine-learning algorithms for biomedical speech applications 

(Tsanas, 2013; Brabenec et al., 2017; Arora and Tsanas, 2021; Arora et al., 2021; Tsanas, 

Little, and Ramig, 2021). However, to a large extent, these studies do not provide the 

same level of insights that mechanistic models can provide, i.e., models that build on the 

physical principles of voice production to characterize the underlying vocal production 

mechanism and PD-related pathology (Duffy, 2013). Exploring a mechanistic model can 

provide new insights into the underlying physiological processes, which in turn might 

inspire further signal processing algorithms for the characterization of speech signals. The 

present exploratory studies are a first step towards describing sustained vowel phonation 

and specific diadochokinetic tests recorded from participants with PD (PwP), age-

matched Healthy Control participants (HC), and normative mid-age Reference 

Participants (RSPs) in terms of the Glottal Flow Amplitude Distributions (GFAD), Vocal 

Fold Body Stress (VFBS), and Absolute Kinematic Velocity (AKV) to gain an insight on 

possible different behavioural properties depending on age, disorder, and gender,  would 

allow a future wider study on more populated databases and classification methods.  
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To achieve this, specific estimations of the GFAD, VFBS, and AKV in terms of amplitude 

distributions of tensor and relaxer NMA are used as potential predictors of dysarthric 

behaviour during the utterance of sustained vowel and diadochokinetic phonations from 

PwP and HCs. This would open the opportunity of using phonation in regular clinical 

practice to help in better detection, assessment, and monitoring of PD and other 

neurodegenerative disorders, as well as in advancing neurolinguistics studies.
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CHAPTER 5 
 

 

5 Experimental studies based on phonation and articulation 
models 

This chapter is devoted to the application of the methods described in the previous section 

to several studies regarding PD characterization, providing an exemplification of the 

methods introduced previously and how they can be used to characterize or represent the 

manifestation of PD. In this examination, the first characterization of PD speech is based 

on the perspective of glottal biomechanics. This approach seeks to isolate the distinctive 

phonation patterns associated with PD, shedding light on how the biomechanics of the 

vocal folds are altered in PwP. In a second study, the APM deciphers the subtleties of 

articulatory speech movements in PD in the upper jaw, tongue, and pharynx structures 

responsible for controlling the airflow through the upper respiratory cavities. Together, 

these studies offer a comprehensive understanding of PD speech from two different 

perspectives: biomechanics and articulatory behaviour. 

5.1 Characterization of PD speech from glottal biomechanics  

This subsection delineates two distinct approaches to characterizing phonation in 

individuals with PD. This chapter is part of the work published in Gómez-Rodellar et al. 

(2019c, 2020a, and 2023). All the databases used and processed can be referred to in 

Appendix I. The outcomes of these studies will be presented in subsection 6.1.  

There are two ways glottal biomechanics have been characterized. The first approach is 

based on the GFAD (Glottal Flow Amplitude Distribution), such as the glottal flow and 

source.  
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The second approach is based on the EEG-band decomposition of the VFBS (Vocal Fold 

Body Stress) to differentiate PD phonation from age- and gender-matched healthy 

controls (HC). These approaches put the focus on the observation of amplitude properties 

within the GS pattern. As introduced in prior sections, this analysis yields insights into 

the coordination of muscles involved in vocal cord tension control. By understanding the 

interplay between the vocal fold tensor (cricothyroid) and relaxer (thyroarytenoid) 

muscles a distinct speaker profile can be constructed. Using divergence metrics, it is 

possible to calculate the relative difference between the centroid of a reference group and 

an individual entry, allowing for a differentiating quantifiable metric.  

5.2 Study based on the GFAD 

The GS and GF can be understood as the pressure build-up increase in the larynx and the 

airflow release through the glottis during phonation, respectively. These signals are quasi-

periodic, meaning that a similar repeating pattern is present in each phonation cycle, 

although not identical (the time interval between two neighbouring pulsations of the vocal 

folds). Variations between periods both in amplitude and in frequency are a measure of 

stability and regularity which are of great interest for their semantic potential. It is 

expected that a stable and regular phonation would produce similar signals in 

neighbouring phonation cycles, assuming they are affected by the same production 

condition. The more similar the phonation cycles are to each other, the more regular and 

stable the phonation will be. The alterations to phonation may be of two conditions: either 

presenting jitter (alterations of the phonation cycle duration), or shimmer (alterations of 

the signal amplitude), or both of them. Other perturbations affecting the shape of the 

glottal signals, will appear as deformations on the theoretical L-F time-amplitude pattern.  
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These characteristics are exploited to distinguish altered from normative phonation using 

GFAD-based divergence metrics such as Jensen-Shannon’s (Lin, 1991, Cover and 

Thomas, 2012). This metric is based on information theory, providing a higher score the 

less similar the probability density functions of the signals under test are.  

5.2.1 Dataset description 

This study is based on the use of two different datasets. The first one is a subset of a 

speech database (PARCZ) collected at St. Anne’s University Hospital in Brno (Czech 

Republic), containing recordings produced by PD patients of both genders. This database 

contains also speech recordings and demographic information from age-matched HC 

subjects. The details of the participants included in the study and the recording conditions 

and protocol are described in depth in Appendix I.1 and Appendix I.2. A brief summary 

is provided here to maintain the connecting narrative. 

The second dataset is a subset of a speech database (HUGMM) containing vowel 

emissions from normative participants, collected at Hospital Universitario Gregorio 

Marañón of Madrid (HUGMM), and it is described in detail in Appendix I.6. 

The data selected for the study were recordings of the sustained vowel [a:] from 24 male 

and 24 female PD participants from the PARCZ database. The age distribution of the PD 

male dataset was between 49 and 78 years (mean=67.4, standard deviation=9.1). The PD 

female dataset included participants between 49 and 78 years (mean=66.6, standard 

deviation=7.2).  
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Similarly, recordings of the sustained vowel [a:] from 24 male and 24 female HC 

participants selected from PARCZ. The HC male dataset included participants between 

49 and 83 years old (mean = 65.1, standard deviation = 8.9). The HC female dataset 

included participants between 49 and 78 years old (mean = 62.7, standard deviation = 

9.1). The specific demographic and clinical details of both datasets are given in Table 

App. 1 (Appendix I.2). 

In the same way, sustained vowel utterances of [a:] from 24 male and 24 female 

participants were selected from the HUGMM database (NS male and female datasets). 

The NS male dataset included participants between 21 and 62 years old (mean = 42.3, 

standard deviation = 11.2). The NS female dataset included participants between 20 and 

59 years old (mean=37.3, standard deviation=11.7). The biometrical information from 

NS participants is given in Table App. 2 (Appendix I.4).  

The statistical significance of the difference between the age ranges of PD vs HC male 

and female datasets was evaluated under the null hypothesis of equal means using the 

non-parametric Mann-Whitney U test. The null hypothesis could not be rejected under a 

0.05 level, casting p-values of 0.307 and 0.074 respectively for the male and female 

datasets. The rejection in the case of the female dataset (PD vs HC) is slightly over the 

limit of 0.05, this being one of the potential study limitations.  

The protocol and instrumentation details of the recordings included in the PARCZ subset 

are described in Appendix I.1. Similarly, the corresponding details from the HUGMM 

subset have been included in Appendix I.6. 
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 The quality and compatibility of recordings and acoustic analysis were carefully 

evaluated directly on the glottal signal estimates generated from recordings of both 

databases, in terms of signal-to-noise levels, bandwidth, and saturation limits to grant the 

degree of compatibility of the experimental methodology used in the study. No relevant 

factors affecting the reliability of the study were found.  

5.2.2 Methodological procedures 

The following study is based on the GFAD of each vowel utterance. These distributions 

are estimated by inverse filtering as described in the following steps: 

 Recordings of the vowel [a:] from Male Normative Subjects (MNS), Female 

Normative Subjects (FNS), Male Healthy Control (MHC), Female Healthy 

Control (FHC), Male Parkison’s Disease (Male Parkinson’s Disease (MPD), and 

Female Parkinson’s Disease (FPD). Each of these samples is low-pass filtered 

(antialiasing) and down-sampled to 16 kHz. This sampling rate preserves most of 

the frequency contents of glottal signals, which are known to be under 8 kHz, and 

equalises the effects of the recording platforms and settings granting comparative 

signal quality standards between both databases.  

 The ONPT transfer function is evaluated by a 20-pole inverse adaptive lattice-

ladder filter (Deller, Proakis, and Hansen, 1993) based on iterative adaptive 

inverse filtering (IAIF: Alku et al., 2019). The lattice structure reconstructs the 

tube chain, the propagating waves, and the reflection coefficients of the chain, and 

the modified Rothenberg’s model explains the non-linear source-filter interaction. 

The ONPT transfer function is removed from the spectral contents of the speech 

signal (inversion), producing a filtering residual. A description of the inversion 

filter details can be found in Gómez-Vilda et al. (2009).  
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 The inverse filtering residual is integrated twice to estimate the GS and GF as 

𝑝(𝑥 , 𝑡), and 𝑢 𝑥 , 𝑡 , respectively. 

 The GFAD is estimated by a normalized 50-bin amplitude histogram of the GF 

(Hi = hi/Σihi, where h is the amplitude histogram and i is the bin number). 

 Once the histogram for each participant is extracted each element can be 

compared using the divergence metrics defined in subsection 4.3.4, according to 

expression (4.45). Each data subset (MNS, FNS, MHC, FHC, MPD, and FPD) is 

clustered around a centroid, estimated as the average histogram of the individual 

samples within each group. Each instance can be compared to this set of centroids 

and given a score according to the divergence metric,  acting as a distance from 

the individual instance to the cluster of a particular group (4.47), being: 𝑝 (𝑥), 

𝑝 (𝑥), 𝑝 (𝑥), 𝑝 (𝑥), 𝑝 (𝑥) and 𝑝 (𝑥) the divergence between each 

individual entry to the respective reference centroids.  Each one of these clusters 

provides a position on a hyperplane where each instance is positioned. It is of 

relevance to mention that all instances were separated according to sex and 

processed accordingly. 
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 Using these divergences as pseudo-distances it is possible to provide an estimation 

for the proximity of a given instance to a group, or as the likelihood of belonging 

to a particular subset.  Once this quantitative element is extracted, several 

classification methods can be used, as has been commented on in subsection 4.3.5. 

The simplest classifier is a naïve BiCr which labels each instance with the 

category of lowest divergence according to expression (4.48). Another 

classification method is based on the HiCl of each sample’s JSD concerning the 

PD and NS average distributions, ordering the dataset using a dissimilarity 

measure between all pairs of observations providing a relationship between 

groups of instances. A third method is based on an SVM classifier to distinguish 

between PD and HC phonation classifies each instance according to each of these 

categories. The results of this study are presented in subsection 6.1.1. 

5.3 Study based on the VFBS 

5.3.1 Working hypothesis 

The VFBS may be seen as a correlate of the biomechanical tension on the musculus 

vocalis resulting from laryngeal NMA. The VFBS is cycle-synchronously estimated 

following subsection 4.1.9, therefore, it is expected that a stable and regular phonation 

would produce similar VFBS estimates on neighbouring phonation cycles. The more 

neighbouring estimations resemble each other, the more regular and stable the phonation 

will be. A very important property of VFBS is its direct relationship with the NMA 

governing laryngeal nerves (see subsection 2.4.1). This circumstance is exploited to 

distinguish altered from normative phonation using the EEG-band-related description of 

the VFBS and Jensen-Shannon divergence (see subsections 4.3.4 and 6.1.2).  
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This description splits the VFBS profile into each corresponding EEG band. The rationale 

behind this is that the VFBS is a direct result of NMA, influenced by the tension and 

stretching of larynx muscles that condition the patterns of the glottal source. Since NMA 

is the outcome of brain activity, some residual information in the EEG-band range would 

necessarily be present in the GS, leaving an imprint on the phonation signal. This 

relationship between the NMA and the VFBS would be based on Cortical Muscle 

Coupling (CMC: Brown et al., 2009). The GS produces the Vocal Sound Pressure (VSP) 

that propagates through the ONPT; therefore, a simplified model of the conceptual 

connection chain can be defined as NMAVFBSGSVSP.  

It is a well-known fact that alterations in NMA coherence, as observed through the 

analysis of the EEG bands, may be present in motor-related disorders (Salenius et al., 

2002; Feng et al., 2021; Barios et al., 2021). The working assumption is that alterations 

in the NMA might be in part modelled from VSP using model inversion, as reverting the 

before mentioned conceptual connection chain: VSPGSVFBSNMA. This 

possibility would benefit from ongoing studies on CMC, as it can be used to explore the 

coupling relationship of different functional frequency bands (Gao et al., 2018; 

Colamarino et al., 2021).  

Therefore, this study proposed using long-lasting utterances of an open vowel as [a:] to 

conduct the reconstruction of the way-back path from VSP to EEG-related frequency 

bands to produce functional phonation descriptions in terms of NMA, and to use them in 

detecting functional phonation improvements after rTMS stimulation on the 

frontotemporal gyrus, an area of the brain responsible for acoustic proprioception. The 

rationale being that by stimulating such area local neuron populations, responsible for 

controlling and monitoring sound perception, become more active leading to better 

speech production as they have a stronger influence on premotor areas.  
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The use of maintained phonations of [a:] in speech pathology studies is well suited for 

functional phonation evaluation, this fact being recognized by its wide application in 

clinical practice, given that slight variations in NMA will be immediately reflected in GS, 

and thus, easily tracked and monitored. 

Having fixed the conducting narrative justifying the reconstruction process from VSP to 

NMA, it should be decided which frequency bands would be of higher interest to further 

explore their application. It would seem reasonable to focus on the activity in the ϑ- and 

γ-bands following the description of the nonlinear character of motor unit recruitment in 

muscular agonist-antagonist activation in Darbin and Montgomery (2022), taking into 

account the direct neuromotor pathways involving the cortex-thalamus-BG (Ctx-Th-BG) 

circuitry activating the cricothyroid and thyroarytenoid muscles, and the projection of the 

organized oscillators that explain the ultimate nonlinear character of motor unit activity 

involved in the laryngeal function, because the ϑ-band seems to be strongly related to 

unstable nonlinear NMA (Solomon et al., 2017), whereas, on the other hand, the ϑ-γ 

coupling should be related to the Ctx-Th-BG activity (Aguilera et al., 2022).  

A primary objective of the study is to evaluate the functional competence of phonation in 

TMS participants using the simplified signal model inversion to reconstruct the way-back 

path as VSPGSVFBSNMA. A secondary objective is based on the existence of 

strong relationships between muscular contraction under biomechanical drive and 

neuromotor EEG activity on the brain areas responsible for premotor and motor control 

(Chiang, Wang, and McKeown, 2012; Gao et al., 2018; Manríquez et al, 2019) in the 

sense that the laryngeal motor activity is controlled by larynx muscles, inducing the 

contraction of the thyroarytenoid muscle, estimated on the unbiased VFBS using 

nonlinear projection actuators transforming neural discharges into muscle contraction. 
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This modelling would allow reverse system inversion, provided that adequate actuator-

inverse operators could be designed based on system identification methodologies. 

Therefore, it would be possible to advance in the projection of the NMA estimated from 

phonation biomechanics over the brain area activity, measured by the EEG. 

According to the primary objective, the present work is intended to assess the validity of 

features estimated on the glottal neuromechanics to characterize the stability of phonation 

in pre-stimulus and post-stimulus vocal emissions from a limited set of PD participants 

submitted to repetitive transcranial magnetic stimulation (rTMS), using a methodology 

aligned with the secondary objective. 

5.3.2 Dataset description 

This study has been conducted on data provided by the Applied Neuroscience Research 

Group, CEITEC, Masaryk University, Brno, Czech Republic, from PwP participants 

showing mild to moderate HD directly related to PD, following a program of rTMS, as 

described in Appendix I.3 and Appendix I.4. All were on stable dopaminergic medication 

for the duration of the whole study. The study included cases recorded at pre-stimulus 

and after four post-stimulus sessions spaced in time. This reduced the number of cases to 

18 out of the 33 participants included in the original database. Half the participants 

received an active stimulation, and half submitted to a sham stimulation (see Appendix 

I.3 for more details). The demographic description of the participants is given in Table 

5.1 and Table App. 2 (Appendix I.4). The cohort distributions are broadly similar in terms 

of UPDRS grade (females: 16.6±4.1; males: 12.3±3.9) and age (females: 74.6±3.0; males: 

69.7±8.4). 
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Table 5.1 Participants’ demographic and clinical data. 

A: active stimulation; S: sham stimulation; F: Female; M: Male; Y: 
years. UPDRS-III: Unified Parkinson Disease Rating Scale, section 
III (motor section). 

PwP code (pre) Active/Sham Gender Age (Y) UPDRS-III 
0100 A F 71 10 
0800 A M 58 9 
1100 A M 73 14 
1200 A M 72 21 
1400 A M 64 10 
1600 S F 79 20 
1700 S M 70 16 
1800 S M 61 9 
1900 S M 77 8 
2000 A F 76 28 
2200 S M 66 13 
2300 S M 55 7 
2400 S M 72 10 
2500 S M 81 14 
2600 S F 73 16 
2700 A M 77 14 
2800 A M 80 15 
2900 A F 74 17 

 

The recording protocol established that each participant had to go through a baseline 

assessment (pre-stimulus evaluation at the first session: T0) before being submitted to ten 

stimulation sessions (stimulation process) within two weeks; a follow-up evaluation 

session two weeks after stimulation (post-stimulus at T1); additional follow-up 

evaluations around six weeks (post-stimulus at T2), and around ten weeks (post-stimulus 

at T3). The 18 participants of the subset included in the study submitted also to a fourth 

post-treatment evaluation session around fourteen weeks after the stimulation process 

(post-stimulus at T4). The evaluation dates are listed in Table App. 3 (Appendix I.5). 

Each participant in the study was randomly assigned to active or sham stimulation. Audio 

recordings of several spoken tests from each participant were taken before (pre-stimulus) 

and after (post-stimulus).  
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5.3.3 Methodological procedures 

The study was conducted by taking 4 s fragments of selected long emissions of a sustained 

vowel [a:] (see Appendix I.5), because this interval, selected 2 s after the vowel onset to 

avoid phonation start transients, provides the maximum duration to prevent fatigue effects 

on phonation (Manríquez et al., 2019). The stimulation protocol and speech recording 

conditions are described in detail by Brabenec et al. (2021). The processing methods for 

the estimation of NMA descriptions consisting of EEG-aligned frequency bands of the 

biomechanical vocal fold stiffness estimated from speech recordings will be commented 

on in what follows: 

 Fragments of 4 s long from the recordings of the vowel [a:], at a sampling rate of 16 

kHz were selected between the time instants at 2 and 6 s, to skip potential vowel onset 

and decay effects. This sampling rate preserves most of the frequency contents of 

glottal signals.  

 The ONPT transfer function was evaluated by a 24-pole inverse adaptive lattice-

ladder filter. The size of the filter was fixed using the Akaike’s criterion (Cavanaugh 

and Neath, 2019) by 1.5 times the sampling frequency divided by 1000, for a sampling 

frequency of 16 kHz, the size of the filter set 24. The adaptive lattice-ladder inverse 

filter estimates a prediction-error polynomial reducing the speech segment being 

analysed s(n) to a residual r(n) by classical deconvolution as 𝑟(𝑛) = ℎ (𝑛) ∗ 𝑠(𝑛), 

where ℎ (𝑛) is the impulse response of the prediction-error polynomial emulating the 

inverse transfer function of the ONPT, such that 𝐻 (𝜔) = ∑ ℎ 𝑒 , where 𝑗 =

√−1, and 𝜔 is the angular frequency, therefore the lattice structure reconstructs the 

tube chain structure of the ONPT, and its associated transfer function is removed from 

the spectral contents of the speech signal (Gómez-Vilda et al. (2009).  
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 The GS was estimated in pitch-synchronous cycles (Naylor et al., 2007) by 

numerically integrating the inverse filter residual. 

 The VFBS (ξ), given in N.m-1 was estimated from the spectral tilt of the GS adjusted 

on a 2-mass model of the vocal fold biomechanics (Gómez-Vilda et al., 2009; 

Meghraoui et al., 2021).  

 The VFBS was de-biased and de-trended by a moving-average filter. 

The working hypothesis established that VFBS is the direct consequence of the NMA of 

the cricothyroid and thyroarytenoid muscles. To sustain a given stable phonation 

frequency F0, a delicate equilibrium between both activations is necessary (Brown et al., 

2009). This equilibrium is represented by an average baseline value of VFBS (trend). 

Oscillations around this trend would reproduce small-signal alterations of the NMA, 

therefore, a de-trended VFBS would produce a good estimate of neuromotor instability 

of agonist-antagonist misadjustment. To obtain a frequency-band description of 

neuromotor instability, the de-trended VFBS was processed by a bank of fifth-order 

Butterworth band-pass filters tuned at the respective EEG-related frequency bands, (δ: 

f≤4Hz; ϑ: 4Hz<f≤8Hz; α: 8Hz≤f≤16Hz; β: 16Hz<f≤32Hz; γ: f>32Hz; μ: 8Hz<f≤12Hz). 

