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Abstract

With the ever-increasing demands of people’s social interactions, traditional online
social networking applications are being shifted to the mobile ones, enabling users’ social
networking and interactions anywhere anytime. Due to the portability and pervasiveness of
mobile devices, such as smartphones, wearable devices and tablets, Mobile Social Network
(MSN), as a promising social network platform, has become increasingly popular and
brought immense benefits. In MSN, users can easily discover and chat with social friends in
the vicinity even without the Internet; vehicle drivers and passengers can exchange traffic
information, videos or images with other vehicles on the road; customers in a shopping
mall can share sale information and recommend it to their friends. With MSNs, massive
opportunities are created to facilitate people’s social interactions and enlarge the inherent
social circle.

However, the flourish of MSNs also hinges upon fully understanding and managing the
challenges, such as security threats and privacy leakage. Security and privacy concerns rise
as the boom of MSN applications comes up, but few users have paid adequate attentions
to protect their privacy-sensitive information from disclosing. First of all, to initiate social
interactions, users sometimes exchange their social interests or preferences with each other
(including strangers in the vicinity) without sufficient protections. As such, some private
information may be inferred from the exchanged social interests by attackers and untrusted
users. Secondly, some malicious attackers might forge fake identities or false contents, such
as spam and advertisements, to disrupt MSNs or mislead other users. These attackers could
even collude and launch a series of security threats to MSNs. In addition, massive social
network data are usually stored in untrusted cloud servers, where data confidentiality,
authentication, access control and privacy are of paramount importance. Last but not
least, the trade-off between data availability and privacy should be taken into account
when the data are stored, queried and processed for various MSN applications. Therefore,
novel security and privacy techniques become essential for MSN to provide sufficient and
adjustable protections.

In this thesis, we focus on security and privacy for MSNs. Based on the MSN archi-
tecture and emerging applications, we first investigate security and privacy requirements
for MSNs and introduce several challenging issues, i.e., spam, misbehaviors and privacy
leakage. To tackle these problems, we propose efficient security and privacy preservation
schemes for MSNs. Specifically, the main contributions of this thesis can be three-fold.
Firstly, to address the issues of spam in autonomous MSNs, we propose a personalized
fine-grained spam filtering scheme (PIF), which exploits social characteristics during data
delivery. The PIF allows users to create personalized filters according to their social inter-
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ests, and enables social friends to hold these filters, discarding the unwanted data before
delivery. We also design privacy-preserving coarse-grained and fine-grained filtering mecha-
nisms in the PIF to not only enable the filtering but also prevent users’ private information
included in the filters from disclosing to untrusted entities. Secondly, to detect misbehav-
iors during MSN data sharing, we propose a social-based mobile Sybil detection scheme
(SMSD). The SMSD detects Sybil attackers by differentiating the abnormal pseudonym
changing and contact behaviors, since Sybil attackers frequently or rapidly change their
pseudonyms to cheat legitimate users. As the volume of contact data from users keeps
increasing, the SMSD utilizes local cloud servers to store and process the users’ contact
data such that the burden of mobile users is alleviated. The SMSD also detects the col-
lusion attacks and prevents user’s data from malicious modification when employing the
untrusted local cloud server for the detection. Thirdly, to achieve the trade-off between
privacy and data availability, we investigate a centralized social network application, which
exploits social network to enhance human-to-human infection analysis. We integrate so-
cial network data and health data to jointly analyze the instantaneous infectivity during
human-to-human contact, and propose a novel privacy-preserving infection analysis ap-
proach (PIA). The PIA enables the collaboration among different cloud servers (i.e., social
network cloud server and health cloud server). It employs a privacy-preserving data query
method based on conditional oblivious transfer to enable data sharing and prevent data
from disclosing to untrusted entities. A privacy-preserving classification-based infection
analysis method is also proposed to enable the health cloud server to infer infection spread
but preserve privacy simultaneously.

Finally, we summarize the thesis and share several open research directions in MSNs.
The developed security solutions and research results in this thesis should provide a useful
step towards better understanding and implementing secure and privacy-preserving MSNs.

iv



Acknowledgements

The past four years of my PhD research at Waterloo are truly the most unique, precious
and awarding time in my life. This thesis would not have been possible without the
helps and supports from my supervisor, my thesis committee members, my colleagues and
families.

First and foremost, my deepest and sincerest gratitude goes to my supervisor, Professor
Xuemin (Sherman) Shen. It is his support, guidance, encouragement, patience and genuine
expertise in the past four years that have made this dissertation possible. What I appreciate
the most of Professor Shen is his great patience and understanding to me. I am really
inspired by his dedication and enthusiasm to his work, his students and his family. In
addition, I would like to thank Professor Kui Ren for serving as my thesis external examiner.
I also appreciate the honorable members of my thesis committee, Professor Wei-Chau Xie,
Professor Mahesh Tripunitara and Professor Liang-liang Xie. Their insightful comments
have significantly affected the substance and presentation of my work.

Many friends and colleagues from Broadband Communications Research (BBCR) group
have made my life at the University of Waterloo a colorful and enjoyable experience. I wish
to especially thank Dr. Rongxing Lu, Dr. Xiaohui Liang, Professor Xiaodong Lin, Dr. Kan
Yang, Ju Ren, Jianbing Ni, Professor Yaoxue Zhang, Professor Kan Zheng, Professor Hai
Zhao, Dr. Henry H. Luo, Professor Zhou Su and Dr. Mrinmoy Barua for their inspiring
discussions and invaluable insights on my research. I also wish to thank Dr. Tom H. Luan,
Dr. Ning Lu, Dr. Ning Zhang, Nan Cheng, Nan Chen, Dr. Chunhe Song, Dr. Wei Jing,
Ran Zhang, Dr. Miao Wang, Dr. Yong Zhou, Professor Zhiguo Shi, Dr. Haibo Zhou, Dr.
Hao Liang, Dr. Yongkang Liu, Dr. Hassan Omar, Dr. Qinghua Shen, Dr. Jian Qiao, Dr.
Ye Wang, Dr. Xiaoxia Zhang, Dr. Zhongmin Zheng, Dr. Chengzhe Lai, Qiang Ye, Miao
He, Wenchao Xu, Dr. Amila P. K. Tharaperiya Gamage, Dr. Shibo He, Professor Mi Wen,
Professor Yuanguo Bi, Professor Yi Zhou, Professor Juntao Gao, Professor Shaohua Wu
and many others. I gratefully acknowledge all BBCR group members for their continuous
encouragement, selfless help and all the good time we spent together.

The thesis is dedicated to my parents. I would not be completing my studies if they
did not teach me the value of hard work and dedication. I owe them everything, and fear
I cannot love them enough in return for that. Thanks to them all for their continuous and
ever-caring support which made me always feel their presence so near to me.

v



Dedication

To my family and teachers from whom I have learned so much.

vi



Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Mobile Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 MSN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 MSN Communication Patterns . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Applications of MSNs . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Characteristics of MSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Social Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Network Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Security and Privacy in MSNs . . . . . . . . . . . . . . . . . . . . . 9

1.3 Research Motivations and Contributions . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Background 13

2.1 Security and Privacy Requirements . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Security and Privacy Challenges in MSNs . . . . . . . . . . . . . . . . . . . 14

2.2.1 Privacy Leakage During Social Interactions . . . . . . . . . . . . . . 14

2.2.2 Privacy Leakage During Data Processing . . . . . . . . . . . . . . . 16

vii



2.2.3 Social Network Data Access Control . . . . . . . . . . . . . . . . . 16

2.2.4 Misbehaviors and Malicious Attacks . . . . . . . . . . . . . . . . . . 17

2.2.5 Quality-of-Protection . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Social Based Spam Filtering 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 System Model and Design Goals . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Proposed PIF Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Social Based Filtering Distribution . . . . . . . . . . . . . . . . . . 31

3.4.2 Coarse-grained Filtering . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Fine-grained Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.4 Filter Authentication and Update Scheme . . . . . . . . . . . . . . 39

3.5 Security Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Resistance to Inside Curious Users . . . . . . . . . . . . . . . . . . 41

3.5.2 Resistance to Filter Forgery . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6.3 Computational Overhead . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

viii



4 Social Based Mobile Sybil Detection 49

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 System Model and Design Goals . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.3 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 The SMSD Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Social-based Mobile Sybil Detection . . . . . . . . . . . . . . . . . . 55

4.3.2 Contact Signature with Aggregate Verification . . . . . . . . . . . . 57

4.3.3 Learning Assisted Mobile Sybil Detection . . . . . . . . . . . . . . . 60

4.3.4 Ring Structure of Contact Signature . . . . . . . . . . . . . . . . . 64

4.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 General Mobile Sybil Detection (Level-1) . . . . . . . . . . . . . . . 65

4.4.2 Contact Unforgeability of Mobile User (Level-2) . . . . . . . . . . . 65

4.4.3 Resistance to Collusion of Mobile Attackers (Level-3) . . . . . . . . 66

4.4.4 Resistance to Collusion of Cloud Server (Level-4) . . . . . . . . . . 66

4.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.1 Social Network Based Sybil Detection . . . . . . . . . . . . . . . . . 70

4.6.2 Social Community Based Sybil Detection . . . . . . . . . . . . . . . 74

4.6.3 Behavior Classification Based Sybil Detection . . . . . . . . . . . . 76

4.6.4 Mobile Sybil Defense . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



5 Exploiting Social Network To Enhance Infection Analysis With Privacy
Preservation 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 System Model and Design Goals . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Security Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.3 Privacy Requirements and Design Goals . . . . . . . . . . . . . . . 89

5.3 Privacy-preserving Infection Analysis Approach . . . . . . . . . . . . . . . 90

5.3.1 Overview of PIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Analysis of Infectious Disease Spread . . . . . . . . . . . . . . . . . 91

5.3.3 Health Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.4 Social Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.5 Privacy-preserving Data Query . . . . . . . . . . . . . . . . . . . . 98

5.3.6 Privacy-preserving Classification-based Infection Analysis . . . . . . 100

5.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.1 Health Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Social Data Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.3 Susceptible and Infected User Privacy . . . . . . . . . . . . . . . . . 105

5.5 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5.2 Computational Performance . . . . . . . . . . . . . . . . . . . . . . 107

5.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusions and Future Work 111

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Secure and Lightweight Social Data Sharing . . . . . . . . . . . . . 113

6.2.2 Misbehavior Detection . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 Secure Social Data Processing . . . . . . . . . . . . . . . . . . . . . 114

x



References 116

List of Publications 134

xi



List of Tables

2.1 Three Types of Sybil Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Frequently Used Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Comparison of Computation Complexity . . . . . . . . . . . . . . . . . . . 59

4.2 Comparison on Social Graph Based Sybil Detection . . . . . . . . . . . . . 73

4.3 Sybil Detection: A Comparison . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Infection Analysis Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 108

xii



List of Figures

1.1 Mobile social network architecture . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 MSN domains: User-CS domain, User-LS domain, and User-User domain . 4

2.1 MSN domains: sensing domain, social domain, and mobile domain . . . . . 18

2.2 Three types of Sybil attacks: SA-1, SA-2 and SA-3. . . . . . . . . . . . . . 19

2.3 Quality-of-Protection in MSNs . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Information dissemination in MSNs . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 PIF scheme (In filter distribution phase, filter creator sends his filters to
his social friends. In filtering phase, filter holders block spam to the filter
creator with his filters.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Merkle Hash tree based filter authentication . . . . . . . . . . . . . . . . . 40

3.5 Packet delivery comparison among different schemes . . . . . . . . . . . . . 44

3.6 Filtering comparison among different schemes . . . . . . . . . . . . . . . . 45

3.7 Performance comparison of PIF with different THs . . . . . . . . . . . . . 46

3.8 Update comparison among different schemes . . . . . . . . . . . . . . . . . 47

4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Overview of SMSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 Observations on contact and pseudonym changing between normal users and
Sybil attackers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiii



4.4 Comparison of contact rate distribution between normal users and Sybil
attacker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Hidden Markov model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 The impacts of the number of Sybil attackers . . . . . . . . . . . . . . . . 68

4.7 The impacts of TH (i.e., every user changes pseudonyms when the pseudonym
meets more than TH users) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.8 The impacts of SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Online social networking behaviors and transition probabilities of Sybil at-
tackers and normal users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Infection analysis system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Overview of privacy-preserving infection analysis . . . . . . . . . . . . . . . 90

5.3 Infectious disease spread trend . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Infection states of infectious disease . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Input of Bayesian classification . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6 Impact of social characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 106

xiv



Chapter 1

Introduction

1.1 Mobile Social Networks

Online Social Networks (OSNs), as a kind of popular social networking platforms, allow
users (even strangers) to interact with each other for information sharing and other social
activities over the Internet. With the assistance of OSNs, people’s social circle and com-
munity have been extended from their family, colleagues and friends to the Internet users
having similar interests and preferences. In every minute of the day, 31.25 million posts are
shared on Facebook with over 4.16 million post-likes; around 350, 000 tweets are generated
on Twitter; over 300-hour-length new videos are uploaded on Youtube with more than 2
million views; and 2, 400, 000 searches are operated on Google [1]. Offering these diverse
social network services, OSNs have already become an integral part of people’s daily life.

Meanwhile, with the advancement of wireless communication technologies and ever-
increasing volume of smartphones, mobile social networks (MSNs) emerge to offer a novel
social networking paradigm. MSNs are fueled with heterogeneous wireless communications
(e.g., cellular, WiFi, BlueTooth and short range communications), mobile devices (e.g.,
smartphones and wearable devices) and powerful social network servers (e.g., cloud servers)
to build a fantastic platform for users’ ubiquitous social activities. In MSNs, smartphones
take place of traditional desktop and allow users to have various types of social activities:
from friend discovery to multimedia sharing; from universal content searching to local
information query [2]; and from the global Internet to the physical proximity [3]. MSN
users can not only select and download their interested multimedia contents or global up-
to-date information over the Internet [4], but also share the local information directly to
their friends or even strangers who have similar interests in vicinity of each other [5, 6]. In
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Figure 1.1: Mobile social network architecture

addition, a group of users are able to autonomously form a social community to share the
personalized contents with opportunistic networks or device-to-device communications. In
this chapter, we present the MSN architecture, applications and some challenges in MSNs.

1.1.1 MSN Architecture

MSNs consist of mobile users moving in a local geographical area, centralized servers
connected by various types of wireless networks, and local servers deployed in the local
area as shown in Fig. 1.1.

(1) Mobile Users

Mobile users take smartphones to communicate with each other. They either connect

2



to the Internet via WiFi/cellular networks or directly communicate with other nearby users
via short range communication techniques, such as Bluetooth and NFC. These communi-
cation modes (or patterns) depend on the network conditions and requirements of different
applications. For instance, when users search the Internet content, such as Youtube video
clips, they should turn on the Internet mode if applicable on their smartphones and directly
access the centralized servers to access the desirable contents. When some users are in the
physical proximity, they are able to directly exchange their information via Bluetooth. In
addition, mobile users could not only be the content owners, but also query contents from
others. The contents of mobile users contain text (e.g., posts, microblog and news), audio
(e.g., music), image, and video (e.g., movie or video clips).

(2) Local Server

The local server (LS) is a computing, communication and storage device/machine (e.g.,
router, small cell gateway, computer, smartphone or fog computing element) in the local
area. The LS is able to offer nearby users with local service information, such as local
tour information, store advertisements and service evaluation of the vendors. Local users’
feedbacks, review comments or requests can be also collected by the LS. The LS either
stores and processes a portion of this information, or acts as a relay between the centralized
server and mobile users. The LS usually has storage-rich devices fueled by the adequate
power. The contents from the LS are mainly related to the local information, such as
service descriptions, advertisements, local introduction and tips.

(3) Centralized Server

The centralized server (CS) can be the Internet service provider or cloud server, pro-
viding the Internet-based services. The CS usually has very strong capabilities of storage,
communication and computing compared with the LS. Mobile users access the CS either
via WiFi and cellular networks, or through relaying by the LS. The contents from the CS
are usually abundant and of diverse types, since the CS have the Internet connections with
the world-wide content resources.

1.1.2 MSN Communication Patterns

In general, MSNs can be classified into three domains, i.e., User-CS, User-LS, and User-
User domains (as shown in Fig. 1.2) according to different communication patterns and
various types of contents.

(1) User-CS Domain

3
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Figure 1.2: MSN domains: User-CS domain, User-LS domain, and User-User domain

In User-CS domain, users directly access the contents from the CS via either cellular
networks (with the purchased mobile data plans) or WiFi access points, which are wide-
ly deployed in the residence area and public spots [7], such as campus and local stores.
For example, Tim Hortons, one of the largest publicly-traded restaurant chains in North
America, has rolled out the high-speed free WiFi service to customers since 2012. The
communication range is dependent on the type of communications and network infrastruc-
ture. The connections in User-CS domain may be one-hop or multi-hop. The contents
communicated within User-CS domain contain a broad range of multimedia all over the
world since the CS holds diverse types of contents. In User-CS domain, users can browse
the social media, photo galleries and online video; query the desirable contents over the
Internet; and share their multimedia contents to others.

(2) User-LS Domain
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In User-LS domain, the LS acts as not only a temporary local organizer equipped by
the easy-to-setup and low-cost local wireless gateway or router, but also a mobile user
participating in the mobile user’s social interactions. The LS may have the capability to
access the Internet, or establish local distributed or autonomous MSNs among neighboring
users. The LS can also disseminate the contents to the near-by mobile users with a longer
communication range compared with mobile users. Since the User-LS domain is featured by
the local attributes, the LS provides multimedia services, local guidelines, advertisements,
and local customers’ reviews to help users better understand the features of the local area.

(3) User-User Domain

MSN users sometimes stay in the mobile local environment, where the continuous In-
ternet services may not be guaranteed or users could directly exchange contents with each
other in the physical proximity without the Internet. The User-User communications plays
an uppermost role in such a scenario. For example, in a shopping mall, commercial street,
etc., users with similar social preferences may want to share their multimedia contents to
others. They can adopt opportunistic network, device-to-device communications, Blue-
tooth, etc., to establish the temporary connections to enable data sharing without the
Internet and cellular network infrastructure. The communication range is usually from 1-
200 meters in the local area, and multi-hop communications is applied according to users’
demands. Most of contents in User-User domain are personal contents, such as personal
status update, local information generated by users, etc.

1.1.3 Applications of MSNs

The main objective of MSN applications is to share information among mobile users by
using wireless and mobile communications technology such that the closeness of social
relationships is enhanced. In this section, we introduce some popular MSN applications.

Social Networks: From Desktop to Mobile

As the flourish of OSN applications, a large number of people are interested in exchanging
their experiences with their friends over the Internet. OSNs, such as Facebook, Twitter,
Linkedin and Wechat, gradually become an integral part of our lives. Knowing people
and becoming friends are the primary motivations for these OSN services. According to a
recent report from comScore, Instagram users in the United States spend 98% of time with
their mobile devices instead of desktop, while this percentage for Twitter users is over 86%
[8]. With the help of smartphones, people can start these applications at any time and
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anywhere. The MSN services introduce the freedom of movement for users, and provide
ease of use and seamless connection to social world. For example, a student can browse
her Facebook friend updates and photos when taking a bus back home; a business man
can process his emails when he is not in the office; a soccer fan can obtain the up-to-date
game information when he is in a shopping mall. As a result, a promising tendency is to
establish a social network in a mobile or distributed fashion where people use smartphones
to communicate with the local neighbors for some shared interests, even though people
might not know these neighbors in reality.

The applications in User-CS domain include traditional content query, data download-
ing, information exchanging, and social interaction for online social communities. With
the available cellular data plan or widely applied WiFi access point, the Internet access
is usually guaranteed. Therefore, it can support the wide range content query, large size
data downloading, and real-time information exchanging.

Location-Based Services

Location-Based Service (LBS) is a popular social networking application with the assis-
tance of GPS and some other sensors embedded in smartphones. The location information
can be widely used and combined with user’s social information to provide users a variety of
contextual services and personalized searching services. LBSs can find the nearest restau-
rants, discover friends in the proximity, recommend information, such as social activities,
location-based advertisements, games, etc. For example, Google Latitude [9], Loopt [10],
and Foursquare are some of the popular location-based MSN services. Some of them are
developed on the smartphone platform, such as iPhone, Android. Meanwhile, some appli-
cations, (for example, APPLAUS [11], secure top-k query [12]) enable LBS and preserve
user’s location privacy from directly disclosing to other untrusted entities in MSNs.

User-User applications

There are some autonomous MSN applications [13, 14] applied for the direct interactions
among mobile users. The extension of the popular online services (e.g., Facebook, MyS-
pace) to mobile devices accounts for wide popularity of mobile social networking services.
For example, Dada [13] is an MSN application that enables users to update personal blogs
with pictures and video, connect with and meet other local users in real time and stay
in contact with all their friends even without the Internet. Carpool and ride sharing are
popular MSN applications, which alleviate the heavy road traffic and offer profits to both
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the driver and the passengers. With the temporal and geographic vicinity of the departure
and arrival, the ride sharing provider (i.e., the driver) can save travel expense, such as fuel
and parking costs, while the passengers pay little money for the journey. The similar travel
plan is the common social preference of the ride sharing provider and passengers.

In addition, some wearable devices, such as Apple watch, Google glass [15], bracelets,
Hug shirt [16], etc., can measure the environmental information or monitor the biomedical
condition and health parameters. Users can interact with their body, for example, hugging
and heating human body with Hug shirt. Therefore, the User-User applications lead to a
new tendency of MSNs and provide diverse services.

1.2 Characteristics of MSNs

As discussed above, the main objective of MSNs is to enlarge users’ social circle and
enable their social interactions anytime and anywhere. Different from the traditional OSNs,
MSNs are featured by: 1) dynamic user mobility and intermittent connections; 2) lack
of central controller to manage the large scale network; 3) the limited resources, such
as bandwidth of MSNs, user’s computing, communication, and storage capabilities; 4)
user’s profiles are highly related to their privacy; and 5) security vulnerabilities. All these
features dramatically complicate the design of application and network. In this section, we
investigate several important characteristics of MSNs.

1.2.1 Social Characteristics

Social characteristics are of paramount importance in MSNs, since these social features
may have impacts on user’s mobility, networking connectivity, communication patterns,
security, privacy and trustworthiness [17]. Social network analysis [18] has also attracted
considerable attentions in many research fields such as anthropology, biology, communica-
tion studies, economics, information science, computer science and engineering. Regarding
MSNs, we investigate several typical social characteristics, including community, centrality
and similarity, friendship and selfishness.

Community represents a group of interacting users living in a common location or
users who have common interests in certain aspects. It is widely studied at spatial and
temporal scales. Community is introduced to Delay Tolerant Networks (DTNs), Vehicular
Ad hoc NETworks (VANETs), and MSNs, in order to improve the network efficiency [19].
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Centrality is a metric to measure the topological importance of a vertex within a
social graph [20, 21]. Generally, the central node in the social graph has a stronger ca-
pability to reach/connect other nodes compared with that exist near the graph boundary.
Centrality reflects the social importance of the node, and would be used to select the group
or community leader.

Degree , as another metric of the social graph, is defined as the number of common
neighbors between individuals in a social graph. It is extended to measure the social
interests, location, etc.

Social-tie indicates the strength or characteristics of the link connecting two users.
Usually, social-tie can be reflected by contact duration, frequency and some other factors
that identify the connection strength of two users.

Friendship reflects the strong social-tie of a pair of users, including common interests,
long-lasting and regular contacts, etc.

Selfishness is originated from sociology and economic. In MSNs, selfish users behave
selfishly at individual level and aim to only maximize their own profits without considering
the utility of the whole network. For example, some users behave selfishly and may not
be willing to help forward other user’s packets. Selfishness of mobile users may impact the
cooperation and disrupt MSNs.

1.2.2 Network Characteristics

Data sharing is one of the most popular and significant applications in MSNs, depending on
data forwarding performance of the network. Some traditional forwarding schemes usually
rely on the shortest forwarding path, minimized the forwarding delay, energy consumption
and some other defined metrics of forwarding. However, these types of forwarding schemes
do not consider the social characteristics or relationships among MSN users. For example,
during the social data sharing, the users with high social ties can share the data related
to certain social attributes, while strangers may not be willing to help forward or share
the data. The data forwarding is social-relationship-driven and towards certain social
communities or a group of social friends. In addition, MSNs are sometimes deployed in
local or urban area. On one hand, the Internet access may not be always available for
all users due to the deployment of WiFi access points and environment condition; on
the other hand, the high cost of data plan or roaming may hinder some mobile users to
purchase. As a result, the Internet connections among mobile users or servers may be
intermittent. Due to the intermittent connectivity, the communications in MSNs may
be constrained and delay-tolerant, especially in the local area or during temporary social
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events. To maintain the connections among mobile users, it is necessary to investigate
user’s social characteristics. Since the users with similar social interests or preferences
would encounter at the same location, it is possible to explore opportunistic networking
and take the advantages of mobile user’s contact to improve the data forwarding efficiency
in MSNs. Furthermore, users with similar social preferences can probably help their social
friends to store-carry-and-forward the data and cooperatively share the data among social
friends. In addition, some negative social factors, such as selfishness, should be addressed
to improve the information sharing efficiency in MSNs. If the user’s historic behaviors are
collected to analyze and detect the selfish behavior, the user’s privacy is easily disclosed.
Therefore, it is challenging to balance the trade-off between the performance and privacy.

1.2.3 Security and Privacy in MSNs

Although MSN applications become popular in our daily life, security and privacy concerns
still hinder the flourish of MSNs. In this section, we introduce several critical security
threats and privacy leakage.

Security Threats

General security requirements, such as confidentiality, integrity, non-repudiation and access
control, are applicable to MSNs. Besides, MSNs are vulnerable to a series of security
threats, such as forgery, tampering, spam and Sybil attacks.

(1) Forgery : Malicious attackers may not only forge their identities, profiles and social
relationships, but also generate fake information to misbehave or mislead other users.
MSNs cannot effectively identify these misbehaviors. In addition, the network resources,
such as bandwidth, storage and energy would be excessively consumed based on the forged
information.

(2) Tampering : A tampering attacker could maliciously drop, delay or modify the
transmitted data to disrupt MSNs and degrade the network efficiency. It is difficult to
detect some tampering behaviors since the wireless channel condition and user mobility
may also result in the transmission failure and delay [22].

(3) Spam: Spam data refer to the unwanted content, such as comments, chat, news
and links, which are generated and spread by the attackers. The spam would result in the
unnecessary network resource consumption, misleading social friends, and even privacy
leakage.
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(4) Sybil : Sybil attackers either manipulate fake identities or abuse pseudonyms in order
to compromise and control the effectiveness of MSN. They could generate incorrect reports
and social content such that users’ opinions and options may be misled. In addition, Sybil
attackers could link legitimate user’s private information.

Privacy Leakage

As the MSN applications are highly related to user’s social interests, relationships, and some
other social preferences, directly revealing this information would violate user’s privacy.

During social interactions, MSN users aim to share different types of data with other
users. These shared data may contain identity, social interests, relationships and some
other privacy-sensitive information, which is visible to the interacted users. Moreover,
the unconscious disclosure of the private information may bring negative experiences to
users and hinder the flourish of MSN, especially when users interact with strangers. In
addition, during the packet forwarding, users may want to share their social information
(or profiles) to acquire optimal relay candidates. These behaviors bring serious privacy
problems and unconsciously disclose user’s private information. Usually, users are not be
willing to disclose their private information, such as preference and history activities, to
those who do not have similar experiences. In other words, they would like to merely
share such relevant profiles to others having common interests or events. Meanwhile, some
malicious attackers might exist in MSNs. They could camouflage themselves with some
fake profiles (e.g., camouflage/act as legitimate user’s social friends) to interact with these
legitimate users to steal their private information. These malicious users could also claim
to have some social interests and acquire trust from legitimate users with the same social
interests. Even worse, an attacker may collude with other attackers to reveal, link and
infer legitimate user’s information, even the user’s information cannot be directly disclosed
to the single attacker.

