462 research outputs found

    A patient agent controlled customized blockchain based framework for internet of things

    Get PDF
    Although Blockchain implementations have emerged as revolutionary technologies for various industrial applications including cryptocurrencies, they have not been widely deployed to store data streaming from sensors to remote servers in architectures known as Internet of Things. New Blockchain for the Internet of Things models promise secure solutions for eHealth, smart cities, and other applications. These models pave the way for continuous monitoring of patient’s physiological signs with wearable sensors to augment traditional medical practice without recourse to storing data with a trusted authority. However, existing Blockchain algorithms cannot accommodate the huge volumes, security, and privacy requirements of health data. In this thesis, our first contribution is an End-to-End secure eHealth architecture that introduces an intelligent Patient Centric Agent. The Patient Centric Agent executing on dedicated hardware manages the storage and access of streams of sensors generated health data, into a customized Blockchain and other less secure repositories. As IoT devices cannot host Blockchain technology due to their limited memory, power, and computational resources, the Patient Centric Agent coordinates and communicates with a private customized Blockchain on behalf of the wearable devices. While the adoption of a Patient Centric Agent offers solutions for addressing continuous monitoring of patients’ health, dealing with storage, data privacy and network security issues, the architecture is vulnerable to Denial of Services(DoS) and single point of failure attacks. To address this issue, we advance a second contribution; a decentralised eHealth system in which the Patient Centric Agent is replicated at three levels: Sensing Layer, NEAR Processing Layer and FAR Processing Layer. The functionalities of the Patient Centric Agent are customized to manage the tasks of the three levels. Simulations confirm protection of the architecture against DoS attacks. Few patients require all their health data to be stored in Blockchain repositories but instead need to select an appropriate storage medium for each chunk of data by matching their personal needs and preferences with features of candidate storage mediums. Motivated by this context, we advance third contribution; a recommendation model for health data storage that can accommodate patient preferences and make storage decisions rapidly, in real-time, even with streamed data. The mapping between health data features and characteristics of each repository is learned using machine learning. The Blockchain’s capacity to make transactions and store records without central oversight enables its application for IoT networks outside health such as underwater IoT networks where the unattended nature of the nodes threatens their security and privacy. However, underwater IoT differs from ground IoT as acoustics signals are the communication media leading to high propagation delays, high error rates exacerbated by turbulent water currents. Our fourth contribution is a customized Blockchain leveraged framework with the model of Patient-Centric Agent renamed as Smart Agent for securely monitoring underwater IoT. Finally, the smart Agent has been investigated in developing an IoT smart home or cities monitoring framework. The key algorithms underpinning to each contribution have been implemented and analysed using simulators.Doctor of Philosoph

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEE’s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain

    A secured privacy-preserving multi-level blockchain framework for cluster based VANET

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Existing research shows that Cluster-based Medium Access Control (CB-MAC) protocols perform well in controlling and managing Vehicular Ad hoc Network (VANET), but requires ensuring improved security and privacy preserving authentication mechanism. To this end, we propose a multi-level blockchain-based privacy-preserving authentication protocol. The paper thoroughly explains the formation of the authentication centers, vehicles registration, and key generation processes. In the proposed architecture, a global authentication center (GAC) is responsible for storing all vehicle information, while Local Authentication Center (LAC) maintains a blockchain to enable quick handover between internal clusters of vehicle. We also propose a modified control packet format of IEEE 802.11 standards to remove the shortcomings of the traditional MAC protocols. Moreover, cluster formation, membership and cluster-head selection, and merging and leaving processes are implemented while considering the safety and non-safety message transmission to increase the performance. All blockchain communication is performed using high speed 5G internet while encrypted information is transmitted while using the RSA-1024 digital signature algorithm for improved security, integrity, and confidentiality. Our proof-of-concept implements the authentication schema while considering multiple virtual machines. With detailed experiments, we show that the proposed method is more efficient in terms of time and storage when compared to the existing methods. Besides, numerical analysis shows that the proposed transmission protocols outperform traditional MAC and benchmark methods in terms of throughput, delay, and packet dropping rate

    The Digitalisation of African Agriculture Report 2018-2019

    Get PDF
    An inclusive, digitally-enabled agricultural transformation could help achieve meaningful livelihood improvements for Africa’s smallholder farmers and pastoralists. It could drive greater engagement in agriculture from women and youth and create employment opportunities along the value chain. At CTA we staked a claim on this power of digitalisation to more systematically transform agriculture early on. Digitalisation, focusing on not individual ICTs but the application of these technologies to entire value chains, is a theme that cuts across all of our work. In youth entrepreneurship, we are fostering a new breed of young ICT ‘agripreneurs’. In climate-smart agriculture multiple projects provide information that can help towards building resilience for smallholder farmers. And in women empowerment we are supporting digital platforms to drive greater inclusion for women entrepreneurs in agricultural value chains

    Digitising the Industry Internet of Things Connecting the Physical, Digital and VirtualWorlds