As a result, a set of de-trended vocal fold stiffness frequency-band time signals 𝜉 (𝑛) is 

produced, where i=(0,..., I) is the evaluation session index (I=4), j=(1,…, J) is the 

participant index (J=18), and k=(1,…, K) is the frequency band index (K=6), pointing to 

the six frequency bands defined above, and n is the time index. 
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5.3.4 Data analysis 

An estimation of the VFBS was produced using the methods described in subsection 

4.1.6, as it is assumed to be directly related to the activity of neuromotor areas responsible 

for laryngeal control during phonation. This signal has been decomposed in frequency 

bands 𝜉 (𝑛) corresponding to EEG ϑ-γ activity following the working hypothesis defined 

in subsection 5.1.2.1. The amplitude distributions of each EEG-related frequency are 

estimated from their histograms. Distributions from post-stimulus recordings were 

compared with the corresponding ones from pre-stimulus conditions, and two methods 

were designed to produce explainable interpretations of potential behavioural changes in 

the phonation function.  

The comparison methods proposed were based on log-likelihood ratios and hypothesis 

tests. The log-likelihood ratio between two given probability density functions (pdfs) 

𝑝 (𝜉) and 𝑝 (𝜉) can be defined as: 

𝜆 𝑝 |𝑝 = 𝑙𝑜𝑔 𝑝 (𝜉) 𝑝 (𝜉)⁄ 𝑑𝜉
⬚

; (5.1)   

where Ω is the estimation interval. Besides estimating the similarity between two 

distributions, this ratio provides the sense of the comparison. Assuming a longitudinal  

character of the study, the distributions under study 𝑝 (𝜉) correspond to the post-stimulus 

phonation to be compared to the pre-stimulus phonation 𝑝 (𝜉), therefore, two possible 

situations are to be considered, i.e. either 𝑝 (𝜉) is more dispersed than 𝑝 (𝜉), such as  

Var{𝑝 (𝜉)} > Var{𝑝 (𝜉)}, or that  𝑝 (𝜉) is less dispersed than 𝑝 (𝜉), such as Var{𝑝 (𝜉)} 

< Var{𝑝 (𝜉)}, where Var{.} is the variance of the distribution.  
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In the first case, let’s assume 𝜉 ∈ Ω   to be the interval where 𝑝 (𝜉) > 𝑝 (𝜉), and 𝜉 ∈ Ω  

to be the interval where 𝑝 (𝜉) > 𝑝 (𝜉), given that Ω ⊂ Ω and  Ω ⊂ Ω provided that 

Ω ∪ Ω = Ω, and Ω ∩ Ω = ∅. Therefore, from (61(5.1)) it will follow that 

𝜆(𝑝 |𝑝 ) = 𝑙𝑜𝑔{𝑝 (𝜉) 𝑝 (𝜉)⁄ }𝑑𝜉
⬚

+ 𝑙𝑜𝑔{𝑝 (𝜉) 𝑝 (𝜉)⁄ }𝑑𝜉
⬚

 (5.2)  

where: 

𝐼 = 𝑙𝑜𝑔{𝑝 (𝜉) 𝑝 (𝜉)⁄ }𝑑𝜉
⬚

< 0; 

𝐼 = 𝑙𝑜𝑔{𝑝 (𝜉) 𝑝 (𝜉)⁄ }𝑑𝜉
⬚

> 0; 

(5.3)    

It may be seen that the sign of both integrals is the opposite, therefore it will be expected 

that in the case of unimodal distributions, when there is a strong difference in variance 

Var{𝑝 (𝜉)} » Var{𝑝 (𝜉)}, 𝑝 (𝜉) will be much narrower than 𝑝 (𝜉), and consequently Ω  

will be much smaller in size than Ω , and 𝜆(𝑝 |𝑝 ) = 𝐼 + 𝐼 < 0. Conversely, when 

Var{𝑝 (𝜉)}«Var{𝑝 (𝜉)} the opposite condition will prevail and 𝜆(𝑝 |𝑝 ) > 0. This is 

especially evident in normal and quasi-normal distributions.  

To put it otherwise, given the properties of probability densities, if 𝑝 (𝜉)>𝑝 (𝜉) on the 

interval ξ ∈ Ω , it will be most likely expected for 𝑝 (𝜉) to be narrower (lower variance) 

than 𝑝 (𝜉), or in other words, that the generating process of 𝑝 (𝜉) would produce less 

dispersed outcomes (corresponding to a more stable feature) than that of 𝑝 (𝜉). 

Therefore, it would be reasonable to expect that functional improvements in phonation 

will produce lower variance post-stimulus frequency band distributions, and therefore, 

positive log-likelihood ratios, and on the contrary, worsening phonation conditions will 

produce negative log-likelihood ratios. 
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In their turn, the significance of pre- and post-stimulus feature distributions was assessed 

by Mann-Whitney U-tests on the null hypothesis of equal medians, because typically 

𝑝 (𝜉) distribution patterns might differ from normality. The tests were carried out on 

EEG-related band-frequency feature samples  𝜉 (𝑛), therefore, hypothesis tests for a 

given participant j and a given feature k would be conducted on each post-stimulus sample 

(i=1…I) concerning the pre-stimulus one (i=0), with I=4 being the number of post-

stimulus recordings, as: 

ℎ = 𝑇 𝜉 (𝑛), 𝜉 (𝑛)  (5.4)   

where 𝑇 𝜉 (𝑛), 𝜉 (𝑛)  is the Mann-Whitney U-test between pre-stimulus and post-

stimulus samples  𝜉 (𝑛), and 𝜉 (𝑛), hjk being the p-value estimated by the test, assuming 

that ergodic conditions apply (Papoulis, 1991).  

The above-described methods allow determining the behaviour of each frequency band 

based on log-likelihood estimations (5.1) to explore whether these features improve 

significantly as a result of the intervention by rTMS, with special attention to which 

frequency bands would be more sensitive to changes in functional behaviour. To get an 

overview of the general behaviour of potential improvements regarding a specific 

participant, a global score would be more suitable than a partial one. In this case, the 

averages over time of each feature sample 〈𝜉 (𝑛)〉 were used to assess functional 

improvements. As 𝜉 (𝑛) is an unbiased estimation of vocal fold stiffness, it may be 

associated with the tremor (oscillating instability) of the vocal fold around a given trend. 

Its amplitude is expected to be larger the more acute the functional disorder affection of 

each participant’s phonation. Therefore, lower values of 〈𝜉 (𝑛)〉 will be associated with 

a less unstable phonation, and with larger stimulation beneficial effects.  
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The following definition was used as a normalized weighted score associated with each 

frequency band feature per evaluation session: 

𝑐 =
〈𝜉 (𝑛)〉 − 〈𝜉 (𝑛)〉

〈𝜉 (𝑛)〉
𝑤  (5.5)   

where the weight 𝑤 = (𝑑 − 𝑑 ) (𝑑 − 𝑑 )⁄  is a normalizing factor to take into account 

the time interval between each post-stimulus date  di and the corresponding pre-stimulus 

date d0 normalized to the longest interval (𝑑 − 𝑑 ) in days. In this way, long-lasting 

beneficial effects were given larger importance than short-duration effects. As it may be 

easily checked, improving phonation features produces negative scores 𝑐 < 0.  

Another relevant score was defined on the progression trend of potential phonation 

improvements, based on the first difference of average estimations between successive 

recordings, as: 

𝑑 = 〈𝜉 (𝑛)〉 − 〈𝜉 (𝑛)〉 (5.6)   

therefore, progressive improvements in a given feature would produce also negative 

scores 𝑑 < 0. Both scores, for relative and progressive improvements, were fused into 

a single score as 𝑔 = 𝑐 + 𝑑 . The total score per participant was defined as the average 

of all post-stimulus evaluation sessions and all frequency bands: 

𝑔 =
1

(𝐼 − 1) ∙ 𝐾
𝑔  (5.7)   

where I-1 is the number of post-stimulus evaluation sessions (four in this study), and K is 

the number of frequency bands considered (five in the present case, from δ to γ). 
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5.4 Characterization of PD speech by the articulation projection model 
(APM) 

5.4.1 Experimental description 

In this study on articulation, the biomechanical system of the jaw-tongue defined in 

subsection 4.2.1 will be used for the characterization of PD HD, to estimate the 

neuromotor behaviour of the system, and provide specific markers of proper or improper 

NMA during vowel utterances. This dataset includes speech, accelerometry, and sEMG 

data from eight Spanish native speakers (four males and four females, stage 2 on H&Y 

scale) who were recruited from a PD patient association in the metropolitan area of 

Madrid (Asociación de Pacientes de Parkinson de Alcorcón y Móstoles, APARKAM), as 

well as from eight HC age-paired volunteers (four males and four females) participating 

in the study. Figure 5.1 shows the instrumentation used in the simultaneous recording of 

speech, chin acceleration, and sEMG. The sEMG on the masseter was recorded, as well 

as the acceleration on the chin, simultaneously with the speech signal during the utterance 

of specific diadochokinetic exercises, as commented in Appendix I.9.  



Unveiling the Impact of Neuromotor Disorders on Speech: A structured approach 
Combining Biomechanical Fundamentals and Statistical Machine Learning 

 
 

187 
 

 

Figure 5.1 Signal acquisition set-up for speech, sEMG, and 3DAcc. 
Description: Two sEMG electrodes are placed on the longitudinal ends of the masseter 

(differential pair: d1, d2) and one on the forehead (reference: r). The 3D accelerometer is fixed 
to the chin (a). A cardioid clip microphone is attached to the collar (m). 

 

The selection of the masseter as the target muscular structure obeys the following reasons: 

it is a powerful muscle developing a strong sEMG when contracting, it is accessible 

(beneath the caudal section of the cheek), it may modify strongly the oral cavity when 

contracting or relaxing leaving a clear acoustic signature in formants, and its 

biomechanical activity is well understood. Further details on the demographic 

information relative to the participants as well as on instrumentation and protocol are 

provided in Table App. 5 (Appendix I.8). 

In the present study only the recordings from the utterance of the diphthong 

[…aiai…] were used in the estimation of W in expression (4.29) by multiple 

regression because this diphthong produces the widest sweeps of formant dynamical 

patterns associated to the high-low and forward-backwards displacement of PrJT.  
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This decision is justified because this sequence presents the advantage of being mainly 

controlled by the action of the masseter, a powerful muscle producing clear sEMG 

recordings. 

5.4.2 Projecting formant dynamics onto articulation kinematics 

The accurate estimation of the first two formant displacements as expressed in (4.30) is 

essential to the study. The procedures used in formant estimation are based on adaptive 

linear prediction as described in subsections 4.1.6 and 4.2.2, built on a previous in-depth 

study (Gómez-Vilda et al., 2019b). The details of format estimation are briefly described 

as follows: 

 The speech signal x(n) was bandlimited (low-pass filtered) to 4 kHz by a 4-th 

order Butterworth filter. 

 The speech was divided into consecutive segment windows of 64 ms separated on 

a 2 ms stride. A Hamming window was used.  

 A radiation-compensation first-order high-pass filter with a drop-off coefficient 

of 0.6 was used to remove radiation effects (see subsections 3.2.2 and 4.1.2). 

 The glottal formant was eliminated by a first-order inverse lattice filter (see 

subsections  3.2.1 and 4.1.3). 

 A ninth-order inverse lattice filter was used to estimate the error-predictor 

polynomial 𝐻 (𝑧). 

 The roots 𝑧  of the error predictor polynomial 𝐻 (𝑧 = 𝑧 ) = 0 were estimated. 

 The formants were obtained from the positive angles of 𝑧 : 𝐹 =

𝑓 𝜑 𝜋; 𝜑 > 0 𝜋⁄⁄ , (𝑓 : sampling frequency). 
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 The root modules were used as a quality factor for formant selection: 𝑟 = 0 <

|𝑧 | < 1. 

The purpose of the model described in subsection 4.2 is to allow indirect estimation of 

the spatial oscillations ∆𝐒 solely from the dynamics of the recorded signal and the acoustic 

formants ∆𝐅 by an acoustic-to-kinematic model described by its weight matrix 𝐖 defined 

in (4.29), which will be the main objective of this study: 

𝐖 =
𝑤 𝑤
𝑤 𝑤  (5.8)  

The individual weight values 𝑤  are to be estimated from healthy controls and PD 

participants, to establish possible regression models on the kinematic variables associated 

with the reference point PrJT exclusively from acoustic estimates (∆𝐅), in other words, to 

establish a methodology for estimating articulatory kinematic features solely from the 

acoustic speech signal. The methodology proposed is based on solving for the model 

weights 𝐖 using standard optimisation methods to establish the relationship between the 

observed variables ∆𝐒 and ∆𝐅. The problem may be formulated as the minimisation of 

the cost function 𝐶 

𝐶 = ‖∆𝐒 − 𝐖 × ∆𝐅‖  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐖{𝐶} (5.9)  

where ‖∙‖  denotes the module of a vector.  
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Given the structural properties of 𝐶, the estimation of 𝐖 may be decomposed in the 

independent minimisation of each of its separate components (𝐶 = 𝐶 + 𝐶 ): 

𝐶 (𝑤 , 𝑤 ) = ‖∆𝒔 − 𝑤 ∆𝐅 − 𝑤 ∆𝐅 ‖ ; 𝑖 = 1, 2  (5.10)  

If expression (5.10) is expanded, it can be easily observed that the partial cost functions 

depend only on a single row of the matrix 𝐖 (5.8). Therefore, the error minimisation 

problem can be split into minimising each of the partial error functions 𝐶 (𝑤 , 𝑤 ) for 

the weights 𝑤  and 𝑤 . 

[𝑤 , 𝑤 ] = 𝑎𝑟𝑔𝑚𝑖𝑛[ , ]{𝐶 } (5.11)  

The minimisation methodology is based on an iteration using a gradient descent 

procedure with a variable step size to estimate each individual weight as 

𝑤 = 𝑤 − 𝛾 𝜵 𝐶 ;  𝑖, 𝑗 = 1, 2 (5.12)  

where k is the iteration step which can be estimated by the Barzilai–Borwein method 

(Barzilai and Borwein, 1988) 

𝛾 =
〈𝒘 − 𝒘 , 𝜵 𝐶 − 𝜵 𝐶 〉

𝜵 𝐶 − 𝜵 𝐶
𝟐  (5.13)  

where the weight and the gradient vectors are defined as 

𝒘 = 𝑤 , 𝑤  

𝜵 =
𝜕

𝜕𝑤
,

𝜕

𝜕𝑤
 

(5.14)  

Practical convergence is reached after a few iteration steps.  
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The initial estimation (step k=0) for the weights 𝐖  is achieved using simple linear 

regression (James et al., 2017) between the input and output signals of the inverse model: 

𝐖 =
𝒘

𝒘
=

𝑤 𝑤

𝑤 𝑤
 (5.15)  

𝑤 = 𝑅 ∆𝐬 , ∆𝐅 =
∆𝐬 ∆𝐅

∆𝐅 ∆𝐅
;  𝑖, 𝑗 = 1, 2 (5.16)  

This estimation process is represented in the regression plots shown in Figure 6.11. It was 

noticed during the estimation of the initial weights that there seems to be a misalignment 

between ∆𝐬  and ∆𝐅 . To improve the estimation of the model matrix 𝐖 it may be 

interesting to reduce this misalignment by maximising the correlation function 𝑅  after 

introducing a time shift. The relative misalignment may be a consequence of formant 

insertion dynamics associated with resonance in tubes with losses (this assumption needs 

further study), and it results in a non-optimal estimation of 𝐖. To compensate it, each 

weight may be re-estimated after the realignment of signals derived from the following 

optimisation problem: 

𝐶 (𝑧) = ‖∆𝐬 (𝑧) − 𝑤 ∆𝐅 (𝑧)𝑧 − 𝑤 ∆𝐅 (𝑧)𝑧 ‖ ;  𝑖 = 1, 2 (5.17)  

where  ∆𝐬 (𝑧) and ∆𝐅 (z) are the z-transforms of  ∆𝐬  and ∆𝐅  and 𝑛 , and 𝑛 , are the 

relative misalignments between each of the components of  ∆𝐒 and ∆𝐅, given in numbers 

of samples, assumed to be independent of each other. Similarly, a solution to the problem 

in (5.8) is sought as: 

[𝑛 , 𝑛 ] = 𝑎𝑟𝑔𝑚𝑖𝑛[ , ]{𝐶 (𝑧)}; 𝑖 = 1,2 (5.18)  
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The independent minimisation of C1(z) and C2(z) allows estimating the misalignments on 

ensuring that: 

𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥 ∆𝐬 𝑛 − 𝑛 ∆𝐅 (𝑛)  (5.19)   

The alignment fitness may be evaluated using the root mean square error between the real 

displacement and the value predicted from regression for each weight 𝑤  as: 

𝜀 =
𝑒

‖∆𝐬 ‖
; 𝑒 = ∆𝐬 − 𝑤 ∆𝐅 ;  𝑖, 𝑗 = 1, 2 (5.20)  

The results of applying these methods to the dataset described in Appendix I.8 are 

presented in Chapter 6 and discussed in Chapter 7. 
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CHAPTER 6 
 

 

6 Results 

The outcomes of the studies conducted in the previous chapter are presented in the 

following sections along with a description of the results, from the overview of the 

methods, outcomes, and estimations presented in Chapter 5.   

6.1 Dysphonia assessment based on the GFAD 

The results presented in this subsection correspond to the experimental design described 

in subsection 5.1.1. The aim of this study focused on utilizing the GFAD as a long-term 

time-domain average feature of the glottal signals to characterize the pathological 

phonation resulting from PD HD. To achieve this, the GFAD was extracted from a 

participant's sample listed in Table App. 1 (Appendix I.2).  The J-S divergence was 

estimated following the procedure described in subsection 5.1.1. The average GFADs of 

the male and female datasets (avMNS, avMHC, avMPD, avFNS, avFHC, and avFPD) 

are represented in Figure 6.1 as an illustrative example. It may be seen that normative 

distributions are accumulated mainly on both extreme amplitude values, whereas the PD 

and HC datasets tend to concentrate on mid-amplitude values. The JSD between the 

average GFADs of the PD, HC, and NS datasets, from(4.45) and (4.46) are given in Table 

6.1 Relative JSD between each pair of average GAFDs. 

Table 6.1 Relative JSD between each pair of average GAFDs. 

Distance between average datasets JSD 
DMPD|MNS 0.204 
DMHC|MNS 0.211 

DMPD|MHC 0.051 

DFPD|FNS 0.262 
DFHC|FNS 0.299 

DFPD|FHC 0.066 
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Figure 6.1 Average GFADs of the male and female datasets. 
Description: Top: average GFAD of the male datasets in terms of the normalized GF amplitude: PD (red 

line), HC (purple line), and NS (blue line). Bottom: Idem of the female datasets. 
 
 

The JSD between each participant’s sample GFAD and each dataset's average distribution 

is given in Table App. 6 (Appendix II). 
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6.1.1 Three-way comparisons 

The procedure implemented for deciding on the normal or altered phonation condition in 

this case was based on the fundamentals exposed in subsections 4.3.2 and 4.3.5. The JSDs 

estimated for each sample in the study as given in Table App. 6 (Appendix II) are 

represented on the PD-HC-RS plane as in Figure 6.2. These representations make use of 

an algebraic property allowing to project a larger-dimension manifold on lower 

dimensions. This approach represents an N sample histogram vector as a single point on 

the PD-HC-RS plane. The point coordinates are given by the JSD of this vector 

concerning the reference HC-RS ones. In this way, each discrete GFAD distribution given 

by a 50-dimension vector is represented as a position in the representation plane. This 

method considers that the temporal GAFD signal is ordered by amplitude positions, and 

the resulting histogram vector provides a profile of how frequently a given amplitude 

position is seen along a given phonation cycle, estimating the quasi-likelihood of finding 

the signal in that point. In the representation of Figure 6.2 built following the 

methodology explained in subsection 4.3.2, two vectors are used as a reference, 

corresponding to the distance between the averages of the subsets PD and NS (DMPD|MNS 

and DFPD|FNS) represented by a segment on the abscise. This segment and the two 

segments corresponding to the distance from each sample i to the avPD and the avNS 

define a triangle (three-distance comparisons), the average distance from avPD to avNS 

(DMPD|MNS and DFPD|FNS) being one of its sides. Each sample i defined by a tuple {Di|MNS, 

Di|MPD}, or {Di|FNS, Di|MFD} will be labelled with a different symbol depending on its 

respective subset (NS: green balls, HC: blue diamonds, PD: red squares). In this way, any 

sample can be displayed as an individual position in a 2D plot on the PD-HC-RS plane. 

The distances between each sample and the respective avNS and avPD centroids 

determine which samples are farther apart from the respective averages. 
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Figure 6.2 Three-distance plots of each PD sample for male HC and NS averages. 
Description: a) JSD to avHC and avNS. b) Idem for the female sets. Red squares: PD 

samples. Blue diamonds: HC samples. Green bullets: NS samples. Blue dash line: 
equidistance bisector. 

 

In this way, each sample is plotted on the left or right-hand side of the bisector orthogonal 

to the abscise through the midpoint between avPD and avNS (blue-dash line). The 

classification of each sample as pathological or non-pathological follows the expressions 

(4.48), comparing the sample JSD to the avPD with its respective one to the avNS, as 
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given in Table App. 6 (Appendix II). The confusion matrices produced using this 

classification method (HiCl) are given in Table 6.2. 

Table 6.2 Confusion matrices for the male and female subsets separated by the bisector criterion. 