With these critical privacy concerns, users may not be willing and active in using
MSNs for data sharing. In summary, it is necessary to develop privacy-preserving solutions
in MSNs to prevent user’s privacy-sensitive information from disclosing and improve the
network efficiency simultaneously.

1.3 Research Motivations and Contributions

These emerging trends motivate our research in investigating the not-for-profit global ini-
tiative of security and privacy for MSNs. The research in this thesis focuses on developing
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a set of security protection schemes to address the aforementioned security and privacy
challenges in MSNs. Specifically, the main contributions are three-fold as follows.

• Social Based Spam Filtering : As the advertisements, rumors, and spams spread in
MSNs, it is urgent to filter spams before they arrive at the recipients to reduce the
network resource consumption, especially in autonomous MSNs (i.e., User-User do-
main). To this end, we propose a personalized fine-grained spam filtering scheme
(PIF), which exploits social characteristics during message delivery. The PIF allows
users to create personalized filters according to their social interests, and enables
social friends to hold these filters, discarding the unwanted messages before delivery.
In addition, the distributed filters may contain certain private information related to
filter creators. If this private information embedded in filters is disclosed to others,
it may violate the filter creator’s privacy. To this end, we also propose privacy-
preserving coarse-grained and fine-grained filtering schemes to not only enable the
filtering but also protect users’ private information included in the filters from dis-
closing to untrusted entities.

• Mobile Sybil Detection: Mobile Sybil attackers with a large number pseudonyms
bring severe security threats in MSNs by frequently changing pseudonyms in a short
period and repeatedly misbehave to (or cheat) normal users. It is difficult for mobile
users to detect mobile Sybil attackers due to several limitations, including the lack
of social graph information, user’s dynamical-changing mobility, and limited detec-
tion capabilities. Moreover, mobile Sybil attackers sometimes act as normal users
and merge into the normal user’s crowd or social community, posing challenges for
traditional Sybil detections. To address these challenges, we propose a social-based
mobile Sybil detection scheme (SMSD). The SMSD detects mobile Sybil attacker-
s according to the abnormal social contact and pseudonym changing behaviors in
MSNs. As the volume of contact data from users keeps increasing, the local cloud
servers (i.e., in User-LS domain) are adopted to store and process the users’ contact
data, alleviating the burden of mobile users. However, the untrusted cloud servers
pose critical security and privacy concerns, such as data modification and deletion.
The SMSD can prevent user’s data from being modified and deleted by untrusted
cloud servers. In addition, the SMSD detects the collusion attacks to degrade the
attacker’s capabilities and improve the detection accuracy.

• Privacy-preserving Social Network Data Analysis : We investigate privacy-preserving
social network data analysis in a practical applications, i.e., infection spread analysis.
We exploit social network associated with health data to analyze the instantaneous
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infectivity during human-to-human contact. However, users’ health and social data,
such as infection status and social contact, are privacy-sensitive from the perspective
of users, who are not willing to excessively reveal this private information to the un-
trusted or unauthorized entities. To preserve user’s privacy, they may encrypt data
and send the ciphertexts to cloud servers, limiting the data processing capability of
cloud servers. In addition, social network data also contain privacy-sensitive informa-
tion of infected and susceptible patients, such as identities and contact, which may
be inferred by untrusted entities during the data sharing among different parties. To
tackle these problems, we propose a privacy-preserving infection analysis approach
(PIA), achieving the trade-off between data privacy and availability. The PIA enables
the collaboration among different cloud servers (i.e., social network cloud server and
health cloud server) in User-CS domain of MSNs. It employs a privacy-preserving
data query method based on conditional oblivious transfer to enable data sharing
among different entities. A privacy-preserving classification-based infection analysis
method is also proposed to enable the health cloud server to infer infection spread
and achieve data privacy.

1.4 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 presents background and a
comprehensive overview of security and privacy challenges in MSNs. Chapter 3 develops
a social-based personalized filtering scheme with privacy preservation to resist spam in
autonomous MSNs. Chapter 4 investigates users’ social contacts and pseudonym changing
behaviors to differentiate Sybil attackers from normal users. Chapter 5 exploits social
network to enhance the infection spread analysis and protects privacy-sensitive information
from disclosing to untrusted entities. Finally, Chapter 6 concludes the thesis, and points
out our future research directions.
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Chapter 2

Background

This chapter introduces the background of security and privacy for MSNs. We first present
general security and privacy requirements. Then, we discuss several unique challenges of
MSNs from the perspectives of security and privacy.

2.1 Security and Privacy Requirements

There are several general security and privacy requirements [23] should be satisfied in
MSNs.

(1) Integrity should be ensured such that the data transmitted, shared, stored and pro-
cessed over MSNs are accurate and complete representations of the intended information.
These data should not be tampered in any way during any phase.

(2) Confidentiality should be guaranteed such that the data from users and service
providers are invisible or unavailable to the unauthorized or untrusted entities. In other
words, only the authorized MSN users can access the required data.

(3) Availability should be achieved when authorized users require certain data from
MSNs. Ensuring availability also contains resisting denial-of-service attacks, jamming at-
tacks, etc.

(4) Authenticity should be provided such that any involved entity requesting access in
MSNs is valid and authentic. In MSNs, the information provided by the users or from social
network service providers should be authenticated. Besides, each user and his identities
should be verified as well. Any invalid information and user can be detected.
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(5) Privacy ensures that any privacy-sensitive information, such as data, identity and
location, should be prevented from being disclosed or inferred by any untrusted or illegal
entity, including active and passive attackers.

(6) Non-repudiation resists the repudiation threats where attackers deny after perform-
ing certain behaviors in MSNs. For example, users who send spams may deny the spam
sending behaviors; a local service provider may deny the offered services to customers.
MSNs should be able to detect these repudiation threats.

(7) Access Control is to enforce access policies and ensure that only authorized users
can have access to resources in MSNs. As users’ private social network data are stored in
the cloud sever, they should be able to define access policy.

(8) Anonymity guarantees that a user cannot be identified by unauthorized entities.
The user’s real identity should be anonymous when he stores his data on the LS or CS
such that both LS and CS cannot learn anything about the identity.

(9) Unlinkability refers to the activities or use of MSN resources by a user without other
users being able to interlink the activities and usage of these resources. Specifically, the
information obtained from different flows over MSNs should not be sufficient to establish
linkability by the unauthorized entities [24].

(10) Auditing ensures that all the data over MSNs are secure. All the data access
activities are perceived and recognized by a trusted third party in MSNs.

2.2 Security and Privacy Challenges in MSNs

Besides the aforementioned general security and privacy requirements, several unique chal-
lenges in MSNs are crucial and require more research efforts to address.

2.2.1 Privacy Leakage During Social Interactions

Privacy leakage is a critical issue in MSNs when the privacy-sensitive information is in-
volved in the data collection, transmission, processing and sharing. Without appropriate
protections against privacy leakage, users may not be willing to expose their data visible to
any untrusted entities. It may hinder the processing and sharing of users’ social network
data and their experiences. For example, a user suffering HIV/AIDS do not want other
people to know his disease when using social network or forums. The inappropriate or
unconscious information leakage may leave negative impacts on this user. Even worse,

14



users sometimes may not be aware of privacy leakage via MSNs, which would cause finance
loss. In February 2016, a Newfoundland woman posted a picture of her “Roll Up the
Rim” prize-winning Tim Hortons cup via Facebook. But one of her 900 Facebook friends
stole the security code on the peeled-back rim of her cup in the online posted picture, and
then claimed the $100 prize ahead of her. Another example is about training and fitness
social applications. Soccer players in a game can wear a set of dedicated vests to measure
the player’s body condition and performance for coaches to determine the game strate-
gy. Once the sensed player-related information is disclosed to the opponent, the opponent
could change the strategy in advance. Therefore, privacy should be preserved in MSNs to
provide user-friendly services.

In recent years, privacy preservation receives a lot of attentions in the research field.
Several critical privacy threats in social related applications are introduced in [25, 26],
where identity privacy, information leakage during transmission and location privacy are
investigated. In [27], the privacy protection is applied between wearable devices and smart-
phones to protect wearable sensing data from disclosure in health-related social network
applications. In [28], Ong et al. investigate the security services partitioned into various
security levels to balance the trade-off between security and performance (with respect to
computation, storage and communication overhead) preferences.

When the social network data are transmitted or shared in MSNs, privacy should
be also taken into account when developing applications. Privacy-preserving aggregation
is a promising way to gather the transmitted data. Shi et al. [29] propose a privacy-
preserving aggregation scheme for time series data. The data are divided to mix them
together and restrict the aggregator’s decryption capability. In [29], the aggregator can only
decrypt the summation of the aggregated data without learning anything about individual
data. In [30], Lu et al. propose a multi-dimensional data aggregation scheme based on
increasing sequence to reduce the computational and communication overhead during the
aggregation. In [31], another privacy-preserving aggregation scheme is proposed to support
a variety of statistical additive and non-additive aggregation functions. Moreover, this
scheme is featured by resistance to the collusion attack during aggregation. To improve the
robustness of privacy-preserving aggregation, Chan et al. [32] consider the fault tolerance
problem during aggregation. A trusted authority assigns N capabilities to an aggregator,
corresponding to theN users. By using a binary tree, this fault tolerant aggregation scheme
forms several groups of users to improve the robustness. However, the communications
between users and aggregator still consumes massive overheads.
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2.2.2 Privacy Leakage During Data Processing

The volume of social network data keeps increasing such that the powerful cloud servers are
involved in data storage and processing. When the social network data are outsourced to
the cloud servers for processing and analysis, users may not want to reveal their raw data to
the untrusted cloud servers. It is necessary to keep users’ raw data invisible to the untrusted
and unauthorized entities. In addition, users’ private information, such as identities and
personal profiles, should be kept anonymous to the untrusted and unauthorized entities
according to users’ privacy requirements.

A intuitive methodology to keep the private data from MSN users invisible to untrusted
entities is to encrypt this private data before sharing. However, the encrypted data may
hinder the processing or increase the overhead of cloud servers. To this end, several secure
multi-party computation schemes (e.g., homomorphic encryption and functional encryp-
tion) have been proposed to preserve data privacy during operations, such as summation,
comparison and aggregation [33, 34]. With various privacy requirements in MSN applica-
tions, the protections should be also correspondingly enhanced when the trusted entities
conduct complicated operations to analyze inherent features over MSNs, e.g., data min-
ing and machine learning [35]. Yuan et al. [36] propose a collaborative learning scheme,
which enables each user to encrypt his data and upload the ciphertext to the cloud server.
The cloud server performs most of the learning algorithms over these ciphertext without
learning the plaintext. A variant of “doubly homomorphic encryption scheme for secure
multi-party computation is adopted to perform flexible operations over the encrypted data.
Bost et al. [35] develop a set of secure machine learning classification algorithms and pro-
pose a library of components, validating the feasibility of machine learning over encrypted
data. When using homomorphic encryptions for machine learning and data mining, a
large amount of computational and communication overheads is generated. It may also
considerably reduce the battery lifetime of users’ smartphones and wearable devices. The
increasing computational and communication overheads can increase the delay of social
network data analysis. Therefore, it is challenging to balance the trade-off between avail-
ability of data analysis and privacy preservation when performing machine learning and
data mining over encrypted social network data.

2.2.3 Social Network Data Access Control

MSNs may take the advantages of the powerful storage and computation capabilities from
the outsourced cloud servers such that security concerns related to these untrusted cloud
servers [37] are raised. The data access policy should be clearly defined and applied to
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authenticate the user’s identity with access authority. For example, wearable devices can
measure user’s daily health condition, e.g., Electrocardiography (ECG), which is stored in
the untrusted cloud server of health-oriented social networks. Only the authorized entity,
such as doctors in the neurology subject, can access these data and the corresponding
analysis results. Meanwhile, the data should be protected from being accessed by insurance
company and any other untrusted entities [38]. Besides the general access control policies,
it is still critical to ensure the fine-grained access in accordance to users’ attributes. To this
end, Yu et al. [39] propose fine-grained access control for cloud storage to prevent users’
sensitive data from disclosure to other untrusted servers and unauthorized users. This
fine-grained access control scheme is based on ABE technique which associates the data
access policy with attributes. It delegates the majority of computations to the powerful
cloud servers such that users’ overheads are considerably reduced.

In MSNs, the dynamic access management is necessary to address the issues of users’
attribute changing, revocation, new user’s participation, etc. Delegation of access control is
another important issue of access control in MSNs [4, 40]. For example, a user may obtain
the access to a portion of data from data owner according to their similar social interests.
This user can share the data owner’s data to another user if all the users have similar social
interests with the data owner. The access control should achieve both delegation and resist
the collusion attack. The private information, such as unique/uncommon social interests,
should be also protected in access control [24]. Least but not last, the computation over-
heads of access control schemes [41] should be considered for different MSN applications.
With a large number of attributes used in attribute-based access control, the encryption
and decryption overheads may correspondingly increase. Towards different access levels,
the computation burden of users should be released.

2.2.4 Misbehaviors and Malicious Attacks

MSNs, as a type of promising paradigms expanding the traditional Internet to the ubiqui-
tous network [42], connect wearable devices in the physical world, smartphones in the social
circle and servers in the information world [43, 44]. From the perspectives of network and
misbehaving characteristics, MSNs can be also divided into sensing domain, social domain
and mobile domain as shown in Fig. 2.1. Furthermore, by integrating the sensing, com-
munication and computation capabilities [45], MSNs can offer diverse intelligent services
[46] to form smart home [47], smart community [48] and smart city [49, 50] as shown in
Fig. 2.1.

However, the emerging MSN is vulnerable to a series of malicious attacks, such as Sybil
attacks where fake identities are manipulated [51, 52] to compromise the effectiveness of
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Figure 2.1: MSN domains: sensing domain, social domain, and mobile domain

MSNs. In the presence of Sybil attacks, incorrect information may be generated over MSNs,
while users may receive spam and reveal their private information. An investigation report
[53] in 2012 has shown that a substantial number of registered accounts are identified as
fake or Sybil ones in OSNs. Around 76 million (8.7 percent) accounts are Sybil in Facebook,
while 20 million newly-created fake accounts join Twitter during every week. These Sybil
accounts may broadcast advertisements and spam, or even disseminate fishing websites
and malware over OSNs in order to steal other users’ private information. In MSNs,
Sybil attackers also produce various biased information options with “legible” accounts or
pseudonyms [54]. Without an effective detection scheme, the collected information over
MSNs may be manipulated by Sybil attackers. Since most of Sybil attackers have similar
behaviors as normal users, it is difficult to detect them.

We define Sybil attacks in three types. Before introducing each type of Sybil attacks,
we present the social graph model, which is a useful tool to analyze social network in
general. Consider an undirected social graph, which is denoted by G with n honest nodes
(H) and m edges. Sybil nodes are denoted by S. Note that we use node in social graph
to represent user, identity, or account in the real world. The edge connecting every pair
of two nodes is weighted by their social relations or social-tie. An attack edge AG is the
edge connecting an honest node and a Sybil one, i.e., red dashed line as shown in Fig. 2.2.

SA-1 Attacks

SA-1 attackers usually build connections within the Sybil community as shown in Fig. 2.2.
In other words, Sybil nodes tightly connect with other Sybil nodes. However, they are not
powerful to build many connections with honest nodes. Therefore, the number of social
connections between Sybil and honest nodes is limited. As shown in Fig. 2.2, the number
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Figure 2.2: Three types of Sybil attacks: SA-1, SA-2 and SA-3.

of SA-1 attack edges is limited.

SA-1 attackers usually exist in sensing domain and social domain, i.e., OSN, voting
[55] and mobile sensing systems [56]. The primary goal of SA-1 attacks is to manipulate
the overall option or popularity. Specifically, in an online voting system, SA-1 attackers
may illegally forge a massive number of identities to perform as normal users and submit
the votes with biased options and preference. As a result, the final voting result could
be manipulated by SA-1 attackers, provided a large portion of votes are from themselves.
Similarly, in mobile sensing system, SA-1 attackers may forge the false sensing data and
indirectly impact the aggregated data. In some cases, the behaviors of Sybil attackers are
indistinguishable from the normal users.

SA-2 Attacks

SA-2 attackers usually exist in social domain. Different from SA-1, SA-2 attackers are
able to build connections with both Sybil nodes and normal ones. In other words, the
capability of SA-2 attackers is strong to mimic the normal user’s social structures from the
perspective of social graph. The number of attack edges is large.

The primary goal of SA-2 attack is to disseminate advertisements, spam and even
malware; violate users’ private information; and maliciously manipulate the reputation
system. Specifically, in OSNs, SA-2 attackers may forge the profiles and friend list as
normal users, but purposely spread spam, advertisements and malware. SA-2 attackers
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Table 2.1: Three Types of Sybil Attacks
Categories
of Sybil
Attacks

Social Graph Fea-
tures

Attack Goal Behavior Dis-
crimination

Mobility

SA-1 Sybil attacks exist
in the same region
or community, and
the number of at-
tack edges is limit-
ed.

Maliciously or purposely u-
pload the biased reports or
comments (positive or neg-
ative) to manipulate the
overall option and domi-
nate the whole system.

Perform as the
normal users,
and repeat spe-
cific behaviors
frequently.

×

SA-2 Sybils may tightly
connect with nor-
mal users, and gen-
erate more attack
edges.

Disseminate spam and
malware to launch some
other attacks, camouflage
as normal users, or violate
other users’ privacy.

Purposely
repeat some
specific behav-
iors in the high
frequency.

×

SA-3 Sybils may tightly
connect with nor-
mal users.

Manipulate the local popu-
larity, disseminate spam in
the mobile environment, or
violate user’s privacy.

Repeat specif-
ic behaviors
frequently.

√

may also post plenty of biased review comments when evaluating MSN services such that
either the advantages of services may be exaggerated or the services may be underestimated
according to the negative comments to services. It can be observed that SA-2 attacks aim
to repeat them in a high frequency [57].

SA-3 Attacks

SA-3 Sybil attackers exist in mobile domain. The primary goal of SA-3 is similar to that
of SA-2. However, the impacts of SA-3 are usually effect in the local area and within a
short period. Due to the dynamic mobility of MSNs [58, 59], mobile users cannot keep
connections with others for a long time, and the connections are intermittent. Moreover,
the centralized authority cannot exist in mobile domain at all the time. Different from
online systems, MSN users lack strong social relationships such that global social structure,
topology and historical behavior patterns in mobile domain is hard to be collected for the
detection on SA-3 attackers. The limited knowledge of the global information and the
dynamic mobility of mobile users pose challenges to detect SA-3 attacks compared with
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Figure 2.3: Quality-of-Protection in MSNs

the detections against SA-1 and SA-2 attacks. In Table 2.1, we compare different types of
Sybil attacks.

According to the aforementioned discussion, Sybil attackers can misbehave in different
patterns and mimic legitimate users such that Sybil detection becomes more challenging
in MSNs.

2.2.5 Quality-of-Protection

With the main driver of user’s experiences [60] and security requirements, Quality-of-
Protection (QoP) has attracted extensive research attentions [61]. As an important security
concept, QoP can provide multiple levels of security protections to satisfy various appli-
cation requirements and user’s demands [62, 63]. As shown in Fig. 2.3, MSNs with QoP
can guarantee the confidentiality, integrity and non-repudiation via encryption and signa-
ture; achieve access privileges via authentication; ensure the copyright via watermarking;
protect user’s privacy via other cryptographic schemes (e.g., anonymity and obfuscation
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techniques) [60]. With a set of security protections, QoP adjusts these tunable protection
solutions, and is fueled by artifacts, human intelligence and involvements. A proper QoP
construction can be offered by the characterization of QoP with security settings, where it
expresses security constraints and attributes to customize protections for different applica-
tions [64]. In MSNs, to achieve a higher privacy level for users’ data and profiles, security
and privacy protections should be robust to resist the potential attacks and privacy leakage
such that the computational overheads and latency are inevitably increased. Besides many
off-the-shelf security protection solutions [64], other emerging schemes should be developed
from QoP perspective to address critical security and privacy issues in MSNs.

2.3 Summary

In this chapter, we have discussed security and privacy challenges in MSNs. First, we have
introduced general security and privacy requirements for MSNs, such as integrity, confi-
dentiality, authenticity, availability, privacy, non-repudiation, access control, anonymity,
unlinkability and auditing. Besides these general security requirements, we have discussed
several challenging issues related to privacy, social data access control, privacy-preserving
data processing, QoP, malicious attacks and misbehaviors in MSNs. In the following chap-
ters, we will introduce several countermeasures to address the critical challenging issues.
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Chapter 3

Social Based Spam Filtering

3.1 Introduction

MSN has become a promising social networking platform which enables group chat, me-
dia sharing, social gaming, and various pervasive social interactions, especially in a local
area [26]. Users connect to each other through short range communication technologies
(e.g, Bluetooth, WiFi and device-to-device communications), and establish a kind of op-
portunistic network for a temporary period (e.g., several hours) or a long span of years.
This autonomous MSN (i.e., User-User domain) creates rich interaction opportunities for
students in a campus area, residents in an urban neighborhood, customers in a shopping
mall, tourists visiting a museum or scenic site, and businessmen attending a conference.
In the User-User domain of MSNs, users’ interactions are enabled either by the Internet or
through opportunistic contacts among users to store-carry-and-forward data from source
to destination. As we can imagine, users would have abundant and quality service experi-
ences from MSNs [65], helping users obtain the desired and personalized information from
others (e.g., crowdsourcing) rapidly, efficiently and ubiquitously.

MSN users exchange various types of information, such as newsletters, personal posts,
rumors and advertisements, most of which are of immense values to users. As shown in
Fig. 3.1, local stores or restaurants repeatedly disseminate their service information, flyers
and advertisements to the nearby users in such an autonomous MSN. A saving mom may
prefer the coupons, grocery sales and baby stuffs, while a tourist may be interested in
handicrafts and tour instructions. In addition, the interests of users may vary over time.
Although users could quickly exchange useful information in MSNs, they may still receive a
portion of the unwanted or useless information, which is considered as spam [66]. Moreover,
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Figure 3.1: Information dissemination in MSNs

the communications among users relies on users’ battery-constrained smartphones and
happens during their opportunistic contact such that the communication overhead is very
high. Therefore, it is crucial to make the communication efficient and meaningful in MSNs,
i.e., exchange desired information to users and filter spam as early as possible.

According to an investigation by Nexgate, spam over social media has increased around
355% within the first six months of 2013 [67]. They are rapidly spread in social networks
such that every 1 of 200 social network posts is identified as spam. Extensive industrial and
research efforts have been put on filtering spam in various applications. Several schemes
rely on blacklist [68] or whitelist to either block spam senders or admit legitimate senders.
An alternative way of filtering is check the content by matching the keyword associated
with the packet [69, 70] or using machine learning techniques [71] to detect spam. Social
graph and relevant characteristics are also exploited to filter spam [72, 73]. Most of these
schemes require the centralized server or trusted authority to perform spam filtering based
on historical information. When spam senders shift to autonomous MSNs, they have more
opportunities of going undetected [54] since autonomous MSNs do not rely on centralized
and trusted servers and lack historical information. To tackle this problem, we propose
a distributed filtering scheme to enable MSN users (filter creators) to personalize their
spam filters. These filters are sent to some filter holders and allow these filter holders
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to block spam when they are requested to forward packets to filter creators. However,
several challenges may hinder the flourish of this type of filtering schemes. First of all, it is
difficult to determine the filter holders who take filters for filter creators. If filter creators
greedily distribute their filters to all the other users in MSNs, massive network bandwidth
and resources would be consumed although it can benefit individual users. Therefore,
how to distribute filters with the consideration of both distribution costs and filtering
accuracy becomes a problem. Moreover, security and privacy concerns are raised when
the distributed filters contain some privacy-sensitive information regarding filter creators.
If this private information embedded in filters is directly disclosed to untrusted entities,
filter creator’s privacy, e.g., lifestyles, health condition and preferences, may be disclosed
and inferred [74, 75]. In addition, MSNs are vulnerable to malicious attacks, which may
illegally forge filters to block or delay the useful information transmitted in MSNs but
bypass spam. The aforementioned challenging issues motivate us to efficiently filter spam
in MSNs and preserve users’ privacy at the same time.

In this chapter, we propose a Personalized fIne-grained spam Filtering scheme (PIF)
with privacy preservation in autonomous MSNs. The PIF exploits personalized filters
with social assisted filter distribution, privacy-preserving coarse-grained and fine-grained
filterings, and efficient filter update. Specifically, the main contributions of this chapter
are three-fold.

• Firstly, we develop a personalized filtering scheme. It allows the filter creator to
personalize his filters in both coarse-grained and fine-grained ways. The keyword embedded
in the coarse-grained filter enables filter holders to forward the packets containing the same
keyword to the filter creator. The PIF also provides a fine-grained filtering scheme based
on a variant of hidden vector encryption. Both schemes prevent keywords in the filters
from directly disclosing to others, including filter holders.

• Secondly, we investigate the mobility and social relationship of MSN users. We also
exploit the opportunistic contacts among users to analyze the packet delivery process in
MSNs. According to this analysis, we propose a social assisted filter distribution scheme,
which enables the filter creator to send filters to his social friends who have high probability
to be the relay forwarding packets to him. As such, the PIF can reduce the filter distribution
overhead and maintain the filtering accuracy.

• Thirdly, we conduct extensive simulations to show that the PIF can significantly
reduce the storage and communication costs and deliver the useful packets in a low delay.
Meanwhile, the security property analysis demonstrates that the PIF protect user’s private
keyword from directly disclosing to inside curious attackers and detect forged filters.

The remainder of this chapter is organized as follows. In Section 3.2, we review the
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related works on spam filtering. We introduce the network and threat models with design
goals in Section 3.3. Then, we propose the details of the PIF in Section 3.4, followed by
the security discussions and the simulations in Sections 3.5 and 3.6, respectively. Finally,
we conclude the chapter in Section 3.7.

3.2 Related Works

Extensive research efforts have been put on spam filtering [76, 77, 78]. Intuitively, some
sophisticated filtering schemes exploit whitelist, blacklist [68] and graph [79] to bypass
legitimate senders and block spam senders. In terms of blacklist based spam filtering,
Soldo et al. [68] propose a predictive blacklisting scheme to forecast spam senders based on
historical sender logs. With a multi-level prediction algorithm, an implicit recommendation
system is formulated to resist spam. Using keyword to filter spam, Lu et al. [69] propose a
relay-based keyword filtering scheme (PReFilter) in DTNs to detect the unwanted packets
via keyword matching. The PReFilter enables relays to hold filters generated by other users
such that it detects and block spam before it is transmitted to the receivers. Meanwhile,
the filters with privacy-sensitive keywords are encrypted to protect user’s privacy leakage.
But the PReFilter does not consider the overhead of filter distribution and update.

In sociology theory, social network represents the social graph built by users in the
network [80], which can be helpful to detect and filter spam. Lahmadi et al. [81] uti-
lize social network to collaboratively filter the short message services based spam via the
Bloom filters and content hashing filters. This collaborative filtering scheme also relies on
a centralized server to build the social network among users. Hameed et al. [82] study the
e-mail recipient’s social network and mitigate spam outside of the social circle, which can
also reduce the Internet bandwidth consumption by spam. To resist spam, malware and
phishing via URLs, Thomas et al. [83] develop a real-time system, including URL aggre-
gation, feature collection, feature extraction and classification. The proposed system visits
every URL and collects its features, which are stored a centralized server for extraction in
the training phase and real-time decision-making. Meanwhile, some social features, such
as social interests, closeness, personal preferences and trust, are also adopted to facilitate
the spam filtering. Li et al. [72] develop a social network based spam filtering framework.
It can detect junk emails with the consideration of social features of users and network
[84] such that the regular and junk emails can be differentiated. In [73], social trust is
exploited to collaboratively filter spam. The spam reporter’s trustworthiness is used to
collect the correct spam reports and detect Sybil attacks at the same time. Li et al. [85]
also exploit collaborative and privacy-preserving anti-spam system to resist a wide range
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of camouflage attacks. The proposed ALPACAS framework controls the amount of shared
information among the collaborated entities to achieve the confidentiality of e-mails.