    Get PDF
    This book provides an overview of the current Internet of Things (IoT) landscape, ranging from the research, innovation and development priorities to enabling technologies in a global context. A successful deployment of IoT technologies requires integration on all layers, be it cognitive and semantic aspects, middleware components, services, edge devices/machines and infrastructures. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC - Internet of Things European Research Cluster from research to technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster and the IoT European Platform Initiative (IoT-EPI) and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in the next years. The IoT is bridging the physical world with virtual world and requires sound information processing capabilities for the "digital shadows" of these real things. The research and innovation in nanoelectronics, semiconductor, sensors/actuators, communication, analytics technologies, cyber-physical systems, software, swarm intelligent and deep learning systems are essential for the successful deployment of IoT applications. The emergence of IoT platforms with multiple functionalities enables rapid development and lower costs by offering standardised components that can be shared across multiple solutions in many industry verticals. The IoT applications will gradually move from vertical, single purpose solutions to multi-purpose and collaborative applications interacting across industry verticals, organisations and people, being one of the essential paradigms of the digital economy. Many of those applications still have to be identified and involvement of end-users including the creative sector in this innovation is crucial. The IoT applications and deployments as integrated building blocks of the new digital economy are part of the accompanying IoT policy framework to address issues of horizontal nature and common interest (i.e. privacy, end-to-end security, user acceptance, societal, ethical aspects and legal issues) for providing trusted IoT solutions in a coordinated and consolidated manner across the IoT activities and pilots. In this, context IoT ecosystems offer solutions beyond a platform and solve important technical challenges in the different verticals and across verticals. These IoT technology ecosystems are instrumental for the deployment of large pilots and can easily be connected to or build upon the core IoT solutions for different applications in order to expand the system of use and allow new and even unanticipated IoT end uses. Technical topics discussed in the book include: • Introduction• Digitising industry and IoT as key enabler in the new era of Digital Economy• IoT Strategic Research and Innovation Agenda• IoT in the digital industrial context: Digital Single Market• Integration of heterogeneous systems and bridging the virtual, digital and physical worlds• Federated IoT platforms and interoperability• Evolution from intelligent devices to connected systems of systems by adding new layers of cognitive behaviour, artificial intelligence and user interfaces.• Innovation through IoT ecosystems• Trust-based IoT end-to-end security, privacy framework• User acceptance, societal, ethical aspects and legal issues• Internet of Things Application

    Security and Privacy for Mobile Social Networks

    Get PDF
    With the ever-increasing demands of people's social interactions, traditional online social networking applications are being shifted to the mobile ones, enabling users' social networking and interactions anywhere anytime. Due to the portability and pervasiveness of mobile devices, such as smartphones, wearable devices and tablets, Mobile Social Network (MSN), as a promising social network platform, has become increasingly popular and brought immense benefits. In MSN, users can easily discover and chat with social friends in the vicinity even without the Internet; vehicle drivers and passengers can exchange traffic information, videos or images with other vehicles on the road; customers in a shopping mall can share sale information and recommend it to their friends. With MSNs, massive opportunities are created to facilitate people's social interactions and enlarge the inherent social circle. However, the flourish of MSNs also hinges upon fully understanding and managing the challenges, such as security threats and privacy leakage. Security and privacy concerns rise as the boom of MSN applications comes up, but few users have paid adequate attentions to protect their privacy-sensitive information from disclosing. First of all, to initiate social interactions, users sometimes exchange their social interests or preferences with each other (including strangers in the vicinity) without sufficient protections. As such, some private information may be inferred from the exchanged social interests by attackers and untrusted users. Secondly, some malicious attackers might forge fake identities or false contents, such as spam and advertisements, to disrupt MSNs or mislead other users. These attackers could even collude and launch a series of security threats to MSNs. In addition, massive social network data are usually stored in untrusted cloud servers, where data confidentiality, authentication, access control and privacy are of paramount importance. Last but not least, the trade-off between data availability and privacy should be taken into account when the data are stored, queried and processed for various MSN applications. Therefore, novel security and privacy techniques become essential for MSN to provide sufficient and adjustable protections. In this thesis, we focus on security and privacy for MSNs. Based on the MSN architecture and emerging applications, we first investigate security and privacy requirements for MSNs and introduce several challenging issues, i.e., spam, misbehaviors and privacy leakage. To tackle these problems, we propose efficient security and privacy preservation schemes for MSNs. Specifically, the main contributions of this thesis can be three-fold. Firstly, to address the issues of spam in autonomous MSNs, we propose a personalized fine-grained spam filtering scheme (PIF), which exploits social characteristics during data delivery. The PIF allows users to create personalized filters according to their social interests, and enables social friends to hold these filters, discarding the unwanted data before delivery. We also design privacy-preserving coarse-grained and fine-grained filtering mechanisms in the PIF to not only enable the filtering but also prevent users' private information included in the filters from disclosing to untrusted entities. Secondly, to detect misbehaviors during MSN data sharing, we propose a social-based mobile Sybil detection scheme (SMSD). The SMSD detects Sybil attackers by differentiating the abnormal pseudonym changing and contact behaviors, since Sybil attackers frequently or rapidly change their pseudonyms to cheat legitimate users. As the volume of contact data from users keeps increasing, the SMSD utilizes local cloud servers to store and process the users' contact data such that the burden of mobile users is alleviated. The SMSD also detects the collusion attacks and prevents user's data from malicious modification when employing the untrusted local cloud server for the detection. Thirdly, to achieve the trade-off between privacy and data availability, we investigate a centralized social network application, which exploits social network to enhance human-to-human infection analysis. We integrate social network data and health data to jointly analyze the instantaneous infectivity during human-to-human contact, and propose a novel privacy-preserving infection analysis approach (PIA). The PIA enables the collaboration among different cloud servers (i.e., social network cloud server and health cloud server). It employs a privacy-preserving data query method based on conditional oblivious transfer to enable data sharing and prevent data from disclosing to untrusted entities. A privacy-preserving classification-based infection analysis method is also proposed to enable the health cloud server to infer infection spread but preserve privacy simultaneously. Finally, we summarize the thesis and share several open research directions in MSNs. The developed security solutions and research results in this thesis should provide a useful step towards better understanding and implementing secure and privacy-preserving MSNs
    • …
    corecore