MCP and FCP: male and female samples classified as pathological. 
MCN and FCN: male and female samples classified as non-pathological. 
Male non-pathological dataset: MNSMHC. Male pathological dataset: 
MPD. Female non-pathological dataset: FNSFHC. Female pathological 
dataset: FPD. TP: true positives; TN: true negatives; FP: false positives; 

FN: false negatives. 
Cla.\Sets MNS MHC MPD 

MCP 1 (FP) 22 (FP) 20 (TP) 
MCN 23 (TN) 2 (TN) 4 (FN) 

Cla.\Sets FNS FHC FPD 
FCP 0 (FP) 23 (FP) 21 (TP) 
FCN 24 (TN) 1 (TN) 3 (FN) 

 

The table is to be read as classifications (Cla.) vs datasets (Sets). For instance, the results 

in row MCP are classified as pathological 1 sample from MNS (false positive), 22 

samples from MHC (false positives), and 20 samples from MNS (true positives). 

Subsequent rows can be interpreted the same way. 

6.1.2 Clustering analysis and threshold 

As introduced in section 4.3.5, data points can be grouped into clusters according to some 

distance or proximity metric. In this setting the JSD of each sample to each subset centroid 

is taken as the proximity metric of each sample to the rest. The classification of each 

sample into pathological or non-pathological is based on the definition of a threshold level 

to select those branches of the hierarchical tree best aligned with any one of the options. 

In doing so, two possibilities were considered: single (minimal inter-cluster dissimilarity) 

and complete (maximal inter-cluster dissimilarity). Regarding the combination of JSDs, 

the following settings were considered: raw (no combination), diff (subtraction of the 

distances to avPD and avNS), or reldiff (subtraction of each pair of distances to avPD and 

avNS divided by their sum).  
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The possibility of referencing the study to avNS vs avHC was also tested. The number of 

clusters considered was {3 ≤ n ≤ 8}, the types of linkage tested were {single, complete}, 

the combinations tested were {raw, diff, reldiff}, and the reference settings {avNS vs 

avPD, avNS vs avHC} were also checked. The best results from 6 x 2 x 3 x 2 = 72 

combinations per gender are presented in Figure 6.3 and Figure 6.4.  
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Figure 6.3 Hierarchical tree of male speaker samples classified by the three-distance JSD to their 
average normative and pathological distributions. 

Description: green: non-pathological clusters, red pathological clusters. The vertical axis plots the 
linkage distance between the cluster and sub-cluster members. The horizontal axis gives each 

participant code. The linkage threshold level (cutoff) is shown in dash blue. Configuration settings: 
six clusters, complete linkage, and reldiff combination. Sample labels: N: normative; K: control; P: 

pathological. 

 

Figure 6.4 Hierarchical tree of female speaker samples classified by the three-distance JSD to their 
average normative and pathological distributions. 

Description: green: non-pathological clusters, red pathological clusters. The vertical axis plots the 
linkage distance between the cluster and sub-cluster members. The horizontal axis gives the code 

of each participant. The linkage threshold level (cutoff) is shown in dash blue. Configuration 
settings: six clusters, complete linkage, and diff combination. Sample labels: N: normative; K: 

control; P: pathological. 
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The confusion matrices from hierarchical clustering are given in Table 6.3. 

Table 6.3 Confusion matrices for the male and female subsets separated by hierarchical clustering. 

MCP and FCP: male and female samples classified as pathological. 
MCN and FCN: male and female samples classified as non-pathological. 
Male non-pathological dataset: MNSMHC. Male pathological dataset: 
MPD. Female non-pathological dataset: FNSFHC. Female pathological 
dataset: FPD. TP: true positives; TN: true negatives; FP: false positives; 

FN: false negatives. 
Cla.\Sets MNS MHC MPD 

MCP 0 (FP) 21 (FP) 17 (TP) 
MCN 24 (TN) 3 (TN) 7 (FN) 

Cla.\Sets FNS FHC FPD 
FCP 2 (FP) 13 (FP) 18 (TP) 
FCN 22 (TN) 11 (TN) 6 (FN) 

 

6.1.3 Differentiation of PD from HC using an SVM classifier 

The hierarchical clustering method is not a reliable classification tool, showing difficulty 

in the separation of PD from HC datasets, because as ageing induces similar effects to PD 

on the glottal signals there is substantial overlap between groups. To investigate if there 

are other more efficient separation methodologies, an SVM-based classifier was 

proposed, as described in subsection  4.3.5.  The results of the SVM classification 

corresponding to the subset of N features producing the best scores in terms of STV, SPC, 

and ACC are given in Table 6.4. 

Table 6.4 SVM classification scores (%) 

MPDvsMHC: between male PD and HC subsets. 
FPDvsFHC: Idem between female PD and HC 

subsets. STV: sensitivity. SPC: Specificity. ACC: 
Accuracy. 

Gender Datasets STV SPC ACC 
Males MPDvsMHC 93.4 96.1 94.8 

Females FPDvsFHC 97.8 86.6 92.2 

      

6.1.4 Comparing PD, HC, and NS by their respective JSDs 

The results produced by BiCr and HiCl show that HC samples are not much different 

from PD samples in terms of their JSD to the avNS and avPD references. This finding is 

to be interpreted in the sense that HC GFADs may be as irregular as PD ones.  
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The question now is how different the JSD estimates of each dataset are in statistical terms 

to allow subset separation under statistical relevance. As commented in subsection 4.3.3 

the first requirement is to assess the normality of the distributions to be tested. This 

condition can be inferred from the descriptive statistics of each dataset given in Table 6.5. 

Table 6.5 Descriptive statistics of JSD from each dataset. 

df: degrees of freedom; μ: mean; Q1: first quartile; Q2: second quartile 
(median); Q3: third quartile; skw: skewness; kur: kurtosis. 

Dataset df μ Q1 Q2 Q3 skw kur 
MNS 24 0.11 0.09 0.10 0.13 0.85 2.73 
MHC 24 0.28 0.23 0.26 0.33 -0.01 2.83 
MPD 24 0.24 0.16 0.25 0.30 -0.20 1.99 
FNS 24 0.14 0.11 0.13 0.16 0.67 2.39 
FHC 24 0.33 0.30 0.33 0.39 -0.47 2.77 
FPD 24 0.29 0.22 0.28 0.36 0.33 1.97 

 

Besides, each dataset has been checked for normality using the two-sided Lilliefors test 

(Abdi and Molin, 2007) on the null hypothesis of normality at a significance level of 0.05 

using a Monte Carlo simulation granting a standard error under 0.001. The results of the 

tests are given in Table 6.6. 

Table 6.6 Results from Lilliefors test on normality. 

 df: degrees of freedom; Statistic: value under test; p-value: the 
probability of erroneously rejecting the null hypothesis; RNH: null 

hypothesis reject/no reject, Y/N. 
Dataset df Statistic p-value RNH 

MNS 24 0.157 0.104 N 
MHC 24 0.109 0.632 N 
MPD 24 0.122 0.446 N 
FNS 24 0.159 0.110 N 
FHC 24 0.143 0.221 N 
FPD 24 0.151 0.152 N 

 

MHC and MPD are the data sets more aligned with the normality hypothesis, whereas 

MNS and FNS are the less aligned ones. Having these conditions in mind, the results of 

confronting each dataset JSD to each other under the hypothesis of equal means (two-

tails) are given in Table 6.7.  
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Table 6.7 Estimated p-values from inter-subset two-tail tests. 

t-St: Student’s t-test; KS: Kolmogorov-Smirnov; MW: Mann-Whitney.  
The cases not rejecting the null hypothesis at α=0.05 are in bold. MPD 
vs MNS: pathological vs normative (males). MHC vs MNS: control vs 
normative (males). FPD vs FHC: pathological vs control (males). FPD 
vs FNS: pathological vs normative (females). FHC vs FNS: control vs 
normative (females). FPD vs FHC: pathological vs control (females). 

Datasets t-St KS MW 
MPD vs MNS <0.001 <0.001 <0.001 
MHC vs MNS <0.001 <0.001 <0.001 
MPD vs MHC 0.101 0.622 0.220 
FPD vs FNS <0.001 <0.001 <0.001 
FHC vs FNS <0.001 <0.001 <0.001 
FPD vs FHC 0.101 0.109 0.110 

 

It may be seen that the three tests reject the null hypothesis comparing PD and NS male 

and female datasets. Similarly, the null hypothesis is rejected by the three tests in the case 

of HC and NS datasets, both for males and females. However, none of the three tests 

rejected the null hypothesis in comparing HC and PD datasets. These results, together 

with the difficulties found by BiCr and HiCl to differentiate HC and PD datasets, allow 

us to conclude that both HC and PD present more similarity between themselves than 

their NS counterparts. A possible explanation for this finding may be the effect of 

medication, provided that the PD participants were all in an ON state by dopaminergic 

effects at the time that recordings were taken. Besides, ageing would induce another 

approaching effect of HC to PD as far as phonation is concerned. To take into account 

the effects of medication, a correlation study between LED and JSD estimations per 

participant could be conducted, given that the Levodopa Equivalent Dose (LED) 

administered to each patient was known (see the LED column in Table App. 1, Appendix 

I.2). The results of correlating LED and JSD of PD patients (Spearman) were ρ = -0.22 

(males) and ρ = -0.33 (females). These findings suggest that medication might have a 

mild tendency to enhance phonation similarities between individuals with Parkinson's 

disease (PD) and healthy controls (HC).  
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Table 6.8 summarizes the results from the three classification methods presented to have 

a general impression for a concluding comparison. The SVM methodology produces the 

best separation results, as it is commented in subsection 7.1. 

Table 6.8 Classification scores (%). 

 BiCr: Bisector Criterion. HiCl: Hierarchical Clustering. SVM: Support 
Vector Machine. The results from BiCr and HiCl are produced from the 
recounts of TP, FP, TN, and FN cases given in Table 6.2 and Table 6.3 

after applying (4.49). The results from the SVM classification are 
directly taken from Table 6.4. 

Method Datasets STV SPC ACC 
BiCr MPDvsMNS 83.3 52.1 62.5 
BiCr FPDvsFNS 87.5 52.1 63.9 
HiCl MPDvsMNS 70.8 75.0 75.0 
HiCl FPDvsFNS 75.0 68.7 70.8 
SVM MPDvsMNS 93.4 96.1 94.8 
SVM FPDvsFNS 97.8 86.6 92.2 

6.2 Dysphonia assessment based on the VFBS 

The results presented in this subsection correspond to the experimental design described 

in subsection 5.1.2, in which a further step forward has been taken by estimating the 

VFBS, a highly semantic biomechanical correlate of phonation.  

To give a better description of the methodological procedures implicit in this study, an 

example from a sustained emission of the vowel [a:] during 4 s by one of the participants 

actively stimulated with rTMS is shown in Figure 6.5. The VFBS was estimated from the 

glottal source using the methods described in subsection 5.1.2. This specific example is 

included as a prototype to describe the speech processing protocol, and it is not to be 

taken as a mark of generalized behaviour, but as a particular phenomenological 

description of the examination procedures conducted on each phonation analysed to be 

considered in detail as a singular case of study. 
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Figure 6.5 EEG-band description of a 4 s segment of phonation from the pre-stimulus recording of 
active case 1400 during the utterance of a sustained vowel [a:]. 

Description: a) original speech signal, with the F0 line superimposed in red; b) estimation of the 
unbiased VFBS (UVFS); c) its logarithmic power spectrogram; d-e) activity on the δ-band and its linear 
spectrogram; f-g) id. on the ϑ-band; h-i) id. on the α-band; j-k) id. on the β-band; l-m) id. on the γ-band; 

n-o) id. on the μ-band. The activity in the β-band is especially relevant following the incident in the 
interval 4.0-4.2 s. Clarification note: the labelling “Rel. Amp.” in template h) applies to all the left-hand 
side vertical templates, from b-n), whereas the label “Frequency (Hz) in template i) applies to all right-

hand side vertical templates, from c-o). 

The ϑ-band and γ-band frequency distributions, corresponding to the best-behaving active 

case (1400) are presented in Figure 6.6.a) and b). A similar set of ϑ-band and γ-band 

distributions, corresponding to the worst-behaving sham case (2200) is shown in Figure 

6.6.c) and d). 
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The results of evaluating the log-likelihood ratios between the pre-stimulus (T0) and the 

four post-stimulus on the frequency bands following expression (5.1)  are given in Table 

6.9. The results of the corresponding Mann-Whitney tests following expression (5.4), 

availing the relevance of the log-likelihood ratios are given in Table 6.10, and the global 

scores from (5.7) are given in Table 6.11. The null hypothesis assumed that the change in 

the medians before and after stimulation would not differ under a statistical significance 

level of α=0.05. 

Figure 6.6 Tremor amplitude distribution boxplots for the best (active 1400) and worst (sham 2200) 
behaving cases. 

Description: a) case 1400 ϑ-band; b) case 1400 γ-band; c) case 2200 ϑ-band; d) case 2200 γ-band. 
When two relevant features related to phonation stability are considered, such as the medians of the 

tremor amplitudes, and their dispersion, measured by the interquartile range, it may be seen that in the 
active stimulation case (1400) a strong reduction in amplitude and dispersion is observed in the 

evaluations T1-T4 following the pre-stimulus evaluation session (T0) in both bands considered (ϑ and 
γ), whereas case 2200 experiences a clear deterioration in subsequent evaluation sessions (T1-T4) 

concerning the pre-stimulus one (T0). 
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Table 6.9 Log-likelihood ratios (LLR) from all participants on the ϑ-band and γ-band activity from 
comparing pre-stimulus (T0) to post-stimulus recordings (T1-T4). 

Values showing improvement (λ>0) are noted in bold. The codes of the active (A) and sham (S) cases are 
given in the left-most column. 

Part. T0-Code T1 LLR ϑ T2 LLR ϑ T3 LLR ϑ T4 LLR ϑ T1 LLR γ T2 LLR γ T3 LLR γ T4 LLR γ 
0100 (A) -0.323 -1.825 -0.014 -0.102 -0.055 -0.843 0.217 0.113 
0800 (A) 0.156 0.160 0.241 -0.002 0.224 0.306 0.316 0.310 
1100 (A) 0.072 -0.320 0.093 0.214 0.109 0.189 0.095 0.249 
1200 (A) 0.177 0.228 0.113 0.068 0.463 0.446 0.444 0.422 
1400 (A) 0.047 0.162 0.092 0.077 0.155 0.158 0.136 0.184 
1600 (S) -0.367 0.146 -0.044 0.284 0.012 0.023 0.067 0.021 
1700 (S) -0.455 -0.228 -0.686 0.000 -0.009 -0.086 -0.240 -0.049 
1800 (S) -0.836 -0.334 -0.877 -1.108 -0.914 -0.744 -1.439 -0.890 
1900 (S) 0.302 0.064 0.289 -0.183 0.116 0.009 0.102 -0.032 
2000 (A) 0.133 -0.441 0.254 0.113 -0.079 -0.444 -0.087 -0.030 
2200 (S) -0.575 -0.362 -0.325 -1.317 -0.461 -0.543 -0.365 -1.432 
2300 (S) 0.100 0.062 -0.033 0.068 -0.223 -0.323 -0.214 0.098 
2400 (S) -0.608 -0.593 -0.333 -0.139 -0.216 -0.115 -0.374 -0.306 
2500 (S) -0.802 -0.867 -0.952 -0.576 0.075 -0.064 -0.256 -0.928 
2600 (S) -0.098 0.198 -0.029 -0.115 0.104 0.172 -0.043 -0.068 
2700 (A) -1.029 -0.101 -1.391 -1.906 -0.586 -0.025 -0.442 -0.556 
2800 (A) -0.453 -0.433 -0.946 -0.699 -0.505 -0.036 -0.326 -0.976 
2900 (A) -0.113 0.203 -0.220 -0.717 -0.252 0.222 -0.252 -0.514 

 

Those tests failing to reject the null hypothesis (p>0.05) are noted in bold, in which case 

a significant change in phonation stability could not be assumed along the interval of 

study. It may be seen that this happens for sham cases 1600, 1700, 1900, 2300, 2500, and 

2600, whereas it is observed also in the active cases 0100, 2000, and 2700. The results in 

Table 6.11 avail that improvements in Table 6.9 when (λ>0) are significant for the level 

of α being considered.  
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Table 6.10 Results of Mann-Whitney tests (p-values) on equal medians from all participants. 
Corresponding to comparisons between post-stimulus evaluations (T1-T4) concerning the pre-stimulus 

one (T0) for the ϑ-band and γ-band tremor amplitudes. 

Part. T-Code T1 pvϑ T2 pvϑ T3 pvϑ T4 pvϑ T1 pvγ T2 pvγ T3 pvγ T4 pvγ 
0100 (A) <0.001 <0.001 0.899 0.006 0.101 <0.001 <0.001 <0.001 
0800 (A) <0.001 <0.001 <0.001 0.006 <0.001 <0.001 <0.001 <0.001 
1100 (A) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
1200 (A) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
1400 (A) <0.001 <0.001 <0.001 0.006 <0.001 <0.001 <0.001 <0.001 
1600 (S) <0.001 <0.001 0.934 <0.001 0.172 0.007 <0.001 0.010 
1700 (S) <0.001 <0.001 <0.001 0.281 0.574 0.007 <0.001 0.632 
1800 (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
1900 (S) <0.001 <0.001 <0.001 0.802 <0.001 0.006 <0.001 0.219 
2000 (A) <0.001 <0.001 <0.001 <0.001 0.985 <0.001 0.730 0.026 
2200 (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
2300 (S) <0.001 <0.001 0.114 <0.001 <0.001 <0.001 <0.001 <0.001 
2400 (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
2500 (S) <0.001 <0.001 <0.001 <0.001 0.001 0.089 <0.001 <0.001 
2600 (S) 0.001 <0.001 0.921 0.004 <0.001 <0.001 0.078 0.013 
2700 (A) <0.001 0.018 <0.001 <0.001 <0.001 0.216 <0.001 <0.001 
2800 (A) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 
2900 (A) 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

Regarding the optimal separation criterion, the threshold to consider that a specific case 

experienced a functional improvement was fixed at gt = -0.1, following the criterion of 

equal error rate detection-error trade-off (Martin et al., 1997). The scores showing 

functional improvements in phonation stability conditions (producing values under the 

threshold gj<gt) are given in bold. The agreement between the nature of the stimulation 

column (Active/Sham) and the global score column is given in the column to its right 

(Agreement, assumed to be 0 when active stimulation does not produce improvements, 

or when sham stimulations do, and conversely, assumed to be 1 if active stimulation 

produces improvements, and sham does not). The last four columns label the cases where 

the presumed assumption agrees or disagrees with the observed result. TP: number of 

cases treated with active stimulation showing functional improvement; TN: number of 

cases receiving sham stimulation not showing functional improvement; FP: number of 

cases receiving sham stimulation showing functional improvement; FN: number of cases 

receiving active stimulation not showing functional improvement.  
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The six bottom files give the grand totals, the value of the threshold to consider 

improvement or not, and the detection performance in terms of sensitivity (Sn), specificity 

(Sp), accuracy (Ac), and F1 score as defined in (4.49).  

Table 6.11 Summary of the results listing the global score per participant. 
Following expression (69), including all post-stimulus evaluation sessions (T1-T4) and frequency bands 

(δ, ϑ, α, β, γ, the band μ having been excluded, for being a subset of the α one). 

Code Active/Sham Gender Global score (gj) Agreement TP TN FP FN 
0100 A F 0.243 0 0 0 0 1 
0800 A M -0.343 1 1 0 0 0 
1100 A M -0.392 1 1 0 0 0 
1200 A M -0.533 1 1 0 0 0 
1400 A M -0.625 1 1 0 0 0 
1600 S F -0.220 0 0 0 1 0 
1700 S M 0.174 1 0 1 0 0 
1800 S M 1.870 1 0 1 0 0 
1900 S M -0.091 1 0 1 0 0 
2000 A F -0.128 1 1 0 0 0 
2200 S M 3.374 1 0 1 0 0 
2300 S M -0.154 0 0 0 1 0 
2400 S M 0.336 1 0 1 0 0 
2500 S M 1.528 1 0 1 0 0 
2600 S F -0.046 1 0 1 0 0 
2700 A M 2.116 0 0 0 0 1 
2800 A M 1.456 0 0 0 0 1 
2900 A F 1.328 0 0 0 0 1 

   Total 0.71 5 7 2 4 
         
   Threshold (gt) -0.1     
   Sensitivity (St) 0.56     
   Specificity (Sp) 0.78     
   Accuracy (Ac) 0.67     

 

6.3 Assessing articulation alterations based on the APM 

The results presented in this subsection correspond to the experimental design on the 

effects of PD on speech articulation, described in subsection 5.2, using the biomechanical 

system of the jaw-tongue defined in subsection 4.2.1 for the characterization of PD HD, 

to estimate the neuromotor behaviour of the system, and provide specific markers of 

proper or improper NMA during vowel utterances. 
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6.3.1 Data recording examples 

Similarly, as in the previous studies being described, a practical example is presented on 

the proposed signal recording is illustrated, where the speech signal, the sEMG, and the 

three acceleration channels from two repetitions of the […aiai…] by a female HC 

participant (CF1) are shown in Figure 6.7. The sEMG signal has been included in the 

plots (channel b) to evidence that the acceleration and speech signals are concordant with 

the action of the masseter.   

Figure 6.7 Signal acquisition example from the repetition of the phonetic sequence […a→i→a→i…] by 
CF1. 

Description: a) speech signal; b) surface electromyographic signal on the masseter; c) channel X 
accelerometer signal; d) channel Y accelerometer signal; e) channel Z accelerometer signal. 