In addition, Fan et al. [86] investigate the least cost rumor blocking problem to limit
the negative rumor diffusion in social network. The community feature is utilized to
minimize the total number of so-called rumor protectors and protect bridge ends, as known
as the boundary individuals within the neighbor communities of rumor source. Based on a
susceptible-infectious model, Shah et al. [87] propose a systematic framework to estimate
and detect the rumor source. It is formulated as a maximum likelihood estimator for a
class of graphs. Similarly, Wang et al. [88] detect the source of rumors with multiple
observations based on the susceptible-infectious model. The multiple observations in a
tree network are exploited to improve the rumor source detection. Different from most of
existing filtering schemes, Stringhini et al. [89] propose a new approach to detect spam
by looking at the way how emails are sent instead of content and origin of emails. For
example, it can detect the IP address from which the message is sent, and the geographical
distance between the sender and the receiver. They investigate the SMTP communication
between the email sender and receiving mail server. The introduced concept of SMTP
dialects capture small variations in the ways to carry out the SMTP protocol such that
they can distinguish the between normal email senders and spam bots.

However, there are still many challenging issues for spam filtering in MSNs. Firstly,
most of social network based filtering schemes are based on centralized trusted authority
to perform the detection, which leaves a gap of filtering schemes between OSNs and MSNs.
Secondly, the decentralized schemes, e.g. PreFilter [69] and SAFE [70], are limited due to
the lack of knowledge about the packet recipients (i.e., filter creator). The SAFE offers
spam filtering based on keyword matching, which is a coarse-grained approach. Filter
creators only select the keyword from the keyword space of the network. The coarse-
grained keyword filter may not reflect the sufficient features of the delivered packets. To
this end, we propose a personalized fine-grained spam filtering scheme to allow the filter
creators to generate filters with different features in multiple dimensions. The proposed PIF
scheme can allow creators to personalize his filters. Both coarse-grained and fine-grained
filtering schemes are integrated in the PIF.

3.3 System Model and Design Goals

In this section, we present the network model and design goals including efficiency of spam
filtering and privacy preservation.
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Figure 3.2: Network model

3.3.1 Network Model

We consider an MSN including a trust authority (TA) and N users (including mobile users
and local stores) as shown in Fig. 3.2.

• Trust Authority (TA) is trusted by users, and bootstraps the whole system during
the initialization phase. TA can generate secret master keys and receive the registration
requests from legitimate users. Then, TA also issues certificates to legitimate users during
registration. TA does not participate in user’s communication and filtering.

• Users include mobile users and local stores having smartphones or wearable devices to
communicate with each other in the local area. They are denoted by U = {u1, u2, ..., uN}.
The power and storage occupancy of each user’s smartphone are limited. Each legitimate
user first registers to the TA to build user’s profiles and obtain key materials, e.g., unique
identity, certificate and secret keys which should be securely kept for session key generation.
In packet delivery and spam filtering phases, users can authenticate their identities and
filters, and verify other user’s information.
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3.3.2 Threat Model

Several threats may occur in MSNs to violate user’s privacy during the phases of packet
delivery and spam filtering. We consider two types of threats: inside curious user and
forgery attack.

First, some of the filter holders may be curious about other user’s preferences and
personal profiles included in the distributed filters. These inside curious user may violate
filter holder’s privacy-sensitive information during filter distribution, storage, packet deliv-
ery and filtering phases. In addition, these filter holders can honestly follow the protocols.

Secondly, some malicious users may forge other user’s filters to benefit themselves or
degrade the performance of MSNs. Either the useful packets may be blocked, or spam may
be normally delivered in MSNs. A large number of communication and storage overheads
would be consumed if these malicious users exist in MSNs.

3.3.3 Design Goals

In this chapter, our design goal is to develop a personalized fine-grained filtering scheme
with user’s privacy preservation.

Efficiency goals

Due to the opportunistic contact (i.e., intermitted end-to-end connectivity) and limited
smartphone battery, our goal is to develop an efficient spam filtering scheme to detect
and block the spam in MSNs as early as possible. The proposed scheme should efficiently
filter the spam and cost few extra storage, communication and computational overheads.
Meanwhile, it should be able to bypass useful packets without any delayed delivery of them.
In addition, the distributed filters should be personalized by filter creators and updated
timely.

Security goals

Our security goal is to preserve user’s privacy against inside curious users and detect the
forged filters. First, the proposed spam filtering scheme should be able to preserve the
filter creator’s privacy from directly disclosing. The keyword included in the distributed
filters cannot appear in plaintext to others. During the filtering, the keyword should be
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social friends. In filtering phase, filter holders block spam to the filter creator with his
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also invisible to others and kept in the ciphertext. Secondly, the proposed scheme should
be able to prevent malicious users from forging legitimate user’s filters. If any filter is
forged, the filter creator and other users are able to detect it efficiently.

3.4 Proposed PIF Scheme

In this section, we propose the PIF scheme as shown in Fig. 3.3. Firstly, users (i.e., filter
creators) build their personalized filters embedding the keywords and degree. Then, the
filter creator sends his filters to his social friends (i.e., filter holders). When meeting a
sender who wants to send a packet to the filter creator, filter holders use these filters to
check if this packet if desired by the filter creator, and block spam in the early stage of the
packet delivery. The PIF consists of social assisted filter distribution, coarse-grained and
fine-grained filters, and Merkle Hash tree based filter authentication and update.
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Table 3.1: Frequently Used Notations

Notation Description

λi,j Contact rate between ui and uj
Ci,j Contact between ui and uj within period T

C i,j Expectation of Contact Times between ui and
uj within period T

Pi(t � T ) Probability that ui meets another user in T
P r
s,d(t � T ) Forwarding probability that ui forwards a

packet to ud through a relay ur within T
Wi,x ui’s x-th keyword
Fi ui’s keyword filter set
TH Number of common communities

3.4.1 Social Based Filtering Distribution

To efficiently distribute filters, we first formulate the packet delivery process to understand
the effective way (or relay selection) of packet forwarding in MSNs. Some frequent used
notations are listed in Table 3.1.

The packet delivery in MSNs relies on users’ opportunistic contacts. According to
[90, 91], the contact between two users ui and uj follows a Poisson distribution with the
pairwise contact rate λi,j. A binary random variable Ci,j is defined as

Ci,j =

{
1, if ui and uj meet within time period T ;

0, otherwise.

Let λi be the average contact rate that ui meets any other user. We have

Ci,j = 1 ·
∫ T

0

λie
−λitdt+ 0 ·

∫ ∞

T

λie
−λitdt. (3.1)

Therefore, Ci,j follows Bernoulli distribution. As the contacts between each two users are
independent [91], the probability that ui meets another user in T is

Pi(t � T ) = 1−
∏
uj∈U

j �=i

(1− Ci,j)

= 1− e

− ∑

uj∈U

j �=i

λi,jT

.

(3.2)
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Let λi =
∑
uj∈U

j �=i

λi,j, then Pi(t � T ) = 1− e−λiT . Thus, t follows power-law distribution. The

PDF (probability distribution function) is fi(t) = λie
−λit (t � 0). We have the average

contact interval of ui as

Ei(t) =

∫ ∞

0

tfi(t)dt =

∫ ∞

0

tλie
−λitdt =

1

λi
(3.3)

According to [20, 92, 93], users in the same social community may have a higher prob-
ability to meet each other since social community indicates users’ personal interests. Con-
sider the packet delivery within one community (us, ur and ud are in the same community),
if the sender us meets a relay ur at t1 and ur meets the destination ud at t2, the forwarding
probability P r

s,d(t = t1 + t2 � T ) is

P r
s,d(t � T ) =

∫ t1

0

λs,re
−λs,rtdt ·

∫ T

t1

λr,de
−λr,dtdt

=

∫ T

0

fs,r(t)⊗ fr,d(t)dt

=

∫ T

t=0

(∫ t

τ=0

fs,r(τ) · fr,d(t− τ)dτ

)
dt.

(3.4)

Note that ⊗ is the convolution. Because ur knows ts,r,

P r
s,d(t = t1 + t2 � T ) � Pr(t1 � ts,r) · Pr(t2 � ts,r). (3.5)

Thus, we have

P r
s,d(t � T ) =

∫ T

t=0

(∫ t

τ=0

fs,r(τ) · fr,d(t− τ)dτ

)
dt

�
∫ ts,r

τ1=0

fs,r(τ1)dτ1 ·
∫ T−ts,r

τ2=0

fr,d(τ2)dτ2

=
(
1− e−λs,rts,r

) · (1− e−λr,d(T−ts,r)
)
.

(3.6)

With the consideration of both direct and indirect contacts between us and ud [94], the
probability of forwarding a packet from us to ud is

ps,d(t � T ) = 1− (1− Ps,d(t � T ))
∏
ur∈U

r �=s,d

(
1− P r

s,d(t � T )
)
.

(3.7)
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Then, we have

ps,d(t � T ) � 1− e−λs,dT ·
∏
ur∈U

r �=s,d

(
1− prs,d

)
(3.8)

where prs,d =
(
1− e−λs,rts,r

) · (1− e−λr,d(T−ts,r)
)
. Since 0 � 1 − prs,d � 1 where ur ∈ U and

r �= s, d, ps,d becomes smaller when multiplied by more items such as 1− prs,d.

If multiple relay users are selected for the packet forwarding, the probability of multi-
hop packet delivery in time period T can be

P r···r′
s,d (t � T ) =

∫ T

0

fs,r(t)⊗ · · · ⊗ fr′,d(t)dt. (3.9)

With multiple communities, the probability that us forwards the packet to ud can be
calculated as

Ps,d(t � T ) = 1−
∏

i∈CCs,d

(1− ps,d(t � T, i))

� maxi∈CCs,d
{ps,d(t � T, i)}.

(3.10)

It is larger than the probability that us forwards the packets within only one community.
Therefore, the PIF selects the filter holders as the users who have large number of common
communities with the filter creator.

3.4.2 Coarse-grained Filtering

To achieve the security goals, the coarse-grained filtering for PIF consists of initialization,
filter generation, filter distribution, and filtering as follows.

• Initialization : TA bootstraps the system and assigns secret keys to individual
users. Let G and GT be two additive cyclic groups. They have the same order q, and G’s
generator is P . Note that q a large prime. A bilinear pairing [95] exists between G and GT

is e: G×G → GT . We have e(xP, yP ) = e(P, P )xy, where x and y are randomly selected
from Z∗

q. A key generation algorithm G takes as input a security parameter k, and outputs
(q, G, GT , P , e, H1), where H1 is a trapdoor hash function H1 : {0, 1}∗ −→ Z∗

q. Then, ui
randomly picks xi ∈ Z∗

q to compute his public key PKi =
1
xi
P and secret key SKi = xi.

• Filter Generation : The filter creator ui runs an algorithm FilGen(Wi,x, SKi) −→
Fi,x to generate filters, where Wi,x is the keyword, and Fi,x is the generated filter for Wi,x.

33



ui selects his keywords Wi,1, . . . ,Wi,K where 1 � k � K, and establishes a keyword list
Wi. Note that K ⊆ K which is the keyword space of the whole MSN. Every keyword in
K is semantically defined by the TA. Each user selects his keyword according to his social

interests. For a specific keyword Wi,k (e.g., “Health”), the filter Fi,k =
H1(Wi,k)

xi+H1(Wi,k)
P . The

keyword filter set for ui is Fi = (Fi,1, · · · ,Fi,k).

• Filter Distribution : If ui meets another user uj, they first authenticate each
other and privately compare with their profiles to determine the number of their common
communities (as discussed in Section 3.4.1). We adopt privacy-preserving profile matching
scheme in [96] to enable users to learn their common communities. If the number of their
common communities is larger than a threshold TH, ui can send his filter Fi to uj as the
filter holder.

•Filtering : A packet sender us wants to deliver a packet including keywords (Ws,1, · · · ,
Ws,x) to ui. When us meets uj, uj helps ui to determine whether the packet from us can
be delivered or not.

First, us runs an algorithm Packet(PKi,Ws,x) −→ ϕs to generate keyword for a packet
to ui. For the keyword Ws,x, us computes ϕ1 = r( 1

H1(Ws,x)
P + PKi). Then, us randomly

selects r ∈ Z∗
q and computes ϕs =< ϕ0, ϕ1 >, where ϕ0 = e(P, rPKi). us sends ϕs to uj.

Then, uj runs an algorithm Filter(Fi, ϕs) −→ {0, 1} to perform filtering. For every re-
ceived Fi,k ∈ Fi from ui, uj checks whether ϕ0 = e(ϕ1,Fi,k) or not. If it holds, Filter(Fi, ϕs)
outputs 1, indicating that the keyword Ws,x matches ui’s filter. This packet should be for-
warded. Otherwise, Filter(Fi, ϕs) outputs 0 and the packet is discarded by uj. When there
are multiple keywords in the packet from us to ui, uj discards us’s packet if none of the
keywords associated with us matches ui’s filter.

The above four steps enable the filter holders to check the packet’s keyword matching
in a coarse-grained manner (i.e., coarse-grained filtering). The details of the coarse-grained
filtering scheme are illustrated in Algorithm 1.

The correctness of the coarse-grained filtering scheme is guaranteed. We have e(P, rPKi) =

e(P, r
xi
P ) = e(P, P )

r
xi , and e(ϕ1,Fi,k) = e(r( 1

H1(Ws,x)
P + PKi),

H1(Wi,k)

xi+H1(Wi,k)
P ) as follows.
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Algorithm 1: Social-assisted Coarse-grained Filtering
1: Procedure: Social-assisted Filtering
2: us wants to send a packet including keyword Ws,x via uj to ui

3: if uj has ui’s filters then
4: uj checks if the keyword in the packet is valid or not
5: us sends ϕs =< ϕ0, ϕ1 > to uj

6: for All Fi,k ∈ Fi do
7: uj computes e(ϕ1,Fi,k)
8: if e(ϕ1,Fi,k) = ϕ0 then
9: us forwards the packet to uj ;
10: Abort.
11: end if
12: end for
13: uj discards us’s the packet, and informs us

14: else
15: us forwards this packet to uj

16: end if
17: end procedure

e(ϕ1,Fi,k) = e(r(
1

H1(Ws,x)
P + PKi),

H1(Wi,k)

xi + H1(Wi,k)
P )

= e(r(
1

H1(Ws,x)
P +

1

xi
P ),

H1(Wi,k)

xi + H1(Wi,k)
P )

= e(
r(xi + H1(Ws,x))

xiH1(Ws,x)
P,

H1(Wi,k)

xi + H1(Wi,k)
P )

=

{
e(P, P )

r
xi , If Wi,k = Ws,x;

random, otherwise.

When two keywords match, ϕ0 = e(ϕ1,Fi,k). If the keywords are not the same, e(ϕ1,Fi,k)
is random.

3.4.3 Fine-grained Filtering

Although the coarse-grained keyword-based filter can block a portion of packets when
matching keywords, users may want to personalize their filters due to their own preferences.
It is necessary to provide a fine-grained filtering solution. The filter creator can define
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various levels of his interests corresponding to the specific keyword, and allow the filter
holders to fine-grained filter the packets. To this end, we develop a variant of hidden
vector encryption technique [97, 98] in the PIF scheme to achieve the fine-grained [99]
spam filtering.

The filter creator ui generates his fine-grained keyword filter as a vectorw = (w1, · · · , wl) ∈
{1, · · · , n}l to indicate his interest degree in certain keyword. A high wl means that ui is
likely interested in the l-th keyword. Denote σ∗(w) = σ∗

a,b ∈ {1, ∗}nl as

σ∗
a,b =

{
1, if wa = b

∗, otherwise.

Let f(σ∗(w)) be the set of all index k such that σ∗
k �= ∗ where k ∈ {1, · · · , nl}.

When the sender us wants to send a packet with keyword W ′, us builds the encryption
vector σ(w′) = σa,b ∈ {0, 1}nl for w′ = (w′

1, · · · , w′
l) ∈ {1, · · · , n}l as

σa,b =

{
1, if w′

a � b,

0, otherwise.

Here, a ∈ {1, · · · , l} and b ∈ {1, · · · , n}. For example, let l = 3, n = 4, andw = (1, 3, 1).
The vector σ∗(w) = (1 ∗ ∗∗, ∗ ∗ 1∗, 1 ∗ ∗∗), indicating that the matching condition with
another vector w′ is P = (w′

1 � 1)
∧
(w′

2 � 3)
∧
(w′

3 � 1) . When the encryption vector
w′ = (2, 3, 1). σ(w′) = (1100, 1110, 1000). Therefore, the two vectors are matched.

Define a predicate function

P (σ∗(w), σ(w′)) =

{
1, if for all i ∈ f(σ∗(v)), σ∗(wa) = σ(w′

a)

0, otherwise.

If P (σ∗(w), σ(w′)) = 1, uj can forward the packet to us. We consider “�” predicate
in this chapter. The proposed scheme can be extended to “�” and some other predicates.
The combination of multiple predicates is also feasible. Having the predicate, we propose
a fine-grained filtering scheme to not only enable the filtering but also preserve the privacy
of sender’s keyword vector.

• Initialization : Let G1 and G2 be two multiplicative cyclic groups. Both G1 and G2

have the same order q, where q is a large prime. G1’s generator is g. Let e: G1×G1 → G2 be
a bilinear pairing, if it satisfies that e(ga, gb) = e(g, g)ab for any random numbers a, b ∈ Z∗

q.
A bilinear key generation algorithm G takes as input the security parameter k, and outputs
(q, G1, G2, g, e).

TA randomly selects elements g1, g2, (h1, u1, ψ1), · · · , (hnl, unl, ψnl) ∈ G1, and picks
random numbers y1, y2, v1, · · · , vnl, t1, · · · , tnl ∈ Z∗

q. TA computes Y1 = gy1 , Y2 = gy2 ,
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Γ = e(g1, Y1)e(g2, Y2) ∈ G2, Vk = gvk ∈ G1 and Tk = gtk ∈ G1 for t, k ∈ (1, · · · , nl). The
public key PK and secret key SK are

PK =(g, Y1, Y2, (h1, u1, ψ1, V1, T1), · · · , (hnl, unl, ψnl, Vnl, Tnl)) (3.11)

SK = (g1, g2, y1, y2, v1 · · · , vnl, t1 · · · , tnl).

• Filter Generation :

ui builds his fine-grained filter w = (w1, · · · , wl) ∈ {1, · · · , n}l, where w is determined
by ui. Denote ui’s interest degree asDi,x ∈ [1, ρ], and ρ indicates the highest interest degree.
ui randomly selects each wx ∈ N(Di,x, σ), where N(Di,x, σ) is a Gaussian distribution and
σ is determined by ui. By selecting a proper σ, the real interest degreeDi,x can be protected
from directly disclosing to filter holders. Then, ui maps it to vector σ∗(w). Then, σ∗(w)
is sent to uj with the encryption of AES, when they are encountered.

uj decrypts σ
∗(w) from ui and secretly keeps it. Then, uj selects two random numbers

α, β ∈ Z∗
q, and picks random tuples < μa, φa, θa, δa >∈ Z∗

q such that μay1 + φay2 = α and
θay1 + δay2 = β for all a ∈ f(σ∗(w)).

Then, uj computes the filter F(σ∗(w)) as

F1 = g1
∏

a∈f(σ∗(w))

(hiu
σ∗(wa)
i )μaψθa ,

F2 = g2
∏

a∈f(σ∗(w))

(hiu
σ∗(wa)
i )φaψδa ,

F3 = gα, F4 = gβ, F5 = g
− ∑

a∈f(σ∗(w))

(viα+tiβ)

.

• Filtering :

us first generates ciphertext with the keyword related vector σ(w′
s). Then, us encrypts

σ(w′
s) by using uj’s public key PK. us also picks two random numbers ρ1 and ρ2 ∈ Z∗

q, and
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sends the ciphertext CT=(C1, C2, C3,1, · · · , C3,nl, C4,1, C4,nl, C5, C6) where

C1 = Y ρ1
1 , C2 = Y ρ1

2

C3,1 = (h1u
w′

a
1 )ρ1V ρ2

1

· · · ,
C3,nl = (hnlu

w′
a

nl )
ρ1V ρ2

nl

C4,1 = ψρ1
1 T

ρ2
1

· · · ,
C4,nl = ψρ1

nlT
ρ2
nl

C5 = gρ2 , C6 = Γρ1 .

Having CT from us, uj aggregates C ′
3 =

∏
a∈f(σ∗(w))

C3,a and C ′
4 =

∏
a∈f(σ∗(w))

C4,a. uj

collects the indexes of keyword passed the coarse-grained keyword filtering, and checks

e(F1, C1)e(F2, C2)

C6

?
= e(F3, C

′
3)e(F4, C

′
4)e(F5, C5) (3.12)

If Equation 3.12 holds, uj forwards the packet to ui; otherwise, uj discards it.

The correctness of fine-grained filtering is as follows.

e(K1, C1)e(K2, C2)

= e

⎛⎝g1 ∏
a∈f(σ∗(w))

(hau
wa
a )μaψθa , gy1ρ1

⎞⎠ e

⎛⎝g2 ∏
a∈f(σ∗(w))

(hau
wa
a )φaψδa , gy2ρ1

⎞⎠
= Γρ1

∏
a∈f(σ∗(w))

[
e((hau

wa
a )μa , gy1ρ1)e((hau

wa
a )φa , gy2ρ1)

] ∏
a∈f(σ∗(w))

[
e((ψθa , gy1ρ1)e(ψδa , gy2ρ1)

]
= Γρ1

∏
a∈f(σ∗(w))

e((hau
wa
a )ρ1 , gμay1+φay2)

∏
a∈f(σ∗(w))

e(ψρ1 , gθay1+δay2)

= Γρ1e

⎛⎝ ∏
a∈f(σ∗(w))

(hau
wa
a )ρ1 , gα

⎞⎠ e

⎛⎝ ∏
a∈f(σ∗(w))

ψρ1 , gβ

⎞⎠
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e(K3, C
′
3)e(K4, C

′
4)e(K5, C5)

= e

⎛⎝gα, ∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1gvaρ2

⎞⎠ e

⎛⎝gβ, ∏
a∈f(σ∗(w))

ψρ1gtaρ2

⎞⎠ e

(
g
− ∑

a∈f(σ∗(w))

(vaα+taβ)

, gρ2
)

= e

⎛⎝gα, ∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1

⎞⎠ e

⎛⎝gβ, ∏
a∈f(σ∗(w))

ψρ1

⎞⎠
e(gρ2 ,

∏
a∈f(σ∗(w))

gvaα+taβ)e

(
g
− ∑

a∈f(σ∗(w))

(vaα+taβ)

, gρ2
)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
e

(
gα,

∏
a∈f(σ∗(w))

(hau
w′

a
a )ρ1

)
e

(
gβ,

∏
a∈f(σ∗(w))

ψρ1

)
, if wi = w′

i for all a ∈ f(σ ∗ (w));

⊥,Otherwise.

Note that C6 = Γρ1 . If w matches w′, it passes the fine-grained filtering such that the
packet from us is forwarded to ui.

3.4.4 Filter Authentication and Update Scheme

After filtering, the filter holders should authenticate filters to the packet senders to verify
that the blocked or forwarded packet is determined by the filter creator. We exploit Merkle
Hash tree [100] (i.e., a tree structure of cryptographic Hash functions) to authenticate each
filter. We propose the construction of Hash tree for filters with the filter authentication.

Merkle Hash tree has a typical binary tree structure including 2N−1 leaf nodes. The
depth of Merkle tree is N [101]. A parent node pi−j = H(chi||chj) is computed by a one-way
Hash function with the input as the children nodes. In Fig. 3.4, given the leaf nodes ch1 and
ch2, the parent node p1−2 = H(ch1||ch2) as shown. Similarly, p1−4 is computed by concate-
nating p1−2 and p3−4. The root node r1−8 = H(p1−4||p5−8). Let PH1 = {ch2, p3−4, p5−8}
be the path from the leaf node ch1 to the root r1−8. PH1 can be used to authenticate the
leaf node ch1.

In the PIF, the filter creator ui builds his keyword list Wi = {Wi,1, . . . ,Wi,K}, 1 � k �
K. Each keyword is located in the leaf of Merkle Hash tree FRui

. In the authentication,
the path PHk of Wi,k is the certificate of the keyword Wi,k. The verifier checks if the
concatenated hash value of PHk equals the root Ri or not. If not, the keyword is forged.
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Figure 3.4: Merkle Hash tree based filter authentication

In addition, the filter creator generates a signature on H(Rui
‖IDui

). The root value and
the path connecting each leaf node to the root are verifiable. Suppose there are 2N leaf
nodes in a Merkle Hash tree. Users perform N Hash operations to verify each keyword
(leaf node). The size of filter’s signature is N ×L. Note that L denotes the length of each
Hash value. For example, in SHA-256, L is 256 bits.

The properties of Merkle Hash tree is exploited to check the filter’s version. We propose
a filter update scheme based on this property. As we presented above, the root of Merkle
Hash tree changes if any leaf node varies. We do not need to check every leaf node (i.e.,
keyword) of the distributed filter. The filter creator ui checks the root value Rui

from his
filter holder uj for filter tree FRui

. If the root is an existing root value, ui sends the updated
filter tree FR′

ui
to uj as illustrated in Algorithm 2. The PIF improves the efficiency of filter

search during the filter update. The Merkle Hash tree can be also extended to fine-grained
filter where each value in the vector is assigned as leaf node.

3.5 Security Discussions

In this section, we discuss security properties of the PIF. We analyze the resistance to the
threats introduced in section 3.3.
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Algorithm 2: Filter Update Check
1: Procedure: Filter Update Check
2: ui changes his keyword Wi,k,

and constructs a new filter tree FR′
ui

with the root node R′
ui
.

3: ui meets his filter holder uj .
4: if uj has ui’s keyword Wi,k then
5: uj sends Rui to ui for the authentication.
6: if Rui is valid then
7: if Rui

�= R′
ui

then
8: uj searches the changed leaf nodes.
9: ui sends the updated FR′

ui
to uj .

10: uj updates ui’s filter as FR′
ui
.

11: end if
12: else
13: ui reports uj to the TA since uj forges ui’s filter.
14: end if
15: end if
16: end procedure

3.5.1 Resistance to Inside Curious Users

We discuss the semantic security of the filtering scheme as follows. The coarse-grained
filtering scheme allows each filter holder to encrypt his filters before distribution. We say
the filtering scheme is semantically secure if no inside curious user A has a non-negligible
advantage in polynomial time against the Challenger in the following game.

� Setup: The challenger takes a security parameter k and runs G algorithm. It gives
the inside curious user A system parameters.

� Query : A issues queries. Each query qi is related to Wi. The challenger responds by
running FilGen(Wi, SKi) −→ Fi.

� Challenge: A outputs W0,W1 ∈ K, which is the keyword space. W0 and W1 are not
queried in the Query phase. The challenger selects a random bit b ∈ {0, 1} and runs
Packet(PKi,Wb) −→ ϕs. ϕs is sent to A.

� Guess : A outputs a guess b∗ ∈ {0, 1}. It wins the game if b∗ = b.

The security of the PIF can be reduced to several sub-problems, i.e., Bilinear Diffie-
Hellman Problem in (G, GT , e), the discrete logarithm problem in G, and the security of
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collision-resistant hash function. Specifically, Bilinear Diffie-Hellman Problem is compu-
tational difficult in (G, GT , e). Given (P, xP, yP, zP ) with x, y and z randomly selected
from Z∗

q, it is computationally infeasible to compute e(P, P )xyz ∈ GT [95]. The secret
key SKi is securely kept in the filter. Secondly, under the honest-but-curious model, the

keyword is computationally indistinguishable in Fi,k =
H1(Wi,k)

xi+H1(Wi,k)
P due to the assumption

that the discrete logarithm problem in G is difficult. Finally, due to the security prop-
erties of one-way hash function, it is difficult to compute Wi,k from H1(Wi,k). Therefore,
Prob[A(b∗ = b)] = 1

2
+ ε1 , where ε1 is negligible. The PIF can achieve semantic security

and resist inside curious users.

