373 research outputs found

    Energy-Efficient NoC for Best-Effort Communication

    Get PDF
    A Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture forMulti-Processor System-on-Chip (MPSoC) architectures. In an earlier paper we proposed a energy-efficient reconfigurable circuit-switched NoC to reduce the energy consumption compared to a packetswitched NoC. In this paper we investigate a chordal slotted ring and a bus architecture that can be used to handle the best-effort traffic in the system and configure the circuitswitched network. Both architectures are compared on their latency behavior and power consumption. At the same clock frequency, the chordal ring has the major benefit of a lower latency and higher throughput. But the bus has a lower overall power consumption at the same frequency. However, if we tune the frequency of the network to meet the throughput requirements of control network, we see that the ring consumes less energy per transported bit

    Design and Analysis of a Novel Low Complexity and Low Power Ping Lock Arbiter by using EGDI based CMOS Technique

    Get PDF
    Network-on-chip (NoC) provides solution to overcome the complications of the on-chip interconnect architecture in multi-core systems. It mainly consists of router, links and network interface. An essential component of on-chip router is an arbiter that significantly impacts the performance of the router. The arbiter should provide fast and fair arbitration when it is placed in Critical Path Delay (CPD) systems. The main aim of this research work is to design a novel arbiter for an effective network scheduler in complex real time applications. At the same time resource allocation and power consumption should be very low. Previously, a novel gate level Ping Lock Arbiter (PLA) is designed to overcome the limited fair arbitration in Improved Ping Pong Arbiter (IPPA) with less delay. But the chip size and power consumption are very high. To overcome this problem, an Effective Gate Diffusion Input (EGDI) logic based CMOS scheme is used to design a novel Compact Ping Lock Arbiter (CPLA).  The proposed CPLA is compared with the existing PLA based on static CMOS scheme. The comparison between the conventional and proposed arbiter is carried out to analyze the area, delay and power by using Tanner Tool 14.1 with 250nm and 45nm. The results show that the proposed NPLA achieves low power and consumes less than the existing ping lock arbiter

    Round Robin based Arbitration Mechanism for Signaling Approach based Router Architecture

    Get PDF
    In Network-on-Chip the effectiveness of the network resource allocation is demonstrated by the flow control mechanism. There are two types of flow control mechanisms: buffered and bufferless. Compared to buffered flow control methods, buffer less flow control mechanisms are easier to use, need less power, and take up less space. When there are congestion and resource conflicts, it experiences higher packet loss and packet misrouting inside the network. A good buffered control mechanism useful as it overcomes the limitations of buffer less mechanism. There are numerous buffered and bufferless flow control methods available. In this paper, signaling-based Virtual Output Queue Router Arbiter Mechanism is used to explore credit-based flow control. This mechanism worked on new concept that is “stress value”. This information is generated in the form of credit whenever any input buffer has free space. Then, using this credit data, the node's stress value is determined. Free buffer space takes precedence over stress value if it is bigger. The stress value will increase if there is less available buffer space. To handle the congestion problem, the signaling block then sends this stress value to a neighboring router. To help the arbitrator make a more accurate decision, the crediting system constantly operates in tandem with arbitration

    Bibliometric Review of NoC Router Optimization

    Get PDF
    Network on chip (NoC) has been proposed as an emerging solution for scalability and performance demands of next generation System on Chip (SoC). NoC provides a solution for the bus based interconnection issue of SoC, where large numbers of Intellectual Property modules (IP) are integrated on a single chip for better performance. The NoC has several advantages such as scalability, low latency and low power consumption, high bandwidth over dedicated wires and buses. Interconnections between multiple chip cores have a significant impact on the communication and performance of the chip design in terms of region, latency, throughput and power. In the NoC architecture, the router is a dominant component that significantly affects the performance of the NoC. NoC router architectures evolved since the year 2002 and progress in the domain pertaining to the optimization in the NoC router architectures has been discussed. The key objective of this bibliometric review is to understand the extent of the existing literature in the domain of performance efficient NoC router architectures. The bibliometric analysis is primarily based on data extracted from Scopus. It reveals that major contributions are done by researchers from USA, China followed by India in the form of conference, journals and articles publications. The major contribution is by the subject areas of Computer Science and Engineering followed by Mathematics and Material Science. The geographical analysis is done by using the GPS visualize tool. The clusters were created using Gephi

    CLOCK GATED ROUND ROBIN ARBITER FOR NOC ROUTER

    Get PDF
    Network on chip is now a day the choice of a processor designer for transfer of data in a packet based communication system as conventional bus based communication medium is not scalable with the increasing numbers of cores. In an NoC system, each core is connected to a local router and all the routers are connected via communication links. The routers as well as the communication links consume a significant amount of power which is a major concern in an NoC based system. This has led to the work that has been proposed in this paper. In this paper, we propose a low power NoC router based on the principle of clock gating technique by modifying the arbiter block of the router and compare the result with conventional Round-Robin arbiter. Here, the concept of clock-gating has been used to modify the router which has led to the reduction of dynamic power

    Design of Reconfigurable Network-on-Chip Topology

    Get PDF
    A Network-on-Chip (NoC) is used instead of buses to provide better interconnection between the IP modules, as the number of IPs in a SoC increases. The use of NoC enables the SoC designer to find suitable solution for different characteristics and constraints. The reconfigurable Network-on-Chip architecture aims at gaining low latency and low power consumption. As different applications have different requirements and the NoC should be flexible enough to meet these requirements. In this NoC architecture design we aim to combine both packet switching and circuit switching. By combining these two switching techniques it becomes possible to generate application specific topologies on a general Network-on-Chip based system

    Formal Analysis of a Fault-Tolerant Routing Algorithm for a Network-on-Chip

    Get PDF
    International audienceA fault-tolerant routing algorithm in Network-on-Chip architectures provides adaptivity for on-chip communications. Adding fault-tolerance adaptivity to a routing algorithm increases its design complexity and makes it prone to deadlock and other problems if improperly implemented. Formal verification techniques are needed to check the correctness of the design. This paper performs formal analysis on an extension of the link-fault tolerant Network-on-Chip architecture introduced by Wu et al. that supports multiflit wormhole routing. This paper describes several lessons learned during the process of constructing a formal model of this routing architecture. Finally, this paper presents how the deadlock freedom and tolerance to a single-link fault is verified for a two-by-two mesh version of this routing architecture
    corecore