 

Similarly, the same set of recordings from one of the PD female participants included in 

the study (PF1) is shown in Figure 6.8. 
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Figure 6.8 Signal acquisition example from the repetition of the phonetic sequence […a→i→a→i…] by 
PF1. 

Description: a) speech signal; b) surface electromyographic signal; c) channel X (Acc); d) channel Y 
(Acc); e) channel Z (Acc). 

The unbiased and smoothened formants extracted from the case shown in Figure 6.7 are 

to be compared with the jaw-tongue reference displacements obtained after rotation and 

integration of the acceleration signals (Gómez-Rodellar, et al., 2018). As an example, the 

estimations of ∆𝐒 and ∆𝐅 from CF1 in reference to expression (4.29) are given in Figure 

6.9. 
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Figure 6.9 Formant deviations and reference point displacements obtained from CM1 (HC participant). 
Description: a) formants F1 and F2; b) formant deviations ∆𝐅 ; c) reference point displacements ∆𝐒. 

The estimations of ∆𝐒 and ∆𝐅 corresponding to PF1 are shown in Figure 6.10. 
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Figure 6.10 Formant deviations and reference point displacements obtained from PF1 (PD participant). 
Formant deviations and reference point displacements obtained from PF1, corresponding to a PD 

participant: a) formants F1 and F2; b) formant deviations ∆𝐅 ; c) reference point displacements ∆𝐒. 
 

6.3.2 Weight estimation from linear regression 

The initial estimation of 𝐖𝟎 is illustrated using the formant deviations and reference point 

displacements from the healthy control participant (CF1) shown in Figure 6.9. The scatter 

plots in Figure 6.11 show the distribution patterns of each pair of ∆𝐬 , related to each pair 

of ∆𝐅 . A a regression line is fitted to each of these distributions with a structure ∆𝐬 =

𝑤 ∆𝐅 + 𝑏 , as printed within each scatterplot. The slope of the regression line is the 

respective initial weight 𝑤  of matrix 𝐖𝟎. 
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Figure 6.11 Scatter plots and regression results from CF1. 
Description: The regression analysis is carried out for each pair of input signals (ΔFi) and output signals 

(Δsj): a) 𝑤 =-2.84.10-6 m.Hz-1; b) 𝑤 =1.64.10-6 m.Hz-1; c) 𝑤 =-8.43.10-6 m.Hz-1; d) 𝑤 =4.90.10-6 
m.Hz-1. 

 

This seminal analysis shows what was expected from the hypothesized dynamic relation 

between formant dynamics (∆𝐅 ) and the kinematic outcome (∆𝐬 ); the first formant 

dynamics (∆F ) increases when there is a descent and retraction of the PrJT, whereas the 

value of the second formant dynamics (∆F ) is assumed to descend under the same 

movement conditions (Gómez-Vilda et al., 2019b).  
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This behaviour is shown in the negative sign of the weights 𝑤  and 𝑤 , while in the 

case of 𝑤  and 𝑤  a positive sign is obtained. This method is applied to the signals from 

all male participants in the cohort and the healthy control, see Table App. 5 (Appendix 

I.8) for details, producing the initial results of the acoustic to kinematic projection given 

in Table 6.12, providing a first inter-participant comparison. 

Table 6.12 Male cases: Model weights and correlation coefficients per participant. 

P: Pearson; p-values <0.001; × 10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 

CM1 -6.08 3.77 -9.90 6.31 -0.61 0.71 -0.57 0.68 

CM2 -2.44 1.47 -2.71 1.56 -0.52 0.42 -0.43 0.33 

CM3 -4.04 4.92 -3.45 4.34 -0.42 0.43 -0.36 0.38 

CM4 -4.37 3.63 -5.65 4.71 -0.60 0.63 -0.63 0.66 

PM1 -1.26 0.97 -4.56 3.45 -0.35 0.38 -0.36 0.38 

PM2 -2.12 0.78 -1.05 0.45 -0.14 0.10 -0.23 0.19 

PM3 -1.41 1.29 -3.17 2.88 -0.71 0.72 -0.84 0.85 

PM4 -1.04 0.24 -1.13 -0.18 -0.30 0.09 -0.18 -0.04 

 

The values of the model weights are accompanied by the correlation coefficients 

(Pearson) between each pair of signals, confirming the relationships expected from the 

acoustic-to-kinematic projection properties. The same study was conducted on a set of 

female participants (four HC and four PD participants) summarized in Table 6.13. 

Table 6.13 Female cases: Model weights and correlation coefficients per participant. 

P: Pearson; p-values <0.001; *× 10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 

CF1 -2.84 1.64 -8.43 4.90 -0.51 0.56 -0.50 0.55 

CF2 -3.78 2.15 -5.39 3.17 -0.47 0.68 -0.44 0.65 

CF3 -2.15 1.19 -7.70 4.51 -0.72 0.73 -0.68 0.72 

CF4 -0.28 0.30 -0.67 0.67 -0.32 0.37 -0.49 0.53 

PF1 -2.09 1.56 -5.24 4.03 -0.81 0.75 -0.81 0.77 

PF2 -1.46 1.15 -1.22 0.91 -0.54 0.52 -0.37 0.33 

PF3 -1.88 1.75 -6.54 6.73 -0.24 0.17 -0.32 0.25 

PF4 -1.52 0.95 -2.90 1.81 -0.54 0.55 -0.51 0.51 

The values of the respective correlation coefficients (Pearson) between each pair of 

signals are given under the same conditions as described before (see further comments in 

subsection 7.3). 
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6.3.3 Weight estimation from regression iteration  

Taking the initial weight estimation of 𝐖𝟎 as a starting point, an iterative adjustment has 

been carried out according to the procedure based on the iterative gradient-descent with 

variable step size, as described in (5.12) and (5.13). This process aims to find a minimum 

of the error surfaces corresponding to the partial cost functions 𝐶 (𝑤 , 𝑤 ). The plots 

given in Figure 6.12 show this process illustrated for the control participant CF1. The 

trend of the descent for the pair of weights 𝐰 = (𝑤 , 𝑤 ) can be observed, as the 

estimation for the k-iteration is represented as a point on the surface Ci. 

 

Figure 6.12 Error surfaces corresponding to the iteration process on participant CF1. 
Description: Left: 𝐶 (𝑤 , 𝑤 ). Right: 𝐶 (𝑤 , 𝑤 ). The starting position (in red) shows the values of 
the weights obtained from linear regression {𝑤 , 𝑤 } and {𝑤 , 𝑤 }, whereas the stop position (in 

yellow) corresponds to the values of the weights after the iteration refinement. 

It may be seen that although the error surfaces show similar behaviour to Rosenbrock’s 

function (Rosenbrock, 1960) displaying a kind of wadi–shaped shallow valley, the 

variable step tracker based on the Barzilai–Borwein method is capable of reaching the 

minimum point of the curve in a reasonable number of iteration steps (110 for this 

particular case). The new weights after iteration refinement are given in Table 6.14.  
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Table 6.14 Male cases: model weights, number of iterations,  and error reduction. 

ΔE in percent; *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* No. Ite. ΔE (%) 

CM1 -0.71 -4.11 2.44 7.46 142 23.7 

CM2 3.86 1.16 -4.85 -1.74 142 10.68 

CM3 1.49 -3.32 -0.70 3.59 123 7.37 

CM4 1.07 -2.83 -1.17 3.84 142 21.67 

PM1 -0.25 0.82 -1.30 2.63 111 6.05 

PM2 -6.24 -2.31 -2.13 -0.61 193 1.37 

PM3 -0.55 0.84 -1.37 1.75 140 41.58 

PM4 -2.37 -1.20 -4.09 -2.68 101 5.05 

The results of the iteration refinement corresponding to the female participants are given 

in Table 6.1512. 

Table 6.15 Female cases: model weights, number of iterations, and error reduction. 

ΔE in percent; *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* No. Ite. ΔE (%) 

CF1 -0.82 1.28 -2.27 3.89 110 12.82 

CF2 -0.03 2.14 0.31 3.25 108 14.45 

CF3 -1.26 0.71 -3.85 3.06 88 22.75 

CF4 -0.15 -0.43 0.09 0.75 153 11.55 

PF1 -1.94 0.14 -4.08 1.03 132 38.47 

PF2 -0.97 0.47 -1.03 0.19 111 8.07 

PF3 -1.80 0.17 -5.69 1.73 77 2.34 

PF4 -0.70 0.55 -1.36 1.04 163 13.00 

The values of these weights would be the basis of a study towards a definition of a 

possible unified weight model for HC and PD participants, which is left as a future line. 

6.3.4 Time realignment 

When comparing the formants and displacements, it was observed that the input ∆𝐒 and 

output ∆𝐅 showed similar patterns (number of cycles and periods), but there appeared to 

be a misalignment between them. Therefore, a realignment method based on maximizing 

correlations between ∆𝐒 and ∆𝐅 following (5.17)-(5.19) was implemented.  

 

12The iterative process is stopped once the gradient variation with respect to the previous iterative step is 
lower than a given minimum threshold.  
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This process has been used on the same example being presented. The resulting changes 

from the initial estimation in the scatter plots and regression analysis can be observed by 

comparing the plots in Figure 6.11 with those in Figure 6.13.  

 

Figure 6.13 Scatter plots and regression results from CF1 after signal realignment. 
Description: Realignments denoted as R’(ΔFi,Δsj): a) R’(ΔF1,Δs1;): w11 =-4.88.10-6; b) R’(ΔF2,Δs1): 

w12=2.70.10-6; c) R’(ΔF1,Δs2): w21=-1.51.10-5; d) R’(ΔF2,Δs2): w22=8.39.10-6. The size of the realignment 
time shift is given as Δt in seconds (Δt11=26 ms, Δt12=26 ms, Δt21=28 ms, Δt22=28 ms). The coefficients 

wij are given in cm.Hz-1. 
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As it may be seen the realignment has reduced sensibly the dispersion of data in the new 

scatter plots, making the relationship between ∆𝐒 and ∆𝐅 more linear, as the dispersion 

along the perpendicular dimension to the regression line has been reduced. S ee the 

relative quadratic errors before (Table 6.14 and Table 6.15) and after realignment (Table 

6.16 and Table 6.17). The scatter plots and regression analysis from the female PD 

participant (PF1) are given in Figure 6.14 as a complementary example to be contrasted 

with Figure 6.13 related to the HC participant. 
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Figure 6.14 Scatter plots and regression results from PF1 after realignment. 
Description: a) R’(ΔF1,Δx); b) R’(ΔF2,Δx); c) R’(ΔF1,Δy); d) R’(ΔF2,Δy). The size of the realignment 

time shift is given as Δt in seconds (Δt11=8 ms, Δt12=4 ms, Δt21=12 ms, Δt22=10 ms). 

After realignment, the same cross-correlation analysis as in the one shown in Table 6.12 

and Table 6.13 is carried out for the male and female datasets. The results are shown in 

Table 6.16 and Table 6.17, together with the alignment errors following expression 

(5.20). 
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Table 6.16 Male cases: Model weights, correlation coefficients, and relative rms errors after realignment 
per participant. 

P: Pearson; p-values <0.001; εr: relative rms error in %; *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 εrΔxΔF1 εrΔxΔF2 εrΔyΔF1 εrΔyΔF2 

CM1 -8.27 4.51 -14.53 7.97 -0.83 0.85 -0.84 0.86 0.56 0.53 0.54 0.51 

CM2 -4.19 3.08 -5.75 4.20 -0.89 0.87 -0.90 0.89 0.46 0.49 0.43 0.47 

CM3 -8.90 9.83 -9.12 10.12 -0.92 0.86 -0.94 0.88 0.38 0.51 0.34 0.47 

CM4 -6.42 4.81 -8.23 6.21 -0.89 0.83 -0.92 0.87 0.46 0.56 0.39 0.50 

PM1 -3.15 2.04 -11.08 7.08 -0.87 0.80 -0.87 0.78 0.49 0.61 0.50 0.63 

PM2 -14.30 7.24 -4.08 2.05 -0.93 0.89 -0.90 0.85 0.38 0.46 0.45 0.52 

PM3 -1.62 1.43 -3.40 3.02 -0.81 0.80 -0.90 0.89 0.59 0.60 0.44 0.45 

PM4 -2.81 1.96 -5.15 -3.47 -0.81 0.76 -0.80 -0.73 0.59 0.65 0.60 0.69 

 
Table 6.17 Female cases: Model weights, correlation coefficients, and relative rms errors after 

realignment per participant. 
P: Pearson; p-values <0.001; εr: relative rms error in %; *x10-6 cm.Hz-1. 

Participant Labels w11* w12* w21* w22* PΔxΔF1 PΔxΔF2 PΔyΔF1 PΔyΔF2 εrΔxΔF1 εrΔxΔF2 εrΔyΔF1 εrΔyΔF2 

CF1 -4.88 2.70 -15.05 8.40 -0.88 0.92 -0.90 0.94 0.48 0.40 0.44 0.33 

CF2 -6.34 2.65 -9.86 4.16 -0.79 0.84 -0.80 0.85 0.61 0.55 0.60 0.52 

CF3 -2.24 1.20 -9.00 4.94 -0.75 0.73 -0.79 0.79 0.66 0.68 0.61 0.61 

CF4 -0.65 0.63 -1.07 1.03 -0.75 0.78 -0.79 0.82 0.67 0.63 0.61 0.57 

PF1 -2.19 1.59 -5.88 4.34 -0.85 0.76 -0.91 0.83 0.53 0.65 0.41 0.56 

PF2 -2.12 1.75 -2.62 2.14 -0.79 0.79 -0.78 0.78 0.62 0.61 0.62 0.63 

PF3 -5.39 7.75 -14.04 19.95 -0.68 0.74 -0.70 0.74 0.73 0.68 0.72 0.67 

PF4 -2.31 1.44 -4.86 3.04 -0.82 0.83 -0.85 0.86 0.58 0.73 0.58 0.72 

 

A further comparison between the model weights may be carried by normalizing each 

weight set wij to its vector norm as 𝑤 = 𝑤 𝑤⁄ . The results of the normalization are 

shown in Table 6.18. 

Table 6.18 Weight normalization results. 

A scale factor of 10-6 cm.Hz-1 applies to the whole weight dataset. 

Male Set ŵ11 ŵ12 ŵ21 ŵ22 Female Set ŵ11 ŵ12 ŵ21 ŵ22 

CM1 -0.43 0.24 -0.76 0.42 CF1 -0.27 0.15 -0.83 0.46 

CM2 -0.48 0.35 -0.65 0.48 CF2 -0.50 0.21 -0.78 0.33 

CM3 -0.47 0.52 -0.48 0.53 CF3 -0.21 0.11 -0.85 0.47 

CM4 -0.49 0.37 -0.63 0.48 CF4 -0.38 0.36 -0.62 0.59 

PM1 -0.23 0.15 -0.81 0.52 PF1 -0.28 0.20 -0.75 0.56 

PM2 -0.86 0.43 -0.24 0.12 PF2 -0.49 0.40 -0.60 0.49 

PM3 -0.32 0.28 -0.68 0.60 PF3 -0.21 0.30 -0.54 0.76 

PM4 -0.40 0.28 -0.73 -0.49 PF4 -0.36 0.23 -0.77 0.48 
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Mann-Whitney tests between the normalized weights from the HC and the PD samples 

failed to reject the null hypothesis of equal means μ(𝑤 ) with a p-value of 0.965. A 

similar test between the normalized weights from the male and female participants failed 

to reject the null hypothesis of equal means with a p-value of 0.904. These results may 

indicate that a general model may be built independently of gender and alteration 

conditions, depending on a generalization relying on a larger sample database. The 

medians of the normalized weights may serve as a robust estimation of the model weight 

matrix {𝑤 =-0.39, 𝑤 =0.28, 𝑤 =-0.70, 𝑤 =0.48} × 10-6 cm.Hz-1. The realignment 

sample shifts (𝑛 ) expressed as time shifts (in ms) are given in Table 6.19. 

Table 6.19 Realignment time stride between ΔS and ΔF per participant in ms. 

Most cases are within the range of 26-40 ms, with exceptions highlighted in bold. 

Male Set Δt11 Δt12 Δt21 Δt22 Female Set Δt11 Δt12 Δt21 Δt22 

CM1 18 14 20 16 CF1 26 26 28 28 

CM2 26 28 28 32 CF2 20 14 22 16 

CM3 28 26 30 28 CF3 8 4 14 10 

CM4 30 26 30 24 CF4 28 26 22 20 

PM1 28 26 28 26 PF1 8 4 12 10 

PM2 34 36 32 32 PF2 26 28 36 38 

PM3 16 14 12 10 PF3 28 32 26 30 

PM4 32 38 36 -40 PF4 26 26 28 28 

6.3.5 Formant Dynamics and Articulation Kinematics 

From the regression study results it may be inferred how the different magnitudes (∆𝐒 

and ∆𝐅) relate to each other. Based on these observations a transformation function is 

defined as 𝐖, projecting formant dynamics to spatial displacements. An interesting 

indicator to compare between speakers is to observe the ranges that they can produce in 

these spaces. Table 6.20 shows the range of variation covered by ∆𝐒 and ∆𝐅. The ranges 

are estimated by the 0.05 to 0.095 interquartile distance. 
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Table 6.20 Formant (in Hz) and displacement (in mm) ranges per participant r(·). 

Males r(Δx) r(Δy) r(ΔF1) r(ΔF2) Females r(Δx) r(Δy) r(ΔF1) r(ΔF2) 

CM1 1.37 2.27 115 203 CF1 0.97 2.88 178 307 

CM2 0.74 0.81 163 239 CF2 1.34 1.96 169 435 

CM3 1.90 1.65 229 187 CF3 0.63 2.33 180 282 

CM4 2.60 3.37 308 380 CF4 0.13 0.29 213 225 

PM1 0.78 2.8 284 360 PF1 1.00 2.55 246 309 

PM2 1.11 0.58 276 495 PF2 1.52 1.24 521 725 

PM3 0.84 1.88 255 314 PF3 0.43 1.56 156 118 

PM4 0.28 0.22 213 279 PF4 0.99 1.89 324 586 

It may be observed that the size of the ranges shows a broad direct relationship between 

the formant and displacement oscillation ranges. Whether this observation could be the 

basis for defining new markers of HD is the subject of further study.  
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CHAPTER 7 
 

7 Discussion 

This chapter is devoted to examining the results presented in Chapter 6 regarding the 

experiments conducted to test the possibilities of glottal signals for describing PD HD by 

GFAD and VFS, as well as the APM to describe alterations in articulation kinematics 

from acoustical correlates. The ordered structure of the chapter preserves that of former 

ones.  

In this PhD project, model selection prioritizes interpretability over the black-box versus 

open-box dilemma. The primary objective is to offer interpretable indicators for 

knowledge construction, rather than merely maximizing classification scores. This 

approach involves sacrificing powerful computational tools that are gaining prominence. 

The task narrows down to selecting an algorithmic architecture to build relationships 

between elements, emphasizing observation and interpretation of component behavior 

rather than repetitive solutions. 

7.1 Study based on the GFAD 

The most immediate observation when examining the glottal flow amplitude distributions 

shown in Figure 6.1 is that the NS distributions split towards both extremes of the 

normalized amplitude axis (bimodal behaviour), whereas the PD and HC ones tend to 

concentrate in the mid-values of the amplitude axis. This behaviour is observed in both 

gender datasets. The similarity between HC and PD distributions is larger than that 

between HC and NS or PD and NS. This finding reveals that there might be a factor 

explaining phonation deterioration by itself besides neuromotor degeneration, similarly, 

affecting PD and HC participants, which might be associated with the potential effects of 

ageing. 
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This finding is also confirmed by the estimates of JSDs between the average GFADs from 

the HC, PD, and NS datasets, given in Table 6.1. It may be seen that the distances between 

the average PD and HC datasets (DMPD|MHC=0.051 and DFPD|FHC=0.066) are smaller than 

the distances between the average PD and NS or the average HC and NS 

(DMPD|MNS=0.204, DMHC|MNS=0.211, and DFPD|FNS=0.262, DFPD|FHC=0.299).  

These observations indicate that the average distributions of HC and PD participants 

diverge much more than average NS distributions between themselves. As the average 

HC and PD distributions come from age-matched participants, it may be assumed that the 

phonation conditions of both HC and PD subsets do not differ much as far as glottal flow 

patterns are concerned. This fact may question why the level of overlap between HC and 

PD participants would be larger than expected relative to a normative younger population. 

This situation is reflected in the geometrical distributions shown in Figure 6.2, where the 

majority of HC and PD samples overlap with each other and are closer to the average PD 

centroid than to the average NS one. 

Several consequences may be derived from these observations. On one hand, this finding 

confirms that the glottal flow profile is at least as sensitive to ageing-induced dysphonic 

conditions as to neuromotor dysfunction (Robnik-Šikonja and Kononenko, 2003; Midi et 

al., 2008; Belalcázar-Bolaños et al., 2015; Hanratty et al., 2016; and Novotný et al., 2020). 

On the other hand, this finding brings to our attention the assumption that dopaminergic 

treatments may induce the regression of the altered glottal function of PD patients to a 

more normative behaviour which improves their phonation conditions towards the HC 

baseline (Ho, Bradshaw, and Iansek, 2008; Pinho et al., 2018), a plausible assumption 

under the point of neuropsychology (Rektorová et al., 2012). This differentiation garners 

a dedicated experimental setting. This is a bit problematic as there are a series of ethical 

issues.  
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Requesting from a volunteer to avoid taking medication is a delicate proposition, as it 

would require to endure a degree of discomfort, pain and potential fall risk in the service 

of an exploration that might or might not yield expected or valuable results. It is here 

where speech shines as a conveyance signal, because an experimental set up where 

patients could record their speech at home before and after medication would provide an 

interesting dataset to explore precisely these effects. 