In addition, the filter holder uj can efficiently check if the keyword in the packet matches
any keyword in ui’s filter without disclosing Wi,k. uj only forwards the packet with ap-
propriate keywords to ui. The keyword index is defined by each filter creator. Different
creators randomly sort the filters. If the keyword space is not large enough, uj can take
much time to exhaustively search every keyword in the keyword space. In G, the collusion
attack algorithm with k traitors (k-CAA) is difficult [95]. Specifically, for an integer k and
randomly selected x ∈ Z∗

q, P ∈ G, given (P,Q = xP, h1, hk ∈ Z∗
q,

1
h1+x

P, · · · , 1
hk+x

P ), there

is negligible probability to compute 1
h+x

P for some h �∈ {h1, · · · , hk}. Therefore, it is hard
for filter holders to guess the keyword inside the filters.

Moreover, an expired time can be added into the filter, and the filter creator can
update his filters timely. uj can only guess the keyword before this expired time. After
this expired time, the filter is not valid. The guess on an invalid filter cannot match any
keyword within the filter since the time stamp inside the hash function would change the
output of hash value. The long guess-time can limit the inside curious user’s attacking
capability. Furthermore, the filters for different holders are set with different expired time

and keyword index, i.e., Fi,k =
H1(Wi,k||Time)

xi+H1(Wi,k)
P , where Time indicates the expiry time of

certain social activity. The sender and filter creator are supposed to know Time since they
have same social interests to exchange information.

In the fine-grained filtering, the keyword vector from sender is invisible to the filter
holders uj. Assume the augmented Decision Linear Problem [97] is computationally infea-
sible, us’s private vector w′ cannot be guessed by uj under the selective security model.
The fine-grained vector from the filter holder ui is visible to uj. It becomes a trade-off be-
tween fine-grained privacy of the creator and the filtering capability of holder. Fortunately,
ui can personalize his vector w = (w1, · · · , wl) ∈ {1, · · · , n}l. Take n = 5 as an example,
ui has interests in “Health” with the fine-grained degree (1, 3, 2) in different dimensions. In
the vector, ui can change his original fine-grained degree to build a fuzzy searching vector
and distribute this fuzzy vector to a specific filter holder. Since the keyword is invisible to
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the filter holders, they cannot link the fuzzy fine-grained degree with a specific keyword.
In addition, the packet is also encrypted by using the filter creator’s public key (i.e., the
destination of the packet). The filter holder cannot infer the keyword from the forwarded
packet.

3.5.2 Resistance to Filter Forgery

The PIF can detect the forged filters. With Merkle Hash tree, the root value is concatenated
from its children nodes. Having the path information from the leaf nodes to the root, each
leaf node (i.e., keyword) has a unique certificate generated by the filter creator ui. The
path information is verifiable by others. If the existing filters are changed by ui, the new
certificate is updated. But before the filter update at uj, the former certificate is still valid.
The resistance to filter forgery relies on the security level of hash function used to construct
the Merkle tree.

According to the above analysis, the PIF can preserve user’s privacy from directly
disclosing to inside curious users and resist the forgery attack. Note that the encountered
users need to match their profiles to determine the common communities. We follow
the security solution from [96] to guarantee the security and privacy requirements during
profile matching. In addition, TA can receive the forgery reports from users and revoke
the malicious attackers, but does not participate in the communications. Therefore, the
PIF operates in a decentralized manner from the perspective of spam filtering and security
protections.

3.6 Performance Evaluation

To evaluate the performance of the PIF scheme, we conduct the extensive simulation
through Infocom06 trace [102].

3.6.1 Simulation Setup

The Infocom06 trace [102] consists of 78 mobile users during a four-day conference. Every
mobile user takes a dedicated portable device to discover the nearby Bluetooth devices
every 120 seconds. The system log records mobile users’ mobility and contact information.
Totally, there are 128, 979 contacts available for the simulation. We then divide the data
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Figure 3.5: Packet delivery comparison among different schemes

set into two parts: the training set including one third of the data to produce users’ social
relations (e.g., communities), and the simulation set including the other two third of the
data. We also leverages maximal clique to assign each user’s communities. Finally, 100
communities are selected. Every community consists of a sufficient number of users, while
the sum of all the edges within the community is large. In every community, there are
at least 28 users. On average, every mobile user participates in 38 communities. In the
simulation, the time is divided into time slots, and each time slot represents 90 seconds. At
the beginning of simulation, we define 100 keywords according to communities where each
user selects keywords which are associated with fine-grained interest values from [1, 100]
defined by users. Then, each user generates 78 packets with random keywords and interest
values to different destination users every 10 time slots.

3.6.2 Simulation Results

We compare the PIF with SAFE [70], PReFilter [69] and Epidemic schemes. The PIF and
SAFE have the same delivery ratio and delay, since they do not block any useful packets.
Compared with PReFilter, the PIF achieves higher delivery ratio with a reasonable delay
as shown in Figure 3.5(a) and 3.5(b). Epidemic scheme allows each user to send his packets
to any encountered user such that it achieves the highest delivery ratio with lowest delay.
However, it costs many network resources, such as communication and storage. Note that
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Figure 3.6: Filtering comparison among different schemes

the PIF achieves the same delivery ratio and delay with different THs (i.e., the number of
common communities that both encountered users have). It is because the PIF forwards
packets based on the common communities with the destination. Only the number of
distributed filters is impacted by TH. Therefore, the useful packets can pass the filter
check and be forwarded.

In Figure 3.6, we compare the PIF with SAFE and PreFilter in terms of filtering perfor-
mance. From Figure 3.6(a), the PIF blocks more spam compared with SAFE and PreFilter
schemes since the PIF employs find-grained filtering to effectively block the useless packets
according to filter creator’s defined keyword and fine-grained interests. Meanwhile, the
PIF (TH = 20) filters more spam compared with the PIF (TH = 10). In Figure 3.6(b),
the PIF (TH = 10) significantly reduces the communication overheads. Although the PIF
(TH = 20) blocks more spam as shown in Figure 3.6(a), it still produces many copies. It
is because the fewer filters are distributed in the network when TH = 20, and more users
without filters may help to carry-and-forward spam. The PIF (TH = 10) can balance the
trade-off between the number of copies and the number of blocked spam packets compared
with other schemes and settings.

In Figure 3.7(a), when TH increases, the number of distributed filters decreases. During
the filter distribution, a smaller TH leads to a larger number qualified users to hold filters.
The PReFilter and Epidemic filtering schemes (i.e., PF and Ep in Figure 3.7(a)) distribute
too many filters to users. In the PIF, the filter creators purposely distribute their filters
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Figure 3.7: Performance comparison of PIF with different THs

to the users who have more than TH common communities with the filter creators. In
Figure 3.7(b), a higher TH causes more copies during the packet delivery. Since the
higher threshold decrease the number of distributed filters in the network, the smaller
number of filters cannot effectively filter spam. From Figure 3.7(c), we can see that the
PIF with an increased TH can block more spam. When TH is small (e.g., 10 or 15),
a sufficient number of users hold filters such that they do not duplicate spam. Under
this circumstance, spam is filtered at sender’s side. When TH increases, fewer users hold
filters. The number of produced spam increases, but the number of blocked spam is also
increased. With a larger TH (e.g., 45), fewer users hold filters. The spam keeps increasing,
but the filtering capability is degraded. In other words, the further increased TH leads to
a decreasing number of blocked spam when TH > 40. In summary, the PIF (TH = 10)
achieves the better performance to balance the number of distributed filters and copies
(i.e., communication overhead), and efficiently blocks spam packets.

3.6.3 Computational Overhead

In this section, we evaluate the PIF in terms of computational complexity. Denote CH

as a Hash operation ({0, 1} −→ Z∗
q), CM as a multiplication operation in G1 and Cp

as a pairing operation. In the coarse-grained filtering scheme, the filter generation has
1 ·CH +1 ·CM +1 ·Cp operations; the filter holder checks packet sender’s keyword with one
pairing operation and packet sender only has one multiplication operation to protect his
keyword from direct disclosing to the filter holder. For the fine-grained filtering scheme,
we do not calculate the time of multiplication operations since exponential operations take
much more time than multiplication operations. Denote Ce as an exponential operation
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Figure 3.8: Update comparison among different schemes

in G1, and Ce′ as an exponential operation in G2. The filter generation has (6nl + 3) · Ce

operations. The packet sender has (5nl + 1) · Ce and 1 · Ce′ operations. Finally, the filter
holder has 5 paring operations to check if the sender’s keyword matches the filter creator’s
filters.

We compare the filter update complexity as shown in Figure 3.8. Filter update includes
two steps: 1) check if the filters need to be updated; and 2) search the out-of-date filter. We
compare the PIF with a binary search scheme and a Hash chain scheme (i.e., computing
every leaf node’s Hash value and checking the concatenation of all these Hash values). From
Figure 3.8(a), both the PIF and Hash chain schemes achieve O(1) checking complexity to
find if any filter should be updated. The reason is that the Merkle Hash tree based
update check only needs to check the root of the distributed filters. The binary search
scheme requires an increasing number of operations when more filters are distributed, i.e.,
O(log(N)) where N is the total number of filters. During the searching step, Hash chain
scheme requires O(N) searching operations, while both the PIF and binary search schemes
only have O(log(N)) searching complexity as shown in Figure 3.8(b). Therefore, the PIF
can efficiently update the distributed filters.
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3.7 Summary

In this chapter, we have proposed a personalized fine-grained spam filtering scheme with
privacy preservation in MSNs. Firstly, we have developed a filter distribution scheme based
on users’ common communities to efficiently distribute filters and block spam. Then, we
have proposed coarse-grained and fine-grained filtering schemes with privacy preservation
to enable filter creator to personalize his filters. We have also proposed a Merkle Hash tree
based filter structure, which can not only authenticate the validity of filters but also update
the filters to satisfy user’s various demands. The security property analysis demonstrates
that filter creator’s private information included in his filters can be protected from direct
disclosing. In addition, we have conducted the extensive simulations to show that the PIF
cannot only reduce the delay as well as the communication and storage overhead but also
achieve a high filtering accuracy and efficiency.

48



Chapter 4

Social Based Mobile Sybil Detection

MSNs are vulnerable to misbehaviors and a series of malicious attacks, which may degrade
the network performance or even disrupt MSNs. For example, attackers could forge social
profiles to snatch other legitimate users’ private information during information exchang-
ing. Attackers may also push and broadcast some biased service/product recommendations
and spam over MSNs [70]. Furthermore, if attackers misbehave, e.g., not following net-
work protocols, launching Denial-of-Service (DoS) attacks or maliciously occupying a large
amount of network resources, the primary goal of MSNs would not be achieved. Existing
misbehavior detection schemes [103] may resist certain types of attacks to some exten-
t. However, how to adjust the security protection against the smart and powerful attacks
(e.g., Sybil attacks) becomes a challenging issue in MSNs, especially in mobile environments
(User-LS or User-User domains of MSNs). In addition, the cost of misbehavior detection
also increases due to the skyrocketing attacking capabilities of Sybil attackers. To support
MSNs from Quality-of-Protection perspective, we should consider misbehaviors or attack-
ers from different levels (with different attacking capabilities) when designing detection
schemes. In this chapter, we propose a social based mobile Sybil detection scheme to d-
ifferentiate Sybil attackers from normal users in MSNs with the consideration of multiple
levels of attacking capabilities.

4.1 Introduction

Sybil attackers manipulate a large number of identities (or pseudonyms) to profit from
services without offering sufficient contribution [51, 26]. Such misbehaviors can compro-
mise the effectiveness of MSNs [104]. For example, in MSN applications, such as WeChat,
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Fon11, FireChat and Groovr, users directly exchange or share information via smartphones
in the local area or among the crowd. Sybil attackers could maliciously mislead the overall
popularity in a voting system, spread spam, or steal legitimate user’s private information
through forging a large number of fake identities (or pseudonyms). Moreover, Sybil at-
tackers can frequently change their pseudonyms to repeatedly broadcast the same/similar
information, e.g., social recommendation and traffic condition. From the perspective of
the nearby users, all the same/similar information seems to be sent from different senders
such that these legitimate users’ opinions and preferences might be misled by Sybil attack-
ers. In addition, mobile Sybil attackers may merge into the crowd or rapidly move with
unpredictable trajectories, it is intractable to detect them in MSNs, especially in User-LS
or User-User domains.

Extensive research efforts [105, 106, 107] have been put on Sybil detection by using
social graph or community detection. Some related works [108, 109, 104] investigate the
network characteristics (e.g., wireless channel characteristics), or develop cryptographic
mechanisms to detect Sybil attackers. However, MSN users may not easily detect Sybil
attackers in User-LS or User-User domains due to the lack of strong social relationships
(i.e., social graph), dynamic user mobility and limited detection capabilities. Firstly, users
cannot obtain the overall knowledge of the whole network and build social graphs for
all users. Moreover, users may not have strong or tight social relationships with each
other in the local area, since user’s dynamic mobility limits the maintenance of stable
social connections for a long time. Without a stable social graph, some traditional social-
graph based Sybil detection schemes cannot be directly applied in MSNs. Secondly, Sybil
attackers are smart and able to mimic normal users such that they may merge into the
normal user crowd or social community. It would disrupt the traditional community-based
Sybil detection schemes. Thirdly, users have limited detection capabilities, such as storage
and computation. To alleviate their resource consumption during Sybil detection, one
possible solution is to leverage the cloud server to assist data storage and computation.
However, the cloud server may be untrusted by users, posing critical security and privacy
concerns at the same time. In addition, the collusion of users augments Sybil attacker’s
capabilities and dramatically reduces the detection accuracy. Therefore, it is crucial to
take these challenges into account when developing mobile Sybil detection in MSNs.

In this chapter, we propose a Social-based Mobile Sybil Detection (SMSD) scheme
to detect Sybil attackers according to their abnormal contact and pseudonym changing
behaviors in User-LS and User-User domains of MSNs. Intuitively, since Sybil attackers
frequently change their pseudonyms to cheat legitimate users, we investigate the number
of contacts and the used pseudonyms. Sybil attackers can be detected by comparing the
number of contacts associated with pseudonyms from normal users. Due to user’s limited
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storage and computation capabilities, the cloud server (as an LS) is involved to store
and process the large volume of user’s contact information, alleviating users’ burden. In
addition, the SMSD resists the collusion attacks and data modification when employing
the cloud server for mobile Sybil detection. Specifically, the main contributions of this
chapter are three-fold.

• Firstly, we investigate the characteristics of user’s mobile social behaviors, including
pseudonym changing and social contact. We identify four levels of Sybil attackers, i.e.,
general Sybil attackers, Sybil attackers with forged contact, Sybil attackers with collusion
of mobile attackers, and Sybil attackers with collusion of cloud servers according to various
attacking capabilities. Then, we propose a social-based mobile Sybil detection scheme to
detect mobile Sybil attackers based on their abnormal pseudonym changing behaviors.

• Secondly, we exploit the cloud server to store and process the user’s contact data,
alleviating users’ storage and computing burden. With powerful storage and computational
capabilities, the cloud servers can assist to detect the Sybil attackers such that user’s
storage and computation overhead is significantly reduced.

• Thirdly, we propose a learning assisted SMSD scheme (LSMSD), i.e., semi-supervised
learning with hidden Markov model, to resist the collusion of mobile attackers. The LSMSD
utilizes a small number of labeled data for training and adapts to the variation of unlabeled
data. In addition, a ring structure is built to collect users’ contact signatures associated
with the bi-directional Hash chain [34], protecting user’s contact data (including encoun-
tered users, contact time and time order) from being modified by untrusted cloud servers.

The remainder of this chapter is organized as follows. The system model, attacker
model and design goals are introduced in Section 4.2. Then, we present the details of
the proposed Sybil detection scheme in Section 4.3, followed by security analysis and
performance evaluation in Sections 4.4 and 4.5, respectively. We review the related works
in Section 4.6 and summarize this chapter in Section 4.7.

4.2 System Model and Design Goals

In this section, we first introduce the system model and security model. Then, we identify
the design goals of Sybil detection.
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Figure 4.1: System model

4.2.1 System Model

In this chapter, we consider an MSN consisting of three entities: trusted authority, mobile
users and cloud servers as shown in Figure 4.1.

• Trusted Authority (TA) bootstraps the whole system and generates certificates
for mobile users. The TA also audits the mobile users’ data that are stored in cloud servers.
When a Sybil attacker is detected, the TA revokes the attacker’s identity and update the
revocation list.

• Mobile Users take smart phones or portable communication devices (Bluetooth
module) to bi-directionally communicate with other users. A user ui should first register
to the TA for identity and certificates. Then, ui generates session keys, pseudonyms, and
signatures during the social interactions. Note that pseudonyms are used to prevent ui’s
real identity from being exposed.

• Cloud Server (CS) has powerful storage and computing capabilities. It is an
untrusted entity deployed in the local area. The CS can also communicate with mobile
users and collect their data.

52



4.2.2 Security Model

According to the Sybil attacker’s capabilities, we define Sybil attackers in four levels.

(1) General Sybil Attackers (Level-1)

A Sybil attacker (denoted as As) exists in User-LS or User-User domain of MSNs
to compromise the normal users and launch Sybil attacks to maliciously generate biased
information to other users [110]. Having multiple pseudonyms to hide real identity (us),
As’s attacking capability is to repeatedly send the same/similar information and spam to
normal users. As a result, the normal user ui may consider all the received information
are from different senders such that ui’s preference may be manipulated by As. In other
words, given k′ � TH contacts with As, As changes his pseudonym; while, the normal
user ui changes his pseudonym given TH contacts.

(2) Sybil Attackers with Illegally Claimed Contact (Level-2)

The goal of Sybil attackers in Level-2 is to illegally claim a large number of contacts
as the evidences of valid pseudonyms changing. A Sybil attacker As would maliciously
claim an extensive number of social contacts associated with his pseudonyms to increase
the pseudonym changing frequency. In other words, given k′ � TH contacts with As, As

changes his pseudonym and claims to have TH contacts. By claiming this social contact
information, As may prevent himself from being detected.

(3) Sybil Attackers with Mobile Attacker’s Collusion (Level-3)

The attacking capability of mobile attackers is to collude with each other and forge
inexistent contact in a “legal” way compared with Level-2 attackers. The colluded attackers
can mimic as normal users and generate valid proof or signatures for the inexistent contact,
although they have not met each other. In other words, given k′ � TH contacts with
As, As changes his pseudonym and claims TH − k′ inexistent contacts with A′

s. Each
inexistent contact is validated by A′

s. From the detector’s view, Level-3 attackers have the
“reasonable” number of contacts to change their pseudonyms.

(4) Sybil Attackers with Collusion of Cloud Servers (Level-4)

The CS is involved in Sybil detection and helps mobile users to store their contact
data. It is an untrusted entity, although it may honestly follow the protocols. If the CS
is compromised or colludes with the Sybil attacker As, the CS may either add some fake
contact information for As, or modify and delete the normal user’s contact information to
increase the false detection rate of Sybil detection.
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4.2.3 Design Goals

To detect Sybil attackers in MSNs, we have the following design goals.

(1) General Mobile Sybil Detection

The proposed scheme should be able to detect Level-1 Sybil attacker who maliciously
changes his pseudonyms without honestly following the pseudonym changing rules.

(2) Unforgeability

The proposed scheme should be able to prevent attackers from forging their social
contacts. The encountered users should exchange unforgeable information (e.g., signatures
of the contact) to the other user, and keep the integrity of contact information.

(3) Resistance to Collusion of Mobile Attackers

The proposed scheme should be able to resist the collusion of mobile attackers and
detect the forged inexistent contact when they collude.

(4) Resistance to Collusion of Cloud Servers

The data stored at the cloud server should not be maliciously added, modified or deleted
by Level-4 attackers. The modified data should be detected by trusted third party or the
TA.

4.3 The SMSD Scheme

In this section, we propose the SMSD scheme to detect the identified four levels of Sybil
attackers in MSNs. In the SMSD, each user collects the contact information (including
contact signatures) from every encountered user. This contact information is used to
support the user’s pseudonym changing. Collecting the contact information from mobile
users, the detector distinguishes Sybil attackers from the normal users by monitoring the
abnormal pseudonym changing and contact behaviors. The CS helps mobile users store
their contact signatures to reduces mobile user’s resource consumption. We also propose a
novel Sybil detection scheme by exploiting semi-supervised learning with Hidden Markov
Model (HMM) to distinguish the distribution of abnormal contacts (forged by Level-3
attackers) and detect the colluded mobile attackers, as shown in Figure 4.2.
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Figure 4.2: Overview of SMSD

4.3.1 Social-based Mobile Sybil Detection

Pseudonym techniques [96] have been widely applied to protect user’s real identity and
guarantee the anonymity. But the use of pseudonyms may degrade Sybil detections, since
mobile users cannot easily link the Sybil attackers’ identities given only their pseudonyms.
A Sybil attacker As aims to maliciously generate the biased information and convince the
normal users. If As uses the same pseudonym to send the same information to a user ui
for multiple times, ui can easily detect it as spam. However, if As rapidly changes his
pseudonyms and sends the same information to ui with different pseudonyms, ui may con-
sider the received information is originated from different users. As a result, ui’s preference
or decision would be impacted by As. It is of utmost importance to ensure mobile users
to honestly change pseudonyms only when they are encountered with a certain number of
users.

Mobile users usually adopt two types of pseudonym changing strategies: Period Based
Pseudonym Changing strategy (PBPC) and k-anonymity based Pseudonym Changing s-
trategy (kPC) to achieve the anonymity. In the PBPC, a normal user ui can change his
pseudonym after a required period (or time window) Ts. When using a pseudonym pidi,ip
with a longer duration than Ts, ui changes pidi,ip since it is exposed to the public for a long
time and may be linked by others. Normal users cannot frequently or rapidly change their
pseudonyms if Ts is properly defined. The drawback of the PBPC is that ui cannot adjust
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(a) Contact of an active user
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(b) Contact of a medium active user
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(c) Contact of an attacker
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Figure 4.3: Observations on contact and pseudonym changing between normal users and
Sybil attackers

the defined period according to the number of contact and environment changes. Alter-
natively, the kPC enables a normal user ui to change his pseudonym when k-anonymity
[96] is violated. For example, after pidi,ip is used more than TH times, pidi,ip should be
changed. Here, TH is a pre-defined threshold. Note that it is possible for ui to change
his pseudonym pidi,ip in a high frequency when pidi,ip meets many users (more than TH
users) within a short period. However, ui would not always change pseudonyms in such a
high frequency in reality.

To understand the relation between contact and pseudonym changing behaviors, we
investigate the Infocom06 trace [102], which is a real human trace with 78 mobile users
attending a conference within four days. Time is divided into small time slots (10 minutes
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for each). We collect the contact and pseudonym changing behaviors from active user (with
the highest number of contacts), medium active user (with the average number of contacts),
and Sybil attacker in Figure 4.3. Similar to [104], we randomly select users from the trace
as attackers, and randomly set the pseudonym changing rate 1

k′  1
TH

. In Figure 4.3(d),
Sybil attackers adopt multiple pseudonyms under the similar mobility (and the number of
contacts) from normal users as shown in Figure 4.3(a) and 4.3(b). Normal users change
their pseudonyms following the rule, i.e., changing after TH contacts. In contrast, Sybil
attackers may sometimes normally change their pseudonyms to act as normal users, and
abnormally change their pseudonyms when launching attacks.

The SMSD exploits users’ contact information, i.e., the encountered user’s pseudonym
and the number of contacts, as the evidence to support their pseudonym changing behav-
iors. Specifically, the contact between two users with pseudonyms pidi,ip and pidj,jq at time
t is denoted by Cip,jq = (pidi,ip , pidj,jq , t). The kPC is adopted in the SMSD for users to
change pseudonyms. The detailed Sybil detection steps are illustrated in Alg. 3. After the
Level-1 Sybil detection, the detector reports the Sybil attacker As’s pseudonym and the
corresponding contact list to the TA.

4.3.2 Contact Signature with Aggregate Verification

According to Level-1 Sybil detection of the SMSD, a pseudonym pidi,ip with few contacts
(k′ � TH) can be detected as a Sybil attacker. To disrupt Level-1 Sybil detection, the
Level-2 Sybil attacker As may illegally claim his contact amount to the detector such that
As seems to have a “reasonable” number of contacts (TH) to change his pseudonyms. To
resist Level-2 Sybil attacks, we propose a contact signature scheme in the SMSD. A contact
signature is generated by each pair of the encountered users, and is used as the evidence
of the contact. We also develop a variant of aggregate signature [33] to reduce the overall
signature size and the verification overhead. This scheme consists of initialization, contact
signature, verification, and aggregation authentication as follows.

• Initialization : Let G and G1 be additive cyclic groups with the same prime order q,
and P is the generator of G. H : {0, 1}∗ → G, and H1 : {0, 1}∗ → Z∗

q are two cryptographic
hash functions. Let e be a bilinear pairing [111], where e: G × G → G1 [33] between G

and G1 exists under two conditions: 1) for any random numbers a, b ∈ Z∗
q, e(aP, bP ) =

e(P, P )ab; 2) e(P, P ) �= 1. Taking a security parameter κ as input, a probabilistic algorithm
outputs a tuple (q, G1, G, e, P , H, H1) as the system parameters to the public.

ui receives a series of pseudonyms pidi,i1 , pidi,i2 , ..., pidi,in from the TA. Each pseudonym
pidi,ip is assigned with the corresponding secret key pair SKi,ip = (skip,0, skip,1), where
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Algorithm 3: SMSD
1: Input: user ui with pseudonym pidi,ip ,

an initialized contact list CLi,ip , and pseudonym changing threshold TH
2: Output: CLi,ip and Sybil detection
3: while |CLi,ip | < TH (|CLi,ip | denotes the number of items) do
4: if pidi,ip is encountered with another user pidj,jq then
5: They generate Cip,jq = (pidi,ip , pidj,jq , t).
6: pidi,ip adds Cip,jq into CLi,ip .
7: end if
8: end while
9: ui changes pidi,ip to pidi,ip+1

.
10: Sybil Detection:
11: Having CLi,ip , the detector first checks if (1) |CLi,ip | < TH and (2)

Tp−1 < t1 < · · · < tj < · · · < tn < Tp. Here, Tp−1 and Tp are starting and ending time of pseudonym
pidi,ip

12: if Both (1) and (2) are not guaranteed at the same time then
13: pidi,ip is maliciously used. ui is a Sybil attacker.
14: else
15: pidi,ip is legitimately used.
16: end if

skip,0 = si,ipH(pidi,ip ||0), and skip,1 = si,ipH(pidi,ip ||1). si,ip ∈ Z∗
q is selected by ui. The

public key is PKi,ip = si,ipP .

• Contact Signature : When two users pidi,ip (from ui) and pidj,jq (from uj) are
encountered, pidi,ip generates the contact as Cip,jq = {pidi,ip , pidj,jq , t}. pidi,ip ’s signature
of the contact between pidi,ip and pidj,jq at time t is

SignSKi,ip
(Cip,jq) = (pidj,jq , ωip , θip) (4.1){

ωip = ripH(pidj,jq) + skip,0 + cipskip,1
θip = ripP

(4.2)

where cip = H1(t||pidi,ip ||pidj,jq), and rip ∈ Z∗
q is a random number. Finally, pidi,ip sends

SignSKi,ip
(Cip,jq) to pidj,jq as the unforgeable signature to prove the contact Cip,jq .