A similar conclusion may be derived from the confusion matrices given in Table 6.3, 

resulting from separating male and female samples according to the criterion expressed 

in (4.48). It may be seen that the criterion separates NS from PD samples with an accuracy 

of 89.6% for males and females, although it fails in separating HC from PD, as 22 male 

and 23 female samples out of a total of 24 HC were misclassified as pathological ones 

(false positives). This would reduce the overall accuracy of BiCr to 62.5% (males) and 

63.9% (females). This insight corroborates the observation regarding the ageing factor 

behind age-paired HC and PD phonation, to be considered as the main factor behind the 

degrading of glottal dynamics, either by natural ageing processes or by PD deterioration.   

Regarding the results produced by hierarchical clustering, as reported in Figure 6.3 and 

Figure 6.4 the separation between HC and PD phonation is a little bit better, although not 

much. Each sample is included either in the non-pathological clusters (in green) or in the 

pathological ones (in red). The male datasets are separated into six clusters, #1 including 

27 samples (16 PD and 11 HC, in red), #2 including 16 samples, (15 NS and 1 HC, in 

green), #3 including 15 samples (11 HC, 3 PD, and 1 NS, in green), #4 including 9 

samples (6 NS and 3 PD, in green), #5 including 4 samples (2 NS, 1 HC, and 1 PD, in 

green) and #6 including 1 sample (1 PD, in black).  
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The female datasets are also separated into six clusters, #1 including 18 samples (18 NS, 

in green), #2 including 17 samples (11 HC and 6 PD, in green), #3 including 12 samples 

(6 HC and 6 PD, in red), #4 including 11 samples (7 PD and 4 HC, in red), #5 including 

10 samples (5 PD, 3 HC, and 2 NS, in red), and #6 including 4 samples (4 NS, in green).  

Summarizing the results from the male datasets, 15 out of 24 NS samples are grouped 

together (#2), but most PD and a large group of HC samples are mixed (#1). Another 

important cluster (#3) includes a large group of HC samples. Clusters #4 and #5 mix up 

samples from the three groups. Summarizing the results of the female datasets, 22 out of 

24 samples are clustered together (#1 and #6), but PD and HC are mixed up in the 

remaining clusters, in different proportions. HC samples are a majority in cluster #2, but 

they are mixed with an equal number of PD in #3 and are a minority in #4 and #5. 

Consequently, it may be concluded that most NS and PD samples are correctly classified, 

but HC samples are included in pathological and non-pathological clusters with no clear 

differentiation. These results point again to the difficulty of separating HC from PD sets 

according to phonation conditions. This situation is also reflected in Table 6.3, where the 

results of the classification in terms of true positives and negatives, and false positives 

and negatives are summarized. It may be seen that the accuracy of separating PD from 

NS provided by hierarchical clustering is 85.4% (males) and 83.3% (females). Attending 

to PS vs NSHC (if HC is to be considered non-pathological, a criterion which would 

need a strong reformulation) the overall accuracy of detection would be 75.0% (males) 

and 70.8% (females). The differentiation results based on SVM classification, as given in 

Table 6.4 show much better accuracy in separating PD from HC samples than the 

previously commented methods, but some questions remain unclear.  
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It must be stressed that the features selected from the GFAD vectors of each sample 

follow a strict feature selection process in terms of optimizing classification scores, 

rendering much better results, but due to the intricacies of input vector component 

selection, the process, although more efficient, becomes less transparent. Therefore, the 

suspicion that by using different input data, the selected features would not overlap much 

in different experiments makes this process much less interpretable.  

In turn, the examination of the statistical description of each sample JSD given in Table 

6.5 shows that the distributions closest to normality are MHC and MPD. MNS is the 

dataset appearing farthest apart from normality. Kurtosis reveals that the distributions 

closer to normality are MHC, MNS, and FHC. Moreover, according to the normality tests 

shown in Table 6.6, none of the datasets reject the null hypothesis, MHC and MPD being 

again the ones farthest apart from hypothesis rejection. One of the objectives of the study, 

as mentioned in subsection 6.1.1.4 was to evaluate potential differences between the JSD 

distributions in terms of statistical relevance. The results of the tests (parametric and non-

parametric) are given in Table 6.7. It may be seen that the three tests reject the null 

hypothesis of similar PD and NS distributions, and HC and NS distributions, both for 

males and females. However, the situation is completely different when PD sets are 

compared with HC sets. In the case of the male and female sets, Student’s-t, Kolmogorov-

Smirnov and Mann-Whitney U tests fail to reject the null hypothesis under a p-

value<0.05. These results point again to the existence of more similarities than expected 

between HC and PD phonation, in full alignment with three-distance comparisons (BiCr 

and HiCl).  The examination of the correlation between LED and JSD, as commented at 

the end of subsection 6.1.1.4 pointed to the effects of medication.  
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Because the PD participants were in an ON state by dopaminergic medication, their 

effects could drive the phonation neuromotor behaviour of PD participants to be more 

aligned with that of HC participants (Pinho et al., 2018). This is a controversial issue, as 

levodopa seems to play an unclear role in the restoration of some motor functions (Ho, 

Bradshaw, and Iansek, 2008). Apparently, some correlates of speech/phonation could be 

affected, some others might not, depending on dosage and subject, because this behaviour 

is probably influenced by individual conditions, and may depend on the progress of PD. 

In the present case, the values of LED administered to PD participants and the estimated 

JSDs showed a modest but undeniable degree of correlation, not only in magnitude but 

what is more importantly, in sense. Larger levels of LED were associated with reductions 

in JSD. The correlation estimated was larger for female than for male datasets. These 

results open questions to be taken into account facing future studies, in the sense that new 

experiments might have to be designed based on specific phonation features to ensure 

that they are sensitive to these two intertwined problems: effects of ageing on HC and PD 

participants, and effects of medication on PD participants.  

A very important question that must be carefully examined is the inter-linguistic issue 

raised by the fact that PARCZ and HUGMM databases have been produced by speakers 

of Czech and Spanish, respectively. For such, it must be taken into account that phonating 

a sustained vowel is the result of a purely physiological process not conveying any 

linguistic clue per se. On the contrary, speech production is based on articulating different 

sounds by the production of dynamic changes on the ONPT (articulation), which involves 

phonated (voiced) and non-phonated (voiceless) sounds. Under the point of view of 

speech articulation Czech and Spanish are quite different languages, and treating inter-

linguistic databases would require special care (Orozco-Arroyave et al., 2016).  
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Nevertheless, under the point of view of an open sustained vowel phonation as [a:], there 

is no meaningful difference between both Czech and Spanish sound emissions. Therefore, 

as far as the study is based on comparing amplitude distributions of glottal flow patterns 

produced by larynges sustaining a similar open vowel as [a:], the inter-linguistic issue 

appears to produce almost no effect on the study results provided that the glottal flow 

estimations are robust to different channel conditions (Orozco-Arroyave et al., 2016).  

The comparison among the classification methodologies given in Table 6.8 shows that 

hierarchical clustering (HiCl) behaves better than the simple distance difference criterion 

(BiCr), although both are outperformed by SVM classification. This fact questions how 

feature selection preserves information contents, an issue that will deserve an independent 

study per se. To explain this observation, one must consider the difference between 

hierarchical clustering and SVM data flows given in Figure 4.19. It may be seen that the 

main difference is the preprocessing of the GFAD before classification. In BiCr and HiCl, 

the classification feature is the JSD (MI divergence) between each sample GFAD and the 

respective dataset average. In Figure 4.19.b the process of feature selection keeps only 

those GFAD features relevant to improving classification performance. Therefore, in this 

second case, there is an undetermined information content reduction from GFAD, which 

removes whatever seems to be superfluous (or even counterproductive) for SVM 

classification. Consequently, most of the classification improvement is due to feature 

selection, at the cost of information loss. What raises more concerns in this reductionist 

process is the fact that the selected feature sets for different classification experiments 

show little intersection (Álvarez-Marquina et al., 2020).  
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Throughout this discussion it is important to bear in mind that JSD is an estimate of the 

MI relationships between distributions, therefore its potential capability to explain 

distribution similarities is undeniable. Summarizing, feature selection could produce 

exceptionally well-performing classifiers, but at the cost of information reduction with 

unclear further effects, for instance, in generalization and interpretability (Tennenholtz, 

Zahavy, and Mannor, 2018; Gómez-Rodellar et al., 2019b). At least, a future study is due 

in this respect.   

The work of Novotný et al. (2020) establishes the possibility of establishing a comparison 

with the present approach regarding the study of phonation from PD vs age-matched HC 

participants. The mentioned work shows a similar methodology to the one proposed in 

the present study based on inverse filtering (IAIF method) to estimate the glottal flow and 

pressure. In their case, time-domain glottal features are used, as the quasi-open quotient 

(QOQ), the normalized amplitude quotient (NAQ), jitter, shimmer, and frequency-

domain features as the H1H2 factor, the harmonic richness factor (HRF), the harmonic-

to-noise ratio (HNR), and cepstral peak prominence (CPP). Their dataset included 40 

male PD and 40 male age-matched HC (no female participants). Phonations consisted of 

sustained utterances of the vowel [a:]. The classification methods used by Novotný et al. 

(2020) were logistic regression, achieving a sensitivity of 65.8%, specificity of 64.3%, 

and an AUC of 0.73; and SVM, achieving an STV of 67.5%, an SPC of 62.5%, and an 

area under the curve (AUC) of 0.78, below those reported by this study in Table 6.4. The 

lower performance attained by the referred study compared to the present one may be 

explained by some of the limitations of the features used. It must be pointed out that the 

features proposed by Novotný et al. (2020) may not be as robust as expected because in 

deteriorated phonation (ageing, dysphonic or neurodegenerative) glottal patterns might 

not follow strictly the Liljencrants-Fant (L-F) pattern (Davis, et al., 1996).  
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Another relevant consideration regarding the study of Novotný et al. (2020) is that it has 

been carried out on drug-naïve patients which means that symptoms may not be altered 

by medication, and differentiation regarding age-matched HC subjects is expected to 

work differently. This question opens a debate about whether voice testing must be 

conducted during OFF or ON states. Given that many patients may experience difficulties 

in carrying on simple daily life tasks or suffer pain and distress during the OFF state, 

studies should be conducted on patients in the ON state to support potential applications 

of the methodology to patient care, monitoring, and rehabilitation during normal patient 

activity.  

Regarding the similarity between PD and HC phonation, another relevant explanation 

factor to be further studied is the role played by the loss of elasticity in the vocal folds 

induced by the decay of elastic proteins present in Reinke’s Space (Hidalgo, Gómez, and 

Garayzábal, 2017), concerning phonation ageing effects both in HC and PD participants. 

This explanation would deserve further research. 

7.2 Study based on the VFBS 

As it was stated in the introduction, the study based on the VFBS was intended to 

characterize the stability of phonation in pre-stimulus and post-stimulus vocal emissions 

following rTMS by assessing the validity of features estimated on glottal neuromechanics 

from a limited set of PD participants. The database used is described in Appendix I.3, 

Appendix I.4, and Appendix I.5. The example depicted in Figure 6.5.a was given to 

illustrate the protocol followed in the assessment.  
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This example is especially meaningful, as it shows two events of phonation activity 

breaks typical in PD dysphonia, seen at intervals 4.0-4.2 s and 5.1-5.2 s, resulting in a 

muscle tension drop at 4 s appreciated in Figure 6.5.b, which is not that evident at 5.5 s, 

although the speaker’s correction action by tension intensification from proprioceptive 

perception is quite well appreciated in both cases on the δ-band (Figure 6.5.c). A 

relaxation towards stable muscle tone is observed between 4.2 and 5.0 s as a follow-up 

after tension restoration. Intuitively, it could be hypothesized that the δ-band signal would 

be associated with the group activity of sets of motor units reacting to proprioceptive 

feedback (coarse tuning), whereas the γ-band could be related to individual motor actions 

maintaining muscle tone activity as stable as possible according to tonal settings (fine-

neuromotor control of the thyroarytenoid muscle tension). 

Although the findings presented in Figure 6.5 are rather specific to that particular case, 

similar F0 blocking events are not infrequent in PD dysarthria. These events and their 

associated EEG-band activity reveal interesting information, which could help in 

clarifying the phenomena behind muscular blocking and neuromotor failure (Shi et al., 

2022; Chiang, Wang, and McKeown, 2012).  The first important observation is that an 

apparent correction takes place immediately after neuromotor blocking, possibly from the 

auditory system and cerebellum feedback, as revealed in the δ-band, which shows clear 

corrective actions to recover muscle tone. The ϑ-band (Figure 6.5.f and g) shows 

intensified activity before and after the first blocking, and a moderate degree of tremor 

all over the whole interval studied. Interestingly, the α-band shows a low level of activity 

before each blocking, which is reactivated immediately after (Figure 6.5.h and i). It is 

also seen as a ripple in the vocal fold stiffness Figure 6.5.b). A similar phenomenon is 

observed in the β-band (Figure 6.5.j and k) where a strong burst of activity is seen after 

the first blocking following an interval of very low activity.  
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On the contrary, the activity on the γ-band (Figure 6.5.l and m) is very intense before the 

blocking, to become more diffuse and less intense after the incident. The activity in the 

μ-band (Figure 6.5.n and o) seems to intensify after each blocking. 

As it was mentioned before, bands ϑ and γ are considered especially relevant in the study 

according to previous knowledge on EEG-related NMA as they seem to bear semantic 

information in the case of PD (Brambilla et al., 2021). In this sense, it will be of special 

interest to review the behaviour of the best and worst functional cases comparing pre- and 

post-stimulus feature distributions in both bands, corresponding to cases 1400 and 2200 

shown in Figure 6.6.a-d. The boxplots in Figure 6.6 show the distributions of the tremor 

amplitude in the ϑ (a) and γ (b) frequency bands from case 1400, corresponding to the 

same participant (pre-stimulus code T0, post-stimulus codes T1, T2, T3, and T4). 

Assuming that tremor is associated with phonation instability, a decrement in the tremor 

amplitude should be considered an improvement concerning the disorder conditions. 

Therefore, as boxplots T1-T4 (post-stimulus) show a smaller median and a much smaller 

interquartile dispersion than boxplot T0 (pre-stimulus) in both bands (ϑ and γ), it might 

be concluded that the post-stimulus tremor is less intense than pre-stimulus, and 

consequently, that an improvement is observed. The situation concerning Figure 6.6.c and 

d is just the opposite, as it may be seen that post-stimulus distributions (T1-T4) show 

larger medians and much larger interquartile dispersion than the pre-stimulus one (T0) in 

both bands (ϑ and γ), therefore, it might be concluded that the situation, contrary to being 

improved, has deteriorated substantially.  
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These two cases showed the largest improvements and the largest deterioration in 

phonation stability. Whereas improvements seen in 1400 could be attributed to the 

beneficial effects of rTMS, the increment in instability shown in case 2200 could not be 

attributed to the effects of non-stimulation, therefore, a possible explanation would be a 

worsening in the phonation conditions within a short time interval between T0 and T4. 

Some other circumstances could have influenced the deterioration observed. The same 

criticism could apply to case 1400, which experienced a strong improvement because 

recordings at session T0 showed a large instability, which was not shown in T1-T4. Of 

course, the possible benefits of rTMS might not be the only explanation for such 

evolution, nor its single cause. Obviously, this question is fully open to discussion. 

The information provided by the activity in the ϑ and γ bands as presented in Figure 6.6.a 

and b for the same case (active stimulation case 1400) reveals an important decay of 

phonation instability after the stimulation, where the tremor distributions reduce notably 

their variance and average values, the effect being more clearly observed in the ϑ-band 

(Figure 6.6.a, T1). This drastic improvement, in value and dispersion, is slightly worsened 

in the next observations, although post-stimulus tremor amplitudes keep under 1%. This 

fact may be especially important, as the ϑ-band is classically associated with the so-called 

“low-frequency tremor” by many studies in voice quality, as it is easily perceived by 

listening, and it is typically associated with many cases of PD phonation (Brückl, Ghio, 

and Viallet, 2018; Ibarra-Lecue, Haegens, and Harris, 2022). These findings open the 

possibility of conducting studies on F0 blocking for further generalization, depending on 

the dual neuromotor mechanism influencing VFBS; on one hand, the cricothyroid muscle 

innervated by the inferior laryngeal nerve, and on the other hand, the thyroarytenoid 

muscle innervated by the recurrent laryngeal nerve (Dietrich et al., 2020).  
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Pointing to misadjustments in the agonist-antagonist role played by these muscles when 

failing to ensure a fine F0 tuning. Of course, this assumption would demand further 

studies to provide generalization insights on the VFBS neuromotor driving functionality. 

Table 6.9 presents also interesting results when analysing the phonation instability of each 

participant before and after stimulation. It may be appreciated that a subset of participants 

who underwent active stimulation (0800, 1100, 1200, 1400) presents mainly 

improvements in most of the evaluation sessions on the two bands of reference. Another 

subset of sham cases (1600 and 1900) experienced unexpected improvements, whereas 

two other sham cases (1700 and 1800) showed worsening behaviour (quite strong in 1800, 

possibly pointing out to an extremely stable starting condition in T0). Another subset of 

cases (2000, 2700, 2800, 2900) experienced slight or no improvements at all. A fourth 

subset of sham cases showed worsening of phonation quality (2200 and 2400), whereas 

the remnant sham cases expressed mixed behaviour (2300, 2500, and 2600).  

Regarding the results presented in Table 6.10, it may be seen that most of the tests reject 

the null hypothesis, generally associated with low absolute-value LLR, pointing to the 

fact that most of the tremor bands examined showed a substantial difference between each 

first exploration in time (T0) and the subsequent ones (T1-T4) except for low |λ|. This 

fact would seem reasonable when observed on actively stimulated cases, under the 

assumption of tremor improvements as a result of treatment, but should not sound that 

plausible when sham cases were examined. Nevertheless, test results from the best-

behaving cases (0800, 1100, 1200, 1400) rejected the null hypothesis, disregarding any 

similarity between T0 and T1-T4 distributions (in alignment with what could be 

expected). Cases 2700 and 2800 rejected also the null hypothesis, although they did not 

show improvements (misalignment).  
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Part of the remnant active cases (0100, 2000, 2900) showed similarity on some tests 

(alignment). In six sham cases, at least one test or more showed possible similarity (1600, 

1700, 1900, 2300, 2500, 2600) in alignment with what could be expected. Alternatively, 

the remnant sham cases (1800, 2200, and 2400) rejected similarity between pre- and any 

post-stimulus examinations (misalignment).  

It is a well-known fact that correlation does not mean causality, therefore, when so many 

underlying confounding factors are involved tracing a clear relational path is problematic. 

Consequently, the present study was intended to assess if phonation stability might be 

reduced after active rTMS cases compared to sham cases. Given the premises of the 

experimental setup, the most robust comparative metric should be based on correlation. 

As the longitudinal study aims to track the progressive effects after stimulation, an 

important robustness factor entails some form of sustained trustability metric. This is 

because improvement assessment is not based on a single post-stimulus evaluation 

because a tendency may be inferred from expressions (5.5) and (5.6), summarized in a 

single score given by (5.7) because each single summarized score is supported by four 

longitudinal estimations comparing 〈𝜉 (𝑛)〉 vs 〈𝜉 (𝑛)〉, plus three others comparing  

〈𝜉 (𝑛)〉 vs 〈𝜉 (𝑛)〉, having also the time intervals Ti - T0 into account. Besides, the 

log-likelihood ratios given in Table 6.9 have been estimated using probability density 

functions generated from normalized histograms of 100 bins summarizing tremor 

amplitude time series on a cycle-synchronous basis, each one calculated on around 400 

samples from a male voice, and about double size from a female voice. These same 

distributions have been used in computing MW U-tests to assess log-likelihood ratios’ 

significance.  
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A  reduction in variance following a phonation stability improvement is expected when 

comparing each single pre-stimulus frequency band of the vocal fold stiffness estimate to 

the corresponding frequency band estimate from each post-stimulus recording in a 

longitudinal sequence (intra-participant) as given in Table 6.9 in terms of log-likelihood 

ratios, validated by corresponding non-parametric Mann-Whitney (MW) U-tests shown 

in Table 6.10. A transversal (inter-participant) t-test has also been conducted to assess 

how general improvement scores given in Table 6.11 compare in the context of all 

participants. 

Because the checking for false-discovery cases has been conducted already using MW U-

tests (an example of them being given in Table 6.10 validating the results given in Table 

6.9 not being produced by chance when their respective p-values are below the confidence 

level of 0.05), global scores have to be taken as reliable in the best and worst behaving 

cases. Adding a hypothesis t-test using the global scores in Table 6.11 between the set of 

actively stimulated cases vs the set of sham cases will produce a p-value of 0.2, which 

does not reject the equal means between both sets. Does it mean that the functional 

assessment methodology proposed fails in its objectives? Evidently, not. The most 

plausible interpretation is that because actively stimulated cases 2700, 2800, and 2900 

show a large deterioration after stimulation, the average global score of the active set 

(0.36) is not far enough from the average global score of the sham set (0.87) considering 

the two sets overlapping variances (1.18 and 1.61, respectively). This observation does 

not invalidate the individual results, because they are evaluated longitudinally on their 

timeline statistics, independently of what any other participants are experiencing, as this 

transversal comparison points out.  
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Longitudinal tests would be in full alignment with the old medical lemma “Treat the 

patient, not the disease”, which is the grounding floor emphasizing the balance of intra-

participant over inter-participant studies.  