•Verification : After receiving the contact signature from the encountered user, pidj,jq
verifies its authenticity as

e(ωip , P )
?
= e(θip ,H(pidj,jq)) · e(H(pidi,in ||0) + cipH(pidi,in ||1),PKi,ip). (4.3)

If Equation 4.3 holds, the received signature is valid; otherwise, it is invalid. Then, pidj,jq
replies SignSKj,jq

(Cip,jq) = (pidi,ip , ωjq , θjq) to pidi,ip . These signatures can be stored and

used as the evidence of user’s pseudonym changing behaviors.
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Table 4.1: Comparison of Computation Complexity
Sign Verification

S CHp
+ 3CM 3CHp

+ 3Cp + 2CM

Sagg N ·CHp
+3N ·CM (2N + 1) · CHp

+ (N + 2) ·
Cp + (N + 1)CM

• Aggregate Authentication : When uj changes his pseudonym from pidj,jq to
pidj,jq+1 , uj collects all the contact signatures related to pidj,jq and sends them to the CS.
As the ever-growing number of encountered users, the volume of signatures increases corre-
spondingly. We develop an aggregate authentication scheme to reduce the communication
and computation overhead of authentication. First, uj aggregates the signatures Signagg =
(Ωagg,Θagg, pidj,jq) of (pid1,1a ||pid2,2b || . . . ||pidi,ip || . . . ||pidn,nx , t1||t2|| . . . ||ti|| . . . ||tn, pidj,jq)
where

Ωagg =
n∑

i=1

ωip ,Θagg =
n∑

i=1

θip . (4.4)

Then, uj sends the aggregate signature Signagg to the CS for authentication. To verify
pidj,jq ’s aggregate signature, the CS checks

e(Ωagg, P )
?
= e(Θagg,H(pidj,jq)) ·

N∏
i=1

e(H(pidi,ip ||0) + cipH(pidi,ip ||1),PKi,ip).

If it does not hold, some of pidj,jq ’s contact signatures are invalid by pidj,jq or other users.
Note that during each contact, pidj,jq should check the validity of the received signatures
at the beginning. In other words, each stored contact signature by pidj,jq should be valid
by pidj,jq ’s verification. The invalid signatures would be forged by pidj,jq . Therefore, the
CS could directly detect the Level-2 Sybil attacker.

As the contact signature inevitably increases the communication, computation and
storage overhead, we adopt the cloud server to replace mobile users as the detector. We
show the computation complexity in Table 4.1, where CHp is map-to-point Hash operation,
CM is multiplication, and Cp is pairing operation. From Table 4.1, our aggregate signature
scheme can significantly reduce the verification overhead.

If ui holds all the contact signatures, ui should provide his historic contact signatures
for other user’s detection. It would directly expose his past pseudonyms, while the au-
thentication overhead exponentially increases as ui meets more users. In the SMSD, the
CS takes ui’s contact signatures and verifies once for each pseudonym. Then, the CS signs
a receipt for the successful detection to ui. Thus, ui can adopt this verified receipt to
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Figure 4.4: Comparison of contact rate distribution between normal users and Sybil at-
tacker

prove his validity instead of authenticating his past pseudonyms associated with contacts
to every individual user.

4.3.3 Learning Assisted Mobile Sybil Detection

Level-3 Sybil attacker As may collude with other mobile attackers to disrupt the Level-1
and Level-2 Sybil detections by generating valid signatures for inexistent contacts with
As. The inexistent contact between As and the colluded attackers may increase the total
number of As’s contact which makes his abnormal pseudonym changing “legal”. To tackle
this problem, we propose a Learning assisted SMSD scheme (LSMSD) to detect Level-3
Sybil attackers. Specifically, the LSMSD consists of three steps: contact rate distribution,
semi-supervised learning with HMM, and social proximity evaluation.

Contact Rate Distribution

To detect the collusion of mobile attackers, we first analyze the contact rate distribution
of each user. When two users are frequently encountered, they are expected to stay in the
physical proximity. If two users are colluded, they would have a very high contact rate with
each other to compromise mobile Sybil detection. Meanwhile, they likely have a limited
number of contacts with other users. We extract several samples from the real world trace
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Figure 4.5: Hidden Markov model

as shown in Figure 4.4. The percentage in y-axis represents the contact number for each
pair of encountered users. It equals the contact number of individual user over the total
contact number. The contact rate distribution could be approximated to an exponential
distribution. The detector (e.g., the CS, the TA or other trusted party) can form sequences
to represent the contact distribution for classification.

Semi-supervised Learning with HMM

We propose a semi-supervised learning scheme with HMM to detect the collusion of mobile
attackers. First, we form an ergodic k-class HMM to analyze the abnormal contact distri-
bution, where k is the amount of abnormal states in HMM and there exist multiple normal
states. In the initialization, there is only one normal central state NS0 in HMM as shown
in Figure 4.5. Then, l normal states and k abnormal states are generated based on training
and labeling. NS0 can be obtained by training from a certain number of contact distri-
bution samples. In the ground truth data set, we select user’s contact distribution during
daytime and night time from Infocom06 trace [102] to adjust different users’ mobilities and
social behaviors.

A set of parameters θ∗ of normal state HMM is obtained by maximizing the likelihood
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Algorithm 4: LSMSD

1: Input: A set of Nl labeled contact distributions C(l) = {c(l)1 , · · · , c(l)Nl
}, Nu unlabeled contact

distributions C(u) = {c(u)1 , · · · , c(u)Nu
}.

2: Output: Trained HMM Θ = {θ1, · · · , θK} where K = l + k. The classification of the contact
distributions NS = {NS1, · · · , NSl} and AS = {AS1, · · · , ASk}.

3: Step 1 (Supervised training): Given the ground truth data, estimate the central state NS0 as

θ∗ = argmax
θ

Nl∏
j=1

P (c
(l)
j |θ).

4: while The number of iterations is small than that of abnormal states do
5: Step 2 (Outlier): Having a sliding window ω, split the contact distribution into Ω segments with

overlapping.
Select the outlier with the smallest likelihood as

s∗ = argmin
s

(
argmax

s

Ω∏
j=1

P (c
(l)
j |s)

)
.

Label this contact distribution as an abnormal state.
6: Step 3 (Adaptation): A new abnormal state model ASi is adapted from the general model via

the abnormal detection. The normal state model is adapted from the general model by using the
other segments.

7: Step 4 (Boundary): Determine the boundary of states
8: Step 5 (New Outlier): Select a new state model with the smallest likelihood in the adaptive

normal state model as an outlier.
9: end while

of the ground truth sequences (contact distribution) {c(l)1 , · · · , c(l)Nl
} as

θ∗ = argmax
θ

Nl∏
j=1

P (c
(l)
j |θ). (4.5)

We assume that each HMM state follows the Gaussian Mixture Model (GMM), which can
be estimated by standard Expectation-Maximization (EM) algorithm [112]. The concrete
steps of semi-supervised learning algorithm with HMM are stated in Alg. 4.

In the adaptation phase, Maximum A Posteriori (MAP) [113] scheme is adopted to
adjust the normal state model to a certain abnormal state model for training on the
abnormal state model. The original normal state model is also trained by adapting the
non-outlier segments. θ∗ is selected to maximize posterior probability density as

θ∗ = argmax
θ
P (θ|C) = argmax

θ
P (C|θ)P (θ). (4.6)

Having GMM, the model is adapted according to the new weight, mean and variance,
denoted by w′

i, μ
′
i and σ

′
i according to Equation 4.7.

62



w′
i =

1

L

L∑
j=1

P (i|cj, θ)

μ′
i =

L∑
j=1

cjP (i|cj, θ)
L∑

j=1

P (i|cj, θ)

σ′
i =

N∑
j=1

P (i|cj, θ)(cj − μ′
i)(cj − μ′

i)
T

L∑
j=1

P (i|cj, θ)
.

(4.7)

The adaptive parameters can be updated as

ŵi =β · wi + (1− β) · w′
i

μ̂i =β · μi + (1− β) · μ′
i

σ̂i =β · (σi + (μ̂i − μi)(μ̂i − μi)
T ) + (1− β) · (σ′

i + (μ̂i − μ′
i)(μ̂i − μ′

i)
T ).

(4.8)

Here, wi, μi and σi are the previous weight, mean and variance, respectively. β is the
adaption factor to balance the new parameters and the previous ones. When β becomes
larger, the new parameters contributes more in the adapted model. In step (4) of Alg. 4,
we determine the boundary of states based on Viterbi decoding [112].

The LSMSD only needs a small amount of ground truth data in the training phase,
which considerably reduces the training overhead and is suitable for mobile Sybil detection.
In HMM, we also establish l normal states which leverages from the active users to inactive
ones; and from the daytime to the night time. With the adaption on the HMM, the LSMSD
can improve the detection accuracy even given a large amount of unlabeled data.

Social Proximity Evaluation

Although the LSMSD can detect and identify the abnormal contact distribution, it may
generate false detection when normal users always stay together. To solve this problem, we
investigate the social community and enhance the LSMSD by using this social feature. In
reality, if two users frequently meet each other, they should have certain social relationships,
such as colleagues, social friends and neighbors. We extract these social features and
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form social communities in MSNs. Let each user ui maintain a social community vector−−→
SCi = [1, 0, 0, . . . , 1, 0]. We define the social proximity SPi,j between ui and uj as

SPi,j =
|−−→SCi

⋂−−→
SCj|

|−−→SCi

⋃−−→
SCj|

∈ [0, 1]. (4.9)

We define a social proximity threshold SP as the reasonable value of social proximity
that normal friends have according to the investigation of human trace. Given the detection
results from the LSMSD, the user pair (ui, uj) with the social proximity SPi,j < SP is
labeled as the Level-3 Sybil attackers. The LSMSD is thus enhanced with the comparison
of social characteristics.

4.3.4 Ring Structure of Contact Signature

In the aforementioned sections, Level-1, Level-2 and Level-3 Sybil detections are proposed
by exploiting the relation between contact and pseudonym changing behaviors, aggregate
signatures of contact, and the contact rate distribution, respectively. In reality, the CS is
the untrusted entity as indicated in Section 4.2, and is possibly compromised. To resist
Level-4 Sybil attacks, we develop a ring structure of contact signatures to prevent users’
data from be deleted or modified. Before sending the contact list to the CS, each user
builds his contact list in a ring structure.

1) ui first initializes the contact list CLip for pidi,ip . When ui begins to use a pseudonym
pidi,ip at time t0, the contact list is CLip = {SignSKi,ip

(Cip,ip)}, where Cip,ip = (pidip,ip , pidip,ip ,

t0).

2) When pidi,ip meets pidj,jq at t1, ui obtains the contact signature SignSKj,jq
(Cip,jq),

and updates the contact signature ring as CLip = {R1, SignSKj,jq
(Cip,jq)}, where R1 =

(pidi,ip , t0, SignSKi,ip
(Cip,ip)).

Similarly, when another user pidl,lr is encountered with pidi,ip at t2, pidl,lr sends the
contact signature SignSKl,lr

(Cip,lr) to pidi,ip . pidi,ip then updates the contact signature ring
as CLip = {R1, R2, SignSKl,lr

(Cip,lr)}, where R2 = (pidj,jq , t1, SignSKi,ip
(Cip,ip)).

3) pidi,ip recursively builds the ring structure following step 2). When ui changes
pseudonym pidi,ip at tN , ui finalizes the contact signature ring as CLip = {R1, R2, . . . , RN ,
SignSKip

(C
′
ip,ip)}, where C

′
ip,ip = (pidip,ip , pidip,ip , t

∗) and t∗ = H1(t0||t1|| . . . ||tN).
In addition, ui generates a contact order list COi,ip = {CO0, CO1, · · · , CON}. Let

H2 and H3: {0, 1}∗ → Z∗
q be two cryptographic hash functions. ui adopts pidi,ip in the
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duration [t0, tN ], and has contact at T = {t1, t2, · · · , tN−1}. For the n-th contact, COn =
H1(hn||pidj,jq), where pidj,jq is the encountered user. Here, hn = H1(H2(hn+1||tn+1) ⊕
H3(hn−1||tn−1)) where n ∈ [1, N − 1]. As such, a bi-directional Hash chain is established,
where the forward seed is h0 = H1(t0) and backward seed is hN = H1(tN).

The contact signatures form a closed ring, while the established bi-directional Hash
chain guarantees the order of every contact time. The contact list should be synchronized
with the contact order list to ensure the integrity of the contact information provided by
mobile users.

4.4 Security Analysis

In this section, we discuss the security properties of the SMSD scheme according to the
defined attacker model in Section 4.2.

4.4.1 General Mobile Sybil Detection (Level-1)

The SMSD scheme can detect general Sybil attack when user’s contact and pseudonym
changing behaviors are correlated. If a Level-1 attacker As rapidly or frequently changes
his pseudonyms, As hardly collects sufficient contacts to validate his pseudonym changing
behaviors within a very short period. In other words, As changes his pseudonym when
having k′ � TH contacts. By collecting contacts related to each pseudonym, the SMSD
can identify the behavior difference between normal users and Level-1 attackers This kind
of difference can directly reflect their primary purposes of participating in MSNs.

Although As sometimes mimics normal users and does not rapidly or frequently change
his pseudonyms, the pseudonyms changed within the short period or with few contacts can
also be easily detected. The SMSD can cause a higher resource consumption and reduce
Level-1 Sybil attack’s attacking capabilities.

4.4.2 Contact Unforgeability of Mobile User (Level-2)

Theorem 1 The SMSD can resist Level-2 attackers from illegally claming contacts via
contact signatures.

Proof. Given k′ � TH contacts of pidj,jq (from As), As changes his pseudonym pidj,jq
and claims to have TH contacts related to pidj,jq . However, during the usage period of
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pidj,jq , when pidj,jq meet another user pidi,ip , they sign on the contact event, including the
encountered pseudonyms and the time, by using secret keys. Moreover, skip,0, skip,1 and
rip are selected and secretly kept by pidi,ip . The forgeability of contact signature ωip =
ripH(pidj,jq) + skip,0 + cipskip,1 and θip = ripP can be reduced to the computational Diffie-
Hellman problem (CDH) in G, i.e., given P, aP, bP ∈ G where a, b ∈ Z∗

q, to compute abP .
Since the CDH problem inG is computational difficult for a polynomial-time adversary [33],
the proposed contact signature scheme is unforgeable under the defined attacker model.
As a result, As only collects k′ valid contact signatures. The illegally claimed TH − k′

contacts can be detected. Therefore, the contact signature can validate the authenticity of
the contact event and prevent Level-2 attackers from illegally claiming contacts. �

4.4.3 Resistance to Collusion of Mobile Attackers (Level-3)

The LSMSD can resist the collusion of mobile attackers through semi-supervised learning
with HMM on the contact rate distribution and social proximity comparison. When ui
colludes with As, ui can generate “valid” signatures for some inexistent contact with As,
such that As can change his pseudonyms prior to the normal changing time point. As and
ui would have a large number of contact, reflecting a high contact rate in their contact
distribution. However, As may not meet other users frequently, such that As may have
lower contact rates with other users. As shown in Figure 4.4, normal users and Level-
3 attackers have different contact distribution. Therefore, the proposed semi-supervised
learning with HMM can classify the normal contact distribution and the abnormal one due
to the collusion. The detection accuracy will be presented in Section 4.5.

As an enhancement of the LSMSD, social proximity is explored to assist the contact
distribution. Since the colluded attackers may not have strong social connections with As

but frequently contact with As, the colluded attackers can be identified according to their
social relationships.

4.4.4 Resistance to Collusion of Cloud Server (Level-4)

Theorem 2 The CS cannot add, modify and remove the user’s contacts due to the contact
signature ring and bi-directional Hash chain of contact order.

Proof. Suppose the CS deletes the contact between pidi,ip and pidj,jq at tj. hj−1 �=
H1(H2(hj+1||tj+1) ⊕ H3(hj−2||tj−2)). Similarly, hj+1 cannot be recovered as well. As a
result, the whole contact order list is invalid. Due to the forward and backward secrecy,
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the contact order list cannot be forged. If the CS modifies or adds contact signatures for
any user, the detectors can find out the CS’s malicious operations due to Theorem 1.

In the contact signature ring, if R2 (e.g., from pidj,jq) is deleted, t∗ cannot be cal-
culated without t2. Similarly, if the CS adds R∗

j into CLip , the contact signature ring
cannot be synchronized with the order list. Therefore, the proposed contact signature ring
and bi-directional Hash chain can protect the stored contact information from addition,
modification and deletion by the CS. �

In summary, the SMSD scheme can resist the four levels of Sybil attackers considered
in Section 4.2.

4.5 Performance Evaluation

Based on a trace-driven simulation, we evaluate the performance of the SMSD compared
with other mobile Sybil detection schemes in terms of detection accuracy .

4.5.1 Simulation Setup

We conduct the simulation on a real world human trace (Infocom06 trace) [102]. This trace
contains 78 mobile users attending a four-day conference. Mobile users carry the dedicated
Bluetooth modules, discovering the surrounding users via Bluetooth. There are totally
128, 979 recorded contacts in this trace. We separate the entire data set into two parts:
20% of data are the training set to produce mobile users’ profiles (e.g., social communities),
and the remaining data are used for the simulation.

We assign users with social communities according to the sociology theory [80]. A
complete graph G is built up, where each edge E(ui, uj) weighted by the total number of
contacts between two vertex ui and uj. We then refine the graph G with 78 vertices and
2, 863 edges by removing the edges weighted smaller than 100. We adopt Bron-Kerbosch
algorithm [114] to extract maximal cliques in G. Each clique is a complete subgraph
where every edge is high-weighted. We select 100 social communities (i.e., cliques) based
on the weight of each maximal clique. The selected communities are used for simulation
comparison on social connections.
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Figure 4.6: The impacts of the number of Sybil attackers

4.5.2 Simulation Results

To demonstrate the advantages of SMSD and LSMSD schemes, we compare the detection
accuracy with FFL (Friend and Foe list) [104]. In FFL, mobile users detect attackers based
on checking their social friend list. Similarly to [104], we randomly select 1, 4, 8, 12, and
16 users as the attackers in our simulation. To quantify the detection accuracy, we utilize
false positive rate (FPR) and false negative rate (FNR) as the metrics to evaluate the Sybil
detection accuracy. A false positive detection results in a normal user being detected as a
Sybil attacker, while a false negative indicates that a Sybil attacker is labeled as a normal
user. FPR = Pf/(Pf +N)×100%, where Pf denotes the number of false positive detections
and N is the total number of Sybil attackers. Similarly, FNR = Nf/(Nf+P )×100%, where
Nf denotes the number of false negative detections, P is the total number of normal users.
We conduct the simulations of different schemes within 400 time slots. For the LSMSD,
we set adapter factor β = 0.5 and select 100 contact distributions from different users as
the training data.

As shown in Figure 4.6, we compare the FPRs and FNRs of FFL, SMSD and LSMSD
when the number of Sybil attackers increases. Note that TH = 80 and SP = 0.3. The
number of Sybil attackers has a greater impact on FFL compared with that on SMSD
and LSMSD. The increasing number of attackers when using FFL (friend and foe lists)
increases the number of contacts between normal users and Sybil attackers such that the
detection error increases. This number can also affect SMSD and LSMSD since a large
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Figure 4.7: The impacts of TH (i.e., every user changes pseudonyms when the pseudonym
meets more than TH users)

number of Sybil attackers can launch strong collusion attack and forge contact signatures
to disrupt the SMSD and LSMSD. In the following results, we set 8 Sybil attackers in the
network.

We compare FPRs and FNRs of different schemes by changing the threshold (number
of contacts) for changing pseudonyms. We set SP = 0.3 for the LSMSD. As shown in
Figure 4.7, when TH is small, e.g., TH = 60, the FPRs and FNRs of SMSD and LSMSD
are not high. The reason is that Sybil attackers can mimic normal users. A smaller TH
results in a smaller gap with the number of contacts that an attacker has. When TH
increases, the gap becomes larger such that the FPRs and FNRs of SMSD and LSMSD
are dramatically reduced.

As shown in Figure 4.8, the social proximity threshold SP can only impact on LSMSD
which detects Level-3 attackers. We set TH = 80. For FFL, we adopt SP as the threshold
to befriend with others. When SP is large, the Sybil attackers would not befriend with
normal users such that the FNR reduces. Meanwhile, a large SP prevents some normal
users from befriending with others. Therefore, they may be detected as attackers, which
increases the FPR.

In terms of the users with high contact rate, the LSMSD (by exploiting social proximi-
ty) can detect whether their contacts are forged or not. If SP is small, the FNR increases,
since the colluded attackers may also have certain social connections. It is easy to achieve
such that both normal users and Sybil attackers with high contact rate are likely detected
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Figure 4.8: The impacts of SP

as normal users. By increasing SP , the FNR drops, while the FPR increases. The rea-
son is that the colluded users with high contact rate can hardly build very strong social
connections with each other as SP > 0.3.

In summary, LSMSD performs better than SMSD since the Level-3 attackers can be
detected by semi-supervised learning with HMM, which balances the training overhead
and detection accuracy. Having the appropriate parameters, e.g., TH = 100, SP = 0.3,
the four levels of Sybil attackers could be detected.

4.6 Related Works

In this section, we introduce some exiting works of Sybil detection. We categorize them
into four types, i.e., social network based Sybil detection, social community based Sybil
detection, behavior classification based Sybil detection and mobile Sybil detection.

4.6.1 Social Network Based Sybil Detection

Social network based Sybil detection (SNSD) relies on the concept of “social network”
from sociology theory [80], which is a social structure linking social relationships among
nodes in the social graph. In this section, the term “social network” indicates the user’s
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social graph and structure, which can reflect user’s social relationships and the social
trustworthiness [115, 116] among users. Leveraging the “social network” structure, Yu et
al. [105] propose an SNSD scheme, named SybilGuard, by using random walk algorithm
for detection [117, 118]. Before the explanation of the detailed SybilGuard, we introduce
an assumption as follows.

Assumption 1: Although the Sybil nodes can tightly connect with other Sybil ones,
the number of social connections among Sybil nodes and honest ones is limited.

SybilGuard relies on Assumption 1, and each node detects the Sybil one in a distributed
manner. Specifically, a node with degree R generates totally R random routes starting from
itself along its edges with a fixed length L. If a route reaches a known honest node, it is
verified as honest by this known honest node. Particularly, a Sybil node S may be accepted
as a verified one (i.e., the route from S to H is called verifier) if one of the routes from S
reaches the known honest node V . Given a threshold T � R, S is accepted as an honest
node when more than T routes from S are verified. According to Assumption 1, the limited
number of attack edges makes sure that the number of verifiers cannot be greater than
T , where T is properly selected. If there are totally X attack edges, the number of Sybil
groups is bounded by X. [119] proves that T = Θ(

√
nlogn) is sufficiently large for the

honest nodes passing the random walk detection. In addition, security schemes [110] are
adopted to ensure the authenticity of the nodes and the routes. Every pair of directly
connected nodes (or one-hop neighbors) negotiate a shared key on the connecting edge.
Message authentication code (MAC) can be adopted for each node to verify the other one.
Furthermore, every generated random route should be registered with an unforgeable token
(or witness table) containing all L nodes on the route such that Sybil attackers cannot deny
the connections and forge the route information.

The correctness of SybilGuard relies on the fast-mixing property of the social graph
[110]. The mixing time t of a social graph indicates how fast the ending point of random
walk algorithm achieves the stationary distribution. If the ending point distribution is
independent on the starting point as L −→ ∞, it is the stationary distribution [105]. If
the mixing time is Θ(t), the graph is fast mixing. When a random walk with the length
L = Θ(

√
nlogn), there exist Θ(

√
n) samples independent on the starting point. The

probability that a Sybil node is accepted/verified as honest by the known honest node
(i.e., both the Sybil node and the honest one select the same attack edge in the random
route) follows the Birthday Paradox [120]. The collision probability is

Prob(Collision) = 1−
(
1− 1√

m

)√
m

. (4.10)
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Therefore, SybilGuard has a high probability to detect SA-1 (presented in Section 2) based
on random walk.

To improve the detection accuracy of SybilGuard and guarantee the near-optimal, an-
other SNSD scheme, named SybilLimit, [106] is proposed. SybilLimit enables each node
to generate R = Θ(

√
m) random routes with length L = Θ(logn). Similar to SybilGuard,

the Sybil or honest nodes are labeled by using random walk algorithm [121]. Different
from SybilGuard, SybilLimit leverages the intersections on edges instead of vertex (node),
and performs short random routes with multiple independent instances of random walk.
SybilLimit accepts O(logn) Sybil nodes per attack edge. This number in SybilGuard is
O(

√
nlogn) [106, 122]. Note that both SybilGuard and SybilLimit rely on Assumption 1.

To understand the characteristics of social structure, Alvisi et al. [123] study several
structural properties of social graphs, such as small world property [80], popularity dis-
tribution [124], clustering coefficient [125] and conductance [126]. Popularity distribution
among the nodes follows a power-law or lognormal distribution. Small world property
indicates that the distance between any two nodes is small. Clustering coefficient is a
parameter that reflects the closeness of nodes within a social network. The conductance
C(S) reflects the mixing time, which indicates the minimum length of a random walk.
C(S) = Sout

Sin
, where Sout denotes the number of edges that are out from S and Sin denotes

the number of edges within S. According to [123], the conductance (related to the mixing
time of a random walk) is more resilient in Sybil detection compared with other charac-
teristics. The mixing time is high, when the conductance is low. [123] also proves that
for the first three properties, the number of edges that Sybil attackers need to generate
to launch Sybil attacks is 0 or 1, while this number for the property of conductance is
C(S)m

log(C(S))
. Sybil attackers have to consume more resources to compete with the conductance

based Sybil detection schemes. The effectiveness of SybilLimit [106] can be validated since
SybilLimit adopts conductance to detect Sybil nodes. In addition, a concept of perfect
attack is introduced to explain an undetectable attack that draws some honest nodes in
the social network into Sybil region, without any impact on the whole social network. In
other words, when a Sybil node joins the social network and sets up many connections
with the honest nodes, it is not easy to detect such an attacker as well. The attack edge
is a metric to evaluate the attacker’s capability to launch a perfect attack. To resist the
strong Sybil attacks, [123] exploits conductance to build a white-list for honest users and
proposes a so-called SoK scheme. This white-list contains a set of nodes ranked associated
with these honest users’ trustworthiness. The SoK is more robust compared with other
SNSD schemes, such as SybilGuard and SybilLimit.

There are also several promising SNSD schemes. For example, Cao et al. [127] propose
SybilRank, which utilizes a centralized online server to rank nodes according to their
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Table 4.2: Comparison on Social Graph Based Sybil Detection
Sybil defense
scheme

Preliminaries Social
graph

Centralized Trustworthiness

SybilGuard
and SybilLim-
it

Random walk Undirected × ×

SumUp Adaptive max
flow

Undirected
√

Credit network

Gatekeeper Random walk Undirected Trust
SybilDefender Community detec-

tion
Directed

√
Trust

SybilShield Community detec-
tion

Undirected × Trust

VoteTrust Community detec-
tion

Directed × Asymmetric
trust

perceived likelihood of being Sybils. The goal of SybilRank is to achieve the scalability
of the Sybil detection in a large scale OSN and reduce the computation overhead. By
exploiting a probabilistic model of honest node’s social network, Danezis el al. [128] propose
a Bayesian inference scheme to divide the whole social graph into Sybil and honest regions.
In addition, the principle of privilege attenuation [129] is developed for SNSD to prevent
malicious Sybil attackers from arbitrarily adding or removing edges in the social graph
without employing social engineering, especially for collusion attack [130]. To further
improve SybilLimit, Tran et al. [131] propose a “Gatekeeper” scheme to optimize the case
of O(1) attack edges and guarantee only O(1) Sybil identities. Gatekeeper is integrated
with a multi-source ticket distribution algorithm for node admission control.