Another possible explanation for this apparent different behaviour could be attributed to 

the small sample size, as well as to the effects of possible confounding factors affecting 

the phonation of participants during the tests, such as possible different types of HD 

involved, and the emotional or comorbid conditions affecting vocal emissions during the 

evaluation sessions, such as ageing, depression and anxiety, and medication, among them, 

(Gillivan-Murphy, 2013, Gillivan-Murphy, Miller and  Carding, 2018) taking into 

account the amount of elapsed time between the pre-stimulus and the post-stimulus 

examinations in all cases, ranging from 93 and 119 days (see Table App. 3 in Appendix 

I.5), which could introduce important changes in daily life conditions not taken into 

account, affecting vocal production in one or another way. Given the apparent high 

sensitivity of frequency bands to varying conditions in vocal fold expressed instabilities, 

minor changes in these confounding phonation conditions could produce substantial 

changes in amplitude distributions for inducing null hypothesis rejection. A further 

extended study should concentrate on comparing each examination from each participant 

to observe the extent to which improvement or worsening phonation stability conditions 

could be observed among them.  

Table 6.11 presents the summarized overall results indicating which cases showed better 

phonation stability conditions confronting pre- and post-stimulus examinations taking 

into account all participants, evaluation sessions, and frequency bands. The global score 

gj per participant j is given in the fourth column from the left, considering all post-

stimulus evaluation sessions (T1-T4) and five out of the six frequency bands (δ, ϑ, α, β, 

γ).  
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The fifth column (Agreement) shows the cases where active stimulation produced a 

negative global score (reduction of tremor instability, in agreement with expectations), 

and those cases of sham (non) stimulation which presented an increment of tremor 

instability (positive scores, showing no improvement). These two subsets configure the 

true positive and negative cases respectively (columns TP and TN). Those sham cases 

(non-stimulus), showing improvement (false positives), as well as those active stimulus 

cases showing deterioration (false negatives), are listed in columns FP and FN, 

respectively. The total amounts of TP, TN, FP, and FN are given at the bottom of the 

respective columns (sixth to ninth). Fixing the detection threshold at gt = -0.1 (in the 

application of the equal-error rate criterion commented in subsection 6.1.2), the 

sensitivity of the stimulation methodology would be estimated as 56%, its specificity 

would be around 78%, and its overall accuracy would rise to 67%, corresponding to an 

F1 score of 0.63. The agreement rate including TP and TN concerning the whole set size 

would be around 71%. Twelve cases produced results aligned with expectations: five 

active cases yielded scores under the threshold (improvement in phonation stability), and 

seven sham cases brought scores over the threshold (worsening in phonation stability). 

The other six cases produced results contrary to expectations: four active cases yielded 

scores over the threshold (worsening in phonation stability), and two sham cases brought 

scores under the threshold (improvement in phonation stability). As a general comment, 

two out of three cases included in the study behaved according to expectations after 

having been submitted to the stimulation protocol, including active and sham cases.  
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These findings support the use of log-likelihood ratios in the evaluation of phonation 

quality, as well as conducting hypothesis tests, focusing in particular on the ϑ- and γ-

bands, as these are believed to summarize well both neuromotor and cognitive activity 

(Solomon et al., 2017). The correction of this type of activity around phonation motor 

blocking and disruption could demand coordinated action of motor units spiking at 

different frequencies (Brambilla, et al., 2021; Numssen et al., 2021; Leodori et al., 2021; 

Saravanamuttu et al., 2021; Ibarra-Lecue, Haegens, and Harris, 2022). Of course, the 

clarification of all these observations would require further studies combining other 

cooperating methods, such as electroencephalography (EEG), although at the cost of 

complicating signal acquisition and pre-filtering to remove facial muscle activity during 

speech production, possibly by the use of sEMG. 

Although the reach of the study presents evident limitations, such as the relatively small 

sample size and gender unbalance, some insights on the efficacy of the stimulation 

methodology and the data analytics methodology used might still be drawn from the 

results, which had to be taken more as speculative assumptions to open new research lines 

than proven facts based on exhaustive testing. On one hand, the effects of rTMS on 

phonation stability offer mixed results. Some of the active cases studied report notorious 

improvements in the frequency bands studied which could not be explained by a by-

chance effect, whereas some other actively stimulated cases do not seem to improve 

stability, or even show more unstable phonation. Conversely, some sham cases show clear 

improvements, whereas some others show undeniable worsening phonation. Relating 

both behaviours to the absence of stimulation is not an easy task, opening an issue for 

further discussion.  
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It seems that phonation stability behaviour might be too sensitive to confounding factors 

such as emotional or comorbid conditions to serve as a unique marker by itself, and it 

should be combined with other speech-based traits, including articulation acoustic 

features. Besides, tremors might not be a bi-univocal feature of PD HD (Gillivan-Murphy, 

2013; Gillivan-Murphy, Miller, and Carding, 2019). On the other hand, it seems that the 

study of phonation instability to monitor disruption events in vocal fold stiffness, and its 

association with EEG-related frequency bands would be fully justified as a powerful 

introspective methodology to disclose interesting NMA in cortical areas affecting larynx 

control. 

Remarkably, it could be asserted that rTMS seems to have some influence on phonation 

stability in the cases commented with a low margin of error. The reasons why these 

beneficial effects are not seen in other active cases can also be asserted with little margin 

for error. Why stimulation may seem beneficial for phonation stability in some cases, and 

not in others, is a matter which could not be determined within the framework of this 

study considering the data available at the moment, and it is to be left for further research. 

An important fact to be taken into account in the design of the potential future extension 

of the present study has to see with the medication condition of patients, in the sense that 

some of the unexpected behaviour seen in some of the cases included in the study might 

have been related not exclusively to PD but also to dopaminergic-induced dyskinesia 

(Filipović et al., 2009).  
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The methodology designed for this study would be well aligned with relevant research 

activity on the structural complexity of brain from EEG frequency sub-bands (Ahmadlou 

and Adeli, 2010), the functional connectivity pattern assessment from EEG signals 

(Yuvaraj et al., 2016; García et al., 2022), or the detection of movement intention in BCI 

systems from EEG signals (Karakullukcu and Yilmaz, 2022), among others. 

Although the analysis being proposed uses glottal estimates from speech utterances 

instead of EEG recordings, the tentative findings reported based on previous work 

(Gómez-Vilda et al., 2019a; Gómez-Rodellar et al., 2021d) might demonstrate differences 

in functional behaviour based purely on acoustic signal analysis, which could shed light 

beyond what can be provided by classical acoustic analysis. The ultimate objective 

driving future extensions of this study would be to reproduce EEG-aligned descriptions 

of phonation estimated from audio recordings only, which could be used in 

neurodegenerative speech characterization. The justification for characterizing a 

biomechanical correlate such as the VFBS by filtering according to the frequency bands 

of EEG signals, as if it were an EEG channel signal comes from preliminary work done 

on the NMA of the muscles involved in articulation (Gómez-Vilda et al., 2019a; Gómez-

Rodellar et al., 2021d), which is conveyed by acoustic correlates, such as formants and 

glottal features. This relationship seems natural because the activity of the larynx, 

oropharyngeal, and facial muscles is the ultimate cause of modulation and framing of the 

glottal source into acoustically perceived speech. Therefore, if muscles would respond to 

neuromotor stimulation, and eventually, to brain cortical activity, a way to study the 

intervening links of interest in modelling possible dysfunctions in the activation chain, 

would consider the important advancements in modelling and activity coding driving 

CMC, to convey signal descriptions to a common code.  
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Given that this common code is already well established as EEG-frequency band 

descriptions, it seems natural to build biomechanical correlate descriptions in the same 

coding convention and to benefit from the accumulated knowledge already available in 

CMC studies.   

Other possible methodologies for decomposing and characterizing the biomechanical 

correlate VFBS derived from the acoustic phonation signal would include Gabor 

transform (Loh et al., 2021), Wavelet filter banks (Sharma, Patel, and Acharya, 2020), 

Fourier-based synchro squeezing transform (Karakullukcu and Yilmaz, 2022), transfer 

entropy (Vicente et al., 2011), or fuzzy synchronization likelihood (Ahmadlou and Adeli, 

2017), among others. These studies would require a further extension of the present 

manuscript out of reasonable limits; therefore, they are considered for future research. 

Likewise, phonation improvements from rTMS based on comparisons using glottal 

source features, such as the harmonic-noise ratios, first-second harmonic ratio, cepstral 

peak prominence, parabolic spectrum coefficient, open and closed quotients, and other 

indices of voice quality analysis (Mekyska et al., 2015) could enrich the assessment 

protocol within a future study framework. 
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7.3 Study based on the APM 

The inverse linear model for acoustic to kinematic projection introduced in subsection 4.2 

defined the methodological foundation of the experimental study presented in subsection 

5.2, producing the results shown in subsection 6.2, from which the following highlights 

may be summarized: 

 The relationship between acoustic to kinematic variables (∆𝐒 and ∆𝐅) has been 

established and may be explained using the inverse model described in expression 

(4.29). 

 An estimation of the model weights has been carried out using least squares linear 

regression. 

 A gradient-descent method using a variable step size has been used in the iterative 

refinement of model weights to minimize the error cost function implicit in the inverse 

model.    

 To linearize the relationship between the acoustic and kinematic estimates in the time 

domain a realignment procedure has been introduced with a considerable 

improvement of correlation results. 

As in the precedent studies, the observations derived from the illustrative data recordings 

shown in Figure 6.7 and Figure 6.8 from an HC and a PD female participants will be 

briefly commented on here. These figures present the speech, surface electromyography, 

and X, Y, and Z accelerations in the accelerometer system of coordinates, which is 

projected onto the sagittal plane shown in Figure 4.14. The X coordinate in the 

accelerometer system corresponds with the coordinate normal to the sagittal plane, the Y 

corresponds with the sagittal y (s2), and the accelerometer Z corresponds with the sagittal 

x (s1).  
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To interpret the signal sequence, it is convenient to bear in mind that each masseter 

contraction appears marked by a specific outburst of sEMG activity. This contraction 

rises the jaw, producing a narrowing of the frontal vocal tract, switching from an open 

low vowel [a:] to a closed high vowel [i:] provided that no retraction of the tongue is 

present. This action would correspond with the acoustical gesture [ai], and it 

corresponds with subsequent spikes in the accelerometer signals, which are largest in the 

Y and Z components on the sagittal plane, and much smaller in the X coordinate normal 

to the sagittal plane. 

Correspondingly the amplitude of the speech signal (channel a) shows a strong reduction 

in amplitude immediately after each sEMG burst, because the activity of the masseter 

reduces the opening of the radiation end, and less energy is projected outwards, this 

observation being aligned with what it could be expected. 

The main difference found between both figures, corresponding to the HC and PD 

participants is that the interval cadence and the amplitude and pattern of the sEMG and 

X, Y, and Z accelerometer signals are more regular in Figure 6.7 (corresponding to the 

HC female participant) than those in Figure 6.8 (corresponding to the PD female 

participant). The behaviour presented in both figures cannot be generalized, but it may 

give a graphical view of the real signals produced by the different sensors. It must be 

clarified that the sEMG was not used for the estimation of the model weights, only used 

in this case to check the correspondence between the speech signal and the accelerometer 

data to help in building on a kinematic explanation of this multimodal representation 

model, even though the full exploratory capability of sEMG was not exploited in the study 

being described. 
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In a first step forward, Figure 6.9 and Figure 6.10 present the results from estimating the 

acoustic and kinematic variables in the sagittal plane (∆𝐒 and ∆𝐅) from the same 

participants. Interestingly, more regularity may be observed in the estimates from the HC 

participant than in those from the PD participant, although this behaviour cannot be 

generalised. A closer observation of the relationship between acoustic to kinematic 

variables from the HC participant (CM1) is presented as scatter plots in Figure 6.11, from 

the regression association of the signals in Figure 6.9 (b and c). It may be observed that 

all the plots show an eye-like pattern associated with phase shifts between each pair of 

acoustic and kinematic variables. This is due to time misalignments resulting from 

formant dynamics and explains the modest values of Pearson’s correlation coefficients 

given in the four rightmost columns of Table 6.12 and Table 6.13.   

The relationship between acoustic to kinematic variables (∆𝐒 and ∆𝐅) given in both tables, 

expressed by the weights estimated from least squares linear regression requires a detailed 

analysis. The weights 𝑤  and 𝑤 , relate the first and second formant increments ∆F  

and ∆F  with the horizontal displacement ∆s . Weights  𝑤  are negative and weights  

𝑤  are positive, relating a forward horizontal displacement of the jaw-tongue reference 

point with a descent of F  and with an ascent of F , respectively. Similar relationships 

may be observed in weights 𝑤  and 𝑤 , concerning the first and second formant 

increments ∆F  and ∆F  regarding the vertical displacement ∆s . In this case, 𝑤  is 

always negative, and 𝑤  is always positive, because the upward movement of the jaw-

tongue reference point is related to a descent of F  and with an ascent of F . This 

behaviour is aligned with the prediction of the acoustic-to-kinematic projection in the 

sense that increments of the first formant and decrements in the second formant are 

associated with the vertical pull-up action of the masseter (negative values of 𝑤  and 

positive values of 𝑤 ).  
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A reflection is due at this point concerning the classical convention under the assumption 

of independent movements of the jaw and tongue in static vowel positions. The real 

phenomenon is a bit more complicated when it comes to dynamic diphthong movements, 

as the jaw and tongue cannot be considered moving independently. This is especially so 

regarding the diadochokinetic exercise used in the study. As examples of non-

independent movement, it must be considered that depending on the position of the 

tongue (back or front), the sole movement of the jaw may produce the diphthong [wa] as 

in /wah-wah/ when the position of the tongue is back (static), or the diphthong [jeə] as in 

/yeah/ when the tongue position is front (static). In the first case both F  and F  ascend to 

higher values when the jaw descends, whereas in the second case F  ascends and F  

descends when the jaw descends. In both cases, the tongue did not change its position, 

but both formants moved, as the jaw per se may modify completely the oral cavity, 

conditioning the movement of both formants. Conversely, should the jaw be kept in a 

stable medial position, the tongue per se could produce the diphthong [jʊ] like in /you/, 

where both formants descend from high to low values without the intervention of the jaw. 

These observations question the conventional view of independent relationships among 

dynamic formant movements and tongue and jaw positions, showing that the whole 

configuration of jaw and tongue is responsible for the production of important changes in 

formant positions, each system independently. In the present study, no independent 

movement of the jaw and tongue has been assumed. 
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Regarding the gradient-descent iteration dynamics expressed in Figure 6.12, it may be 

said that the patterns shown by the error surfaces of E1 and E2 are quite similar, and 

correspond to a convex surface with a single minimum in the shape of a wadi, producing 

a large descent at the beginning followed by shorter descent steps once the bottom of the 

wadi is approached. This effect may produce some unstable predictions of the step size 

in(5.12) and (5.13). The shape of this narrow valley distorts the space of solutions, as 

their geometrical place is the set of possible values of the pairs of coefficients {𝑤 , 𝑤 } 

and {𝑤 , 𝑤 }. Slight variations in the estimation conditions may lead to different 

numerical solutions, all of them sharing the property of producing a quasi-optimal 

approximation. The shape of this geometrical place is a kind of narrow ellipse, 

approaching the limit of a straight line: 𝑤 = 𝑚 𝑤 + 𝑏 ; 𝑤 = 𝑚 𝑤 + 𝑏 w22. The 

results of the estimation refinements in the model weights after the iteration process, 

given in Table 6.14 and Table 6.15 are modest, as expressed by the relative error reduction 

in per cent given in the rightmost columns. Reductions larger than 20% have been 

highlighted in bold. 

The realignment process results, exemplified in Figure 6.13 and Figure 6.14 from a 

female HC participant (CF1) and a female PD participant (PF1), show a substantial 

increment in the correlation coefficients at the cost of introducing a relative delay between 

displacements and formant estimations, which in the case of the HC participant is around 

26-28 ms, whereas in the case of the PD participant, it is much shorter (between 4-12 ms). 

In this second case, substantial increments in the correlation coefficients are also 

observed. This different behaviour may be explained by resonance dynamics in non-rigid 

tubes with losses, a hypothesis that would deserve an independent study per se. 
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Regarding the model weights after realignment, as given in Table 6.16 and Table 6.17 

compared to those before realignment in Table 6.12 and Table 6.13, it may be seen that 

realignment does not change acoustic-to-kinematic projection properties of the model, 

because displacements and formant oscillations maintain the relative concordance 

observed before the realignment. A quadratic relative error between the horizontal and 

vertical reference point displacements estimated from accelerometry, and the regression-

predicted values as obtained from expression (5.20) have been calculated for each model 

weight after signal realignment. These errors are reported in the rightmost columns of 

Table 6.16 and Table 6.17. These errors are larger for the cases where the distribution of 

∆𝐒 is more dispersed with respect to the regression line 𝑤 ∆𝐅, and therefore they serve 

as an indication of the goodness of fit. The best case corresponds to the prediction of ∆S  

relative to ∆F  from CF1 (0.33), and the worst case (0.73) corresponds to PF3 and PF4 

(∆S  vs ∆F  and ∆S  vs ∆F , respectively). The HC subset behaves slightly better (0.52 ± 

0.09) than the PD subset (0.58 ± 0.10), although given the small sample sizes this 

observation is not generalizable. 

An important remark comes from the observation that no relevant differences may be 

appreciated in the general pattern of the normalized model weights between HC and PD 

subsets given in Table 6.18, which allows for the definition of an overall average model, 

as shown in Section 6.2.4.  

The realignment shifts (∆t , ∆t , ∆t , and ∆t ) associated with pair-wise weights 

{𝑤 , 𝑤 } and {𝑤 , 𝑤 } shown in Table 6.19 are in most cases within the range from 

26-40 ms with some exceptions marked in bold (CM1, PM3, CF2, CF3, and PF1), and do 

not show relevant intra-speaker differences. All of them are multiples of the formant 

estimation time sampling rate of 2 ms.  
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Their origin may be a consequence of algorithmic delays produced during formant build-

up because of resonance effects in non-rigid tubes with losses. The narrower the pole 

bandwidth associated with the formant, the shorter the time interval for the resonance 

format to grow in amplitude. As pole bandwidths are associated with the viscoelastic 

properties of the resonant cavities (oro-pharyngeal tract), more rigid and less viscid 

tissues would produce sharper poles and faster formant build-up, in opposition to more 

elastic and viscid tissues, producing duller poles and slower formant build-up, explaining 

the differences found in Table 6.19. It is known that the alterations in the viscoelastic 

properties of mucosal tissues are due to ageing and living style (loss of elastin and 

collagen, irritating agents, respiratory diseases, etc.), among other factors (Inamoto et al., 

2015). Should this hypothesis be confirmed in a further study, these delays could serve 

as features of tissue ageing and decay (Hidalgo, Gómez, and Garayzábal, 2017).  

The estimations of formant ascents and jaw-tongue reference point displacements (∆𝐒 and 

∆𝐅) are given in Table 6.20. There is not a clear tendency of displacements regarding 

gender, but it seems that PD participants produced larger displacements compared to HC 

participants on average. Whether these results might be associated with HD is a question 

that requires also further study, in the sense that a large weight magnitude means that 

small sweeps in formants are associated with large displacements in the reference point, 

otherwise, small weight magnitudes mean that small displacements in the reference point 

may produce large sweeps in formants. In this case, it may be hypothesized that if the 

effective oral cavity is reduced by HD, small changes in its cross-section could produce 

a substantial change in the formants.  

The down-sampling procedure, as mentioned in Table App. 5 (Appendix I.8), has the 

added benefit of making the methodology presented in this work compatible with 

telephonic recordings not necessarily reliant on high-quality data.  
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This is possible due to the characteristics of the first and second formant ranges being 

below 3 kHz (Huang, Acero, and Hon, 2001), therefore, the bandwidth of the telephonic 

channel would not become an issue, as it is restricted to 4 kHz (sampling frequency of 8 

kHz), allowing for enough spectral resolution. With this reflection in mind, a future line 

of study would be to explore the characterization of PD dysarthria by kinematic projection 

models on data collected remotely, such as the database taken within the project 

MonParLoc13 (Palacios et al., 2020). It contains recordings produced by the eight 

diadochokinetic exercises mentioned in subsection Table App. 5 (Appendix I.8), 

including data from 45 PD participants of both genders with the collaboration of PD 

associations of Spain and Portugal, containing 696 valid utterances (by males) and 637 

(by females) for diadochokinetic analysis. This platform is to be adapted to monitor 

patients with respiratory diseases, including covid-19, as this technology allows contact-

free testing. 

As a general comment derived from the overall perspective of this study, it must be 

highlighted that time realignment is a more relevant procedure than iteration refinement 

to reduce the estimation error, although a combination of both techniques could improve 

the estimation accuracy. This issue is being left for further study. 