Exploiting trust to build social graph becomes a state-of-the-art idea of SNSD. Cao
et al. [132] propose SybilFence, leveraging users’ negative feedbacks on Sybil attackers
and adjusting the weight of each edge in social graph. Specifically, if a user ui receives
negative comments from others, ui’s edge weights are correspondingly reduced. With the
directed social graph, Sybil attackers can be well detected. Tran et al. [55] adopt credit
network [115, 133] and propose SumUp to solve the vote aggregation problem in an online
rating system. SumUp leverages online user’s voting history to restrict Sybil attacker’s
voting capability if this attacker continuously misbehaves. In SumUp, a trusted node
computes a set of max-flow paths on the trusted graph and then aggregates the votes.
It allows the votes from the trusted users to be effectively aggregated, while limits the
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votes from untrusted users. Canal [134] is similar to SumUp. With a credit payment
mechanism in a large scale network, Canal enhances the establishment of social graph
and is compatible to the existing SNSD.users . In [135], Mohaisen et al. form a trust-
based social graph based on the observation that nodes trust themselves more than they
trust others. They also observe that the trustworthiness of other nodes is not uniformly
equal. Differential trust in the social graph is developed to filter weak trust edges and
model trustworthiness by biasing random walks. Delaviz et al. [136] propose a trust and
credit based Sybil detection scheme, named SybilRes. SybilRes utilizes a local subjective
weighted directed graph to indicate user’s data transfer activities. When a user ui uploads
data, the edge weight on the path from ui to the downloaders is reduced. To maintain the
edge weight of honest users, after downloading, the downloaders increases the weights of
the edges on the paths from the uploader ui to itself. Then, Sybil users could be detected by
using the sophisticated SNSD. Unlike the basic SNSD [105, 106], these trust based SNSD
schemes [136, 135] leverage trustworthiness to build a directed social graph rather than the
original undirected social graph for random walk Sybil detection. Since this enhancement
relies on a practical assumption that the honest nodes would not provide high trust on
the unknown (or Sybil) nodes, the attack edges could be filtered to guarantee the SNSD
accuracy. Therefore, the credit and trustworthiness enhance the traditional social graph
and restrict Sybil attackers to build connections with normal users such that the detection
accuracy is improved.

4.6.2 Social Community Based Sybil Detection

Social community based Sybil detection (SCSD) develops social community detection algo-
rithms to facilitate Sybil detection. SCSD explores social community detection to facilitate
Sybil detection. The possibility of using social community detection algorithms to detect
SA-1 is validated in [137]. Viswanath et al. [137] first analyze the SNSD schemes and
summarizes them into a ranking problem. Recall that the SNSD schemes usually partition
Sybil nodes and honest ones into two parts: Sybil region and honest region. It is possible
to formulate as a graph partitioning problem. For SNSD schemes, each unknown node
is ranked according to its social connections with the known trusted nodes. By selecting
different parameters (i.e., thresholds), the social graph can be divided into two partitions.
These parameters determine the boundary of the partition, i.e., “cutoff”. The ranking of
nodes is towards the direction of reduced conductance. In other words, the nodes tightly
connected with the known trusted ones (e.g., lower conductance) would score higher in
the ranking. Furthermore, the ranking algorithms significantly impact on the ranking re-
sults and the Sybil partition. Meanwhile, another problem comes out. If a node weakly
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connects with the current known trusted nodes, it is more likely to be detected as a Sybil
node no matter how tightly it connects with other unknown trusted nodes. In other words,
when there are multiple social communities in the graph, it is inefficient and ineffective to
detect Sybil nodes only through social network partition. Therefore, leveraging communi-
ty detection to detect Sybil nodes becomes promising and enhances the traditional Sybil
detections.

SybilDefender [138] is a typical SCSD scheme. It performs a limited number of random
walks for Sybil identification and community detection. Sybil identification can detect
whether a node is Sybil or not, similar to the existing SNSD schemes. Then, a community
detection algorithm is adopted to detect the neighboring Sybil nodes around the detect-
ed Sybil nodes. Moreover, an efficient combination of Sybil identification and community
detection facilitates SybilDefender to consume few computation overheads. Due to the
observation that a portion of relationships among OSN users are untrusted [124], SybilDe-
fender develops a mechanism to limit the number of attack edges. This attack edge limiting
mechanism enables users to rate their friend’s relationships as “Friend” or “Stranger”. The
attack edges could be further removed since Sybil attackers are probably “Stranger” from
the view of normal users. Note that SybilShield relies on Assumption 1.

By using multi-community social network structure, Shi et al. [139] propose SybilShield,
an agent-aided SCSD scheme. SybilShield also leverages trust relationships among users to
form the social graph. Since two honest nodes from two different social communities may
not tightly connect with each other, SybilShield exploits the agents and ensures the honest
nodes tightly connect with other honest ones. Similar to SybilGuard (the first random
walk based Sybil detection) [139], some agents of a verifier are selected to run a second
round of random walk, called agent walk, where the agents traverse all of the verifier’s
edges to confirm the suspect nodes. SybilShield relies on Assumption 2.

Assumption 2: Sybil nodes cannot tightly connect with honest nodes in the multiple
honest communities since honest nodes would not trust Sybil ones. Honest nodes can
tightly inter-connect with others in the honest community.

Given Assumption 2, Cai et al. [140] leverage the latent community model and uti-
lize a machine learning algorithm to detect Sybil attacks. According to [140], the tightly
interconnected communities are connected more closely than the one loosely connected.
Although several communities are compromised by Sybil attackers, the attack communi-
ties can be also detected via the transitivity of the latent community model. Based on
user’s befriending interactions (invite, or accept friends), an interesting SCSD scheme,
named VoteTrust [141], builds a friend invitation graph and leverages a trust-based vote
assignment as well as global vote aggregation to estimate the probability of a Sybil at-
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tacker. VoteTrust integrates the social graph and user’s social behaviors (i.e., feedback of
accepting or rejecting friend requests in OSNs) to establish a directed graph. It relies on
an assumption that the Sybil users cannot receive more than a certain number of friend
requests from normal users. The global aggregation of the votes for every node can be
used to estimate its global rating. With this two-way (voting and feedback) mechanism
in a directed graph, Sybil detection can be more effective compared others schemes. In
Table 4.2, we compare the SGSD schemes with respect to preliminary techniques, assump-
tion, decentralized properties, etc. A tendency is to explore trustworthiness to facilitate
the Sybil detection to SA-1.

4.6.3 Behavior Classification Based Sybil Detection

Users’ behaviors can be used to classify Sybil attackers, i.e., behavior classification based
Sybil detection (BCSD). In [107, 57], Sybil users in RenRen, a Chinese OSN, can generate
an exponential number of social connections with the normal (or honest) users. Jiang et al.
[142] demonstrate that the smarter Sybil attackers rarely establish social connections with
other Sybil attackers in RenRen. As a result, the SGSD schemes may not always effectively
detect these smarter Sybil attacks once Assumptions 1 and 2 do not hold. Therefore, some
novel Sybil detection schemes are desirable and should exploit some promising features of
Sybil attackers.

Based on the observation on abnormal OSN behaviors, Wang et al. [57] develop Sybil
attackers by comparing OSN users’ browsing and clicking habits (as known as “online”
habits). According to the data obtained from RenRen [57], the basic OSN activities of
users are summarized as follows. 1) Befriending : send, accept or reject friend requests;
2) Photo: upload photos, tag friends in the pictures, browse photos, and comment on the
photos; 3) Profile: browse profiles of other users; 4) Share: share multimedia contents,
including video, photo, audio, text contents and website links; 5) Messaging : update
status, wall posts, send or receive instant messages; 6) Blog : post blogs, browse blogs, and
comment on the blogs. According to the statistics, the primary activities of Sybil users
are friending (especially, sending friend requests), viewing photos and profiles of others,
and sharing contents with others. On the contrary, the normal users spend a large portion
of online time to view photo, and perform other activities, like viewing profiles, sending
messages, sharing contents with a similar frequency. Both Sybil attackers and normal users
share content or send messages at similar frequencies. Note that sharing content or sending
messages are the common approaches for Sybil attacks to disseminate spam in OSNs. This
observation indicates that the traditional spam detection schemes cannot simply leverage
numeric thresholds to resist spam.
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Figure 4.9: Online social networking behaviors and transition probabilities of Sybil attack-
ers and normal users.

As shown in Figure 4.9, the click transitions could be modeled by Markov chain with
each state as a click pattern. Normal users usually perform diverse OSN behaviors, and the
transitions among states are really complicated. By contrast, the Sybil users are involved
in some specific activities in a high frequency. To distinguish the BOSAs, support vector
machine (SVM) [143, 144] can be adopted according to the session features, such as average
clicks per session, average session length, average inter-arrival time between two clicks, and
average sessions every day, and the click features. The preliminary results show that the
Sybil detection accuracy is high. In [57], three models (click sequence model, time based
model, hybrid model), which can cluster similar click patterns, are built for the behavior
classification. According to some specific similarity metrics, the sequence similarity graph
can be established. Through graph clustering, the Sybil users can be detected. The SVM
based scheme is supervised learning tool which requires a long term training period. To
address this issue, an unsupervised learning scheme is proposed, where only a small portion
of click patterns of given normal users as “seeds”. They color normal clusters which contain
a seed sequence; otherwise, the uncolored clusters are Sybil ones.

Assisted by crowdsourcing and social Turing tests, Wang et al. [145] propose a dis-
tributed Sybil detection scheme which significantly improves the detection accuracy. For
a Sybil attacker, he cannot pass “social Turing test” with different attack strategies. Fur-
thermore, crowdsourcing provides an adaptive platform for normal users (e.g., “turker”)
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to complete the Sybil profile detection with a reasonable cost. From the experiments in
[145], the accuracy of crowdsourcing Sybil detection under the reasonable burden is almost
as high as that performed by “experts”. Some key factors (e.g., demographic factors, tem-
poral factors and survey fatigue, turker selection, and profile difficulty) that may impact
on the crowdsourcing Sybil detection are provided. Obviously, the cost of a crowdsourcing
workforce is low. In addition, some BCSD schemes [146] are proposed based on behavior
classification. For example, DSybil [146] exploits the heavy-tail distribution of the classical
voting behavior from the honest users to detect Sybil identities. In summary, these BCSD
schemes can detect Sybil attacks according to the user’s behavior learning and classification
in different applications.

In reality, smart and strong Sybil attackers penetrate into the social graph and generate
plenty of social connections with normal users. It breaks the assumption for the SGSD
schemes. If Sybil attackers are familiar with normal user’s click patterns or habits, Sybil
attackers may mimic normal users such that BCSD schemes may not be effective. However,
it is obvious that Sybil attackers have to consume a large portion of time or resources to
mimic normal users. Consequently, their attack behaviors are partially limited.

4.6.4 Mobile Sybil Defense

Due to the dynamic mobility of MSNs and the incomplete global social graph information,
Sybil detection is quite difficult compared with that in OSNs. In [104], Quercia et al.
propose a matching based scheme for Mobile Sybil Detection (MSD). This scheme allows
mobile user’s to match common communities and label the users from the Sybil commu-
nity as Sybil attackers. The assumption of [104] is that each user maintains a friend list
containing the trusted mobile users, and a foe list with the untrusted users in it. When
two users meet with each other, they fist match their communities by using profile match-
ing [94]. The users outside the trusted communities are identified as Sybil attackers. In
addition, Chang et al. [147] propose another MSD scheme based on the assumption that
Sybil attackers and normal users are from different communities. Under this assumption,
community matching is conducted when users are encountered for detections. Leverag-
ing friendship is an effective methodology to identify Sybil attackers. However, this type
of friend relationship based MSD (FR-MSD) schemes need mobile users to maintain the
trusted community information in advance.

Cryptography is another promising tool in MSD, and can restrict Sybil attacker’s ma-
licious behaviors to some extent. We introduce several cryptography based MSD (crypto-
MSD) schemes as follows. When Sybil attacks are launched in VANET, a challenging issue
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of detecting them is vehicle’s dynamic mobility, making it increasingly difficult to tie an
attacker to the location. To address this issue, Lin [109] proposes a Local Sybil Resistance
scheme (LSR) based on group signature [148] to detect local Sybil attackers and mitigate
zero-day Sybil vulnerability in sparse VANET. As the vehicle users hardly detect local
Sybil attackers, LSR [109] enables a user ui to generate event signatures, where the event
is posted by ui. According to the features of group signature, if a user signs on the same
event for multiple times (i.e., posting this event for several times), these signatures would
be linked and invalid. Users are able to detect these local Sybil attackers. In [109], the de-
lay of Sybil reports from vehicle users is also analyzed. Two-layer and multi-layer reporting
are proposed to track the Sybil attacker’s real identity for TA’s revocation. In addition,
some costly resources are exploited for Sybil detection, which aim to limit Sybil attack-
er’s capabilities. Secure hardware [149] is also utilized to validate every user’s authenticity.
Sybil attackers can only authenticate themselves with a limited number of times. Although
this secure hardware based Sybil detection scheme may effectively resist Sybil attacks, its
high cost hinders the widely usage. It is usually applied when the highest security level is
required. Reddy et al. [56] propose an identity fee based Sybil defense scheme by increas-
ing the cost of identity maintenance. Sybil attackers have to spend more fees/resources to
launch attacks. Similarly, a resource testing scheme [150] detects the overloaded users as
Sybil attackers. The resource testing relies on the observation that the each user or at-
tacker works on a single or limited number of machines/devices. If a Sybil attacker exists,
it might consume the dramatic amount of resources (e.g., computation, communication,
storage, and network bandwidths) to maintain the created fake identities. In [151], Li et al.
propose an admission and retainment control mechanism to enforce nodes to periodically
solve computational puzzles. Although these dedicated resources can support legitimate
nodes, Sybil attackers are not able to obtain sufficient recourses to launch attacks. The
attacker’s capabilities are limited to some extent. These Sybil detection schemes provide
some challenges, such as hardware, device resource, and reputation, to limit the Sybil
attacker’s behaviors.

In MSNs, pseudonym techniques are widely applied. Indeed, pseudonyms protect le-
gitimate user’s real identity from being identified and linked. However, pseudonymous
identities hinders MSD since the detection schemes hardly trace the Sybil attacker’s iden-
tity given only his pseudonyms. Similarly, in [152, 153], a malicious user pretending to
be other vehicles can be detected in a distributed way through passive overhearing by a
set of fixed nodes (i.e., road-side boxes). Such a Sybil detection does not disclose any
vehicle’s identity during the detection. Vehicle users’ privacy can be preserved at the same
time. In [154], Triki et al. utilize the embedded RFID tags on the vehicles and the short
lifetime certificates from RSUs to verify user’s authenticity. Some observers (e.g., RSUs,
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or vehicles) are involved in monitoring the sensitive events to mitigate the false negative
detection. Moreover, vehicles change their identities when they switch to another RSU’s
area. The unlinkability and privacy can be achieved.

Sybil attackers could compromise the popular service review applications, especially
in User-User and User-LS domains of MSNs [108, 54]. Usually, MSN users query the
special offers of products, services and social activities, and browse the reviews or service
evaluations from experienced users. Alternatively, the LS can gather the users’ comments
and post them to the nearby users in User-LS domain of MSNs. No trusted authority is
always available to maintain trustworthiness between LSs and users. Sybil attackers in
the local area may forge some positive reviews, delete or modify the negative ones. They
may maliciously manipulate the system and degrade the quality of MSN applications. To
detect Sybil attacks during service evaluation, Liang et al. [108] exploit trustworthiness
and propose a Trustworthiness Service Evaluation scheme (TSE) to gurantee the legitimate
service review submissions and limit Sybil attackers’ capabilities. In the TSE, local service
providers (LSPs) generate many tokens to synchronize users’ review submissions. A user
ui ties his reviews with signatures to only one token after receiving a token from either
LSPs or other users who have similar profiles or preferences. The trust relationships are
established based on users’ similar profiles and preferences in a local area. Afterwards,
these tokens are circulated among mobile users for cooperative review submissions. A time
stamp is included in the review signature to prevent any user from modifying and deleting
the submitted reviews. In addition, every user adopts pseudonym when submitting reviews.
All pseudonyms for the reviews in the same token are stored in a list for the traceability
purpose [155]. If ui submits multiple reviews with multiple pseudonyms, both LSP and
other users can easily identify it according to the features of group signature. Moreover,
ui’s real identity can be linked given the revealed multiple pseudonyms that ui uses. After
publishing a token, the LSP cannot omit this token once some reviews are negative to the
LSPs. In each token the length of the review chain can bound the LSP’s modification
capability. For example, the LSP has to be stronger to modify the existing review chain
with a longer review chain. With different token structures, such as ring, chain, tree, it is
difficult for SA-3 to modify the posted reviews. It is because the established structure would
be destroyed if any modification is made on this structure. Besides the basic cryptography
solutions, in [108], if a user generates a massive number of reviews with the same pseudonym
in a short period, i.e., one time slot, other users can easily detect his behavior.

Some other mobile network features, such as channel characteristics [156, 157] and
mobility features, are also investigated to differentiate Sybil attacks and normal users.
In [158], channel characteristics are investigated, where the spatial variability of radio
channels is typical in indoor and urban environments with rich scattering. [158] also
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develop an enhanced physical-layer authentication. The integration of channel features
and authentication jointly detects Sybil attacks. This proposed scheme is feasible featured
by efficient channel estimations. In addition, the received signal strength (RSS) [159, 160]
is utilized for Sybil detection in a static wireless network, e.g., sensing domain as discussed
in Section 2. If a node receives the packets with similar RSS for many times, the sender is
likely a Sybil attacker [161]. Several other MSD schemes leverage mobile network features
to defend Sybil attacks. In [162], Geutte el al. estimate the amount of cheated nodes to
measure the success rate of Sybil attacks. They evaluate the impact of transmission power
tuning from senders, and analyze the impact of bi-directional antenna over omni-directional
antenna for the receiver. By comparing the transmission signal differences, they quantify
the effects of different security assumptions on Sybil attackers and the impact of antennas
on the Sybil detection accuracy. In [163], Yu et al. analyze vehicles’ communication signal
strength distribution and exploit a statistical method to cooperatively identify the location
where a vehicle comes from. Since the neighbors cooperatively measure the signal strength
of the specific vehicle, the location estimation accuracy can be significantly improved.
Abbas et al. [164] propose a lightweight RSS-based Sybil detection scheme in mobile
ad hoc network, without centralized authority and dedicated hardware (e.g., directional
antenna or GPS). This lightweight detection scheme relies on the node mobility, and sets
the threshold to differentiate the node’s moving speed. If any node moves much faster
than the pre-set threshold, it may be Sybil attackers. In summary, by investigating normal
user’s and Sybil attacker’s behaviors related to channel conditions, Sybil attackers can be
identified.

With the consideration of user’s mobility, Piro et al. [165] observe that in Mobile Ad
hoc NETwork (MANET), the Sybil identities related to a single Sybil attacker are bound
to a single physical node. In other words, an effective detector should be able to find that
many Sybil identities move together. By monitoring the user’s motility, Sybil identities can
be detected. In [166], Mutaz et al. leverage the mobility characteristics of vehicle platoon
to detect the Sybil attacks in VANETs. Park et al. [167] investigate the mobility of vehicle
and detect Sybil attackers based on the fact that the two vehicles rarely pass multiple
roadside units (RSUs) always at the same time. Correlating the vehicles and RSUs in both
temporal and spatial domains, Sybil attackers can be detected. Defending Sybil attackers
through investigating the system features is a promising approach where the challenge is
how to obtain the sufficient knowledge or features.

In Table 4.3, we summarize the existing Sybil defense schemes with respect to some
design principles. Sybil defense should leverage different features to classify, detect, and
resist Sybil attacks towards different scenarios and networks. In summary, some existing
mobile Sybil detection schemes either rely on the pre-defined communities among users,
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Table 4.3: Sybil Detection: A Comparison
Sybil
defense
scheme

The type
of Sybil
attacks

Preliminary
technique

Base or As-
sumption

Decentralization

SNSD SA-1 Social graph
partition,
Random walk

Assumption 1 Centralized

SCSD SA-1 Community
detection

Assumption 2 Centralized and
decentralized

BCSD SA-2 Behavior clas-
sification

Behavior dif-
ference

Centralized and
decentralized

FR-MSD SA-3 Community
detection,
or profile
matching

Trusted
community
features

Decentralized

Feature-
MSD

SA-3 Channel
estimation,
feature classi-
fication

Wireless
channel char-
acteristics,
mobility
features

Decentralized

Cypto-
MSD

SA-3 Cryptography Security
of crypto-
graphy

Decentralized

82



or adopt cryptography techniques to restrict Sybil attackers. However, Sybil attackers
may act similarly as normal users to disrupt these traditional mobile Sybil detections.
Furthermore, some online Sybil detection schemes relying on centralized authority cannot
be directly applied in the mobile network. To this end, we study the relation between
mobile user’s contacts and pseudonym changing behaviors and propose the mobile Sybil
detection scheme balancing the trade-off between the detection accuracy and overhead.

4.7 Summary

In this chapter, we have proposed a social-based mobile Sybil detection scheme to detect
four levels of Sybil attackers with different attacking capabilities. We have investigat-
ed mobile user’s pseudonym changing behaviors associated with their social contact to
differentiate Sybil attackers from normal users. The security analysis demonstrates the
effectiveness of the SMSD in terms of detecting four levels of Sybil attacks. The extensive
trace based simulation validates the detection accuracy of the SMSD. The proposed SMSD
scheme is a novel paradigm of detecting Sybil attacks in MSNs, which takes the advantages
of powerful storage and computing capabilities from the cloud server. It also initiates a
trend to distinguish Sybil attackers via mobile user’s social behaviors and mobility.
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Chapter 5

Exploiting Social Network To
Enhance Infection Analysis With
Privacy Preservation

5.1 Introduction

Infectious disease, such as flu, Ebola and some acute respiratory infections, cause people
infected by pathogenic microorganisms (bacteria, viruses, fungi, parasites, etc.), and spread
from human to human within a short period. According to the health report in 2013, the
population of infected Canadians with these highly contagious diseases rises over 200, 000,
where more than 8, 000 infected patients die as a result [168]. The outbreaks of these
infectious diseases [169] usually occur when the infected patients cough and sneeze around
non-infected people [170]. A recent study [171] observes that people having strong social-
ties and long-lasting (or frequent) contacts is likely to spread infectious diseases from the
sociology and biomedical perspective. One of traditional infection prevention approaches
to prevent the human-to-human spread of infectious diseases [168] is to isolate susceptible
patients from the public for a certain period depending on the latent time period of the
diseases. These susceptible patients might be families living in the same house, students
studying in the same classroom, colleagues in the same company, etc. For example, during
the outbreak season of Ebola, people traveling from the infected region or having frequent
contacts with infected patients are supposed to be isolated, e.g., staying at home or in a
special area of hospital, for two or three weeks to make sure that they are not infected
before coming back to the normal life.
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However, this traditional infection prevention approach consumes massive health ex-
pense and labor costs, results in the isolated patient’s economic loss and even anxiety
or panic of the whole society. To resolve this type of public health crisis, a promising
e-healthcare system [64] emerges to continuously monitor users’ real-time health parame-
ters, such as temperature, heart rate and electrocardiogram (ECG), which are formatted in
image, audio and text. These health multimedia data are collected by a server to analyze
abnormal phenomena and provide supporting information for doctor’s diagnosis. Although
such an e-healthcare system is helpful to analyze user’s health condition, i.e., whether a
user is already infected or not, it lacks sufficient social information to infer the spread of
infectious diseases, i.e., whether the user has a high probability to get infected from others.

In recent years, multimedia techniques have been used to mine social data from various
applications [172]. For example, the built-in face-tagging function of Facebook application
can identify user’s face in pictures and infer if certain users have close social relationships;
Wechat friend discovery program can find users in the physical proximity and record social
interactions; speech recognition can help to detect if some people cough or sneeze. The
fusion of these social multimedia data associated with the monitored health data can
provide a novel paradigm to enhance infection analysis. Suppose a junior school student
Bob is continuously monitored from both health and social perspectives during the outbreak
of infectious disease. Once Bob’s immunity strength goes very low and he frequently
contacts an infected student, he may be inferred as a susceptible patient in the early stage.
The health and social multimedia data are usually collected and processed by multiple
independent service providers, such as health institution and social networking service
provider (e.g., Facebook and Wechat), respectively. The collaboration of these service
providers becomes essential to enable data sharing and processing [173], especially when
the volume of continuously monitored data keeps increasing. Incorporating health cloud
server collecting users’ health parameters and social cloud server, which is maintained by
social network service provider to collect users’ social networking data including social
contact and relationships between users, we envision that the infection analysis can be
enhanced.

Meanwhile, users’ health and social data, such as infection status and social contact,
are privacy-sensitive [26], and many users are not willing to excessively reveal this pri-
vate information to the untrusted or unauthorized entities [174]. If the health data and
social data are sent to cloud servers in clear text, the untrusted cloud servers may track
users’ health condition, identity, profiles, contact and social activities, resulting in severe
privacy violations, especially for the infected or susceptible patients during the outbreak
of infectious diseases. To preserve data privacy, users could encrypt their data and send
the ciphertexts to cloud servers [175]. However, this approach may limit the data pro-
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cessing capability of cloud servers [176] and even disable the infection analysis. Therefore,
it is challenging to enable the infection analysis and preserve user’s privacy at the same
time. In addition, social networking data contain some sensitive information of infected
and susceptible patients, such as identity and contact details, which may be inferred by
the social cloud server when these data are shared to other entities for further health anal-
ysis. For example, if the hospital or public health agency queries an infected patient’s
data on the social cloud server, the social cloud server may infer that the queried user is
infected. Meanwhile, the hospital without the user’s authorization should not be able to
query non-infected user’s social networking data. Without sufficient privacy protections,
users may not want to share their social and health data to the untrusted cloud servers
for infection analysis. Therefore, it is still challenging to address the aforementioned issues
when exploiting social networking data to enhance infection analysis.

In this chapter, we propose a Privacy-preserving Infection Analysis approach (PIA) to
infer human-to-human infection spread by integrating social networking data with health
data. This approach employs a privacy-preserving data query method based on conditional
oblivious transfer to enable data sharing among different entities and a privacy-preserving
classification-based infection analysis method to enable the cloud servers to infer infection
spread and achieve health data privacy. The main contributions of this chapter are four-
fold.

• Firstly, we analyze the spread process of infectious disease with the consideration
of user’s social contact and health condition. We exploit several key factors of infection,
including immunity strength of the susceptible user, infectivity of the infected patient, their
contact duration and contact type. We also utilize naive Bayesian classification method to
enhance infection analysis with the collaboration of social and health cloud servers.

• Secondly, we propose a privacy-preserving data query method (PPDQ) based on
conditional oblivious transfer to allow the authorized entity (i.e., hospital) to access the
infected patient’s social networking data from the social cloud server, but not allow the
social cloud server to access and infer any data including patient’s identity. Furthermore,
this method enables users to grant authorization to hospital, which cannot query any data
without user’s authorization.

• Thirdly, we propose a privacy-preserving classification-based infection analysis method
(PCIA) to prevent user’s private social and health data from disclosing to the untrusted
health cloud server. The PCIA enables users to encrypt raw data based on homomorphic
encryption and send ciphertexts to the cloud server. Then, the health cloud server can
infer infection spread during human-to-human contact without learning any user’s private
information.
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• Finally, privacy analysis shows that the proposed approach preserves the privacy
of user’s health data and social networking data, and achieves patient’s identity privacy
during the query. Furthermore, we conduct the extensive simulation to demonstrate that
the PIA exploits the social networking data and adjusts to effectively analyze infection
spread with acceptable computational overhead.

The remainder of the chapter is organized as follows. We present the system model
and design goals in Section 5.2. Then, we propose the PIA with details in Section 5.3.
The privacy properties are analyzed in Section 5.4, and the performance is evaluated in
Section 5.5, respectively. We also review the related works in Section 5.6. Finally, we
conclude the chapter in Section 5.7.

5.2 System Model and Design Goals

In this section, we propose the infection analysis system model and identify the design
goals, respectively.