 

 

 

13 https://monparloc.github.io 
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7.4 Study limitations due to methodological issues 

Three different but tightly interconnected experimental scenarios have been presented, 

analysed, and discussed in chapters 5, 6, and 7 on the modelling of glottal signals and 

biomechanics, and mandibular articulation, aiming to characterise voice from a 

neuromotor point of view to provide deeper insight to PD HD description. These studies 

cover partial aspects of the problems related to the main objective; therefore, many 

limitations are to be expected due to the restrictions and assumptions made to focus on 

specific research questions. These limitations are briefly summarized in what follows. 

Regarding the study supported by the estimation of the GFAD discussed in subsection 

7.1, the summarized limitation factors found during the experimental execution to be 

taken into account are the following: 

 The size of the database used. Although the number of phonation samples may seem 

reasonable (144 gender- and case-balanced, consisting of 6 groups of 24 subjects 

each) this amount should be enlarged to give more statistical relevance to results, 

because the specificities of each group (gender, and affection/nonaffection condition) 

reduce the number of samples per dataset to a very specific limit of 24, which is not 

considered large enough under inter-participant requirements. 

 Age-matching between PD and HC population samples must be improved. Although 

both PD and HC distributions cannot be considered far apart by hypothesis testing, a 

better matching in the female datasets is to be considered. 
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 The low performance of hierarchical clustering regarding geometrical three-distance 

classification is to be reviewed. Other clustering methods are to be considered in 

future work (Ahmadlou and Adeli, 2010; Rafiei and Adeli, 2017). The main 

restriction in this sense is the low number of samples available per dataset, which is a 

sensitive issue when dealing with advanced machine learning methodologies.  

 Possible information content alteration due to feature selection and potential over-

fitting regarding feature selection methods used is to be investigated. This question, 

together with preserving explainability, interpretability, and clinical acceptance, are 

the most concerning issues. 

 The relevance of different linguistic origins of the databases should be taken into 

account. Although the effect of this difference is considered negligible in this study 

as far as open vowel phonation is concerned, it should not be the case when running 

speech features are considered. 

 The different instrumentation used in recording PD and HC subjects on one side and 

NS on the other is another question to be taken into account. The high quality of 

instrumentation and recording procedures, the use of downsampling, and the inverse 

filtering methodology ensured full compatibility in the present study, but this question 

is wide open to be taken into account in future studies as well. 
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Regarding the study supported by the biomechanical characterization of the glottal NMA 

in subsection 7.2, the summarized limitation factors found during the experimental 

execution in the study involving the VFBS to be taken into account are the following: 

 The not exhaustive character of the experimental protocol might be a main drawback 

of the study because the size of the sample studied is a limitation to the findings 

observed. Nevertheless, it offers the possibility of conducting a more ambitious, 

extensive, and exhaustive study including the combination of EEG recordings and 

other traits derived from articulatory movements to include EEG, sEMG, and audio 

recordings. In this sense, recent advancements in brain connectivity combining EEG, 

MEG, fMRI, and NIRS characterization by graph theory (Ahmadlou et al., 2014; 

delEtoile and Adeli, 2017; Yaqub et al., 2022; Graña and Silva, 2021) and 

probabilistic neural networks (Hirschauer, Adeli, and Buford, 2015) could offer new 

insights for future studies.  

 The application of this methodology to synchronized mixed EEG-audio databases 

(Verwoert et al., 2022) should offer new insights into speech production 

comprehension and eventually might allow further disclosure of brain functionality 

and physiological responses in PD.  
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Regarding the study based on the APM discussed in subsection 7.3, the summarized 

limitation factors found during the experimental execution to be taken into account are 

the following: 

 The low number of participants included, which does not allow the generalization of 

results, has become a common problem found in the other studies as well, but in this 

case, it becomes a more critical issue, because the recording protocol is much more 

complex due to multi-trait signal acquisition. Some extra difficulties arise from the 

data acquisition procedures, which demand direct physical contact with participants. 

The number of participants per experiment is therefore reduced because the collection 

of multi-trait signals with standard off-the-shelf instrumentation is cumbersome and 

exhausting for the participants. Besides, the impact of the covid-19 pandemic has been 

devastating, especially during the phase of data gathering for the studies conducted 

(during 2020 and 2021), limiting the direct contact with volunteers especially 

sensitive to viral infection. This fact had an impact on the significance of the results 

produced. 

 The intrinsic non-linear behaviour of the model needs further study, and its time 

variance evidenced by the correlation modelling reported needs a specific modelling 

effort out of the limits of the present study. The dependence of time alignment shifts 

on formant estimation is also an important issue. An effort in this sense is made to 

establish reliable relationships between formant bandwidths and delay estimations.  
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 In a joint recording of sEMG, EEG, 3DAcc, and speech, strict synchronisation is 

mandatory. Time lags may result in substantial model estimation accuracy reduction. 

This problem was dealt with by strict adaptive matching optimisation in Gómez-

Rodellar et al. (2021b) regarding sEMG, 3DAcc, and speech. As the availability of 

perfectly synchronised multi-trait signals is a critical limitation, special recording 

platforms granting this strict requirement are needed, and in this sense, specific 

actions are planned to create them as portable compact equipment for easy and 

comfortable database recording, with possible application in the clinical assessment 

of neuropathological speech disorders.     

 Besides, data acquisition is complicated by the difficulty found in participants 

perceiving and correctly implementing data acquisition protocols. This issue may 

become a source of variability affecting the robustness of the methodology and 

deserves a specific treatment in itself. 

 Another problem is signal quality in sEMG and 3DAcc. The design of a new fixture 

integrating all the required sensors is necessary and envisioned in a future research 

line foreseeing the design of an autonomous unit for data gathering and clinical 

assessment. 

 The inversion chain affecting articulation signals is more complex than the laryngeal 

one because many more muscles are involved, depending on different neural 

pathways (pharyngeal, velar, lingual, hypoglossal, orofacial).
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CHAPTER 8 
 

8 Conclusions 

8.1 Contributions, findings, and insights 

Given the polyhedric character of the three main studies included in the present 

manuscript, the nature of the conclusions to be summarized is also connected with each 

of the previously introduced studies. Regarding the study based on the GFAD in 

subsection 7.1, intended to assess the validity of glottal flow amplitude distributions in 

differentiating PD from HC and normative phonations based on MI contents, the 

following conclusions can be outlined: 

 Phonation instability is present in the amplitude distributions of the glottal flow as far 

as HC and PD datasets are concerned. The NS dataset showed distributions that were 

bimodal in both amplitude extremes, contrary to distributions from aged HC and PD 

patients, which tend to show modes in the centre of the distribution amplitude.  

 A clear separation between PD and NS distributions should be possible under relevant 

statistics using bisector and hierarchical clustering. 

 On the contrary, it has been observed that the behaviour of glottal flow amplitude 

distributions from PD relative to HC distributions is not different enough to permit a 

clear distinction between both groups in terms of statistical relevance using bisector 

or hierarchical clustering.  
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 Nevertheless, good separation may be granted by feature selection and SVM methods 

(accuracies of 94.8% for the male subset and 92.8 for the female subset), although it 

must be taken into account that the resource to feature selection may hide contents 

relevant under IT, and produce data dependency, also affecting the interpretability of 

results. 

 A clear separation between the older population subsets (PD and HC) relative to the 

mid-age normative subjects (NS) regarding phonation has been observed. This fact 

indicates that phonation alterations may appear and aggravate with age affecting both 

HC and PD subjects, in this last case independently, and concurrently with 

neuromotor deterioration.  

 The difficulty in separating age-matched HC and PD phonation during the ON state 

requires further explanation. The effects of medication and vocal fold tissue 

deterioration due to ageing are plausible assumptions that would require further 

investigation. 

 SVMs were employed to distinguish between the distributions from PD  and HC 

speech, these two were the ones that exhibited the most significant overlap, with 

normative groups being omitted from the analysis. The SVM was supplied with the 

histograms with a hundred bins as features. The RELIEF algorithm was utilized to 

identify a subset of superior features, which in this context, are the histogram bins 

that account for the most difference between histograms. This methodology could 

potentially pinpoint regions of the histogram where the distributions diverge the most, 

warranting a more detailed examination of these areas. By scrutinizing the selected 

channels and employing analytical techniques such as Principal Component Analysis, 
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it could potentially lead to the development of a novel exploratory method for 

techniques based on Information Theory. 

 Classification performance has been sacrificed in exchange for explainability. 

Regarding the study on the use of the VFBS to explore the possibilities of predicting the 

interactions on the EEG-related ϑ-γ frequency bands of the NMA from the phonation 

acoustical signal discussed in subsection 7.2, the conclusions to be summarized are the 

following: 

 Although the size of the sample studied is a limiting factor to the findings observed, 

and these results are tentative given we have limited participants which need to be 

verified in longer and larger trials, it may be asserted that the results are well aligned 

with ongoing studies in the field, especially in the use of log-likelihood ratios to assess 

functional improvements in phonation after rTMS. This finding is based on the 

possibility of using VFBS to serve as a correlate to monitor disruption events in vocal 

emission attributable to PD consequences. Consequently, visualizing EEG-related 

frequency bands could help in understanding some of the phenomena underlying 

vocal emission disruptions.  

 The positive effects of rTMS are evident in the results, although observations on 

phonation instability behaviour from active and sham cases in pre-stimulus and post-

stimulus recordings offered mixed results, concluding that this nature of findings 

needs to be further explored.  
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 There is a clear promise in these tentative findings grounded on previous work that 

can demonstrate differences in functional behaviour based purely on acoustic signal 

analysis, which delves deeper and provides insights over and above what can be 

assessed by classical acoustic analysis, and allows for the assessment of a closer-to-

brain functionality and predict physiological responses in PD. However, it may be 

appreciated that there may be limitations and confounding factors when examining 

this methodology in detail, such as emotional or comorbid conditions that might alter 

the sensitivity of functional assessment, and their effects should be taken into account 

in future studies. 

The study based on the APM discussed in subsection 7.3 has been conceived to provide 

further insights into the acoustic-to-kinematic model of the jaw-tongue articulation joint, 

based on preliminary approaches. In summary, the key findings derived from it can be 

summarized as follows: 

 The feasibility and applicability of an acoustic-to-kinematic model to predict jaw-

tongue joint kinematics from acoustic dynamics expressed in formants have been 

examined in depth, with special emphasis on weight estimation procedures. 

 A weight estimation refinement method based on an iterative gradient algorithm has 

been explored. It has been found that a reduction in the estimation error functions is 

always possible at a reasonable number of iteration steps, although its benefit in terms 

of error reduction is not uniform, depending on specific participant data. 
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 A complementary correlation optimization study based on signal realignment has 

been also proposed, and a method to predict the relative time displacements to be 

included eventually in the acoustic-to-kinematic projection model has also been 

defined. Time delays from the male and female datasets used in the study have been 

estimated and discussed. 

 A comparative study on the common characteristics of the estimated projection 

weights has also been carried on. An average gender-independent model has been 

established based on the dataset available, valid for both the HC and PD datasets.  

 As a summarizing reflection, although many questions remain open and will require 

a deeper study in future work, it is essential to move along the progress on these 

methodologies allowing a remote monitoring of different diseases using convenient 

and cost-effective technology. 

8.2 Future lines 

The methodology presented in the study of phonation using the amplitude distributions 

of the glottal signals in the time domain may be applied in different fields of PD phonation 

monitoring, especially when frequent longitudinal patient evaluations have to be carried 

on, as in estimating the performance of binaural stimulations (Gálvez et al., 2018; Gálvez 

et al., 2019) and speech therapies (Ramig, Fox, and Sapir, 2008) in the potential 

improvement of patients’ neuromotor function. This possibility could be further 

capitalized by end-to-end machine learning approaches. 
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The studies presented and discussed regarding the use of phonation and articulation 

mechanistic models in the characterization of PD speech are to be considered the first 

steps towards a more ambitious objective of describing central and peripheral brain 

activity from speech acoustics by inverse model methods. In this sense, a first contribution 

has been already published (Gómez-Rodellar et al. 2023), although this research line is 

not mature enough to be considered already consolidated, therefore, it has not been 

included as a consistent body of knowledge in the present manuscript. The small number 

of participants available for the study at the time that the research was accomplished, and 

the lack of ground truth support availing the results were the main limitations to consider 

it more than a pilot study. 

The validation of the sEMG-EEG cortico-muscular coupling projection models requires 

correlation matching techniques, based on wavelet transforms, or transfer entropy. Joint 

concurrently recorded multi-trait signals involving EEG, sEMG, 3DAcc, and speech are 

needed. A possible approach to overcome these difficulties might be afforded by using 

third-party databases where speech and direct brain activity are found (Verwoert et al., 

2022), and applying advanced methods based on MI. This is one of the most promising 

future lines of study to advance in this rather promising research field, but there is no 

known database including the four traits. In this sense, new actions are to be taken as a 

continuation of the research undertaken in the present PhD thesis proposal, by 

formulating a project proposal, pursuing the design and implementation of an autonomous 

unit for multi-trait strict synchronous recording, with immediate application in projection 

model research, and clinical assessment of neuropathological speech studies.  

The inversion chain affecting glottal signals offers new challenges, as determining if the 

agonist-antagonist of the cricothyroid and thyroarytenoid joints is coordinated from a 
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bulbar circuit, from an extrapyramidal ganglion, or the independent poles in the laryngeal 

control cortex. 

The implementation of these methodologies can allow to assess and quantify the effects 

of rehabilitiative therapies, by providing objective markers that allow to quantify, and 

more importantly, compare temporally the progression and effectiveness of a tiven 

treatment protocol, rehabilitation and medication effects, as well as providing PwP, 

caregivers and support staff an observable metric that allows to establish a progression 

and a sense of assurance where data is sometimes difficult to visualize. 
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APPENDICES 
 

Appendix I Databases used in the present study 

Data resources are a fundamental component of any comprehensive research effort. This 

appendix is dedicated to offering an in-depth description of the datasets utilized 

throughout the duration of this doctoral study. These datasets employed are categorized 

into two groups: those that were self-recorded and those that were externally provided. 

Subsequent sections will provide comprehensive descriptions of each dataset type. The 

pandemic imposed significant constraints on data collection efforts between 2020 and 

2022. While data gathering did resume later, the delay was substantial, and the influx of 

new data arrived too late to exert a meaningful influence on the outcome of the PhD 

project. During this period, most research lines had already transitioned towards the 

utilization of externally provided datasets. This is an essential point to highlight because, 

during the initial planning of the PhD project, there was a greater emphasis on self-

recorded datasets. The primary objective was to create a distinctive database for the 

investigation of articulation and phonation, which would have been a significant 

contribution to the field. However, due to the delays caused by the pandemic, only a 

partial recording of this dataset was completed. Consequently, the study's conclusions 

lacked the necessary statistical power to support further exploration of the developed 

concepts. As a result, to advance the PhD project, efforts were made to gain access to 

other databases. This shift in approach constrained the outcomes to align with the 

specifications and standards set by other research groups, given the limitations in 

controlling recording conditions and tasks. 
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Appendix I.1 PARCZ dataset 

One of the speech databases used in the study (PARCZ) was collected at St. Anne’s 

University Hospital in Brno (Czech Republic), containing recordings produced by PD 

patients of both genders. The database also includes demographic and clinical information 

from each patient. This database contains also speech recordings and demographic 

information from age-matched HC subjects. Each participant signed an informed consent 

form that was approved by the ethics committee of St. Anne’s University Hospital. 

The recordings included in PARCZ were acquired in a quiet isolated room (about 70 m3) 

under environmental noise lower than 30 dB SPL (measured with an NTI Acoustilyzer 

AL1). The recordings used a large capsule cardioid microphone M-AUDIO Nova 

(https://www.m-audio.com/products/view/nova) mounted on a boom arm RODE PSA1 

fixed at a distance of approximately 20 cm from the speaker’s mouth. These signals were 

taken at a sampling rate of 48 kHz (16-bit resolution) on an M-AUDIO Fast Track Pro 

platform. 
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Appendix I.2 PARCZ dataset participant description 

The following table gives the demographic and clinical description of the participants' 

subset selected from PARCZ for the experimental framework described in subsection 

5.1.1.1. The codes P1xxx-a refer to files containing emissions of a sustained vowel [a:] 

from female PD participants. Similarly, the code P2xxx-a refers to similar utterances from 

male PD participants. Codes of type K1xxx-a and K2xxx-a refer to female and male 

participants of the HC group. 

Table App. 1 PARCZ PD patient and HC subject set demographical data. 
Gen: Gender, Con: Condition, PD: PD patient subject; HC: healthy control subject; UIII: Evaluation 

according to UPDRS-III scale, LED: Levodopa Equivalent Dosage. 

Code Gen Age Con UIII LED Code Gen Age Con UIII LED Code Gen Age Con UIII LED 
P1006-a F 59 PD 24 875 P1027-a F 65 PD 8 740 P1058-a F 71 PD 20 464 
P1007-a F 76 PD 55 1185 P1031-a F 59 PD 10 918 P1064-a F 60 PD 11 660 
P1008-a F 78 PD 23 1444 P1033-a F 73 PD 14 650 P1066-a F 68 PD 26 1230 
P1020-a F 64 PD 8 160 P1040-a F 70 PD 32 1115 P1068-a F 73 PD 11 1124 
P1021-a F 65 PD 5 600 P1041-a F 72 PD 31 990 P1071-a F 70 PD 35 1320 
P1022-a F 72 PD 6 800 P1051-a F 62 PD 13 300 P1073-a F 64 PD 30 2102 
P1025-a F 64 PD 8 1033 P1052-a F 49 PD 33 700 P1076-a F 72 PD 5 460 
P1026-a F 76 PD 12 540 P1053-a F 56 PD 19 1305 P1103-a F 60 PD 27 518 
P2005-a M 46 PD 25 2135 P2024-a M 77 PD 10 1173 P2039-a M 64 PD 37 1058 
P2009-a M 66 PD 14 150 P2028-a M 72 PD 9 160 P2043-a M 64 PD 29 1800 
P2010-a M 66 PD 39 931 P2029-a M 68 PD 5 535 P2044-a M 54 PD 37 1318 
P2012-a M 71 PD 35 2186 P2030-a M 70 PD 8 767 P2045-a M 77 PD 49 580 
P2017-a M 63 PD 19 625 P2032-a M 80 PD 22 759 P2046-a M 52 PD 26 1630 
P2018-a M 63 PD 32 750 P2034-a M 74 PD 15 870 P2047-a M 58 PD 37 600 
P2019-a M 73 PD 12 785 P2037-a M 86 PD 36 1185 P2049-a M 62 PD 31 1139 
P2023-a M 73 PD 13 610 P2038-a M 71 PD 55 1330 P2055-a M 67 PD 20 700 
K1003-a F 63 HC -  K1019-a F 64 HC -  K1029-a F 57 HC -  
K1004-a F 65 HC -  K1020-a F 49 HC -  K1030-a F 69 HC -  
K1005-a F 59 HC -  K1021-a F 49 HC -  K1031-a F 87 HC -  
K1006-a F 64 HC -  K1022-a F 70 HC -  K1036-a F 65 HC -  
K1007-a F 59 HC -  K1023-a F 56 HC -  K1040-a F 74 HC -  
K1012-a F 67 HC -  K1024-a F 55 HC -  K1048-a F 65 HC -  
K1017-a F 61 HC -  K1025-a F 61 HC -  K1051-a F 61 HC -  
K1018-a F 45 HC -  K1026-a F 63 HC -  K1053-a F 78 HC -  
K2001-a M 59 HC -  K2015-a M 76 HC -  K2041-a M 79 HC -  
K2002-a M 68 HC -  K2016-a M 65 HC -  K2042-a M 66 HC -  
K2008-a M 70 HC -  K2027-a M 74 HC -  K2043-a M 65 HC -  
K2009-a M 68 HC -  K2032-a M 63 HC -  K2044-a M 56 HC -  
K2010-a M 83 HC -  K2033-a M 59 HC -  K2045-a M 76 HC -  
K2011-a M 55 HC -  K2034-a M 63 HC -  K2046-a M 49 HC -  
K2013-a M 54 HC -  K2035-a M 60 HC -  K2047-a M 56 HC -  
K2014-a M 62 HC -  K2038-a M 59 HC -  K2049-a M 78 HC -  
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Appendix I.3 rTMS dataset 

This dataset has been recruited by the Applied Neuroscience Research Group, CEITEC, 

Masaryk University, Brno, Czech Republic, from PwP participants showing mild to 

moderate HD directly related to PD, all of them right-handed, and native speakers of 

Czech, following a program of repetitive transcranial magnetic stimulation (rTMS), 

according to the protocol described in Appendix I.5. All were on stable dopaminergic 

medication for the duration of the whole study. The patients were tested in the ON state 

(they had received the adequate dosage of dopaminergic medication according to their 

respective prescriptions two hours before the evaluations were conducted). The study 

considered only those cases having produced one pre-stimulus recording, and four post-

stimulus recordings spaced in time. Eighteen cases fulfilling this condition were selected 

from the 33 participants included in the original database. All other cases completed less 

than four post-stimulus examinations and therefore were not considered for this first 

study. Half the participants received an active stimulation, and half submitted to a sham 

stimulation (same duration protocol, but no active transcranial stimulation). All 

participants were informed of the nature of the research and gave their written consent. 

The trial was registered in clinicaltrials.gov (Number NCT04203615). 