5.2.1 System Model

The proposed infection analysis system consists of five entities: trusted authority (TA),
users (i.e., data owners), hospital, social cloud server (SC) and health cloud server (HC) as
shown in Fig. 5.1. The system is divided into health domain and social domain according
to different types of collected data. Users, HC and hospital have operations on health data
in the health domain, while users, SC and hospital (as a query requestor) are involved in
the social domain. The details of each entity in the PIA are presented as follows.

• Trusted Authority (TA) bootstraps the system, processes user’s registration, and
generates the certificates for legal user’s key generation. Afterwards, TA is not involved in
networking and users’ interactions.

• Users first register to the TA and generate valid keys in the initialization phase.
They measure their health parameters via wearable devices and periodically send health
data to the health cloud server. When user Ui and Uj have contacts with each other,
their smartphones record the contact information, such as identity, duration and social
relationships, which are sent to the social cloud server.

•Health Cloud (HC) has powerful computational and storage capabilities to perform
the complicated and time-consuming operations on health data. HC receives health data
from users, and training data from medical institutions for analysis.
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Figure 5.1: Infection analysis system

• Social Cloud (SC) is the cloud server dedicated for social networking data storage
and processing, which is similar to HC. SC only operates in social domain.

• Hospital (H ) is the entity to analyze user’s infection status. If H diagnoses a
user Ui as infected patient, H queries Ui’s social networking data from SC. Having Ui’s
social networking data, H performs infection analysis with HC to determine whether Ui’s
encountered users are susceptible or not, and informs users the analysis results.

5.2.2 Security Model

HC and SC are honest-but-curious entities in the system, i.e., they honestly follow the
protocols but are curious about users and other entities’ private information. H is trusted
by users and has the authorization from users to access their health data stored on HC.
However, H is semi-trusted in social domain. If H diagnoses a user Ui as infected patient,
Ui grants authorization to H and allows H to access Ui’s social data from SC. Otherwise,
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H is an honest-but-curious entity in social domain and not allowed to access any user’s
social data in SC except without the authorization.

5.2.3 Privacy Requirements and Design Goals

Under the honest-but-curious model, user’s personal information included social data and
health data should be kept confidential towards untrusted and unauthorized entities. The
privacy requirements are identified as follows.

(1) Health Data Privacy

User’s health data should be prevented from disclosing to other unauthorized entities,
such as HC, SC and any unauthorized user. Particularly, the infected patient’s infectivity
and other health data are highly privacy sensitive and should not be disclosed to the cloud
servers and other users. Moreover, the historical data (training data set) from medical
institutions should be also encrypted in the ciphertext during the classification by HC.

(2) Social Data Privacy

User’s social contact data are also part of user privacy. The encountered user’s infor-
mation, such as identities, contact type and duration, should be invisible to SC and other
users when the data are stored in SC. Without user’s authorization, H should not be able
to access this user’s social networking data as well.

(3) Privacy of Susceptible User and Infected Patient

Some users may be susceptible to be infected. Before diagnosis, their information, such
as identities and health status, should be also protected against SC’s inferring. In addition,
susceptible user’s risk analysis result) should be invisible to HC, SC and any user except
authorized hospital. This risk analysis result reflects user’s infection status, which is highly
sensitive to him.

The proposed system should achieve privacy requirements and computational efficiency
simultaneously. On one hand, the proposed system should be able to protect user’s social
data and health data from disclosing to (or inferring by) untrusted entities. On the other
hand, it should take a reasonable computational and communication overheads, which
would prolong the system’s lifetime and improve user’s experiences.
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Figure 5.2: Overview of privacy-preserving infection analysis

5.3 Privacy-preserving Infection Analysis Approach

In this section, we propose the PIA, a novel privacy-preserving infection analysis approach.
We first present an analytic model on spread of infectious disease and utilize naive Bayesian
classification to infer the infection spread. Then, we propose a privacy-preserving data
query method and a privacy-preserving classification-based infection analysis method to
achieve the design goals.

5.3.1 Overview of PIA

The PIA adopts naive Bayesian classifier to detect the infected and susceptible users based
on the training data set. It consists of health data collection, social data collection, infection
diagnosis, social contact query and infection analysis as shown in Fig. 5.2. The infection
diagnosis is performed by doctors in hospital, which is not discussed in this section. In the
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other four components, user’s privacy is protected from disclosing to untrusted entities .

(1) Health Data Collection

Users first adopt on-body sensors and wearable devices to measure their health condi-
tions, including temperature, heart rate, sleep quality and ECG. Before sending the data
to HC, users encrypt the measured health data into ciphertexts since these health data are
highly privacy-sensitive to users. Finally, the health data are stored in HC.

(2) Social Data Collection

When users contact each other, their smartphones can record the detailed contact
information, including identity, duration, contact type and social-tie. These social data
are timely uploaded to SC for storage. The included information is highly private-sensitive
and should be invisible to unauthorized entities, e.g., SC.

(3) Privacy-preserving Data Query

The hospital H diagnoses infected disease of patients and determines the infectivity IF
as shown in Fig. 5.3 according to [177]. Then, H informs the infected patients with the
diagnosis results. After the diagnosis, H performs a social contact query to SC with the
authorization from users. H sends the query request, including infected user uj’s identity
associated with the queried contact duration and some other social information, to SC in
the ciphertext. SC performs operations on the query request without knowing the query
result and feedbacks it to the hospital.

(4) Privacy-preserving Classification-based Infection Analysis

HC and H compute the contacted user Ui’s infection status based on Ui’s immunity
(measured by Ui), uj’s infectivity, contact duration, contact type, social-tie, etc. in a
privacy-preserving way. Finally, H sends the analysis results to Ui as the guidelines to
treat the potential disease.

5.3.2 Analysis of Infectious Disease Spread

In this section, we propose the analytic model of infectious disease spread. Many infectious
diseases, such as H1N1 and measles, can be spread human-to-human via infected droplets
during sneezing or coughing, as well as contaminated surfaces and hands. For instance, in
a conference environment, Alice has flu and attends the conference where crowd of people
are in the same area/room. Alice has many contact with other people such that the flu is
likely spread to the contacted people if they do not have sufficient antibody against this
type of flu.
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Figure 5.3: Infectious disease spread trend

(1) Factors on Infectious Disease Spread

The infectious disease spread process between an infected user u∗a and a normal user
ub may be impacted by several factors, i.e., u∗a’s status (e.g., spread strength), contact
duration between u∗a and ub, ub’s health condition (e.g., immunity strength).

• Infectivity from infected user :

We characterize infected user u∗a’s status in terms of his infectiousness IFu∗
a
as a function

of the time since u∗a is a case [178]. Here, u∗a ∈ IU which is a set of infected users. The
infectiousness IF is impacted by the time ts of symptom onset when u∗a is a case, the time
ti of infection when u∗a is a case, and a vector x∗

a of u∗a’s personal health status measured
by wearable devices (e.g., temperature and blood oxygen saturation) and measurements
from hospital including white blood cell and red blood cell content, hemoglobin, etc. Fur-
thermore, symptoms indicate the infectiousness to some extent. For example, users have
acute respiratory diseases, such as ARI, may have at least two symptoms among fever,
cough, sore throat, and runny nose. The infectiousness is proportional to the strength
of these symptoms, SPu∗

a
. Note that the infectiousness is not proportional to time t. As

shown in Fig. 5.3, the generation time of infectious disease is relatively short (only 2 days)
[177]. The infectivity (shown as probability density) keeps increasing at the beginning and
decreases after the infectious period.
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• Contact :

According to a recent study [171], sitting next to an infected user or being his playmate
in a short contact period (e.g., contact lasting minutes with the infected user) is not
expected to considerably increase the risk of infection. However, a long period contact
with the infected user, such as the structuring of school into classes and grades, strongly
affected spread with an increasing infection risk. The contact duration between the infected
user u∗a and normal user ub can be denoted as Da,b.

Another important characteristics of users’ contact is the type of contact TCa,b, which
includes 1 = “household” (users living in the same house), 2 = “office” (users in the same
office (or classroom in school)), 3 = “department” (uses in the same department (or grade
in school)), 4 = “company” (users in the same company (or school)), 5 = “community”
(users from the same community, club or social group), etc. The contact type also reflects
the social relationship and social-tie strength between contacted users.

The contact information can be bi-directionally captured by wearable devices and s-
martphones in various ways. User’s smartphones can start a Bluetooth discovery program
to find the nearby users within a certain range, e.g., 5m or 2m. The contact duration is
easy to record by smartphones. Alternatively, GPS and WiFi techniques are possible to
measure the location or distance between the contacted users. But this approach is in-
evitable to face the problem of localization accuracy, especially in the indoor environment
or when the accuracy requirement is within meters. Contact type can be captured through
the contacted user’s social network profiles, such as Facebook, Twitter and WeChat. As
the contact information is accumulated at the user side, SC is adopted to help users to
store their contact information.

• Normal user’s health condition :

When a normal user ub has contact with the infected user u∗a, ub’s health condition,
especially immunity strength, and some other parameters including sleep of quality and
physical strength, also has impact on disease spread. Let ISb be the immunity strength of
ub against infectious disease. For simplicity, we consider only one type of infectious disease
in the following of this chapter.

(2) Spread Model of infectious disease

The infectivity to user ub during a time period T is

Sb =
∑

u∗
a∈IU,a �=b

Sa∗,b

(
Da,b,

1

TCa,b

, IFu∗
a
,

1

ISub

)
. (5.1)
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Figure 5.4: Infection states of infectious disease

Here, Sa∗,b denotes the instantaneous infectivity from u∗a to ub. Sa∗,b is proportional
to Da,b,

1
TCa,b

, IFu∗
a
and 1

ISub
. The infectivity increases with the longer contact duration,

the closer social relationship, the higher infectivity from the infected user and the lower
immunity strength. The infectivity to a user depends on the contacted infected user with
the maximum infectivity.

When an infectious disease breaks out in a certain human population, responses in
behavior changing according to the outbreak can slow down the progression of the infectious
disease to some extent [169]. If a person is aware of the disease in a certain local area
or proximity, he would take preventions to considerably reduce his susceptibility. It is
important to provide analysis results on the susceptible user’s infection .

Generally, a type of infectious disease has three states on a user Ui, i.e., Si = {si,1, si,2, si,3}.
si,j ∈ {“Susceptible”, “Infected”, “Recovered”}, as shown in Fig. 5.4. The infection process
can be formulated as a state transition model, where the “Susceptible” state is the ini-
tial state. When an infected user recovers from the infectious disease, his immune system
can generate antibodies against the pervious infected disease. Similarly to [171], in this
chapter, we define “Recover” status as the end state.

(3) Infection Analysis

To analyze whether user uj has a risk to get infected, uj’s health and social data can be
considered together to classify if uj is infected. We utilize naive Bayes classification [179]
to analyze infection status. Suppose uj’s data x = {x1, · · · , xl} is an l-dimensional vector,
where xi ∈ R and i ∈ {1, · · · , l}. The format of x is shown in Fig. 5.5. A classification
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Figure 5.5: Input of Bayesian classification

algorithm C(x, w) : Rd �→ {c1, · · · , ck} takes input as x and outputs k∗ = C(w,x) ∈
{1, · · · , k}. Here, k∗ is the class (i.e., infection status) to which x corresponds given model
w trained by ground truth data. With the abundant health data from hospital, it is
feasible to obtain such a model in the PIA. In the model w, each class ci corresponds to a
probability {Prob(C = ci)}ki=1. The j-th element xj of x is a and falls into a class ci with
a probability Prob(Xj = a|C = ci). Here, Aj is Xj’s domain and a ∈ Aj (j ∈ [1, d] and
i ∈ [1, k]).

The naive Bayes classifier adopts a maximum a posteriori decision rule to select the
class with the highest posterior probability as Equation 5.2.

k∗ =argmax
i∈[k]

Prob(C = ci|X = x)

= argmax
i∈[k]

Prob(C = ci, X = x)

= argmax
i∈[k]

Prob(C = ci, X1 = x1, · · · , Xd = xd)

(5.2)

Prob(X = x) is the normalizing factor and deleted given the fixed x according to Bayes
theorem.

The Naive Bayes model assumes that Prob(C = ci, X = x) can be factorized as

Prob(C = ci, X1 = x1, · · · , Xd = xd) = Prob(C = ci)
d∏

j=1

Prob(Xj = xj|C = ci). (5.3)

From Equation 5.3, each feature is conditionally independent given the class. The
feature value’s domain is finite and discrete. The optimal k∗ can be selected according to
Equation 5.4.
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k∗ =argmax
i∈[k]

{logProb(C = ci|X = x)}

=argmax
i∈[k]

{logProb(C = ci) +
d∑

j=1

logProb(Xj = xj|C = ci)}
(5.4)

The class ck∗ corresponds to the infection status of user uj. The integration of social
networking data and health data includes key factors of infection spread and enhances the
traditional infection analysis.

5.3.3 Health Data Collection

To preserve user’s health data privacy, users should encrypt their data before sending to
the cloud servers. We revisit a Ring Learning With Error (RLWE) based homomorphic
encryption scheme [180] as the preliminary to construct our building block. In the initial-
ization phase, the TA picks the system parameters as follows: 1) a ring R = Z[x]/〈fω(X)〉
where fω is ω-th cyclotomic polynomial; 2) an odd positive integer modulus q and a prime
p � q as the plaintext base; 3) the dimension n and N = polylog(q, ω); 4) a ring over
modulus q is Rq = R/qR; and 5) an error distribution χ with small coefficient.

The TA runs a key generation algorithm KeyGen to generate user u’s secret key sku
and public key pku. sku = (1, s) ∈ Rn+1

q , where s is randomly selected from χn. The TA
randomly selects e = (e1, · · · , eN) ∈ RN and α = (α1, · · · , αN) ∈ RN

q . Then, the TA
computes βi = αis+ p · ei mod (fω(X), q). pku = (βi,−α).

An encryption algorithm Enc takes input as pku and message M ∈ Rp. It makes
m = (M, 0) ∈ RN+1

q and randomly selects r = (r1, · · · , rN) ∈ RN
p . The ciphertext is

CT = Encpku(M) = m+
N∑
i=1

ri · pku mod (fω(X), q) ∈ Rq ×Rq.

A decryption algorithm Dec takes input as CT and secret key sku, and outputs the

message M = Decsku(CT) as 〈CT, sku〉 mod (fω(X), p). Here, 〈CT, sku〉 =
n+1∑
j=1

CT(j) ·
sku(j) denotes the inner product. We have

〈CT, sku〉 =M +
N∑
i=1

ri〈sku, pku〉 =M + p

N∑
i=1

riei =M + p

N∑
i=1

riei(mod fω(X), q). (5.5)
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Since e and r (i.e., ei and ri) are small, δ =
N∑
i=1

riei(mod fω(X), q) is small such that M

can be finally decrypted [180].

This homomorphic encryption scheme can support addition and multiplication opera-
tions over ciphertexts. Specifically, the addition of M1 and M2 is achieved via component-
wise addition of the ciphertexts Enci(M1) and Enci(M2). Let 〈CT1, sku〉 = M1 + p · δ1
and 〈CT2, sku〉 = M2 + p · δ2. Then, 〈CT1 + CT2, sku〉 = (M1 + M2) + p · (δ1 + δ2).
M1 +M2 = Deci(Enci(M1) + Enci(M2)) if δ1 + δ2 is still small.

To obtain the multiplication of M1 and M2, the multiplied ciphertext is Enci(M1) ×
Enci(M2) as shown in Equation 5.6.

〈CT1, sku〉 × 〈CT2, sku〉 = (M1 + p · δ1) · (M2 + p · δ2)
=M1 ·M2 + p · (pδ1δ2 +M1δ2 +M2δ1)(mod fω(X), q)

(5.6)

If pδ1δ2 +M1δ2 +M2δ1 is small, M1 ×M2 = Deci(Enci(M1)× Enci(M2)).

With the addition and multiplication over the ciphertext, homomorphic encryption
schemes can allow an untrusted entity to perform these operations without knowing secret
keys and the content included in the ciphertexts.

When Ui measures his health data hi, Ui encrypts hi as Enci(hi). To enable the hospital

(i.e., trusted entity) to access Ui’s health data, Ui generates re-encryption key R̃Ki→H to
transform Enci(hi) to EncH(hi) according to [181] and [180].

5.3.4 Social Data Collection

When two users Ui and Uj move in the physical proximity of each other, the contact
information, such as contacted users’ identities, contact duration, contact type and social-
tie, are recorded by users’ smartphones. For example, a Wechat application on smartphones
can start a friend discovery program to find the nearby users (running the same application)
and allow them to chat with each other. We formulate social contact as follows. Let
CI(i, j) denote the contact data between i and j. CI(i, j) = (i, j,Di,j,TCi,j, · · · ). Then,
Ui converts Di,j to a binary vector Di,j = {Di,j,1, Di,j,2, · · · , Di,j,ω} where ω = �logl� and
l is the maximum duration. For example, if users upload their social information to SC
every hour, l = 60 with minute as the unit of contact time (or l = 3600 when using
second as unit). The contact duration is a keyword during the query. It is encrypted
as Enci(Di,j) = {Enci(Di,j,1),Enci(Di,j,2), · · · ,Enci(Di,j,ω)}. If Ui grants the authorization
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of social information query to the hospital, Ui generates re-encryption key RK∗
i→H to

transform Enci(Di,j) to EncH(Di,j).

To make user’s uploaded social data invisible to the untrusted SC, these data should
be encrypted. Let G be a cyclic group of order p with generator g ∈ Z∗

p [182]. Ui ran-
domly chooses his secret key SKi = xi ∈ Zq. Ui computes PKi = gxi . During the
encryption, Ui randomly chooses r ∈ Zq, and encrypts CI(i, j) as Ei(CI(i, j)) = (c1, c2) =
(gr mod p,CI(i, j)gxir mod p). To decrypt Ei(CI(i, j)), the decryptor computes CI(i, j) =
c2/(c

xi
1 )

−1. Finally, Ui sends Ei(CI(i, j)) and Enci(Di,j) to SC.

If Ui grants H the authorization to query Ui’s social information in SC, Ui generates
the re-encryption key to SC as a proxy to re-encrypt Ui’s ciphertext for the hospital.
Specifically, Ui splits his secret key xi into two parts xi,0 and xi,1 such that xi = xi,0 + xi,1
[183, 184]. SC has the re-encryption key RKi→H = xi,0. H receives the decryption key as
xi,1. To re-encrypt Ui’s ciphertext Ei(CI(i, j)), SC computes c′2 = c2/(g

r)RKi→H and outputs
the ciphertext as Ei→H(CI(i, j)) = (c1, c

′
2). Note that H can decrypt Ui’s social information

by computing CI(i, j)gxi,1r/(gr)xi,1 .

5.3.5 Privacy-preserving Data Query

After making diagnosis of the infected patients, the hospital initiates a query to SC to
find the contacted users in a certain period with the infected patients. These users may
have potentials to be infected. Since SC is not trusted, the disclosing of users’ contact
information, e.g., when and where to meet another user, may violate their privacy such
that attackers would infer user’s habits and preference. In particular, the infected patient’s
identity is another kind of sensitive information. Imagine that SC knows the hospital
querying certain user’s social contact data. It is very likely that this queried user either
has already been infected or is susceptible. Therefore, it is essential to prevent SC from
knowing the query content from the hospital and replied results to the hospital. To protect
user’s social information from disclosing to SC, the uploaded social contact data should
be encrypted. However, it poses a new challenging issue to enable the hospital’s oblivious
query [185]. To this end, we propose a privacy-preserving data query method (PPDQ)
based on conditional oblivious transfer, which allows the hospital to query users’ encrypted
social contact data in SC without disclosing the query content and results.

The hospital picks the infected patient Ui’s identity i and sends Query(i, d, s) to SC.
The hospital receives the query result Q.Result(CLi). Note that CLi = {CI(i, j1),CI(i, j2),
· · · , CI(i, jm)}, where CI(i, jx) = (i, jx, Di,jx , STi,jx) (x ∈ {1, · · · ,m}) is i’s contacted user
with Di,jx > d and STi,jx > s. For simplicity, we present the details of the query containing
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identity and contact duration. The other social metrics can be simply extended based on
the PPDQ. The hospital requests a range of query user list (including n users) from SC to
blind the exact queried user i.

Step 1: The hospital H builds an identity query vector (n-dimension) I = {0, 0, · · · ,
0, 1, 0, · · · , 0}, where i-th element of I is 1 and others are 0 (i.e., H queries Ui’s da-
ta). Then, the hospital converts the minimum contact duration d to a binary vector
D = {D1, D2, · · · , Dω}. Note that ω = �logl�. The hospital sends EncH(I) and EncH(d)
to SC for query. Here, EncH(I) = {EncH(I1),EncH(I2), · · · ,EncH(In)}, and EncH(d) =
{EncH(D1),EncH(D2), · · · ,EncH(Dω)}. In this section, we present the details of how to
query 1-of-n users. The PPDQ can be also extended to query k-of-n users.

Step 2: SC holds ei,0 = Ei→H(CI(i, jx)) and ei,1 = ⊥. Then, SC performs as follows.

a) Compute EncH(Py) = EncH(dy) − EncH(Di,j,y) for 1 � y � ω, implying Py =
dy −Di,j,y.

b) Compute EncH(Ry) = (EncH(dy)− EncH(Di,j,y))
2, implying Ry = (dy −Di,j,y)

2.

c) Set θ0 = 0 and compute EncH(θy) = 2 · EncH(θy−1) + EncH(Ry), implying θy =
2 ∗ θy−1 +Ry.

d) Choose a random number ry ∈ Zp and compute EncH(βy) = EncH(Py) + EncH(ry)×
[EncH(θy)− EncH(1)], implying βy = Py + ry(θy − 1).

e) Choose a random number γ ∈ Zp and compute EncH(φy) as
n∑

i=1

((ei,1 − ei,0)EncH(βy) + (ei,1 + ei,0)EncH(1))× (γ(EncH(Ii)
2 − EncH(Ii)) + EncH(Ii))

+ γ

(
n∑

i=1

EncH(Ii)− EncH(1)

)
,

implying φy =
n∑

i=1

(ei,1(βy + 1) + ei,0(1− βy))× (γ(I2i − Ii) + Ii) + γ ×
(

n∑
i=1

Ii − 1

)
.

Then, SC has a tuple EncH(φ) = 〈EncH(φ1), EncH(φ2), · · · , EncH(φω)〉. SC randomly
permutes this tuple and has π(EncH(φ)), which is sent to the hospital as the query result.

Step 3: Receiving the tuple from SC, the hospital decrypts the tuple and obtains the
effective query result 2ei,0 if d < Di,j; and 2ei,1 otherwise. Finally, the hospital decrypts
Ui’s social information by computing CI(i, j)gx2r/(gr)x2 .

Finally, the hospital can obtain CLi={(i, j1, Di,j1 , STi,j1), (i, j2, Di,j2 , STi,j2), · · · , (i, jm,
Di,jm , STi,jm)} where uj1 , uj2 , · · · , ujm have contacts (of duration > d) with the infected
patient Ui.
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Algorithm 5: Privacy-preserving Comparison Algorithm
1: Input: EncH(x), EncH(y)
2: Output: x > y
3: HC computes EncH(a) = EncH(y) + EncH(2l)− EncH(x) and randomly selects r ∈ (0, 2λ+l). Then,

HC computes EncH(θ) = EncH(a) + EncH(r) and sends EncH(θ) to H.
4: H decrypts EncH(θ) by using skH , and computes η = θ mod 2l.
5: HC computes ω = r mod 2l. Then, HC privately computes QEH(u) with H, and obtains u = 1 if

η < ω according to DGK cryptosystem [187].
6: H encrypts θl as QEH(θl), which is sent to HC.
7: HC encrypts rl and computes QEH(γ) = QEH(u) ·QEH(θl) ·QEH(rl). Then, HC sends QEH(γ) to H.
8: H decrypts γ and finds γ = 0 if x > y; otherwise, γ = 1.

5.3.6 Privacy-preserving Classification-based Infection Analysis

We propose a privacy-preserving classification-based infection analysis method (PCIA)
to analyze the infection status based on naive Bayesian classification. The input vector
includes susceptible user’s immune strength, contact information with infected user and
infected user’s infectivity as indicated in Fig. 5.5. The infectivity is diagnosed and assigned
by the hospital, while the immunity strength is measured by user and stored on HC. H
performs PPDQ with HC to retrieve user’s health data without directly disclosing any
identity and health data to HC. We present details of the key components of the PCIA,
including privacy preservation techniques on comparison, argmax and classification.

i) Privacy-preserving Comparison (PPC)

During the comparison, HC compares two ciphertexts of integers x and y encrypted
by the hospital H’s public key. Let l be the bit length of x and y. Since some operations
are on single bit, we adopt Quadratic Residuosity (QR) cryptosystem [186] as the additive
homomorphic building block to further improve the computational efficiency. Let QR’s
plaintext space be F2 (bits) and QE(x) is the ciphertext of input bit x. SKHC and PKHC

are HC’s secret and public keys in QR cryptosystem.

The details can be found in Algorithm 5. HC first injects random number r in the com-
putation of EncH(x) and EncH(y) to blind the comparison results against H. Intuitively,
the PPC algorithm checks the most significant bit of θ = y + 2l − x, indicating whether
x � y. In line 5 of Algorithm 5, HC and H privately compute u = 1 if η < ω based
on DGK cryptosystem [187], which is a practical integer comparison protocol with small
plaintext size and ciphertext size. It only requires 5 extra multiplication operations, which
improves the algorithm efficiency.

ii) Privacy-preserving argmax (PPAM)
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Algorithm 6: Privacy-preserving Argmax Algorithm
1: Input: Enc(x1), ·,Enc(xn)
2: Output: Enc(Max)
3: HC adopts a random permutation π and computes EncH(x′

i) = EncH(xπ(i)).
4: Let max = 1 and EncH(Max) = EncH(xπ(1))
5: for i = 2 : n do
6: H runs PPC with the result bi in each iteration. bi = 1 if Max � aπ(i); otherwise, bi = 0.

7: HC selects two random numbers ri and si ∈ (0, 2λ+l). Then, HC computes
EncH(m′

i) = EncH(Max) + EncH(ri) and EncH(a′i) = EncH(aπ(i)) + EncH(si). Then, EncH(m′
i)

and EncH(a′i) are sent to H.
8: if bi = 1 then
9: H sets max = i, and computes EncH(vi) = Refresh(EncH(a′i)).
10: else
11: H computes EncH(vi) = Refresh(EncH(m′

i))
12: end if
13: H sends EncH(vi) and EncH(bi) to HC.
14: HC computes EncH(Max) = EncH(vi) + (EncH(bi)− EncH(1)) · EncH(ri)− EncH(bi) · EncH(si).
15: end for
16: H sends EncH(max) to HC.
17: Finally, HC computes the result π−1(max).

The privacy-preserving argmax algorithm (PPAM) allows HC to output the index of
the largest value of x1, · · · , xn encrypted under H’s secret key. The PPAM can achieve:
1) H can only learn the index of the largest value but learn nothing else; and 2) H cannot
learn the order relations between xi and xj. The detailed steps of PPAM is illustrated in
Algorithm 7. First, HC adopts a random permutation π to prevent H from learning the
order of {x1, · · · , xn}. With π, HC has EncH(x

′
i) = EncH(x

′
π(i)). H runs PPC with the

result bi in each iteration (totally n iterations), where bi = 1 if Max � aπ(i); otherwise,
bi = 0. In each iteration, H can randomize the encryption after determining the maximum
of the compared two values. A “refresh” algorithm is introduced to randomize ciphertexts
of homomorphic encryption [35]. If the “refresher” knows the secret key, it decrypts the
ciphertext and re-encrypts it; otherwise, it multiplies a ciphertext of 0. This “refresh”
algorithm is implemented by using re-encryption of homomorphic encryption.

iii) Privacy-preserving Classification-based Infection Analysis (PCIA)

In the privacy-preserving classification-based infection analysis (PCIA) method, H and
HC computes user ub’s infectious status according to a training set (model) which can be
obtained from the ground truth data (in medical center, institution or government). The
training process follows [177]. This training set is encrypted by medical health center (T )
and stored in HC for classification. T grants the hospital H the authorization of computa-
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Algorithm 7: Privacy-preserving Classification-based Infection Analysis Algorithm
1: Input: (Enc(x1), ·,Enc(xn)) from H
2: Output: i∗

3: H form a vector x = (x1, x2, · · · , xd) ∈ Zd containing ub’s collected health data related to immunity
strength ISb and u∗

a’s infectivity IFa (measured by hospital), contact duration and contact type with
the infected user u∗

a, i.e., Da,b and STa,b which are queried from SC.