Appendix I.4 rTMS dataset participant description 

The study included participants recorded at pre-stimulus and after four post-stimulus 

sessions spaced in time. This reduced the number of cases to 18 out of the total number 

of 33 subjects included in the original database. After random selection, half the 

participants received an active stimulation, and half were submitted to a sham stimulation 

(identical protocol and recording conditions, but no active stimulus being applied). The 

stimulation description of the participants is given in Table App. 2.  
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The cohort distributions are broadly similar in terms of UPDRS grade (females: 16.6±4.1; 

males: 12.3±3.9) and age (females: 74.6±3.0; males: 69.7±8.4). 

Table App. 2 Participants’ demographic and clinical data from rTMS. 

A: active stimulation; S: sham stimulation; F: Female; M: Male; Y: 
years. UPDRS-III: Unified Parkinson Disease Rating Scale, section 

III (motor section). 
PwP code (pre) Active/Sham Gender Age (Y) UPDRS-III 

0100 A F 71 10 
0800 A M 58 9 
1100 A M 73 14 
1200 A M 72 21 
1400 A M 64 10 
1600 S F 79 20 
1700 S M 70 16 
1800 S M 61 9 
1900 S M 77 8 
2000 A F 76 28 
2200 S M 66 13 
2300 S M 55 7 
2400 S M 72 10 
2500 S M 81 14 
2600 S F 73 16 
2700 A M 77 14 
2800 A M 80 15 
2900 A F 74 17 

 

Appendix I.5 rTMS dataset protocol description 

The stimulation protocol and speech recording conditions are described in detail in 

Brabenec et al. (2021), of which a summary is offered here. Participants were subject to 

rTMS (DuoMAG™ XT-100, Deymed Diagnostic) in ten stimulation sessions over two 

weeks at CEITEC, Masaryk University. Each stimulation session took 40 min. to 

complete, during which an eight-shaped coil applied pulses at a frequency of 1 Hz, 100% 

intensity of the pre-estimated resting motor threshold (1800 pulses per stimulation 

session) over the right posterior superior temporal gyrus (STG, MNI coordinates X = 40, 

Y = -38, Z=14). The same coil was used in quite a similar fixture for sham stimulation 

sessions, producing the same sounds as in the active case described before, but no 

magnetic field was applied.  
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The stimulation thresholds and settings were established in a preliminary study; the 

interested reader will be referred for further clarification by Brabenec et al. (2021).  

Each participant went through a baseline assessment (pre-stimulus evaluation at the first 

session: T0) before being submitted to ten stimulation sessions (stimulation process) 

within two weeks; a follow-up evaluation session two weeks after stimulation (post-

stimulus at T1); additional follow-up evaluations around six weeks (post-stimulus at T2), 

and around ten weeks (post-stimulus at T3). The 18 participants of the subset included in 

the study submitted also to a fourth post-treatment evaluation session around fourteen 

weeks after the stimulation process (post-stimulus at T4). The evaluation dates are listed 

in Table App. 3 (Appendix I.5). Each participant in the study was randomly assigned to 

active or sham stimulation. A perceptual assessment was conducted by a speech therapist 

rating speech performance, faciokinesis, phonorespiration, and phonetic competence at 

each evaluation step. Audio recordings of the following utterances from each participant 

were taken before (pre-stimulus) and after (post-stimulus) the stimulation process: one 

free-topic monologue; one short neutral reading in Czech; 1 short emission of vowels [a:], 

[i:], [u:] (of ∼1.5 s); one long emission of a sustained [a:] (of around 15 s); 1 long emission 

of a diadochokinetic exercise consisting in the repetition of [pataka] (lasting >10 s), and 

one single emission of ten different selected tri-syllabic words in Czech.  

A large capsule cardioid microphone M-AUDIO Nova mounted to a boom arm RODE 

PSA1 at a distance of approximately 20 cm from the patient’s mouth was used for audio 

recordings. Acoustic signals were digitized by the M-AUDIO Fast Track Pro audio 

interface with fs = 48 kHz sampling frequency and 16-bit resolution. The details of 

recording data and time between stimuli are given in Table App. 3. 
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Table App. 3 Intervals between pre-stimulus and post-stimulus evaluations in days. 

Code Interval Dates Time Lap Weight Code Interval Dates Time Lap Weight 
0100 T0 4.9.2017 0.00 0.00 2000 T0 27.9.2018 0.00 0.00 
0101 T1 15.9.2017 11.00 0.11 2001 T1 12.10.2018 15.00 0.15 
0102 T2 16.10.2017 42.00 0.42 2002 T2 9.11.2018 43.00 0.43 
0103 T3 13.11.2017 70.00 0.70 2003 T3 7.12.2018 71.00 0.72 
0104 T4 13.12.2017 100.00 1.00 2004 T4 4.1.2019 99.00 1.00 
0800 T0 8.2.2018 0.00 0.00 2200 T0 9.11.2018 0.00 0.00 
0801 T1 23.2.2018 15.00 0.14 2201 T1 23.11.2018 14.00 0.14 
0802 T2 6.3.2018 26.00 0.24 2202 T2 18.12.2018 39.00 0.40 
0803 T3 27.4.2018 78.00 0.72 2203 T3 18.1.2019 70.00 0.71 
0804 T4 28.5.2018 109.00 1.00 2204 T4 15.2.2019 98.00 1.00 
1100 T0 6.4.2018 0.00 0.00 2300 T0 12.11.2018 0.00 0.00 
1101 T1 20.4.2018 14.00 0.13 2301 T1 4.12.2018 22.00 0.20 
1102 T2 21.5.2018 45.00 0.41 2302 T2 4.1.2019 53.00 0.47 
1103 T3 22.6.2018 77.00 0.71 2303 T3 1.2.2019 81.00 0.72 
1104 T4 24.7.2018 109.00 1.00 2304 T4 4.3.2019 112.00 1.00 
1200 T0 4.6.2018 0.00 0.00 2400 T0 12.11.2018 0.00 0.00 
1201 T1 15.6.2018 11.00 0.11 2401 T1 4.12.2018 22.00 0.20 
1202 T2 18.7.2018 44.00 0.44 2402 T2 4.1.2019 53.00 0.47 
1203 T3 15.8.2018 72.00 0.72 2403 T3 1.2.2019 81.00 0.72 
1204 T4 12.9.2018 100.00 1.00 2404 T4 4.3.2019 112.00 1.00 
1400 T0 30.8.2018 0.00 0.00 2500 T0 3.12.2018 0.00 0.00 
1401 T1 14.9.2018 15.00 0.15 2501 T1 14.12.2018 11.00 0.12 
1402 T2 16.10.2018 47.00 0.47 2502 T2 10.1.2019 38.00 0.40 
1403 T3 12.11.2018 74.00 0.75 2503 T3 8.2.2019 67.00 0.71 
1404 T4 7.12.2018 99.00 1.00 2504 T4 8.3.2019 95.00 1.00 
1600 T0 6.9.2018 0.00 0.00 2600 T0 4.2.2019 0.00 0.00 
1601 T1 21.9.2018 15.00 0.15 2601 T1 15.2.2019 11.00 0.12 
1602 T2 23.10.2018 47.00 0.47 2602 T2 18.3.2019 42.00 0.44 
1603 T3 19.11.2018 74.00 0.75 2603 T3 12.4.2019 67.00 0.71 
1604 T4 14.12.2018 99.00 1.00 2604 T4 10.5.2019 95.00 1.00 
1700 T0 7.9.2018 0.00 0.00 2700 T0 18.2.2019 0.00 0.00 
1701 T1 1.10.2018 24.00 0.20 2701 T1 1.3.2019 11.00 0.12 
1702 T2 31.10.2018 54.00 0.45 2702 T2 1.4.2019 42.00 0.44 
1703 T3 27.11.2018 81.00 0.68 2703 T3 3.5.2019 74.00 0.78 
1704 T4 4.1.2019 119.00 1.00 2704 T4 24.5.2019 95.00 1.00 
1800 T0 8.10.2018 0.00 0.00 2800 T0 11.3.2019 0.00 0.00 
1801 T1 19.10.2018 11.00 0.12 2801 T1 25.3.2019 14.00 0.15 
1802 T2 15.11.2018 38.00 0.40 2802 T2 18.4.2019 38.00 0.41 
1803 T3 14.12.2018 67.00 0.71 2803 T3 17.5.2019 67.00 0.72 
1804 T4 11.1.2019 95.00 1.00 2804 T4 12.6.2019 93.00 1.00 
1900 T0 3.10.2018 0.00 0.00 2900 T0 11.3.2019 0.00 0.00 
1901 T1 12.10.2018 9.00 0.09 2901 T1 25.3.2019 14.00 0.15 
1902 T2 12.11.2018 40.00 0.42 2902 T2 18.4.2019 38.00 0.41 
1903 T3 7.12.2018 65.00 0.68 2903 T3 17.5.2019 67.00 0.72 
1904 T4 7.1.2019 96.00 1.00 2904 T4 12.6.2019 93.00 1.00 
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Appendix I.6 HUGMM dataset  

Another database containing sustained vowel recordings from normative subjects was 

collected at Hospital Universitario Gregorio Marañón of Madrid (HUGMM). The 

inclusion criteria in this database were not having suffered any organic, neurological, or 

psychological dysfunction affecting phonation or known addictive habits. Participants 

had to pass a laryngoscopy inspection to disregard laryngeal problems, and they were 

required to sign an informed consent form that was approved by the local ethics 

committee of Universidad Politécnica de Madrid. The normative database (HUGMM) 

was recorded in a quiet isolated room of about 50 m3 using a Cardioid Sennheiser ME4 

“clip-on” microphone at a fixed distance of 20 cm from the participant’s mouth. The 

sampling rate was 44,100 Hz (16-bit resolution) on a MOTU Traveller Firewire audio 

recording platform, USB-connected to a portable computer. 
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Appendix I.7 HUGMM dataset description 

The following table gives the demographic description of the participants' subset selected 

from HUGMM for the experimental framework described in subsection 5.1.1.1. In this 

case, NS participants have been labelled as N10xx (MNS: Male Normative Subject) and 

N11xx (FNS: Female Normative Subject). No clinical information is supplied as these 

participants were selected under strict inclusion criteria excluding any type of laryngeal, 

neurological, or psychological disorder. 

Table App. 4 Normative subject set demographic data from HUGMM (NS). 

Code Gend Age Cond Code Gend Age Cond Code Gend Age Cond 
N1005-a M 21 N N1035-a M 35 N N1043-a M 39 N 
N1018-a M 29 N N1036-a M 42 N N1044-a M 45 N 
N1027-a M 34 N N1037-a M 50 N N1045-a M 48 N 
N1028-a M 28 N N1038-a M 41 N N1046-a M 60 N 
N1030-a M 25 N N1039-a M 58 N N1047-a M 36 N 
N1032-a M 48 N N1040-a M 47 N N1048-a M 44 N 
N1033-a M 42 N N1041-a M 53 N N1049-a M 62 N 
N1034-a M 30 N N1042-a M 42 N N1050-a M 56 N 
N1105-a F 43 N N1126-a F 40 N N1139-a F 42 N 
N1108-a F 22 N N1127-a F 59 N N1142-a F 27 N 
N1112-a F 20 N N1128-a F 52 N N1143-a F 38 N 
N1116-a F 45 N N1130-a F 35 N N1144-a F 46 N 
N1117-a F 25 N N1132-a F 30 N N1145-a F 29 N 
N1120-a F 33 N N1134-a F 28 N N1146-a F 24 N 
N1121-a F 57 N N1137-a F 24 N N1147-a F 55 N 
N1125-a F 38 N N1138-a F 33 N N1149-a F 50 N 
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Appendix I.8 APARKAM dataset 

This dataset includes speech, accelerometry, and sEMG data from eight Spanish native 

speakers (four males and four females, stage 2 on H&Y scale) who were recruited from 

a PD patient association in the metropolitan area of Madrid (Asociación de Pacientes de 

Parkinson de Alcorcón y Móstoles, APARKAM), as well as from eight HC age-paired 

volunteers (four males and four females) participating in the study. The sEMG on the 

masseter was recorded, as well as the acceleration on the chin, simultaneously with the 

speech signal during the utterance of specific diadochokinetic exercises, as shown in 

Figure 5.1. The selection of the masseter as the target muscle obeys to the following 

reasons: it is a powerful muscle developing a strong sEMG when contracting, it is 

accessible (beneath the caudal section of the cheek), it may modify strongly the oral cavity 

when contracting or relaxing leaving a clear acoustic signature in formants, and its 

biomechanical activity is well understood. The equipment used allows the simultaneous 

and synchronous recording of masetter sEMG, 3DAcc, and speech, as illustrated in Figure 

5.1. The demographic and clinical information relative to the participant subsets is given 

in Table App. 5. 

Table App. 5 Biometrical Description of the participants included in the study. 

Label Age Gender H&Y State Label Age Gender H&Y State 
CM1 69 M - - CF1 66 F - - 
CM2 70 M - - CF2 62 F - - 
CM3 61 M - - CF3 65 F - - 
CM4 68 M - - CF4 65 F - - 
PM1 73 M 2 on PF1 69 F 2 on 
PM2 71 M 2 on PF2 73 F 2 on 
PM3 73 M 2 on PF3 71 F 2 on 
PM4 69 M 2 on PF4 70 F 2 on 
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The study was approved by the Ethical Committee of UPM (MonParLoc, 18/06/2018). 

The voluntary participants were informed about the experiments to be conducted, and the 

protection of their personal data, and signed an informed consent. The methodology was 

strictly aligned with the Declaration of Helsinki. 

Appendix I.9 APARKAM dataset recording protocol 

The equipment used allows the simultaneous and synchronous recording of masetter 

sEMG, 3DAcc, and speech, as illustrated in Figure 5.1. The facial sEMG is recorded by 

the two attachments of the masseter complex to the jaw and skull, and the 3DAcc signals 

are obtained from an accelerometer attached to the chin. These signals were digitised and 

collected with a Biopac MP150 EMG100 at 2 kHz and 16 bits. A Sennheiser cardioid 

wireless microphone (ew320 g2) on a MOTU Traveler MK1 sound card was used to 

record speech at 40 kHz with 32-bit resolution. The speech was later down-sampled to 8 

kHz for the analysis of the first and second formants since the ranges for both formants 

are below 4 kHz (Huang, Acero, and Hon, 2001). The formant estimation is based on 

adaptive lattice filters (Deller, Proakis, and Hansen, 1993) producing a formant pair every 

2 ms. Consequently, sEMG and 3D accelerometer signals were down-sampled to 500 Hz 

to match this time resolution. Recordings were carried out following a protocol that 

comprises the sustained vowels [a: e: i: o: u:], the fast repetition of the syllables [pa], [ta] 

and [ka], the three connected syllables [pataka] and [pakata] and the diphthong 

[…aiai…]. 
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Appendix II GFAD Three-way comparison results 

Table App. 6 JSDs between each PD, HC, and NS distribution to NS and PD averages. 

MPD avMNS avMPD MHC avMNS avMPD MNS avMNS avMPD 
P2005-a 0.2872 0.1870 K2001-a 0.2662 0.2377 N1005-a 0.1157 0.2587 
P2009-a 0.1358 0.1214 K2002-a 0.1768 0.1097 N1018-a 0.0956 0.2541 
P2010-a 0.1117 0.1844 K2008-a 0.3299 0.2228 N1027-a 0.0976 0.2173 
P2012-a 0.2534 0.1146 K2009-a 0.0852 0.1806 N1028-a 0.1377 0.2447 
P2017-a 0.2150 0.1323 K2010-a 0.3860 0.2579 N1030-a 0.0929 0.2548 
P2018-a 0.2234 0.0643 K2011-a 0.3160 0.2299 N1032-a 0.0848 0.2644 
P2019-a 0.3012 0.1843 K2013-a 0.1627 0.1091 N1033-a 0.1093 0.2618 
P2023-a 0.3666 0.3302 K2014-a 0.2621 0.2221 N1034-a 0.0859 0.2517 
P2024-a 0.2986 0.1933 K2015-a 0.2036 0.2393 N1035-a 0.0765 0.2204 
P2028-a 0.1557 0.1900 K2016-a 0.3367 0.2324 N1036-a 0.0886 0.1946 
P2029-a 0.3669 0.2392 K2027-a 0.2467 0.1341 N1037-a 0.1635 0.1833 
P2030-a 0.3369 0.2196 K2032-a 0.2429 0.1521 N1038-a 0.0876 0.1826 
P2032-a 0.3068 0.1846 K2033-a 0.2219 0.1740 N1039-a 0.1001 0.1740 
P2034-a 0.2801 0.1451 K2034-a 0.2612 0.2210 N1040-a 0.1799 0.1727 
P2037-a 0.1678 0.1483 K2035-a 0.3989 0.3345 N1041-a 0.1485 0.2018 
P2038-a 0.2086 0.1152 K2038-a 0.2376 0.1788 N1042-a 0.0815 0.2561 
P2039-a 0.2157 0.1204 K2041-a 0.4253 0.3498 N1043-a 0.1201 0.2172 
P2043-a 0.2721 0.1567 K2042-a 0.4252 0.3561 N1044-a 0.1400 0.1920 
P2044-a 0.2805 0.1324 K2043-a 0.2110 0.1044 N1045-a 0.1443 0.1655 
P2045-a 0.0975 0.1493 K2044-a 0.3432 0.2087 N1046-a 0.1055 0.2435 
P2046-a 0.2553 0.1183 K2045-a 0.2528 0.1558 N1047-a 0.1283 0.2612 
P2047-a 0.1589 0.1117 K2046-a 0.2861 0.1603 N1048-a 0.0901 0.2623 
P2049-a 0.2979 0.1910 K2047-a 0.2961 0.2169 N1049-a 0.0798 0.2483 
P2055-a 0.1316 0.1934 K2049-a 0.2716 0.2505 N1050-a 0.1051 0.1421 

FPD avFNS avFPD FHC avFNS avFPD FNS avFNS avFPD 
P1006-a 0.1969 0.1024 K1003-a 0.3966 0.2427 N1105-a 0.1034 0.2799 
P1007-a 0.2317 0.1871 K1004-a 0.3324 0.1916 N1108-a 0.0973 0.2856 
P1008-a 0.2658 0.0634 K1005-a 0.3468 0.1253 N1112-a 0.0997 0.2503 
P1020-a 0.2301 0.1597 K1006-a 0.3829 0.2005 N1116-a 0.1849 0.3292 
P1021-a 0.3542 0.1658 K1007-a 0.4057 0.2387 N1117-a 0.1198 0.2062 
P1022-a 0.1780 0.1826 K1012-a 0.4341 0.2950 N1120-a 0.1129 0.3124 
P1025-a 0.2137 0.0854 K1017-a 0.3346 0.1270 N1121-a 0.1245 0.3045 
P1026-a 0.1776 0.2065 K1018-a 0.4568 0.3463 N1125-a 0.1449 0.1980 
P1027-a 0.2666 0.1914 K1019-a 0.2502 0.1835 N1126-a 0.1170 0.3173 
P1031-a 0.2214 0.1280 K1020-a 0.3424 0.1255 N1127-a 0.1137 0.2148 
P1033-a 0.2452 0.2797 K1021-a 0.3784 0.1883 N1128-a 0.1362 0.3198 
P1040-a 0.2244 0.1804 K1022-a 0.2998 0.3100 N1130-a 0.1257 0.3136 
P1041-a 0.4473 0.2631 K1023-a 0.3294 0.1859 N1132-a 0.0910 0.2829 
P1051-a 0.3196 0.2132 K1024-a 0.3106 0.1180 N1134-a 0.1152 0.2746 
P1052-a 0.4562 0.3663 K1025-a 0.2389 0.1000 N1137-a 0.1383 0.2697 
P1053-a 0.2967 0.1482 K1026-a 0.2590 0.2334 N1138-a 0.1126 0.2717 
P1058-a 0.3871 0.2048 K1029-a 0.1944 0.1269 N1139-a 0.2215 0.3777 
P1064-a 0.3525 0.1559 K1030-a 0.1778 0.1568 N1142-a 0.1548 0.3355 
P1066-a 0.3895 0.1883 K1031-a 0.3961 0.1824 N1143-a 0.1975 0.3234 
P1068-a 0.3116 0.1189 K1036-a 0.3523 0.1757 N1144-a 0.1836 0.3424 
P1071-a 0.3763 0.2234 K1040-a 0.3323 0.1986 N1145-a 0.1511 0.1727 
P1073-a 0.2245 0.1495 K1048-a 0.3926 0.2609 N1146-a 0.1680 0.3132 
P1076-a 0.3594 0.2119 K1051-a 0.3011 0.1843 N1147-a 0.1595 0.2410 
P1103-a 0.3507 0.1222 K1053-a 0.3279 0.1815 N1149-a 0.2073 0.2149 
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Appendix III Different configurations of the ONPT 

 

 
 

Figure App. 1 Different configurations of the ONPT. 
Description: a) VT: O, NT: O, vocal tract open, nasal tract open. Antiresonances provoked by the open 

nasal tract at one-fourth of wavelength correspond to a pole-zero system, compatible with nasalised 
vowels. b) VT: O, NT: C, vocal tract open, nasal tract closed. Idealised one-path vocal tract responding to 

an all-pole system, compatible with pure vocal vowels. c) VT: C, NT: O, vocal tract closed, nasal tract 
open; depending on the oral closure (labial, dental, or velar) the system may behave as a nasal tract with 
vocal antiresonances (pole-zero system), or as a pure nasal tract (all-pole nasal system). d) VT: C, NT: 
PC, vocal tract closed, nasal tract partly closed; this configuration is compatible with a hyponasalised 

phonation. 
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