4: HC sends EncT (P
∗(i)) and EncT (P

j
i (x)) (for all possible x in each feature), which are sent to H.

5: H re-encrypts EncT (P
∗(i)) and EncT (P

j
i (x)) to EncHC(P

∗(i)) and EncHC(P
j
i (x)).

6: for i = 1 : k do

7: H computes EncHC(Probi) = EncHC(P
∗(i)) +

d∑
j=1

EncHC(P
j
i (xj)).

8: end for
9: H runs the PPAM with HC. H obtains i∗ = argmaxProbi.

tion between HC and H. This authorization is enabled by re-encryption of homomorphic
encryption. The re-encryption key R̃KT→HC is assigned to H and allows H to transfer T ’s
ciphertext to HC’s domain. Since the input of homomorphic encryption is integer, the log
of probability should be converted to integer by multiplying a constant Δ. For simplicity,
let P ∗(i) = �Δ logProb(C = ci)� and P j

i (x) = �Δ logProb(Xj = x|C = ci)� where x ∈ Dj

the domain of xj. The detailed steps are as follows.

In summary, the PIA provides a privacy-preserving computing framework not only for
hospital to analyze the infection status within the contacted population but also to prevent
(infected and susceptible) user’s sensitive information from disclosing.

5.4 Security Analysis

In this section, we discuss the privacy features of the PIA according to the design goals in
Section 5.2.

5.4.1 Health Data Privacy

We discuss the health data privacy of the PIA in the storage and processing phases. When
the health data are stored in HC, user Ui’s health data hi is invisible to HC due to sematic
security of homomorphic encryption [180]. In other words, any adversary holding only the
public key and ciphertext of hi cannot learn any information about hi. Before sending
to HC, hi is encrypted with Ui’s public key. Under the honest-but-curious model, HC
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cannot decrypt or infer hi without having Ui’s secret key if the ring learning with error
(RLWE) assumption holds. The RLWE assumption is that to distinguish the following
two distributions is infeasible. The distributions are: 1) a uniform sample (ai, bi) ∈ R2

q ;
2) another sample (ai, bi) ∈ R2

q where we uniformly select s ∈ Rq, then uniformly sample
ai ∈ Rq and ei ∈ χ to have bi = ai · s+ ei.

Before the infection analysis, HC re-encrypts Enci(hi) with R̃Ki→H which is the homo-
morphic re-encryption key to H’s domain. Similarly, HC still cannot obtain H’s decryption
key to know hi. Meanwhile, the infected patient’s infectivity and identity is also encrypted
in the ciphertext with H’s encryption key. The infected patient’s health information is
invisible to HC.

In the naive Bayesian classification, each entity’s view during the execution and inter-
action can be simulated according to his input and output. In other words, each entity
cannot learn anything except its inputs and outputs, i.e., each party’s view generated by
a simulator is computationally indistinguishable to his view from the protocol. We show
that the PPC, PPAM and PCIA protocols are secure under the honest-but-curious model.

In the PPC protocol, HC’s real view is viewHC = (EncH(x),EncH(y), l,PKH , pkH , r,
QEH(u),QEH(θl)). We can also build a simulator for HC where the simulator’s view

is SimHC = (EncH(x),EncH(y),PKH , pkH , r̃,QEH(θ̃l)). Due to the semantic security of
the adopted homomorphic encryption scheme, the ciphertexts are indistinguishable. The
random number distributions are the same in the real view case and simulation case
such that viewHC and SimHC are computationally indistinguishable. Meanwhile, H’s
real view is viewH = (SKH , skH , l,EncH(θ),QEHC(γ)). The view of H’s simulator is

SimH = (SKH , skH , l,EncH(θ̃),QEH(γ̃)). As the random number r is selected by HC and

θ = a+ r, θ and θ̃ have the same distribution such that they are indistinguishable. Then,
(QEH(θ),QEH(γ)) and QEH(θ̃),QEH(γ̃) are also computationally indistinguishable. H’s
real view viewH and simulation view SimH are also indistinguishable. Therefore, the PPC
protocol is secure under the honest-but-curious model.

In the PPAM protocol, HC’s real view is viewHC = ({EncH(xi)}i={1,··· ,n}, π,PKH , pkH ;
{ri, si}i={1,··· ,n}; {EncH(vi),EncH(bi)}i={1,··· ,n}, π(argmaxi∈[n] xi)). HC’s simulation view is

SimHC = ({EncH(xi)}i={1,··· ,n}, π̃,PKH , pkH ; {r̃i, s̃i}i={1,··· ,n}, {EncH(ṽi), EncH(b̃i)}i={1,··· ,n};
argmaxi∈[n] xi). Since the distributions of ri, si and r̃i, s̃i are the same, they are indis-
tinguishable. Due to the semantic security of the homomorphic encryption scheme and
the PPC protocol, EncH(vi),EncH(bi) and EncH(ṽi),EncH(b̃i) are also indistinguishable.
In addition, π and π̃ are selected by HC such that they are indistinguishable. There-
fore, viewHC and SimHC are indistinguishable. On the other hand, H’s real view is
viewH = (SKH , skH ; {bi}i={2,··· ,n}; {EncH(m′

i),EncH(xi)}i={2,··· ,n}). The view of H’s sim-
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ulator is SimH = (SKH , skH ; {bi}i={2,··· ,n}; {EncH(m̃′
i),EncH(x̃i)}i={2,··· ,n}) Since the permu-

tation π is a mapping function without changing the order of {xi}i={1,··· ,n}, bi does not

change as well. As ri, si are randomly selected by HC, EncH(m
′
i) and EncH(m̃′

i) are indis-
tinguishable. Finally, H’s real view viewH and simulation view SimH are indistinguishable.
Therefore, the PPAM protocol is secure under the honest-but-curious model.

In the PCIA protocol, HC cannot view anything other than the inputs since the P-
PC and PPAM protocols are both secure under the honest-but-curious model. H’s real
view is viewH = (SKH , skH , {xi}i={1,··· ,n}; {EncH(P j

i )}i={1,··· ,n};j={1,··· ,d}, EncH(P ∗), i∗). The

view of H’s simulator is SimH = (SKH , skH , {xi}i={1,··· ,n}; {EncH(P̃ j
i )}i={1,··· ,n};j={1,··· ,d},

EncH(P̃ ∗), ĩ∗). Due to the semantic security of the homomorphic encryption scheme, PPC
and PPAM protocols, viewH and SimH are indistinguishable. Therefore, the PCIA protocol
is secure under the honest-but-curious model.

5.4.2 Social Data Privacy

User’s social contact information CI(i, j) is encrypted by Ui with his public key. Without
Ui’s secret key, SC cannot decrypt and have the plaintext if the decisional Diffie-Hellman
problem is hard in G. Therefore, when the social data are stored on SC, no private
information of users can be disclosed to SC.

As the hospital H is an honest-but-curious entity in social domain, it follows the proto-
col without maliciously querying user’s social data in SC. Furthermore, the diagnosis from
the hospital provides the second-level decryption key for the hospital to decrypt the plain-
text of Ui’s social contact information. Users are able to grant social contact information
access permission by issuing re-encryption key R̃Ki→H to allow SC to re-encrypt CI(i, j)
to the hospital’s domain. Without the permission, the hospital still cannot decrypt to
have CI(i, j), even though it can obtain the query results from SC. Note that re-encryption
is unidirectional such that the users cannot recover the hospital’s secret key to decrypt
other user’s social information. The infected patient’s identity is also protected against
HC during infection analysis. Therefore, the patient’s identities and contact information,
including contacted users and duration, are protected against SC. The hospital can only
obtain user’s social contact information after he is diagnosed as infected.

104



5.4.3 Susceptible and Infected User Privacy

Susceptible user’s identity and analysis results can be invisible to HC, SC and any other
unauthorized entities. When a patient is diagnosed, the hospital H sends social data
query request to SC. During the social data query process, SC learns nothing except that
n users are involved in the hospital’s query request. But SC cannot know which one user
(or k-of-n users) can be queried if PPDQ method is semantic secure under the honest-
but-curious model. We show the semantic security of PPDQ method as follows. H’s
query request Query(i, d, s) and query result Q.Result(CLi) are privacy-preserving against
SC because the adopted homomorphic encryption scheme and ElGamal cryptosystem are
semantic secure under the honest-but-curious model. Without the secret key, Query(i, d, s)
and Q.Result(CLi) are invisible to SC. SC’s real view is viewSC = (EncH(d),EncH(I); ry(1 �
y � ω),EncH(φ)). The simulator’s view of SC is SimSC = (EncH(d),EncH(I); r̃y(1 � y �
ω), ˜EncH(φ)). Since the distributions of ry and r̃y are the same, they are computational
indistinguishable. Due to the semantic security of the homomorphic encryption scheme and

the PPC protocol, EncH(φ) and ˜EncH(φ) are also indistinguishable. Therefore, SC’s real
view viewSC and simulation view SimSC are indistinguishable. The identity query vector I
can bound the maximum number of H’s queried users. H can decrypt the valid result only

if
n∑

i=1

EncH(Ii)−EncH(1) = 0. Therefore, the PPDQ is secure under the honest-but-curious

model. PPDQ can be secure performed between HC and H when H retrieves users’ health
data from HC.

Only infected patients grant social data access to H after they are diagnosed in the
hospital. Then, the infected patient’s decryption key for his re-encrypted ciphertexts is
sent to H such that H can decrypt patient’s social data after the query. If H arbitrarily
builds identity query vector I, H cannot find any valid information due to the semantic
security of ElGamal cryptosystem.

5.5 Performance Evaluation

In this section, we evaluate the performance of the PIA with respect to simulation and
computational overhead.
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Figure 5.6: Impact of social characteristics

5.5.1 Simulations

We conduct extensive simulation based on Infocom06 data set [102], which contains 78
mobile users in a conference. Each user takes a portable device with Bluetooth proximity
discovery program to find the nearby users. The social-tie (used to reflect contact type)
is also obtained according to user’s interactions in the data set. We use this scenario to
simulate the infectious disease spread under an indoor environment. In this simulation, we
randomly select 8 infected patients with a random assigned infectivity value ranging from
50 to 100. We also set user’s immunity strength similarly in the range of [50, 100].

In the simulation, we aim to show the trend of the social characteristic impact other
than quantifying the formula between immunity strength and infectivity. The hospital or
users can define thresholds to trigger queries, where we consider the thresholds of contact
number NC, contact duration D and social-tie ST as shown in Fig. 5.6. From Fig. 5.6(a),
we can see that the number of queries decreases with the increasing threshold contact
number. When NC is small, e.g., 20 or 30, more queries are triggered since the PIA
provides a conservative strategy to include more queries. As shown in Fig. 5.6(b), the
decreased duration threshold results in the increasing number of queries since the longer
contact between the infected patient and normal users could increase the infection risk of
the normal users. In Fig. 5.6(c), the PIA operates with a conservative strategy as ST is
small. But the number of queries does not vary too much when ST is from 20 to 40. The
reason is that a higher social-tie in a certain range (e.g., in a low level from 20 to 40) may
not indicate frequent contacts which are the key factor to accumulate the infection spread
[169]. When ST keeps increasing, it shows significant impact on the number of queries.
This result also validates the point from [169] that the social relationship is an important
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factor to influence the spread process of infectious disease and the close relationships (e.g.,
students in the same class, or families) may cause severe infection spread. By adjusting
ST , the PIA can efficiently notify the people with high social-ties to take actions to prevent
the infection spread from human-to-human contact. Therefore, the above results validate
the trend in Equation 5.1 and show that the PIA is effective in responding to the spread
of infectious disease.

5.5.2 Computational Performance

We use the acute inflammations data set [188] including 120 instances with attributes (i.e.,
patient’s temperature, lumbar pain, urine pushing, micturition pains, urethra status) and
corresponding decisions (i.e., inflammation of urinary bladder, and nephritis of renal pelvis
origin). We first test the accuracy of the PIA. The total 59 instances with inflammation of
urinary bladder and 50 instances with nephritis of renal pelvis origin are all detected. But
the PIA detects 47 non-inflammation instances and 59 non-nephritis ones. The accuracy
towards individual decision is 88.33% and 90.83%, respectively.

To demonstrate the advantages of using social data for enhancing infection analysis,
we generate a data set including the contact information from the real world human trace
and synthetic health data. In this data set, each instance contains: contact duration,
social-tie, immunity strength, infectivity and infection status. According to [177], we use
the 1/4 data set (corresponding to the first day of the conference) to label the training
set including 100 instances. We generate 200 input instances with the randomly selected
health data (i.e., immunity strength, infectivity and infection status according to [177]) for
a baseline classification scheme that only has health data to analyze the infection status.
Note that we only label “Susceptible” and “Recovered” in the infection status since we
focus on the analysis of infection spread. Meanwhile, we generate 200 instances including
contact information from the other 3/4 data set of the real world human trace and the
same health data used in the baseline classification scheme. In the 200-instance data set,
the number of “Susceptible” and “Recovered” is 120 and 80, respectively. As shown in
Table 5.1, the PIA detects 103 “Susceptible” instances and 73 “Recovered” ones, while
the baseline scheme detects 71 and 62. Therefore, the integrated social data benefit the
infection spread analysis.

With respect to the computational cost of PCIA, we conduct the experiment under a
homomorphic encryption library HELib [189] on an Intel Core i5 2.7GHz machine with
4GB RAM to test the computational running time of the proposed methods based on
Infocom06 trace. It achieves 80 bits of security with the parameter settings. To mimic
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Table 5.1: Infection Analysis Comparison

PIA Baseline Scheme

“Susceptible” 103/120 (85.83%) 71/120 (59.16%)
“Recovered” 73/80 (91.25%) 62/80 (77.5%)
Overall 176/200 (88%) 133/200 (66.5%)

the real network environment, we set the communication overhead as 30ms during each
interaction of different entities (similar to [35]). In the PPC, H takes 42.94ms, while HC
takes 65.674ms. In the PPAM, H takes 6.350s, while HC takes 12.741s. To perform the
PCIA, H takes 7.016s, while HC takes 24.282s. Therefore, we can see that HC takes
over the majority of the computational overhead since HC has powerful computational
capability. The overhead for H is not high.

We also test the running time of the PPDQ with HELib and Crypto++ [190]. We
set l = 1024, ω = 10 and n = 78. H takes 329.234ms to generate the query to SC and
retrieve the results, while SC takes 6.487s to return the query results. The majority of
computational overhead is at the SC side.

5.6 Related Works

Health data analysis has attracted a lot of attentions from both academic and industrial
fields as the big volume of health multimedia data are collected for analysis [191]. Some
sophisticated machine learning schemes, such as support vector machine, naive Bayesian
classification and decision tree based classification [192], are widely applied in practical ap-
plications [35]. These schemes usually require the labeled training data set to establish the
learning/classification model, which is used to classify the new data. In addition, abnor-
mal event detection is of great importance especially in health data analysis, and requires
prior expert knowledge with well-defined models [193, 194]. Due to rarity, unexpectedness
and relevance features of abnormal events, Zhang et al. [112] develop a semi-supervised
adapted Hidden Markov Model with Bayesian adaptation to adjust abnormal events. It
first labels an abnormal event model in an unsupervised pattern from a large volume of
ground truth data. An iterative structure is utilized to adapt any emerging abnormal event
at each iteration. This framework can address the difficulty in labeling abnormal events
and the scarcity of training data [54].

To leverage privacy preservation and data usability [195] for health data analysis, ex-
tensive research efforts have been put in recent years. A variant of “doubly homomorphic”

108



encryption scheme [196] for secure multi-party computation is introduced to perform flex-
ible operations over the encrypted data. With the advanced and efficient homomorphic
encryption techniques [180], Graepel et al. [197] propose a machine learning scheme with
privacy preservation to outsource the heavy computation tasks to the powerful cloud server-
s. At the same time, data confidential and user privacy are achieved with the advantages
of the adopted leveled homomorphic encryption scheme. This privacy-preserving machine
learning scheme mainly solves the privacy issues during the data training phase. To perfor-
m both training and learning over encrypted data, Bost et al. [35] develop a set of secure
machine learning classification schemes based on leveled fully homomorphic encryption.
In [35], a client performs learning operations with an untrusted server over ciphertexts.
In [38], Barni et al. develop a neural network based classification scheme with privacy
preservation with linear branching programs to address privacy issues in ECG classifica-
tion. Samanthula et al. [198] propose a k-nearest neighbor classification algorithm based
on Paillier cryptosystem [199] which enables operations over ciphertexts for e-healthcare
systems. In [192], a privacy-preserving clinical decision support system is proposed based
on naive Bayesian classification. It first aggregates user’s health data for training, and then
enables untrusted cloud servers to perform secure classification algorithm over encrypted
data. Users are also allowed to retrieve top-k diagnosis results with their interests and
requests. Yuan et al. [36] propose a privacy-preserving back-propagation neural network
learning algorithm based on “doubly homomorphic” encryption. It allows every user to
send encrypted data to the cloud server, which performs most of the computation tasks
in learning algorithm without compromising the privacy of user’s raw data. Another type
of lightweight machine learning is decision tree based classification, which is studied in
[200] and developed with privacy protection mechanisms. Recently, Zhou et al. [201]
propose a secure health text mining scheme, where a privacy-preserving data aggregation
method [202] is served as the building block to enable data training in cloud assisted e-
healthcare system. Considering the health data access problem, Zhou et al. [203] propose
a user-controlled multi-level cooperative authentication scheme to protect user’s attribute
information from disclosing during the data exchange in healthcare system.

However, most of existing works focus on a single cloud platform involving in e-
healthcare systems. Due to the unique characteristics of infectious disease, it is necessary to
integrate various sources of user’s information, such as health and social data for infection
analysis. Meanwhile, the large volume of long-lasting health and social data from users
pose a big challenge for data management and collaboration in the traditional e-healthcare
framework. Therefore, multiple independent cloud servers with different functionalities
are involved in our approach to enhance the infection analysis with sufficient knowledge
of patients and susceptible users from both health and social perspectives. In addition,
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data privacy, usability (i.e., secure operations over encrypted data) and efficiency should
be jointly considered when designing a novel infection analysis system.

5.7 Summary

In this chapter, we have proposed a human-to-human infection analysis approach by uti-
lizing social networking data and health data to enhance infection analysis with privacy
preservation. First, we have analyzed the infectious disease spread process and adopted
naive Bayesian classification to detect user’s infection status. Furthermore, we have ex-
ploited social cloud server to collect users’ social networking data, and relied on health
cloud server to process/classify users’ health data. We have proposed a privacy-preserving
data query method to enable hospital to query infected patient’s social contacts without
allowing the social cloud server to infer the patient’s identity and contact details. We
have also proposed a privacy-preserving classification-based infection analysis method to
perform infection analysis over the encrypted social and health data on the health cloud
server. Privacy discussion shows that the infected patient’s identity and contact details,
user’s social data and health data are protected from being inferred by untrusted cloud
servers and unauthorized entities. Performance evaluation demonstrates that the PIA can
enhance infection analysis efficiency and consume acceptable overhead. The PIA provides
a social network application for infection analysis with privacy preservation from a novel
perspective.
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Chapter 6

Conclusions and Future Work

In this thesis, we have investigated security and privacy for MSNs. Based on the afore-
mentioned analysis and discussion, we highlight the main contributions of this thesis and
discuss several open research directions for future work.

6.1 Conclusions

In this thesis, we have developed a set of security and privacy protection schemes for MSNs.
We summarize the following highlights of this thesis.

• To resist spam in MSNs, we have proposed a personalized fine-grained spam filter-
ing scheme, which allows users to personalize fine-grained keyword-based filters and
prevents their private information from disclosing when filtering. By investigating
MSN data forwarding process, we have developed a filter distribution scheme based
on user’s social interests to efficiently distribute filters and block spam. Then, we
have proposed privacy-preserving coarse-grained and fine-grained filtering schemes,
which enable filter creators to personalize their filters based on their social inter-
ests. In addition, we have developed a Merkle Hash tree based filter structure to
authenticate the filter validity and update the filters according to user’s demands.
In the proposed PIF scheme, the filter creator’s private information included in his
filters can be protected from disclosing. Meanwhile, the PIF cannot only reduce the
data forwarding delay, communication and storage overhead but also achieve a high
filtering accuracy and efficiency.
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• To detect misbehaviors in MSNs, we have investigated mobile users’ pseudonym
changing and social contact behaviors and proposed a social based Sybil detection
scheme according to their abnormal social behaviors in mobile environments. We have
exploited the contact statistics of the used pseudonyms and detected Sybil attackers
by comparing these contact statistics of pseudonyms from normal users and those
from Sybil attackers, when the Sybil attackers frequently change their pseudonyms to
cheat other users. In addition, we have proposed a semi-supervised learning scheme
with hidden Markov model to detect the collusion among mobile users. Due to the
limited storage and computation capabilities of mobile users, we have adopted cloud
servers to store and process the massive social contact data from users, alleviating
the burden of mobile users. The proposed SMSD scheme also addresses the collusion
attacks and resists cloud data modification when employing the untrusted cloud
server for mobile Sybil detection..

• We have proposed a novel infection analysis approach, named PIA, to infer human-to-
human infection spread by integrating social networking data with health data. We
have analyzed the spread process of infectious disease with the consideration of user’s
social contact and health condition. Several key factors related to infection spread,
including immunity strength of the susceptible user, infectivity of the infected pa-
tient, their contact duration and contact type, are investigated. We also utilize naive
Bayesian classification method to enhance infection analysis with the integration of
social and health cloud data from different cloud servers. To address the privacy
issues during the collaboration of social and health cloud server, we have proposed a
privacy-preserving data query method (PPDQ) based on conditional oblivious trans-
fer to allow the authorized entity (i.e., hospital) to access the infected patient’s social
networking data from the social cloud server, but not allow the social cloud server
to access and infer any data including patient’s identity. In addition, we propose a
privacy-preserving classification-based infection analysis method (PCIA) to prevent
user’s private social and health data from disclosing to the untrusted health cloud
server. The PCIA enables users to encrypt raw data based on homomorphic encryp-
tion and send ciphertexts to the cloud server. Then, the health cloud server can
perform the analysis without learning any user’s private information.

6.2 Future Research Directions

This thesis introduces the MSN architecture and applications, identifies security and pri-
vacy challenges in MSNs, and proposes several promising solutions to achieve security and
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privacy goals. Although some preliminary results on security and privacy in MSNs are
provided, there are still several open research directions including but not limited to the
followings.

6.2.1 Secure and Lightweight Social Data Sharing

MSNs leverage smartphones and wearable devices to offer diverse sensing functionalities,
causing continuous computation and communication overhead. Some private information
may be inferred from the shared social network data such that it is necessary to check
whether the sharing data contain private information, such as private area in a photo, bar
code and security information in multimedia to be shared. Transfer learning [204, 205]
is a useful approach to investigate new feature or solve a different problem based on the
training knowledge [206]. In addition, a privacy risk evaluation [94] is helpful to estimate
data owner’s potential privacy leakage before sharing data. However, how to define and
measure the privacy leakage over social network data becomes critical and challenging.

Meanwhile, to guarantee secure data transmission and sharing, encryption techniques
are applied on top of them [207]. Due to the power constraints and portability of s-
martphones and wearable devices, traditional cryptographic schemes dramatically increase
the computation and communication overheads. To this end, it is necessary to develop
lightweight cryptographic schemes for the encryption of these social related sensing data
measured by smartphones and wearable devices. Several cryptographic schemes, such as
NTRU [208, 209], may provide some benefits for lightweight data encryption in terms of
overhead. The encryption keys of NTRU are easily created with a reasonable key length.
Both of the encryption and decryption of NTRU consume low memory but perform fast.
NTRU has the smallest average power consumption, but the largest message size. Howev-
er, it is still an open problem to develop practical NTRU schemes for MSN data, requiring
further research efforts. In addition, compressive sensing [210] is an effective approach to
integrating the lightweight data sensing and security, i.e., encryption and signature. Con-
ventional sampling schemes follow Shannon’s celebrated theorem: the sampling rate must
be at least twice the maximum frequency present in the signal (i.e., Nyquist rate) [211].
Against the common wisdom in data sampling and acquisition, compressive sensing can
recover certain signals (or images) based on fewer measurements and samples than tradi-
tional methods. It relies on two principles: 1) sparsity (which pertains to the signals of
interest) and 2) incoherence (which pertains to the sensing modality). Having the sensing
matrix, the raw data, which can be sparsely expressed in some domain (e.g., time, frequen-
cy, or wavelet), are compressed with different rates. During the construction of sensing
matrix, it is difficult to find such a matrix with low coefficient between any two columns.
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We intend to investigate this problem and develop a novel compressive sensing scheme,
which performs encryption and signature at the same time, such that the efficiency would
be dramatically increased.

6.2.2 Misbehavior Detection

In social applications of MSN, as the smarter attackers trend to mimic normal users to
hide themselves against detections [25, 212], the traditional security solutions focusing on
resisting the attacking behaviors may not be always effective. The misbehavior detection
relies on the learning procedures where learning and training are alternatively applied.
Furthermore, human intelligence is highly desirable during the misbehavior modeling and
detection to adjust the tunable security and privacy solutions.

Crowdsourcing would be a promising approach to facilitate the existing misbehavior
detections [213]. In MSNs, mobile user’s detection capability is not as powerful as that
at the server side, or even weaker than online users. Outsourcing the detection tasks to
the crowd (or a group of mobile users) provides comprehensive knowledge and powerful
collaborative detection capabilities. The crowdsourcing users may detect the suspicious
Sybil attackers in the early stage via cryptographic schemes, such as authentication of
identities associated with user’s contacts, and event signatures. The collected detection
results or information from crowdsourcing users can assist user’s behavior learning, social
graph establishment and community detection, which finally benefits the global detection
or decision making. Therefore, the crowdsourcing based Sybil detection is envisioned to
be a promising tendency for future research directions.

6.2.3 Secure Social Data Processing

In MSNs, it is urgent to allow the cloud server to perform complicated operations over
the encrypted social data [192, 197]. Machine learning and data mining algorithms [35],
such as neural network and deep learning, can be applied to analyze the social network
characteristics and benefit user’s social interactions in return. The existing homomorphic
encryption [214] and privacy protection techniques [180, 187] can only efficiently support
some basic operations, such as addition and multiplication. The cryptographic computa-
tion overhead of privacy-preserving machine learning is still too high to be directly applied
in the large scale MSNs.

Meanwhile, the anonymity techniques [215, 216] can be integrated with the cryptog-
raphy schemes to balance the privacy and the social data availability. The unlinkability
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is another important feature of designing privacy-preserving machine learning. However,
there exist trade-offs among data availability, security and complexity of data processing,
especially from the perspective of QoP [64]. In addition, side channel attackers may ana-
lyze or infer the type of social data or processing results [217, 218]. The communication
patterns of MSN users or even traffic flows are possible to be monitored and analyzed by
outside eavesdroppers [219]. For example, in healthcare social network, a global attacker
may distribute some malwares at routers or user’s devices to monitor the users’ data flows.
As a result, user’s private information, such as relationships with other privacy-sensitive
identities (e.g., doctors) and roles of different identities, may be inferred by this global
attacker. In addition, some powerful attackers can analyze the operation characteristics on
the processed data, e.g., operations over the data and processing time in the cloud server,
and infer the data type or whether the data are critical or not. Thus, it is necessary to hide
and develop security schemes against side channel attacks when processing social data.
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